xref: /kernel/linux/linux-5.10/arch/arc/mm/cache.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ARC Cache Management
4 *
5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 */
8
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/cache.h>
13#include <linux/mmu_context.h>
14#include <linux/syscalls.h>
15#include <linux/uaccess.h>
16#include <linux/pagemap.h>
17#include <asm/cacheflush.h>
18#include <asm/cachectl.h>
19#include <asm/setup.h>
20
21#ifdef CONFIG_ISA_ARCV2
22#define USE_RGN_FLSH	1
23#endif
24
25static int l2_line_sz;
26static int ioc_exists;
27int slc_enable = 1, ioc_enable = 1;
28unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
29unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
30
31void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
32			       unsigned long sz, const int op, const int full_page);
33
34void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
35void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
36void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
37
38char *arc_cache_mumbojumbo(int c, char *buf, int len)
39{
40	int n = 0;
41	struct cpuinfo_arc_cache *p;
42
43#define PR_CACHE(p, cfg, str)						\
44	if (!(p)->line_len)						\
45		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
46	else								\
47		n += scnprintf(buf + n, len - n,			\
48			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
49			(p)->sz_k, (p)->assoc, (p)->line_len,		\
50			(p)->vipt ? "VIPT" : "PIPT",			\
51			(p)->alias ? " aliasing" : "",			\
52			IS_USED_CFG(cfg));
53
54	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
55	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
56
57	p = &cpuinfo_arc700[c].slc;
58	if (p->line_len)
59		n += scnprintf(buf + n, len - n,
60			       "SLC\t\t: %uK, %uB Line%s\n",
61			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
62
63	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
64		       perip_base,
65		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
66
67	return buf;
68}
69
70/*
71 * Read the Cache Build Confuration Registers, Decode them and save into
72 * the cpuinfo structure for later use.
73 * No Validation done here, simply read/convert the BCRs
74 */
75static void read_decode_cache_bcr_arcv2(int cpu)
76{
77	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
78	struct bcr_generic sbcr;
79
80	struct bcr_slc_cfg {
81#ifdef CONFIG_CPU_BIG_ENDIAN
82		unsigned int pad:24, way:2, lsz:2, sz:4;
83#else
84		unsigned int sz:4, lsz:2, way:2, pad:24;
85#endif
86	} slc_cfg;
87
88	struct bcr_clust_cfg {
89#ifdef CONFIG_CPU_BIG_ENDIAN
90		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
91#else
92		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
93#endif
94	} cbcr;
95
96	struct bcr_volatile {
97#ifdef CONFIG_CPU_BIG_ENDIAN
98		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
99#else
100		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
101#endif
102	} vol;
103
104
105	READ_BCR(ARC_REG_SLC_BCR, sbcr);
106	if (sbcr.ver) {
107		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
108		p_slc->sz_k = 128 << slc_cfg.sz;
109		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
110	}
111
112	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
113	if (cbcr.c) {
114		ioc_exists = 1;
115
116		/*
117		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
118		 * simultaneously. This happens because as of today IOC aperture covers
119		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
120		 * region won't be HW coherent.
121		 * If we want to use both IOC and ZONE_HIGHMEM we can use
122		 * bounce_buffer to handle dma transactions to HIGHMEM.
123		 * Also it is possible to modify dma_direct cache ops or increase IOC
124		 * aperture size if we are planning to use HIGHMEM without PAE.
