18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * arch/alpha/lib/ev6-stxncpy.S
48c2ecf20Sopenharmony_ci * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * Copy no more than COUNT bytes of the null-terminated string from
78c2ecf20Sopenharmony_ci * SRC to DST.
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * This is an internal routine used by strncpy, stpncpy, and strncat.
108c2ecf20Sopenharmony_ci * As such, it uses special linkage conventions to make implementation
118c2ecf20Sopenharmony_ci * of these public functions more efficient.
128c2ecf20Sopenharmony_ci *
138c2ecf20Sopenharmony_ci * On input:
148c2ecf20Sopenharmony_ci *	t9 = return address
158c2ecf20Sopenharmony_ci *	a0 = DST
168c2ecf20Sopenharmony_ci *	a1 = SRC
178c2ecf20Sopenharmony_ci *	a2 = COUNT
188c2ecf20Sopenharmony_ci *
198c2ecf20Sopenharmony_ci * Furthermore, COUNT may not be zero.
208c2ecf20Sopenharmony_ci *
218c2ecf20Sopenharmony_ci * On output:
228c2ecf20Sopenharmony_ci *	t0  = last word written
238c2ecf20Sopenharmony_ci *	t10 = bitmask (with one bit set) indicating the byte position of
248c2ecf20Sopenharmony_ci *	      the end of the range specified by COUNT
258c2ecf20Sopenharmony_ci *	t12 = bitmask (with one bit set) indicating the last byte written
268c2ecf20Sopenharmony_ci *	a0  = unaligned address of the last *word* written
278c2ecf20Sopenharmony_ci *	a2  = the number of full words left in COUNT
288c2ecf20Sopenharmony_ci *
298c2ecf20Sopenharmony_ci * Furthermore, v0, a3-a5, t11, and $at are untouched.
308c2ecf20Sopenharmony_ci *
318c2ecf20Sopenharmony_ci * Much of the information about 21264 scheduling/coding comes from:
328c2ecf20Sopenharmony_ci *	Compiler Writer's Guide for the Alpha 21264
338c2ecf20Sopenharmony_ci *	abbreviated as 'CWG' in other comments here
348c2ecf20Sopenharmony_ci *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
358c2ecf20Sopenharmony_ci * Scheduling notation:
368c2ecf20Sopenharmony_ci *	E	- either cluster
378c2ecf20Sopenharmony_ci *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
388c2ecf20Sopenharmony_ci *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
398c2ecf20Sopenharmony_ci * Try not to change the actual algorithm if possible for consistency.
408c2ecf20Sopenharmony_ci */
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci#include <asm/regdef.h>
438c2ecf20Sopenharmony_ci
448c2ecf20Sopenharmony_ci	.set noat
458c2ecf20Sopenharmony_ci	.set noreorder
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_ci	.text
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_ci/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
508c2ecf20Sopenharmony_ci   doesn't like putting the entry point for a procedure somewhere in the
518c2ecf20Sopenharmony_ci   middle of the procedure descriptor.  Work around this by putting the
528c2ecf20Sopenharmony_ci   aligned copy in its own procedure descriptor */
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_ci
558c2ecf20Sopenharmony_ci	.ent stxncpy_aligned
568c2ecf20Sopenharmony_ci	.align 4
578c2ecf20Sopenharmony_cistxncpy_aligned:
588c2ecf20Sopenharmony_ci	.frame sp, 0, t9, 0
598c2ecf20Sopenharmony_ci	.prologue 0
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	/* On entry to this basic block:
