18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright (C) 2014-2015 Broadcom Corporation
48c2ecf20Sopenharmony_ci * Copyright 2014 Linaro Limited
58c2ecf20Sopenharmony_ci */
68c2ecf20Sopenharmony_ci
78c2ecf20Sopenharmony_ci#include <linux/cpumask.h>
88c2ecf20Sopenharmony_ci#include <linux/delay.h>
98c2ecf20Sopenharmony_ci#include <linux/errno.h>
108c2ecf20Sopenharmony_ci#include <linux/init.h>
118c2ecf20Sopenharmony_ci#include <linux/io.h>
128c2ecf20Sopenharmony_ci#include <linux/irqchip/irq-bcm2836.h>
138c2ecf20Sopenharmony_ci#include <linux/jiffies.h>
148c2ecf20Sopenharmony_ci#include <linux/of.h>
158c2ecf20Sopenharmony_ci#include <linux/of_address.h>
168c2ecf20Sopenharmony_ci#include <linux/sched.h>
178c2ecf20Sopenharmony_ci#include <linux/sched/clock.h>
188c2ecf20Sopenharmony_ci#include <linux/smp.h>
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_ci#include <asm/cacheflush.h>
218c2ecf20Sopenharmony_ci#include <asm/smp.h>
228c2ecf20Sopenharmony_ci#include <asm/smp_plat.h>
238c2ecf20Sopenharmony_ci#include <asm/smp_scu.h>
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci#include "platsmp.h"
268c2ecf20Sopenharmony_ci
278c2ecf20Sopenharmony_ci/* Size of mapped Cortex A9 SCU address space */
288c2ecf20Sopenharmony_ci#define CORTEX_A9_SCU_SIZE	0x58
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci#define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
318c2ecf20Sopenharmony_ci#define BOOT_ADDR_CPUID_MASK	0x3
328c2ecf20Sopenharmony_ci
338c2ecf20Sopenharmony_ci/* Name of device node property defining secondary boot register location */
348c2ecf20Sopenharmony_ci#define OF_SECONDARY_BOOT	"secondary-boot-reg"
358c2ecf20Sopenharmony_ci#define MPIDR_CPUID_BITMASK	0x3
368c2ecf20Sopenharmony_ci
378c2ecf20Sopenharmony_ci/*
388c2ecf20Sopenharmony_ci * Enable the Cortex A9 Snoop Control Unit
398c2ecf20Sopenharmony_ci *
408c2ecf20Sopenharmony_ci * By the time this is called we already know there are multiple
418c2ecf20Sopenharmony_ci * cores present.  We assume we're running on a Cortex A9 processor,
428c2ecf20Sopenharmony_ci * so any trouble getting the base address register or getting the
438c2ecf20Sopenharmony_ci * SCU base is a problem.
448c2ecf20Sopenharmony_ci *
458c2ecf20Sopenharmony_ci * Return 0 if successful or an error code otherwise.