125		 */
126		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
127			ioc_enable = 0;
128	} else {
129		ioc_enable = 0;
130	}
131
132	/* HS 2.0 didn't have AUX_VOL */
133	if (cpuinfo_arc700[cpu].core.family > 0x51) {
134		READ_BCR(AUX_VOL, vol);
135		perip_base = vol.start << 28;
136		/* HS 3.0 has limit and strict-ordering fields */
137		if (cpuinfo_arc700[cpu].core.family > 0x52)
138			perip_end = (vol.limit << 28) - 1;
139	}
140}
141
142void read_decode_cache_bcr(void)
143{
144	struct cpuinfo_arc_cache *p_ic, *p_dc;
145	unsigned int cpu = smp_processor_id();
146	struct bcr_cache {
147#ifdef CONFIG_CPU_BIG_ENDIAN
148		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
149#else
150		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
151#endif
152	} ibcr, dbcr;
153
154	p_ic = &cpuinfo_arc700[cpu].icache;
155	READ_BCR(ARC_REG_IC_BCR, ibcr);
156
157	if (!ibcr.ver)
158		goto dc_chk;
159
160	if (ibcr.ver <= 3) {
161		BUG_ON(ibcr.config != 3);
162		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
163	} else if (ibcr.ver >= 4) {
164		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
165	}
166
167	p_ic->line_len = 8 << ibcr.line_len;
168	p_ic->sz_k = 1 << (ibcr.sz - 1);
169	p_ic->vipt = 1;
170	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
171
172dc_chk:
173	p_dc = &cpuinfo_arc700[cpu].dcache;
174	READ_BCR(ARC_REG_DC_BCR, dbcr);
175
176	if (!dbcr.ver)
177		goto slc_chk;
178
179	if (dbcr.ver <= 3) {
180		BUG_ON(dbcr.config != 2);
181		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
182		p_dc->vipt = 1;
183		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
184	} else if (dbcr.ver >= 4) {
185		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
186		p_dc->vipt = 0;
187		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
188	}
189
190	p_dc->line_len = 16 << dbcr.line_len;
191	p_dc->sz_k = 1 << (dbcr.sz - 1);
192
193slc_chk:
194	if (is_isa_arcv2())
195                read_decode_cache_bcr_arcv2(cpu);
196}
197
198/*
199 * Line Operation on {I,D}-Cache
200 */
201
202#define OP_INV		0x1
203#define OP_FLUSH	0x2
204#define OP_FLUSH_N_INV	0x3
205#define OP_INV_IC	0x4
206
207/*
208 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
209 *
210 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
211 * The orig Cache Management Module "CDU" only required paddr to invalidate a
212 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
213 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
214 * the exact same line.
215 *
216 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
217 * paddr alone could not be used to correctly index the cache.
218 *
219 * ------------------
220 * MMU v1/v2 (Fixed Page Size 8k)
221 * ------------------
222 * The solution was to provide CDU with these additonal vaddr bits. These
223 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
224 * standard page size of 8k.
225 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
226 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
227 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
228 * represent the offset within cache-line. The adv of using this "clumsy"
229 * interface for additional info was no new reg was needed in CDU programming
230 * model.
231 *
232 * 17:13 represented the max num of bits passable, actual bits needed were
233 * fewer, based on the num-of-aliases possible.
234 * -for 2 alias possibility, only bit 13 needed (32K cache)
235 * -for 4 alias possibility, bits 14:13 needed (64K cache)
236 *
237 * ------------------
238 * MMU v3
239 * ------------------
240 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
241 * only support 8k (default), 16k and 4k.
242 * However from hardware perspective, smaller page sizes aggravate aliasing
243 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
244 * the existing scheme of piggybacking won't work for certain configurations.
245 * Two new registers IC_PTAG and DC_PTAG inttoduced.
246 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
247 */
248
249static inline
250void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
251			  unsigned long sz, const int op, const int full_page)
252{
253	unsigned int aux_cmd;
254	int num_lines;
255
256	if (op == OP_INV_IC) {
257		aux_cmd = ARC_REG_IC_IVIL;
258	} else {
259		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
260		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
261	}
262
263	/* Ensure we properly floor/ceil the non-line aligned/sized requests
264	 * and have @paddr - aligned to cache line and integral @num_lines.
265	 * This however can be avoided for page sized since:
266	 *  -@paddr will be cache-line aligned already (being page aligned)
267	 *  -@sz will be integral multiple of line size (being page sized).
268	 */
269	if (!full_page) {
270		sz += paddr & ~CACHE_LINE_MASK;
271		paddr &= CACHE_LINE_MASK;
272		vaddr &= CACHE_LINE_MASK;
273	}
274
275	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
276
277	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
278	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
279
280	while (num_lines-- > 0) {
281		write_aux_reg(aux_cmd, paddr);
282		paddr += L1_CACHE_BYTES;
283	}
284}
285
286/*
287 * For ARC700 MMUv3 I-cache and D-cache flushes
288 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
289 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
290 *    caches actually alias or not.
291 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
292 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
293 */
294static inline
295void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
296			  unsigned long sz, const int op, const int full_page)
297{
298	unsigned int aux_cmd, aux_tag;
299	int num_lines;
300
301	if (op == OP_INV_IC) {
302		aux_cmd = ARC_REG_IC_IVIL;
303		aux_tag = ARC_REG_IC_PTAG;
304	} else {
305		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
306		aux_tag = ARC_REG_DC_PTAG;
307	}
308
309	/* Ensure we properly floor/ceil the non-line aligned/sized requests
310	 * and have @paddr - aligned to cache line and integral @num_lines.
311	 * This however can be avoided for page sized since:
312	 *  -@paddr will be cache-line aligned already (being page aligned)
313	 *  -@sz will be integral multiple of line size (being page sized).