628c2ecf20Sopenharmony_ci	   t0 == the first destination word for masking back in
638c2ecf20Sopenharmony_ci	   t1 == the first source word.  */
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci	/* Create the 1st output word and detect 0's in the 1st input word.  */
668c2ecf20Sopenharmony_ci	lda	t2, -1		# E : build a mask against false zero
678c2ecf20Sopenharmony_ci	mskqh	t2, a1, t2	# U :   detection in the src word (stall)
688c2ecf20Sopenharmony_ci	mskqh	t1, a1, t3	# U :
698c2ecf20Sopenharmony_ci	ornot	t1, t2, t2	# E : (stall)
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	mskql	t0, a1, t0	# U : assemble the first output word
728c2ecf20Sopenharmony_ci	cmpbge	zero, t2, t8	# E : bits set iff null found
738c2ecf20Sopenharmony_ci	or	t0, t3, t0	# E : (stall)
748c2ecf20Sopenharmony_ci	beq	a2, $a_eoc	# U :
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci	bne	t8, $a_eos	# U :
778c2ecf20Sopenharmony_ci	nop
788c2ecf20Sopenharmony_ci	nop
798c2ecf20Sopenharmony_ci	nop
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci	/* On entry to this basic block:
828c2ecf20Sopenharmony_ci	   t0 == a source word not containing a null.  */
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_ci	/*
858c2ecf20Sopenharmony_ci	 * nops here to:
868c2ecf20Sopenharmony_ci	 *	separate store quads from load quads
878c2ecf20Sopenharmony_ci	 *	limit of 1 bcond/quad to permit training
888c2ecf20Sopenharmony_ci	 */
898c2ecf20Sopenharmony_ci$a_loop:
908c2ecf20Sopenharmony_ci	stq_u	t0, 0(a0)	# L :
918c2ecf20Sopenharmony_ci	addq	a0, 8, a0	# E :
928c2ecf20Sopenharmony_ci	subq	a2, 1, a2	# E :
938c2ecf20Sopenharmony_ci	nop
948c2ecf20Sopenharmony_ci
958c2ecf20Sopenharmony_ci	ldq_u	t0, 0(a1)	# L :
968c2ecf20Sopenharmony_ci	addq	a1, 8, a1	# E :
978c2ecf20Sopenharmony_ci	cmpbge	zero, t0, t8	# E :
988c2ecf20Sopenharmony_ci	beq	a2, $a_eoc      # U :
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci	beq	t8, $a_loop	# U :
1018c2ecf20Sopenharmony_ci	nop
1028c2ecf20Sopenharmony_ci	nop
1038c2ecf20Sopenharmony_ci	nop
1048c2ecf20Sopenharmony_ci
1058c2ecf20Sopenharmony_ci	/* Take care of the final (partial) word store.  At this point
1068c2ecf20Sopenharmony_ci	   the end-of-count bit is set in t8 iff it applies.
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	   On entry to this basic block we have:
1098c2ecf20Sopenharmony_ci	   t0 == the source word containing the null
1108c2ecf20Sopenharmony_ci	   t8 == the cmpbge mask that found it.  */
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci$a_eos:
1138c2ecf20Sopenharmony_ci	negq	t8, t12		# E : find low bit set
1148c2ecf20Sopenharmony_ci	and	t8, t12, t12	# E : (stall)
1158c2ecf20Sopenharmony_ci	/* For the sake of the cache, don't read a destination word
1168c2ecf20Sopenharmony_ci	   if we're not going to need it.  */
1178c2ecf20Sopenharmony_ci	and	t12, 0x80, t6	# E : (stall)
1188c2ecf20Sopenharmony_ci	bne	t6, 1f		# U : (stall)
1198c2ecf20Sopenharmony_ci
1208c2ecf20Sopenharmony_ci	/* We're doing a partial word store and so need to combine
1218c2ecf20Sopenharmony_ci	   our source and original destination words.  */
1228c2ecf20Sopenharmony_ci	ldq_u	t1, 0(a0)	# L :
1238c2ecf20Sopenharmony_ci	subq	t12, 1, t6	# E :
1248c2ecf20Sopenharmony_ci	or	t12, t6, t8	# E : (stall)