468c2ecf20Sopenharmony_ci */
478c2ecf20Sopenharmony_cistatic int __init scu_a9_enable(void)
488c2ecf20Sopenharmony_ci{
498c2ecf20Sopenharmony_ci	unsigned long config_base;
508c2ecf20Sopenharmony_ci	void __iomem *scu_base;
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci	if (!scu_a9_has_base()) {
538c2ecf20Sopenharmony_ci		pr_err("no configuration base address register!\n");
548c2ecf20Sopenharmony_ci		return -ENXIO;
558c2ecf20Sopenharmony_ci	}
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci	/* Config base address register value is zero for uniprocessor */
588c2ecf20Sopenharmony_ci	config_base = scu_a9_get_base();
598c2ecf20Sopenharmony_ci	if (!config_base) {
608c2ecf20Sopenharmony_ci		pr_err("hardware reports only one core\n");
618c2ecf20Sopenharmony_ci		return -ENOENT;
628c2ecf20Sopenharmony_ci	}
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
658c2ecf20Sopenharmony_ci	if (!scu_base) {
668c2ecf20Sopenharmony_ci		pr_err("failed to remap config base (%lu/%u) for SCU\n",
678c2ecf20Sopenharmony_ci			config_base, CORTEX_A9_SCU_SIZE);
688c2ecf20Sopenharmony_ci		return -ENOMEM;
698c2ecf20Sopenharmony_ci	}
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	scu_enable(scu_base);
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci	iounmap(scu_base);	/* That's the last we'll need of this */
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_ci	return 0;
768c2ecf20Sopenharmony_ci}
778c2ecf20Sopenharmony_ci
788c2ecf20Sopenharmony_cistatic u32 secondary_boot_addr_for(unsigned int cpu)
798c2ecf20Sopenharmony_ci{
808c2ecf20Sopenharmony_ci	u32 secondary_boot_addr = 0;
818c2ecf20Sopenharmony_ci	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ci        if (!cpu_node) {
848c2ecf20Sopenharmony_ci		pr_err("Failed to find device tree node for CPU%u\n", cpu);
858c2ecf20Sopenharmony_ci		return 0;
868c2ecf20Sopenharmony_ci	}
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci	if (of_property_read_u32(cpu_node,
898c2ecf20Sopenharmony_ci				 OF_SECONDARY_BOOT,
908c2ecf20Sopenharmony_ci				 &secondary_boot_addr))
918c2ecf20Sopenharmony_ci		pr_err("required secondary boot register not specified for CPU%u\n",
928c2ecf20Sopenharmony_ci			cpu);
938c2ecf20Sopenharmony_ci
948c2ecf20Sopenharmony_ci	of_node_put(cpu_node);
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci	return secondary_boot_addr;
978c2ecf20Sopenharmony_ci}
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_cistatic int nsp_write_lut(unsigned int cpu)
1008c2ecf20Sopenharmony_ci{
1018c2ecf20Sopenharmony_ci	void __iomem *sku_rom_lut;
1028c2ecf20Sopenharmony_ci	phys_addr_t secondary_startup_phy;
1038c2ecf20Sopenharmony_ci	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
1048c2ecf20Sopenharmony_ci
1058c2ecf20Sopenharmony_ci	if (!secondary_boot_addr)
1068c2ecf20Sopenharmony_ci		return -EINVAL;
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
1098c2ecf20Sopenharmony_ci				      sizeof(phys_addr_t));
1108c2ecf20Sopenharmony_ci	if (!sku_rom_lut) {
1118c2ecf20Sopenharmony_ci		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
1128c2ecf20Sopenharmony_ci		return -ENOMEM;
1138c2ecf20Sopenharmony_ci	}
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	secondary_startup_phy = __pa_symbol(secondary_startup);
1168c2ecf20Sopenharmony_ci	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
1178c2ecf20Sopenharmony_ci
1188c2ecf20Sopenharmony_ci	writel_relaxed(secondary_startup_phy, sku_rom_lut);
1198c2ecf20Sopenharmony_ci
1208c2ecf20Sopenharmony_ci	/* Ensure the write is visible to the secondary core */
1218c2ecf20Sopenharmony_ci	smp_wmb();
1228c2ecf20Sopenharmony_ci
1238c2ecf20Sopenharmony_ci	iounmap(sku_rom_lut);
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci	return 0;
1268c2ecf20Sopenharmony_ci}
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_cistatic void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
1298c2ecf20Sopenharmony_ci{
1308c2ecf20Sopenharmony_ci	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
1318c2ecf20Sopenharmony_ci
1328c2ecf20Sopenharmony_ci	/* Enable the SCU on Cortex A9 based SoCs */
1338c2ecf20Sopenharmony_ci	if (scu_a9_enable()) {
1348c2ecf20Sopenharmony_ci		/* Update the CPU present map to reflect uniprocessor mode */
1358c2ecf20Sopenharmony_ci		pr_warn("failed to enable A9 SCU - disabling SMP\n");
1368c2ecf20Sopenharmony_ci		init_cpu_present(&only_cpu_0);
1378c2ecf20Sopenharmony_ci	}
1388c2ecf20Sopenharmony_ci}
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci/*
1418c2ecf20Sopenharmony_ci * The ROM code has the secondary cores looping, waiting for an event.