314	 */
315	if (!full_page) {
316		sz += paddr & ~CACHE_LINE_MASK;
317		paddr &= CACHE_LINE_MASK;
318		vaddr &= CACHE_LINE_MASK;
319	}
320	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
321
322	/*
323	 * MMUv3, cache ops require paddr in PTAG reg
324	 * if V-P const for loop, PTAG can be written once outside loop
325	 */
326	if (full_page)
327		write_aux_reg(aux_tag, paddr);
328
329	/*
330	 * This is technically for MMU v4, using the MMU v3 programming model
331	 * Special work for HS38 aliasing I-cache configuration with PAE40
332	 *   - upper 8 bits of paddr need to be written into PTAG_HI
333	 *   - (and needs to be written before the lower 32 bits)
334	 * Note that PTAG_HI is hoisted outside the line loop
335	 */
336	if (is_pae40_enabled() && op == OP_INV_IC)
337		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
338
339	while (num_lines-- > 0) {
340		if (!full_page) {
341			write_aux_reg(aux_tag, paddr);
342			paddr += L1_CACHE_BYTES;
343		}
344
345		write_aux_reg(aux_cmd, vaddr);
346		vaddr += L1_CACHE_BYTES;
347	}
348}
349
350#ifndef USE_RGN_FLSH
351
352/*
353 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
354 * Here's how cache ops are implemented
355 *
356 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
357 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
358 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
359 *    respectively, similar to MMU v3 programming model, hence
360 *    __cache_line_loop_v3() is used)
361 *
362 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
363 * needs to be written into PTAG_HI
364 */
365static inline
366void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
367			  unsigned long sz, const int op, const int full_page)
368{
369	unsigned int aux_cmd;
370	int num_lines;
371
372	if (op == OP_INV_IC) {
373		aux_cmd = ARC_REG_IC_IVIL;
374	} else {
375		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
376		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
377	}
378
379	/* Ensure we properly floor/ceil the non-line aligned/sized requests
380	 * and have @paddr - aligned to cache line and integral @num_lines.
381	 * This however can be avoided for page sized since:
382	 *  -@paddr will be cache-line aligned already (being page aligned)
383	 *  -@sz will be integral multiple of line size (being page sized).
384	 */
385	if (!full_page) {
386		sz += paddr & ~CACHE_LINE_MASK;
387		paddr &= CACHE_LINE_MASK;
388	}
389
390	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
391
392	/*
393	 * For HS38 PAE40 configuration
394	 *   - upper 8 bits of paddr need to be written into PTAG_HI
395	 *   - (and needs to be written before the lower 32 bits)
396	 */
397	if (is_pae40_enabled()) {
398		if (op == OP_INV_IC)
399			/*
400			 * Non aliasing I-cache in HS38,
401			 * aliasing I-cache handled in __cache_line_loop_v3()
402			 */
403			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
404		else
405			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
406	}
407
408	while (num_lines-- > 0) {
409		write_aux_reg(aux_cmd, paddr);
410		paddr += L1_CACHE_BYTES;
411	}
412}
413
414#else
415
416/*
417 * optimized flush operation which takes a region as opposed to iterating per line
418 */
419static inline
420void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
421			  unsigned long sz, const int op, const int full_page)
422{
423	unsigned int s, e;
424
425	/* Only for Non aliasing I-cache in HS38 */
426	if (op == OP_INV_IC) {
427		s = ARC_REG_IC_IVIR;
428		e = ARC_REG_IC_ENDR;
429	} else {
430		s = ARC_REG_DC_STARTR;
431		e = ARC_REG_DC_ENDR;
432	}
433
434	if (!full_page) {
435		/* for any leading gap between @paddr and start of cache line */
436		sz += paddr & ~CACHE_LINE_MASK;
437		paddr &= CACHE_LINE_MASK;
438
439		/*
440		 *  account for any trailing gap to end of cache line
441		 *  this is equivalent to DIV_ROUND_UP() in line ops above
442		 */
443		sz += L1_CACHE_BYTES - 1;
444	}
445
446	if (is_pae40_enabled()) {
447		/* TBD: check if crossing 4TB boundary */
448		if (op == OP_INV_IC)
449			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
450		else
451			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
452	}
453
454	/* ENDR needs to be set ahead of START */
455	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
456	write_aux_reg(s, paddr);
457
458	/* caller waits on DC_CTRL.FS */
459}
460
461#endif
462
463#if (CONFIG_ARC_MMU_VER < 3)
464#define __cache_line_loop	__cache_line_loop_v2
465#elif (CONFIG_ARC_MMU_VER == 3)
466#define __cache_line_loop	__cache_line_loop_v3
467#elif (CONFIG_ARC_MMU_VER > 3)
468#define __cache_line_loop	__cache_line_loop_v4
469#endif
470
471#ifdef CONFIG_ARC_HAS_DCACHE
472
473/***************************************************************
474 * Machine specific helpers for Entire D-Cache or Per Line ops