1258c2ecf20Sopenharmony_ci	zapnot	t0, t8, t0	# U : clear src bytes > null (stall)
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ci	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
1288c2ecf20Sopenharmony_ci	or	t0, t1, t0	# e1    : (stall)
1298c2ecf20Sopenharmony_ci	nop
1308c2ecf20Sopenharmony_ci	nop
1318c2ecf20Sopenharmony_ci
1328c2ecf20Sopenharmony_ci1:	stq_u	t0, 0(a0)	# L :
1338c2ecf20Sopenharmony_ci	ret	(t9)		# L0 : Latency=3
1348c2ecf20Sopenharmony_ci	nop
1358c2ecf20Sopenharmony_ci	nop
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ci	/* Add the end-of-count bit to the eos detection bitmask.  */
1388c2ecf20Sopenharmony_ci$a_eoc:
1398c2ecf20Sopenharmony_ci	or	t10, t8, t8	# E :
1408c2ecf20Sopenharmony_ci	br	$a_eos		# L0 : Latency=3
1418c2ecf20Sopenharmony_ci	nop
1428c2ecf20Sopenharmony_ci	nop
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci	.end stxncpy_aligned
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci	.align 4
1478c2ecf20Sopenharmony_ci	.ent __stxncpy
1488c2ecf20Sopenharmony_ci	.globl __stxncpy
1498c2ecf20Sopenharmony_ci__stxncpy:
1508c2ecf20Sopenharmony_ci	.frame sp, 0, t9, 0
1518c2ecf20Sopenharmony_ci	.prologue 0
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	/* Are source and destination co-aligned?  */
1548c2ecf20Sopenharmony_ci	xor	a0, a1, t1	# E :
1558c2ecf20Sopenharmony_ci	and	a0, 7, t0	# E : find dest misalignment
1568c2ecf20Sopenharmony_ci	and	t1, 7, t1	# E : (stall)
1578c2ecf20Sopenharmony_ci	addq	a2, t0, a2	# E : bias count by dest misalignment (stall)
1588c2ecf20Sopenharmony_ci
1598c2ecf20Sopenharmony_ci	subq	a2, 1, a2	# E :
1608c2ecf20Sopenharmony_ci	and	a2, 7, t2	# E : (stall)
1618c2ecf20Sopenharmony_ci	srl	a2, 3, a2	# U : a2 = loop counter = (count - 1)/8 (stall)
1628c2ecf20Sopenharmony_ci	addq	zero, 1, t10	# E :
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci	sll	t10, t2, t10	# U : t10 = bitmask of last count byte
1658c2ecf20Sopenharmony_ci	bne	t1, $unaligned	# U :
1668c2ecf20Sopenharmony_ci	/* We are co-aligned; take care of a partial first word.  */
1678c2ecf20Sopenharmony_ci	ldq_u	t1, 0(a1)	# L : load first src word
1688c2ecf20Sopenharmony_ci	addq	a1, 8, a1	# E :
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	beq	t0, stxncpy_aligned     # U : avoid loading dest word if not needed
1718c2ecf20Sopenharmony_ci	ldq_u	t0, 0(a0)	# L :
1728c2ecf20Sopenharmony_ci	nop
1738c2ecf20Sopenharmony_ci	nop
1748c2ecf20Sopenharmony_ci
1758c2ecf20Sopenharmony_ci	br	stxncpy_aligned	# .. e1 :
1768c2ecf20Sopenharmony_ci	nop
1778c2ecf20Sopenharmony_ci	nop
1788c2ecf20Sopenharmony_ci	nop
1798c2ecf20Sopenharmony_ci
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_ci/* The source and destination are not co-aligned.  Align the destination
1838c2ecf20Sopenharmony_ci   and cope.  We have to be very careful about not reading too much and
1848c2ecf20Sopenharmony_ci   causing a SEGV.  */
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci	.align 4
1878c2ecf20Sopenharmony_ci$u_head:
1888c2ecf20Sopenharmony_ci	/* We know just enough now to be able to assemble the first
1898c2ecf20Sopenharmony_ci	   full source word.  We can still find a zero at the end of it
1908c2ecf20Sopenharmony_ci	   that prevents us from outputting the whole thing.