1428c2ecf20Sopenharmony_ci * When an event occurs each core examines the bottom two bits of the
1438c2ecf20Sopenharmony_ci * secondary boot register.  When a core finds those bits contain its
1448c2ecf20Sopenharmony_ci * own core id, it performs initialization, including computing its boot
1458c2ecf20Sopenharmony_ci * address by clearing the boot register value's bottom two bits.  The
1468c2ecf20Sopenharmony_ci * core signals that it is beginning its execution by writing its boot
1478c2ecf20Sopenharmony_ci * address back to the secondary boot register, and finally jumps to
1488c2ecf20Sopenharmony_ci * that address.
1498c2ecf20Sopenharmony_ci *
1508c2ecf20Sopenharmony_ci * So to start a core executing we need to:
1518c2ecf20Sopenharmony_ci * - Encode the (hardware) CPU id with the bottom bits of the secondary
1528c2ecf20Sopenharmony_ci *   start address.
1538c2ecf20Sopenharmony_ci * - Write that value into the secondary boot register.
1548c2ecf20Sopenharmony_ci * - Generate an event to wake up the secondary CPU(s).
1558c2ecf20Sopenharmony_ci * - Wait for the secondary boot register to be re-written, which
1568c2ecf20Sopenharmony_ci *   indicates the secondary core has started.
1578c2ecf20Sopenharmony_ci */
1588c2ecf20Sopenharmony_cistatic int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
1598c2ecf20Sopenharmony_ci{
1608c2ecf20Sopenharmony_ci	void __iomem *boot_reg;
1618c2ecf20Sopenharmony_ci	phys_addr_t boot_func;
1628c2ecf20Sopenharmony_ci	u64 start_clock;
1638c2ecf20Sopenharmony_ci	u32 cpu_id;
1648c2ecf20Sopenharmony_ci	u32 boot_val;
1658c2ecf20Sopenharmony_ci	bool timeout = false;
1668c2ecf20Sopenharmony_ci	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	cpu_id = cpu_logical_map(cpu);
1698c2ecf20Sopenharmony_ci	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
1708c2ecf20Sopenharmony_ci		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
1718c2ecf20Sopenharmony_ci		return -EINVAL;
1728c2ecf20Sopenharmony_ci	}
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci	if (!secondary_boot_addr)
1758c2ecf20Sopenharmony_ci		return -EINVAL;
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
1788c2ecf20Sopenharmony_ci				   sizeof(phys_addr_t));
1798c2ecf20Sopenharmony_ci	if (!boot_reg) {
1808c2ecf20Sopenharmony_ci		pr_err("unable to map boot register for cpu %u\n", cpu_id);
1818c2ecf20Sopenharmony_ci		return -ENOMEM;
1828c2ecf20Sopenharmony_ci	}
1838c2ecf20Sopenharmony_ci
1848c2ecf20Sopenharmony_ci	/*
1858c2ecf20Sopenharmony_ci	 * Secondary cores will start in secondary_startup(),
1868c2ecf20Sopenharmony_ci	 * defined in "arch/arm/kernel/head.S"
1878c2ecf20Sopenharmony_ci	 */
1888c2ecf20Sopenharmony_ci	boot_func = __pa_symbol(secondary_startup);
1898c2ecf20Sopenharmony_ci	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
1908c2ecf20Sopenharmony_ci	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	/* The core to start is encoded in the low bits */
1938c2ecf20Sopenharmony_ci	boot_val = (u32)boot_func | cpu_id;
1948c2ecf20Sopenharmony_ci	writel_relaxed(boot_val, boot_reg);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	sev();
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	/* The low bits will be cleared once the core has started */