475 */
476
477#ifndef USE_RGN_FLSH
478/*
479 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
480 * in the non region flush regime (such as for ARCompact)
481 */
482static inline void __before_dc_op(const int op)
483{
484	if (op == OP_FLUSH_N_INV) {
485		/* Dcache provides 2 cmd: FLUSH or INV
486		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
487		 * flush-n-inv is achieved by INV cmd but with IM=1
488		 * So toggle INV sub-mode depending on op request and default
489		 */
490		const unsigned int ctl = ARC_REG_DC_CTRL;
491		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
492	}
493}
494
495#else
496
497static inline void __before_dc_op(const int op)
498{
499	const unsigned int ctl = ARC_REG_DC_CTRL;
500	unsigned int val = read_aux_reg(ctl);
501
502	if (op == OP_FLUSH_N_INV) {
503		val |= DC_CTRL_INV_MODE_FLUSH;
504	}
505
506	if (op != OP_INV_IC) {
507		/*
508		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
509		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
510		 */
511		val &= ~DC_CTRL_RGN_OP_MSK;
512		if (op & OP_INV)
513			val |= DC_CTRL_RGN_OP_INV;
514	}
515	write_aux_reg(ctl, val);
516}
517
518#endif
519
520
521static inline void __after_dc_op(const int op)
522{
523	if (op & OP_FLUSH) {
524		const unsigned int ctl = ARC_REG_DC_CTRL;
525		unsigned int reg;
526
527		/* flush / flush-n-inv both wait */
528		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
529			;
530
531		/* Switch back to default Invalidate mode */
532		if (op == OP_FLUSH_N_INV)
533			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
534	}
535}
536
537/*
538 * Operation on Entire D-Cache
539 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
540 * Note that constant propagation ensures all the checks are gone
541 * in generated code
542 */
543static inline void __dc_entire_op(const int op)
544{
545	int aux;
546
547	__before_dc_op(op);
548
549	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
550		aux = ARC_REG_DC_IVDC;
551	else
552		aux = ARC_REG_DC_FLSH;
553
554	write_aux_reg(aux, 0x1);
555
556	__after_dc_op(op);
557}
558
559static inline void __dc_disable(void)
560{
561	const int r = ARC_REG_DC_CTRL;
562
563	__dc_entire_op(OP_FLUSH_N_INV);
564	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
565}
566
567static void __dc_enable(void)
568{
569	const int r = ARC_REG_DC_CTRL;
570
571	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
572}
573
574/* For kernel mappings cache operation: index is same as paddr */
575#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
576
577/*
578 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
579 */
580static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
581				unsigned long sz, const int op)
582{
583	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
584	unsigned long flags;
585
586	local_irq_save(flags);
587
588	__before_dc_op(op);
589
590	__cache_line_loop(paddr, vaddr, sz, op, full_page);
591
592	__after_dc_op(op);
593
594	local_irq_restore(flags);
595}
596
597#else
598
599#define __dc_entire_op(op)
600#define __dc_disable()
601#define __dc_enable()
602#define __dc_line_op(paddr, vaddr, sz, op)
603#define __dc_line_op_k(paddr, sz, op)
604
605#endif /* CONFIG_ARC_HAS_DCACHE */
606
607#ifdef CONFIG_ARC_HAS_ICACHE
608
609static inline void __ic_entire_inv(void)
610{
611	write_aux_reg(ARC_REG_IC_IVIC, 1);
612	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
613}
614
615static inline void
616__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
617			  unsigned long sz)
618{
619	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
620	unsigned long flags;
621
622	local_irq_save(flags);
623	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
624	local_irq_restore(flags);
625}
626
627#ifndef CONFIG_SMP
628
629#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
630
631#else
632
633struct ic_inv_args {
634	phys_addr_t paddr, vaddr;
635	int sz;
636};
637
638static void __ic_line_inv_vaddr_helper(void *info)
639{
640        struct ic_inv_args *ic_inv = info;
641
642        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
643}
644
645static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
646				unsigned long sz)
647{
648	struct ic_inv_args ic_inv = {
649		.paddr = paddr,
650		.vaddr = vaddr,
651		.sz    = sz
652	};
653
654	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
655}
656
657#endif	/* CONFIG_SMP */
658
659#else	/* !CONFIG_ARC_HAS_ICACHE */
660
661#define __ic_entire_inv()
662#define __ic_line_inv_vaddr(pstart, vstart, sz)
663
664#endif /* CONFIG_ARC_HAS_ICACHE */
665
666noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
667{
668#ifdef CONFIG_ISA_ARCV2
669	/*
670	 * SLC is shared between all cores and concurrent aux operations from
671	 * multiple cores need to be serialized using a spinlock
