1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * arch/arm/include/asm/io.h 4 * 5 * Copyright (C) 1996-2000 Russell King 6 * 7 * Modifications: 8 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both 9 * constant addresses and variable addresses. 10 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture 11 * specific IO header files. 12 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. 13 * 04-Apr-1999 PJB Added check_signature. 14 * 12-Dec-1999 RMK More cleanups 15 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions 16 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem 17 */ 18#ifndef __ASM_ARM_IO_H 19#define __ASM_ARM_IO_H 20 21#ifdef __KERNEL__ 22 23#include <linux/string.h> 24#include <linux/types.h> 25#include <asm/byteorder.h> 26#include <asm/memory.h> 27#include <asm-generic/pci_iomap.h> 28 29/* 30 * ISA I/O bus memory addresses are 1:1 with the physical address. 31 */ 32#define isa_virt_to_bus virt_to_phys 33#define isa_bus_to_virt phys_to_virt 34 35/* 36 * Atomic MMIO-wide IO modify 37 */ 38extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set); 39extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set); 40 41/* 42 * Generic IO read/write. These perform native-endian accesses. Note 43 * that some architectures will want to re-define __raw_{read,write}w. 44 */ 45void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen); 46void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen); 47void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen); 48 49void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen); 50void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen); 51void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen); 52 53#if __LINUX_ARM_ARCH__ < 6 54/* 55 * Half-word accesses are problematic with RiscPC due to limitations of 56 * the bus. Rather than special-case the machine, just let the compiler 57 * generate the access for CPUs prior to ARMv6. 58 */ 59#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) 60#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) 61#else 62/* 63 * When running under a hypervisor, we want to avoid I/O accesses with 64 * writeback addressing modes as these incur a significant performance 65 * overhead (the address generation must be emulated in software). 66 */ 67#define __raw_writew __raw_writew 68static inline void __raw_writew(u16 val, volatile void __iomem *addr) 69{ 70 asm volatile("strh %1, %0" 71 : : "Q" (*(volatile u16 __force *)addr), "r" (val)); 72} 73 74#define __raw_readw __raw_readw 75static inline u16 __raw_readw(const volatile void __iomem *addr) 76{ 77 u16 val; 78 asm volatile("ldrh %0, %1" 79 : "=r" (val) 80 : "Q" (*(volatile u16 __force *)addr)); 81 return val; 82} 83#endif 84 85#define __raw_writeb __raw_writeb 86static inline void __raw_writeb(u8 val, volatile void __iomem *addr) 87{ 88 asm volatile("strb %1, %0" 89 : : "Qo" (*(volatile u8 __force *)addr), "r" (val)); 90} 91 92#define __raw_writel __raw_writel 93static inline void __raw_writel(u32 val, volatile void __iomem *addr) 94{ 95 asm volatile("str %1, %0" 96 : : "Qo" (*(volatile u32 __force *)addr), "r" (val)); 97} 98 99#define __raw_readb __raw_readb 100static inline u8 __raw_readb(const volatile void __iomem *addr) 101{ 102 u8 val; 103 asm volatile("ldrb %0, %1" 104 : "=r" (val) 105 : "Qo" (*(volatile u8 __force *)addr)); 106 return val; 107} 108 109#define __raw_readl __raw_readl 110static inline u32 __raw_readl(const volatile void __iomem *addr) 111{ 112 u32 val; 113 asm volatile("ldr %0, %1" 114 : "=r" (val) 115 : "Qo" (*(volatile u32 __force *)addr)); 116 return val; 117} 118 119/* 120 * Architecture ioremap implementation. 121 */ 122#define MT_DEVICE 0 123#define MT_DEVICE_NONSHARED 1 124#define MT_DEVICE_CACHED 2 125#define MT_DEVICE_WC 3 126/* 127 * types 4 onwards can be found in asm/mach/map.h and are undefined 128 * for ioremap 129 */ 130 131/* 132 * __arm_ioremap takes CPU physical address. 133 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page 134 * The _caller variety takes a __builtin_return_address(0) value for 135 * /proc/vmalloc to use - and should only be used in non-inline functions. 136 */ 137extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, 138 void *); 139extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); 140extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); 141extern void __iounmap(volatile void __iomem *addr); 142 143extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 144 unsigned int, void *); 145extern void (*arch_iounmap)(volatile void __iomem *); 146 147/* 148 * Bad read/write accesses... 149 */ 150extern void __readwrite_bug(const char *fn); 151 152/* 153 * A typesafe __io() helper 154 */ 155static inline void __iomem *__typesafe_io(unsigned long addr) 156{ 157 return (void __iomem *)addr; 158} 159 160#define IOMEM(x) ((void __force __iomem *)(x)) 161 162/* IO barriers */ 163#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 164#include <asm/barrier.h> 165#define __iormb() rmb() 166#define __iowmb() wmb() 167#else 168#define __iormb() do { } while (0) 169#define __iowmb() do { } while (0) 170#endif 171 172/* PCI fixed i/o mapping */ 173#define PCI_IO_VIRT_BASE 0xfee00000 174#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE) 175 176#if defined(CONFIG_PCI) 177void pci_ioremap_set_mem_type(int mem_type); 178#else 179static inline void pci_ioremap_set_mem_type(int mem_type) {} 180#endif 181 182extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr); 183 184/* 185 * PCI configuration space mapping function. 