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	   On entry to this basic block:
1938c2ecf20Sopenharmony_ci	   t0 == the first dest word, unmasked
1948c2ecf20Sopenharmony_ci	   t1 == the shifted low bits of the first source word
1958c2ecf20Sopenharmony_ci	   t6 == bytemask that is -1 in dest word bytes */
1968c2ecf20Sopenharmony_ci
1978c2ecf20Sopenharmony_ci	ldq_u	t2, 8(a1)	# L : Latency=3 load second src word
1988c2ecf20Sopenharmony_ci	addq	a1, 8, a1	# E :
1998c2ecf20Sopenharmony_ci	mskql	t0, a0, t0	# U : mask trailing garbage in dst
2008c2ecf20Sopenharmony_ci	extqh	t2, a1, t4	# U : (3 cycle stall on t2)
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_ci	or	t1, t4, t1	# E : first aligned src word complete (stall)
2038c2ecf20Sopenharmony_ci	mskqh	t1, a0, t1	# U : mask leading garbage in src (stall)
2048c2ecf20Sopenharmony_ci	or	t0, t1, t0	# E : first output word complete (stall)
2058c2ecf20Sopenharmony_ci	or	t0, t6, t6	# E : mask original data for zero test (stall)
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci	cmpbge	zero, t6, t8	# E :
2088c2ecf20Sopenharmony_ci	beq	a2, $u_eocfin	# U :
2098c2ecf20Sopenharmony_ci	lda	t6, -1		# E :
2108c2ecf20Sopenharmony_ci	nop
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci	bne	t8, $u_final	# U :
2138c2ecf20Sopenharmony_ci	mskql	t6, a1, t6	# U : mask out bits already seen
2148c2ecf20Sopenharmony_ci	stq_u	t0, 0(a0)	# L : store first output word
2158c2ecf20Sopenharmony_ci	or      t6, t2, t2	# E : (stall)
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_ci	cmpbge	zero, t2, t8	# E : find nulls in second partial
2188c2ecf20Sopenharmony_ci	addq	a0, 8, a0	# E :
2198c2ecf20Sopenharmony_ci	subq	a2, 1, a2	# E :
2208c2ecf20Sopenharmony_ci	bne	t8, $u_late_head_exit	# U :
2218c2ecf20Sopenharmony_ci
2228c2ecf20Sopenharmony_ci	/* Finally, we've got all the stupid leading edge cases taken care
2238c2ecf20Sopenharmony_ci	   of and we can set up to enter the main loop.  */
2248c2ecf20Sopenharmony_ci	extql	t2, a1, t1	# U : position hi-bits of lo word
2258c2ecf20Sopenharmony_ci	beq	a2, $u_eoc	# U :
2268c2ecf20Sopenharmony_ci	ldq_u	t2, 8(a1)	# L : read next high-order source word
2278c2ecf20Sopenharmony_ci	addq	a1, 8, a1	# E :
2288c2ecf20Sopenharmony_ci
2298c2ecf20Sopenharmony_ci	extqh	t2, a1, t0	# U : position lo-bits of hi word (stall)
2308c2ecf20Sopenharmony_ci	cmpbge	zero, t2, t8	# E :
2318c2ecf20Sopenharmony_ci	nop
2328c2ecf20Sopenharmony_ci	bne	t8, $u_eos	# U :
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_ci	/* Unaligned copy main loop.  In order to avoid reading too much,
2358c2ecf20Sopenharmony_ci	   the loop is structured to detect zeros in aligned source words.
2368c2ecf20Sopenharmony_ci	   This has, unfortunately, effectively pulled half of a loop
2378c2ecf20Sopenharmony_ci	   iteration out into the head and half into the tail, but it does
2388c2ecf20Sopenharmony_ci	   prevent nastiness from accumulating in the very thing we want
2398c2ecf20Sopenharmony_ci	   to run as fast as possible.