1998c2ecf20Sopenharmony_ci	start_clock = local_clock();
2008c2ecf20Sopenharmony_ci	while (!timeout && readl_relaxed(boot_reg) == boot_val)
2018c2ecf20Sopenharmony_ci		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_ci	iounmap(boot_reg);
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_ci	if (!timeout)
2068c2ecf20Sopenharmony_ci		return 0;
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci	return -ENXIO;
2118c2ecf20Sopenharmony_ci}
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci/* Cluster Dormant Control command to bring CPU into a running state */
2148c2ecf20Sopenharmony_ci#define CDC_CMD			6
2158c2ecf20Sopenharmony_ci#define CDC_CMD_OFFSET		0
2168c2ecf20Sopenharmony_ci#define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_ci/*
2198c2ecf20Sopenharmony_ci * BCM23550 has a Cluster Dormant Control block that keeps the core in
2208c2ecf20Sopenharmony_ci * idle state. A command needs to be sent to the block to bring the CPU
2218c2ecf20Sopenharmony_ci * into running state.
2228c2ecf20Sopenharmony_ci */
2238c2ecf20Sopenharmony_cistatic int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
2248c2ecf20Sopenharmony_ci{
2258c2ecf20Sopenharmony_ci	void __iomem *cdc_base;
2268c2ecf20Sopenharmony_ci	struct device_node *dn;
2278c2ecf20Sopenharmony_ci	char *name;
2288c2ecf20Sopenharmony_ci	int ret;
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci	/* Make sure a CDC node exists before booting the
2318c2ecf20Sopenharmony_ci	 * secondary core.
2328c2ecf20Sopenharmony_ci	 */
2338c2ecf20Sopenharmony_ci	name = "brcm,bcm23550-cdc";
2348c2ecf20Sopenharmony_ci	dn = of_find_compatible_node(NULL, NULL, name);
2358c2ecf20Sopenharmony_ci	if (!dn) {
2368c2ecf20Sopenharmony_ci		pr_err("unable to find cdc node\n");
2378c2ecf20Sopenharmony_ci		return -ENODEV;
2388c2ecf20Sopenharmony_ci	}
2398c2ecf20Sopenharmony_ci
2408c2ecf20Sopenharmony_ci	cdc_base = of_iomap(dn, 0);
2418c2ecf20Sopenharmony_ci	of_node_put(dn);
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci	if (!cdc_base) {
2448c2ecf20Sopenharmony_ci		pr_err("unable to remap cdc base register\n");
2458c2ecf20Sopenharmony_ci		return -ENOMEM;
2468c2ecf20Sopenharmony_ci	}
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	/* Boot the secondary core */
2498c2ecf20Sopenharmony_ci	ret = kona_boot_secondary(cpu, idle);
2508c2ecf20Sopenharmony_ci	if (ret)
2518c2ecf20Sopenharmony_ci		goto out;
2528c2ecf20Sopenharmony_ci
2538c2ecf20Sopenharmony_ci	/* Bring this CPU to RUN state so that nIRQ nFIQ
2548c2ecf20Sopenharmony_ci	 * signals are unblocked.
2558c2ecf20Sopenharmony_ci	 */
2568c2ecf20Sopenharmony_ci	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
2578c2ecf20Sopenharmony_ci
2588c2ecf20Sopenharmony_ciout:
2598c2ecf20Sopenharmony_ci	iounmap(cdc_base);
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	return ret;
2628c2ecf20Sopenharmony_ci}
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_cistatic int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
2658c2ecf20Sopenharmony_ci{
2668c2ecf20Sopenharmony_ci	int ret;
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci	/*
2698c2ecf20Sopenharmony_ci	 * After wake up, secondary core branches to the startup
2708c2ecf20Sopenharmony_ci	 * address programmed at SKU ROM LUT location.