186 * 187 * The PCI specification does not allow configuration write 188 * transactions to be posted. Add an arch specific 189 * pci_remap_cfgspace() definition that is implemented 190 * through strongly ordered memory mappings. 191 */ 192#define pci_remap_cfgspace pci_remap_cfgspace 193void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size); 194/* 195 * Now, pick up the machine-defined IO definitions 196 */ 197#ifdef CONFIG_NEED_MACH_IO_H 198#include <mach/io.h> 199#elif defined(CONFIG_PCI) 200#define IO_SPACE_LIMIT ((resource_size_t)0xfffff) 201#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) 202#else 203#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT) 204#endif 205 206/* 207 * This is the limit of PC card/PCI/ISA IO space, which is by default 208 * 64K if we have PC card, PCI or ISA support. Otherwise, default to 209 * zero to prevent ISA/PCI drivers claiming IO space (and potentially 210 * oopsing.) 211 * 212 * Only set this larger if you really need inb() et.al. to operate over 213 * a larger address space. Note that SOC_COMMON ioremaps each sockets 214 * IO space area, and so inb() et.al. must be defined to operate as per 215 * readb() et.al. on such platforms. 216 */ 217#ifndef IO_SPACE_LIMIT 218#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE) 219#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff) 220#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD) 221#define IO_SPACE_LIMIT ((resource_size_t)0xffff) 222#else 223#define IO_SPACE_LIMIT ((resource_size_t)0) 224#endif 225#endif 226 227/* 228 * IO port access primitives 229 * ------------------------- 230 * 231 * The ARM doesn't have special IO access instructions; all IO is memory 232 * mapped. Note that these are defined to perform little endian accesses 233 * only. Their primary purpose is to access PCI and ISA peripherals. 234 * 235 * Note that for a big endian machine, this implies that the following 236 * big endian mode connectivity is in place, as described by numerous 237 * ARM documents: 238 * 239 * PCI: D0-D7 D8-D15 D16-D23 D24-D31 240 * ARM: D24-D31 D16-D23 D8-D15 D0-D7 241 * 242 * The machine specific io.h include defines __io to translate an "IO" 243 * address to a memory address. 244 * 245 * Note that we prevent GCC re-ordering or caching values in expressions 246 * by introducing sequence points into the in*() definitions. Note that 247 * __raw_* do not guarantee this behaviour. 248 * 249 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. 250 */ 251#ifdef __io 252#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) 253#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ 254 cpu_to_le16(v),__io(p)); }) 255#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ 256 cpu_to_le32(v),__io(p)); }) 257 258#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) 259#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ 260 __raw_readw(__io(p))); __iormb(); __v; }) 261#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ 262 __raw_readl(__io(p))); __iormb(); __v; }) 263 264#define outsb(p,d,l) __raw_writesb(__io(p),d,l) 265#define outsw(p,d,l) __raw_writesw(__io(p),d,l) 266#define outsl(p,d,l) __raw_writesl(__io(p),d,l) 267 268#define insb(p,d,l) __raw_readsb(__io(p),d,l) 269#define insw(p,d,l) __raw_readsw(__io(p),d,l) 270#define insl(p,d,l) __raw_readsl(__io(p),d,l) 271#endif 272 273/* 274 * String version of IO memory access ops: 275 */ 276extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); 277extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); 278extern void _memset_io(volatile void __iomem *, int, size_t); 279 280/* 281 * Memory access primitives 282 * ------------------------ 283 * 284 * These perform PCI memory accesses via an ioremap region. They don't 285 * take an address as such, but a cookie. 286 * 287 * Again, these are defined to perform little endian accesses. See the 288 * IO port primitives for more information. 289 */ 290#ifndef readl 291#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) 292#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ 293 __raw_readw(c)); __r; }) 294#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ 295 __raw_readl(c)); __r; }) 296 297#define writeb_relaxed(v,c) __raw_writeb(v,c) 298#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) 299#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) 300 301#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) 302#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) 303#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) 304 305#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) 306#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) 307#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) 308 309#define