672	 * A concurrent operation can be silently ignored and/or the old/new
673	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
674	 * below)
675	 */
676	static DEFINE_SPINLOCK(lock);
677	unsigned long flags;
678	unsigned int ctrl;
679	phys_addr_t end;
680
681	spin_lock_irqsave(&lock, flags);
682
683	/*
684	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
685	 *  - b'000 (default) is Flush,
686	 *  - b'001 is Invalidate if CTRL.IM == 0
687	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
688	 */
689	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
690
691	/* Don't rely on default value of IM bit */
692	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
693		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
694	else
695		ctrl |= SLC_CTRL_IM;
696
697	if (op & OP_INV)
698		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
699	else
700		ctrl &= ~SLC_CTRL_RGN_OP_INV;
701
702	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
703
704	/*
705	 * Lower bits are ignored, no need to clip
706	 * END needs to be setup before START (latter triggers the operation)
707	 * END can't be same as START, so add (l2_line_sz - 1) to sz
708	 */
709	end = paddr + sz + l2_line_sz - 1;
710	if (is_pae40_enabled())
711		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
712
713	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
714
715	if (is_pae40_enabled())
716		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
717
718	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
719
720	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
721	read_aux_reg(ARC_REG_SLC_CTRL);
722
723	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
724
725	spin_unlock_irqrestore(&lock, flags);
726#endif
727}
728
729noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
730{
731#ifdef CONFIG_ISA_ARCV2
732	/*
733	 * SLC is shared between all cores and concurrent aux operations from
734	 * multiple cores need to be serialized using a spinlock
735	 * A concurrent operation can be silently ignored and/or the old/new
736	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
737	 * below)
738	 */
739	static DEFINE_SPINLOCK(lock);
740
741	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
742	unsigned int ctrl, cmd;
743	unsigned long flags;
744	int num_lines;
745
746	spin_lock_irqsave(&lock, flags);
747
748	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
749
750	/* Don't rely on default value of IM bit */
751	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
752		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
753	else
754		ctrl |= SLC_CTRL_IM;
755
756	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
757
758	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
759
760	sz += paddr & ~SLC_LINE_MASK;
761	paddr &= SLC_LINE_MASK;
762
763	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
764
765	while (num_lines-- > 0) {
766		write_aux_reg(cmd, paddr);
767		paddr += l2_line_sz;
768	}
769
770	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
771	read_aux_reg(ARC_REG_SLC_CTRL);
772
773	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
774
775	spin_unlock_irqrestore(&lock, flags);
776#endif
777}
778
779#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
780
781noinline static void slc_entire_op(const int op)
782{
783	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
784
785	ctrl = read_aux_reg(r);
786
787	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
788		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
789	else
790		ctrl |= SLC_CTRL_IM;
791
792	write_aux_reg(r, ctrl);
793
794	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
795		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
796	else
797		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
798
799	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
800	read_aux_reg(r);
801
802	/* Important to wait for flush to complete */
803	while (read_aux_reg(r) & SLC_CTRL_BUSY);
804}
805
806static inline void arc_slc_disable(void)
807{
808	const int r = ARC_REG_SLC_CTRL;
809
810	slc_entire_op(OP_FLUSH_N_INV);
811	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
812}
813
814static inline void arc_slc_enable(void)
815{
816	const int r = ARC_REG_SLC_CTRL;
817
818	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
819}
820
821/***********************************************************
822 * Exported APIs
823 */
824
825/*
826 * Handle cache congruency of kernel and userspace mappings of page when kernel
827 * writes-to/reads-from
828 *
829 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
830 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
831 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
832 *  -In SMP, if hardware caches are coherent
833 *
834 * There's a corollary case, where kernel READs from a userspace mapped page.