2718c2ecf20Sopenharmony_ci	 */
2728c2ecf20Sopenharmony_ci	ret = nsp_write_lut(cpu);
2738c2ecf20Sopenharmony_ci	if (ret) {
2748c2ecf20Sopenharmony_ci		pr_err("unable to write startup addr to SKU ROM LUT\n");
2758c2ecf20Sopenharmony_ci		goto out;
2768c2ecf20Sopenharmony_ci	}
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ci	/* Send a CPU wakeup interrupt to the secondary core */
2798c2ecf20Sopenharmony_ci	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ciout:
2828c2ecf20Sopenharmony_ci	return ret;
2838c2ecf20Sopenharmony_ci}
2848c2ecf20Sopenharmony_ci
2858c2ecf20Sopenharmony_cistatic int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
2868c2ecf20Sopenharmony_ci{
2878c2ecf20Sopenharmony_ci	void __iomem *intc_base;
2888c2ecf20Sopenharmony_ci	struct device_node *dn;
2898c2ecf20Sopenharmony_ci	char *name;
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	name = "brcm,bcm2836-l1-intc";
2928c2ecf20Sopenharmony_ci	dn = of_find_compatible_node(NULL, NULL, name);
2938c2ecf20Sopenharmony_ci	if (!dn) {
2948c2ecf20Sopenharmony_ci		pr_err("unable to find intc node\n");
2958c2ecf20Sopenharmony_ci		return -ENODEV;
2968c2ecf20Sopenharmony_ci	}
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_ci	intc_base = of_iomap(dn, 0);
2998c2ecf20Sopenharmony_ci	of_node_put(dn);
3008c2ecf20Sopenharmony_ci
3018c2ecf20Sopenharmony_ci	if (!intc_base) {
3028c2ecf20Sopenharmony_ci		pr_err("unable to remap intc base register\n");
3038c2ecf20Sopenharmony_ci		return -ENOMEM;
3048c2ecf20Sopenharmony_ci	}
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci	writel(virt_to_phys(secondary_startup),
3078c2ecf20Sopenharmony_ci	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
3088c2ecf20Sopenharmony_ci
3098c2ecf20Sopenharmony_ci	dsb(sy);
3108c2ecf20Sopenharmony_ci	sev();
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	iounmap(intc_base);
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_ci	return 0;
3158c2ecf20Sopenharmony_ci}
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_cistatic const struct smp_operations kona_smp_ops __initconst = {
3188c2ecf20Sopenharmony_ci	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
3198c2ecf20Sopenharmony_ci	.smp_boot_secondary	= kona_boot_secondary,
3208c2ecf20Sopenharmony_ci};
3218c2ecf20Sopenharmony_ciCPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
3228c2ecf20Sopenharmony_ci			&kona_smp_ops);
3238c2ecf20Sopenharmony_ci
3248c2ecf20Sopenharmony_cistatic const struct smp_operations bcm23550_smp_ops __initconst = {
3258c2ecf20Sopenharmony_ci	.smp_boot_secondary	= bcm23550_boot_secondary,
3268c2ecf20Sopenharmony_ci};
3278c2ecf20Sopenharmony_ciCPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
3288c2ecf20Sopenharmony_ci			&bcm23550_smp_ops);
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_cistatic const struct smp_operations nsp_smp_ops __initconst = {
3318c2ecf20Sopenharmony_ci	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
3328c2ecf20Sopenharmony_ci	.smp_boot_secondary	= nsp_boot_secondary,
3338c2ecf20Sopenharmony_ci};
3348c2ecf20Sopenharmony_ciCPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_ciconst struct smp_operations bcm2836_smp_ops __initconst = {
3378c2ecf20Sopenharmony_ci	.smp_boot_secondary	= bcm2836_boot_secondary,
3388c2ecf20Sopenharmony_ci};
3398c2ecf20Sopenharmony_ciCPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
340