readsb(p,d,l) __raw_readsb(p,d,l) 310#define readsw(p,d,l) __raw_readsw(p,d,l) 311#define readsl(p,d,l) __raw_readsl(p,d,l) 312 313#define writesb(p,d,l) __raw_writesb(p,d,l) 314#define writesw(p,d,l) __raw_writesw(p,d,l) 315#define writesl(p,d,l) __raw_writesl(p,d,l) 316 317#ifndef __ARMBE__ 318static inline void memset_io(volatile void __iomem *dst, unsigned c, 319 size_t count) 320{ 321 extern void mmioset(void *, unsigned int, size_t); 322 mmioset((void __force *)dst, c, count); 323} 324#define memset_io(dst,c,count) memset_io(dst,c,count) 325 326static inline void memcpy_fromio(void *to, const volatile void __iomem *from, 327 size_t count) 328{ 329 extern void mmiocpy(void *, const void *, size_t); 330 mmiocpy(to, (const void __force *)from, count); 331} 332#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count) 333 334static inline void memcpy_toio(volatile void __iomem *to, const void *from, 335 size_t count) 336{ 337 extern void mmiocpy(void *, const void *, size_t); 338 mmiocpy((void __force *)to, from, count); 339} 340#define memcpy_toio(to,from,count) memcpy_toio(to,from,count) 341 342#else 343#define memset_io(c,v,l) _memset_io(c,(v),(l)) 344#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) 345#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) 346#endif 347 348#endif /* readl */ 349 350/* 351 * ioremap() and friends. 352 * 353 * ioremap() takes a resource address, and size. Due to the ARM memory 354 * types, it is important to use the correct ioremap() function as each 355 * mapping has specific properties. 356 * 357 * Function Memory type Cacheability Cache hint 358 * ioremap() Device n/a n/a 359 * ioremap_cache() Normal Writeback Read allocate 360 * ioremap_wc() Normal Non-cacheable n/a 361 * ioremap_wt() Normal Non-cacheable n/a 362 * 363 * All device mappings have the following properties: 364 * - no access speculation 365 * - no repetition (eg, on return from an exception) 366 * - number, order and size of accesses are maintained 367 * - unaligned accesses are "unpredictable" 368 * - writes may be delayed before they hit the endpoint device 369 * 370 * All normal memory mappings have the following properties: 371 * - reads can be repeated with no side effects 372 * - repeated reads return the last value written 373 * - reads can fetch additional locations without side effects 374 * - writes can be repeated (in certain cases) with no side effects 375 * - writes can be merged before accessing the target 376 * - unaligned accesses can be supported 377 * - ordering is not guaranteed without explicit dependencies or barrier 378 * instructions 379 * - writes may be delayed before they hit the endpoint memory 380 * 381 * The cache hint is only a performance hint: CPUs may alias these hints. 382 * Eg, a CPU not implementing read allocate but implementing write allocate 383 * will provide a write allocate mapping instead. 384 */ 385void __iomem *ioremap(resource_size_t res_cookie, size_t size); 386#define ioremap ioremap 387 388/* 389 * Do not use ioremap_cache for mapping memory. Use memremap instead. 390 */ 391void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size); 392#define ioremap_cache ioremap_cache 393 394void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size); 395#define ioremap_wc ioremap_wc 396#define ioremap_wt ioremap_wc 397 398void iounmap(volatile void __iomem *iomem_cookie); 399#define iounmap iounmap 400 401void *arch_memremap_wb(phys_addr_t phys_addr, size_t size); 402#define arch_memremap_wb arch_memremap_wb 403 404/* 405 * io{read,write}{16,32}be() macros 406 */ 407#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) 408#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) 409 410#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) 411#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) 412 413#ifndef ioport_map 414#define ioport_map ioport_map 415extern void __iomem *ioport_map(unsigned long port, unsigned int nr); 416#endif 417#ifndef ioport_unmap 418#define ioport_unmap ioport_unmap 419extern void ioport_unmap(void __iomem *addr); 420#endif 421 422struct pci_dev; 423 424#define pci_iounmap pci_iounmap 425extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); 426 427/* 428 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 429 * access 430 */ 431#define xlate_dev_mem_ptr(p) __va(p) 432 433/* 434 * Convert a virtual cached pointer to an uncached pointer 435 */ 436#define xlate_dev_kmem_ptr(p) p 437 438#include <asm-generic/io.h> 439 440#ifdef CONFIG_MMU 441#define ARCH_HAS_VALID_PHYS_ADDR_RANGE 442extern int valid_phys_addr_range(phys_addr_t addr, size_t size); 443extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); 444extern int devmem_is_allowed(unsigned long pfn); 445extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, 446 unsigned long flags); 447#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap 448#endif 449 450/* 451 * Register ISA memory and port locations for glibc iopl/inb/outb 452 * emulation. 453 */ 454extern void register_isa_ports(unsigned int mmio, unsigned int io, 455 unsigned int io_shift); 456 457#endif /* __KERNEL__ */ 458#endif /* __ASM_ARM_IO_H */ 459