835 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
836 */
837void flush_dcache_page(struct page *page)
838{
839	struct address_space *mapping;
840
841	if (!cache_is_vipt_aliasing()) {
842		clear_bit(PG_dc_clean, &page->flags);
843		return;
844	}
845
846	/* don't handle anon pages here */
847	mapping = page_mapping_file(page);
848	if (!mapping)
849		return;
850
851	/*
852	 * pagecache page, file not yet mapped to userspace
853	 * Make a note that K-mapping is dirty
854	 */
855	if (!mapping_mapped(mapping)) {
856		clear_bit(PG_dc_clean, &page->flags);
857	} else if (page_mapcount(page)) {
858
859		/* kernel reading from page with U-mapping */
860		phys_addr_t paddr = (unsigned long)page_address(page);
861		unsigned long vaddr = page->index << PAGE_SHIFT;
862
863		if (addr_not_cache_congruent(paddr, vaddr))
864			__flush_dcache_page(paddr, vaddr);
865	}
866}
867EXPORT_SYMBOL(flush_dcache_page);
868
869/*
870 * DMA ops for systems with L1 cache only
871 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
872 */
873static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
874{
875	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
876}
877
878static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
879{
880	__dc_line_op_k(start, sz, OP_INV);
881}
882
883static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
884{
885	__dc_line_op_k(start, sz, OP_FLUSH);
886}
887
888/*
889 * DMA ops for systems with both L1 and L2 caches, but without IOC
890 * Both L1 and L2 lines need to be explicitly flushed/invalidated
891 */
892static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
893{
894	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
895	slc_op(start, sz, OP_FLUSH_N_INV);
896}
897
898static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
899{
900	__dc_line_op_k(start, sz, OP_INV);
901	slc_op(start, sz, OP_INV);
902}
903
904static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
905{
906	__dc_line_op_k(start, sz, OP_FLUSH);
907	slc_op(start, sz, OP_FLUSH);
908}
909
910/*
911 * Exported DMA API
912 */
913void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
914{
915	__dma_cache_wback_inv(start, sz);
916}
917EXPORT_SYMBOL(dma_cache_wback_inv);
918
919void dma_cache_inv(phys_addr_t start, unsigned long sz)
920{
921	__dma_cache_inv(start, sz);
922}
923EXPORT_SYMBOL(dma_cache_inv);
924
925void dma_cache_wback(phys_addr_t start, unsigned long sz)
926{
927	__dma_cache_wback(start, sz);
928}
929EXPORT_SYMBOL(dma_cache_wback);
930
931/*
932 * This is API for making I/D Caches consistent when modifying
933 * kernel code (loadable modules, kprobes, kgdb...)
934 * This is called on insmod, with kernel virtual address for CODE of
935 * the module. ARC cache maintenance ops require PHY address thus we
936 * need to convert vmalloc addr to PHY addr
937 */
938void flush_icache_range(unsigned long kstart, unsigned long kend)
939{
940	unsigned int tot_sz;
941
942	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
943
944	/* Shortcut for bigger flush ranges.
945	 * Here we don't care if this was kernel virtual or phy addr
946	 */
947	tot_sz = kend - kstart;
948	if (tot_sz > PAGE_SIZE) {
949		flush_cache_all();
950		return;
951	}
952
953	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
954	if (likely(kstart > PAGE_OFFSET)) {
955		/*
956		 * The 2nd arg despite being paddr will be used to index icache
957		 * This is OK since no alternate virtual mappings will exist
958		 * given the callers for this case: kprobe/kgdb in built-in
959		 * kernel code only.
960		 */
961		__sync_icache_dcache(kstart, kstart, kend - kstart);
962		return;
963	}
964
965	/*
966	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
967	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
968	 *     handling of kernel vaddr.
969	 *
970	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
971	 *     it still needs to handle  a 2 page scenario, where the range
972	 *     straddles across 2 virtual pages and hence need for loop
973	 */
974	while (tot_sz > 0) {
975		unsigned int off, sz;
976		unsigned long phy, pfn;
977
978		off = kstart % PAGE_SIZE;
979		pfn = vmalloc_to_pfn((void *)kstart);
980		phy = (pfn << PAGE_SHIFT) + off;
981		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
982		__sync_icache_dcache(phy, kstart, sz);
983		kstart += sz;
984		tot_sz -= sz;
985	}
986}
987EXPORT_SYMBOL(flush_icache_range);
988
989/*
990 * General purpose helper to make I and D cache lines consistent.
991 * @paddr is phy addr of region
992 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
993 *    However in one instance, when called by kprobe (for a breakpt in
994 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
995 *    use a paddr to index the cache (despite VIPT). This is fine since since a
996 *    builtin kernel page will not have any virtual mappings.
997 *    kprobe on loadable module will be kernel vaddr.