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	   On entry to this basic block:
2428c2ecf20Sopenharmony_ci	   t0 == the shifted low-order bits from the current source word
2438c2ecf20Sopenharmony_ci	   t1 == the shifted high-order bits from the previous source word
2448c2ecf20Sopenharmony_ci	   t2 == the unshifted current source word
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci	   We further know that t2 does not contain a null terminator.  */
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	.align 4
2498c2ecf20Sopenharmony_ci$u_loop:
2508c2ecf20Sopenharmony_ci	or	t0, t1, t0	# E : current dst word now complete
2518c2ecf20Sopenharmony_ci	subq	a2, 1, a2	# E : decrement word count
2528c2ecf20Sopenharmony_ci	extql	t2, a1, t1	# U : extract low bits for next time
2538c2ecf20Sopenharmony_ci	addq	a0, 8, a0	# E :
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci	stq_u	t0, -8(a0)	# U : save the current word
2568c2ecf20Sopenharmony_ci	beq	a2, $u_eoc	# U :
2578c2ecf20Sopenharmony_ci	ldq_u	t2, 8(a1)	# U : Latency=3 load high word for next time
2588c2ecf20Sopenharmony_ci	addq	a1, 8, a1	# E :
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	extqh	t2, a1, t0	# U : extract low bits (2 cycle stall)
2618c2ecf20Sopenharmony_ci	cmpbge	zero, t2, t8	# E : test new word for eos
2628c2ecf20Sopenharmony_ci	nop
2638c2ecf20Sopenharmony_ci	beq	t8, $u_loop	# U :
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	/* We've found a zero somewhere in the source word we just read.
2668c2ecf20Sopenharmony_ci	   If it resides in the lower half, we have one (probably partial)
2678c2ecf20Sopenharmony_ci	   word to write out, and if it resides in the upper half, we
2688c2ecf20Sopenharmony_ci	   have one full and one partial word left to write out.
2698c2ecf20Sopenharmony_ci
2708c2ecf20Sopenharmony_ci	   On entry to this basic block:
2718c2ecf20Sopenharmony_ci	   t0 == the shifted low-order bits from the current source word
2728c2ecf20Sopenharmony_ci	   t1 == the shifted high-order bits from the previous source word
2738c2ecf20Sopenharmony_ci	   t2 == the unshifted current source word.  */
2748c2ecf20Sopenharmony_ci$u_eos:
2758c2ecf20Sopenharmony_ci	or	t0, t1, t0	# E : first (partial) source word complete
2768c2ecf20Sopenharmony_ci	nop
2778c2ecf20Sopenharmony_ci	cmpbge	zero, t0, t8	# E : is the null in this first bit? (stall)
2788c2ecf20Sopenharmony_ci	bne	t8, $u_final	# U : (stall)
2798c2ecf20Sopenharmony_ci
2808c2ecf20Sopenharmony_ci	stq_u	t0, 0(a0)	# L : the null was in the high-order bits
2818c2ecf20Sopenharmony_ci	addq	a0, 8, a0	# E :
2828c2ecf20Sopenharmony_ci	subq	a2, 1, a2	# E :
2838c2ecf20Sopenharmony_ci	nop
2848c2ecf20Sopenharmony_ci
2858c2ecf20Sopenharmony_ci$u_late_head_exit:
2868c2ecf20Sopenharmony_ci	extql	t2, a1, t0	# U :
2878c2ecf20Sopenharmony_ci	cmpbge	zero, t0, t8	# E :
2888c2ecf20Sopenharmony_ci	or	t8, t10, t6	# E : (stall)
2898c2ecf20Sopenharmony_ci	cmoveq	a2, t6, t8	# E : Latency=2, extra map slot (stall)
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	/* Take care of a final (probably partial) result word.
2928c2ecf20Sopenharmony_ci	   On entry to this basic block:
2938c2ecf20Sopenharmony_ci	   t0 == assembled source word
2948c2ecf20Sopenharmony_ci	   t8 == cmpbge mask that found the null.  */
2958c2ecf20Sopenharmony_ci$u_final:
2968c2ecf20Sopenharmony_ci	negq	t8, t6		# E : isolate low bit set
2978c2ecf20Sopenharmony_ci	and	t6, t8, t12	# E : (stall)
2988c2ecf20Sopenharmony_ci	and	t12, 0x80, t6	# E : avoid dest word load if we can (stall)
2998c2ecf20Sopenharmony_ci	bne	t6, 1f		# U : (stall)
3008c2ecf20Sopenharmony_ci
3018c2ecf20Sopenharmony_ci	ldq_u	t1, 0(a0)	# L :
3028c2ecf20Sopenharmony_ci	subq	t12, 1, t6	# E :
3038c2ecf20Sopenharmony_ci	or	t6, t12, t8	# E : (stall)
3048c2ecf20Sopenharmony_ci	zapnot	t0, t8, t0	# U : kill source bytes > null
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci	zap	t1, t8, t1	# U : kill dest bytes <= null
3078c2ecf20Sopenharmony_ci	or	t0, t1, t0	# E : (stall)
3088c2ecf20Sopenharmony_ci	nop
3098c2ecf20Sopenharmony_ci	nop
3108c2ecf20Sopenharmony_ci
3118c2ecf20Sopenharmony_ci1:	stq_u	t0, 0(a0)	# L :
3128c2ecf20Sopenharmony_ci	ret	(t9)		# L0 : Latency=3
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_ci	  /* Got to end-of-count before end of string.