998 */
999void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
1000{
1001	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1002	__ic_line_inv_vaddr(paddr, vaddr, len);
1003}
1004
1005/* wrapper to compile time eliminate alignment checks in flush loop */
1006void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1007{
1008	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1009}
1010
1011/*
1012 * wrapper to clearout kernel or userspace mappings of a page
1013 * For kernel mappings @vaddr == @paddr
1014 */
1015void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1016{
1017	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1018}
1019
1020noinline void flush_cache_all(void)
1021{
1022	unsigned long flags;
1023
1024	local_irq_save(flags);
1025
1026	__ic_entire_inv();
1027	__dc_entire_op(OP_FLUSH_N_INV);
1028
1029	local_irq_restore(flags);
1030
1031}
1032
1033#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1034
1035void flush_cache_mm(struct mm_struct *mm)
1036{
1037	flush_cache_all();
1038}
1039
1040void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1041		      unsigned long pfn)
1042{
1043	phys_addr_t paddr = pfn << PAGE_SHIFT;
1044
1045	u_vaddr &= PAGE_MASK;
1046
1047	__flush_dcache_page(paddr, u_vaddr);
1048
1049	if (vma->vm_flags & VM_EXEC)
1050		__inv_icache_page(paddr, u_vaddr);
1051}
1052
1053void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1054		       unsigned long end)
1055{
1056	flush_cache_all();
1057}
1058
1059void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1060		     unsigned long u_vaddr)
1061{
1062	/* TBD: do we really need to clear the kernel mapping */
1063	__flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
1064	__flush_dcache_page((phys_addr_t)page_address(page),
1065			    (phys_addr_t)page_address(page));
1066
1067}
1068
1069#endif
1070
1071void copy_user_highpage(struct page *to, struct page *from,
1072	unsigned long u_vaddr, struct vm_area_struct *vma)
1073{
1074	void *kfrom = kmap_atomic(from);
1075	void *kto = kmap_atomic(to);
1076	int clean_src_k_mappings = 0;
1077
1078	/*
1079	 * If SRC page was already mapped in userspace AND it's U-mapping is
1080	 * not congruent with K-mapping, sync former to physical page so that
1081	 * K-mapping in memcpy below, sees the right data
1082	 *
1083	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1084	 * equally valid for SRC page as well
1085	 *
1086	 * For !VIPT cache, all of this gets compiled out as
1087	 * addr_not_cache_congruent() is 0
1088	 */
1089	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1090		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
1091		clean_src_k_mappings = 1;
1092	}
1093
1094	copy_page(kto, kfrom);
1095
1096	/*
1097	 * Mark DST page K-mapping as dirty for a later finalization by
1098	 * update_mmu_cache(). Although the finalization could have been done
1099	 * here as well (given that both vaddr/paddr are available).
1100	 * But update_mmu_cache() already has code to do that for other
1101	 * non copied user pages (e.g. read faults which wire in pagecache page
1102	 * directly).
1103	 */
1104	clear_bit(PG_dc_clean, &to->flags);
1105
1106	/*
1107	 * if SRC was already usermapped and non-congruent to kernel mapping
1108	 * sync the kernel mapping back to physical page
1109	 */
1110	if (clean_src_k_mappings) {
1111		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1112		set_bit(PG_dc_clean, &from->flags);
1113	} else {
1114		clear_bit(PG_dc_clean, &from->flags);
1115	}
1116
1117	kunmap_atomic(kto);
1118	kunmap_atomic(kfrom);
1119}
1120
1121void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1122{
1123	clear_page(to);
1124	clear_bit(PG_dc_clean, &page->flags);
1125}
1126EXPORT_SYMBOL(clear_user_page);
1127
1128/**********************************************************************
1129 * Explicit Cache flush request from user space via syscall
1130 * Needed for JITs which generate code on the fly
1131 */
1132SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1133{
1134	/* TBD: optimize this */
1135	flush_cache_all();
1136	return 0;
1137}
1138
1139/*
1140 * IO-Coherency (IOC) setup rules:
1141 *
1142 * 1. Needs to be at system level, so only once by Master core
1143 *    Non-Masters need not be accessing caches at that time
1144 *    - They are either HALT_ON_RESET and kick started much later or
1145 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1146 *      doesn't perturb caches or coherency unit
1147 *
1148 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1149 *    otherwise any straggler data might behave strangely post IOC enabling
1150 *
1151 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1152 *    Coherency transactions
1153 */
1154noinline void __init arc_ioc_setup(void)
1155{
1156	unsigned int ioc_base, mem_sz;
1157
1158	/*
1159	 * If IOC was already enabled (due to bootloader) it technically needs to
1160	 * be reconfigured with aperture base,size corresponding to Linux memory map
1161	 * which will certainly be different than uboot's. But disabling and
1162	 * reenabling IOC when DMA might be potentially active is tricky business.
1163	 * To avoid random memory issues later, just panic here and ask user to
1164	 * upgrade bootloader to one which doesn't enable IOC
1165	 */
1166	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1167		panic("IOC already enabled, please upgrade bootloader!\n");
1168
1169	if (!ioc_enable)
1170		return;
1171
1172	/* Flush + invalidate + disable L1 dcache */
1173	__dc_disable();
1174
1175	/* Flush + invalidate SLC */
1176	if (read_aux_reg(ARC_REG_SLC_BCR))
1177		slc_entire_op(OP_FLUSH_N_INV);
1178
1179	/*
1180	 * currently IOC Aperture covers entire DDR
1181	 * TBD: fix for PGU + 1GB of low mem
1182	 * TBD: fix for PAE
1183	 */
1184	mem_sz = arc_get_mem_sz();
1185
1186	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1187		panic("IOC Aperture size must be power of 2 larger than 4KB");
1188
1189	/*
1190	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1191	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1192	 */
1193	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1194
1195	/* for now assume kernel base is start of IOC aperture */
1196	ioc_base = CONFIG_LINUX_RAM_BASE;
1197
1198	if (ioc_base % mem_sz != 0)
1199		panic("IOC Aperture start must be aligned to the size of the aperture");
1200
1201	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1202	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1203	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1204
1205	/* Re-enable L1 dcache */
1206	__dc_enable();
1207}
1208
1209/*
1210 * Cache related boot time checks/setups only needed on master CPU:
1211 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1212 *    Assume SMP only, so all cores will have same cache config. A check on
1213 *    one core suffices for all
1214 *  - IOC setup / dma callbacks only need to be done once
1215 */
1216void __init arc_cache_init_master(void)
1217{
1218	unsigned int __maybe_unused cpu = smp_processor_id();
1219
1220	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1221		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1222
1223		if (!ic->line_len)
1224			panic("cache support enabled but non-existent cache\n");
1225
1226		if (ic->line_len != L1_CACHE_BYTES)
1227			panic("ICache line [%d] != kernel Config [%d]",
1228			      ic->line_len, L1_CACHE_BYTES);
1229
1230		/*
1231		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1232		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1233		 */
1234		if (is_isa_arcv2() && ic->alias)
1235			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1236		else
1237			_cache_line_loop_ic_fn = __cache_line_loop;
1238	}
1239
1240	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1241		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1242
1243		if (!dc->line_len)
1244			panic("cache support enabled but non-existent cache\n");
1245
1246		if (dc->line_len != L1_CACHE_BYTES)
1247			panic("DCache line [%d] != kernel Config [%d]",
1248			      dc->line_len, L1_CACHE_BYTES);
1249
1250		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1251		if (is_isa_arcompact()) {
1252			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1253			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1254
1255			if (dc->alias) {
1256				if (!handled)
1257					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1258				if (CACHE_COLORS_NUM != num_colors)
1259					panic("CACHE_COLORS_NUM not optimized for config\n");
1260			} else if (!dc->alias && handled) {
1261				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1262			}
1263		}
1264	}
1265
1266	/*
1267	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1268	 * or equal to any cache line length.
1269	 */
1270	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1271			 "SMP_CACHE_BYTES must be >= any cache line length");
1272	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1273		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1274		      l2_line_sz, SMP_CACHE_BYTES);
1275
1276	/* Note that SLC disable not formally supported till HS 3.0 */
1277	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1278		arc_slc_disable();
1279
1280	if (is_isa_arcv2() && ioc_exists)
1281		arc_ioc_setup();
1282
1283	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1284		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1285		__dma_cache_inv = __dma_cache_inv_slc;
1286		__dma_cache_wback = __dma_cache_wback_slc;
1287	} else {
1288		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1289		__dma_cache_inv = __dma_cache_inv_l1;
1290		__dma_cache_wback = __dma_cache_wback_l1;
1291	}
1292	/*
1293	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1294	 * but end up not being relevant as the first function in chain is not
1295	 * called at all for devices using coherent DMA.
1296	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1297	 */
1298}
1299
1300void __ref arc_cache_init(void)
1301{
1302	unsigned int __maybe_unused cpu = smp_processor_id();
1303	char str[256];
1304
1305	pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1306
1307	if (!cpu)
1308		arc_cache_init_master();
1309
1310	/*
1311	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1312	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1313	 * to be zeroed to keep the ops sane.
1314	 * As an optimization for more common !PAE enabled case, zero them out
1315	 * once at init, rather than checking/setting to 0 for every runtime op
1316	 */
1317	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1318
1319		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1320			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1321
1322		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1323			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1324
1325		if (l2_line_sz) {
1326			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1327			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1328		}
1329	}
1330}
1331