3158c2ecf20Sopenharmony_ci	     On entry to this basic block:
3168c2ecf20Sopenharmony_ci	     t1 == the shifted high-order bits from the previous source word  */
3178c2ecf20Sopenharmony_ci$u_eoc:
3188c2ecf20Sopenharmony_ci	and	a1, 7, t6	# E : avoid final load if possible
3198c2ecf20Sopenharmony_ci	sll	t10, t6, t6	# U : (stall)
3208c2ecf20Sopenharmony_ci	and	t6, 0xff, t6	# E : (stall)
3218c2ecf20Sopenharmony_ci	bne	t6, 1f		# U : (stall)
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ci	ldq_u	t2, 8(a1)	# L : load final src word
3248c2ecf20Sopenharmony_ci	nop
3258c2ecf20Sopenharmony_ci	extqh	t2, a1, t0	# U : extract low bits for last word (stall)
3268c2ecf20Sopenharmony_ci	or	t1, t0, t1	# E : (stall)
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci1:	cmpbge	zero, t1, t8	# E :
3298c2ecf20Sopenharmony_ci	mov	t1, t0		# E :
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci$u_eocfin:			# end-of-count, final word
3328c2ecf20Sopenharmony_ci	or	t10, t8, t8	# E :
3338c2ecf20Sopenharmony_ci	br	$u_final	# L0 : Latency=3
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci	/* Unaligned copy entry point.  */
3368c2ecf20Sopenharmony_ci	.align 4
3378c2ecf20Sopenharmony_ci$unaligned:
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_ci	ldq_u	t1, 0(a1)	# L : load first source word
3408c2ecf20Sopenharmony_ci	and	a0, 7, t4	# E : find dest misalignment
3418c2ecf20Sopenharmony_ci	and	a1, 7, t5	# E : find src misalignment
3428c2ecf20Sopenharmony_ci	/* Conditionally load the first destination word and a bytemask
3438c2ecf20Sopenharmony_ci	   with 0xff indicating that the destination byte is sacrosanct.  */
3448c2ecf20Sopenharmony_ci	mov	zero, t0	# E :
3458c2ecf20Sopenharmony_ci
3468c2ecf20Sopenharmony_ci	mov	zero, t6	# E :
3478c2ecf20Sopenharmony_ci	beq	t4, 1f		# U :
3488c2ecf20Sopenharmony_ci	ldq_u	t0, 0(a0)	# L :
3498c2ecf20Sopenharmony_ci	lda	t6, -1		# E :
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci	mskql	t6, a0, t6	# U :
3528c2ecf20Sopenharmony_ci	nop
3538c2ecf20Sopenharmony_ci	nop
3548c2ecf20Sopenharmony_ci	subq	a1, t4, a1	# E : sub dest misalignment from src addr
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci	/* If source misalignment is larger than dest misalignment, we need
3578c2ecf20Sopenharmony_ci	   extra startup checks to avoid SEGV.  */
3588c2ecf20Sopenharmony_ci
3598c2ecf20Sopenharmony_ci1:	cmplt	t4, t5, t12	# E :
3608c2ecf20Sopenharmony_ci	extql	t1, a1, t1	# U : shift src into place
3618c2ecf20Sopenharmony_ci	lda	t2, -1		# E : for creating masks later
3628c2ecf20Sopenharmony_ci	beq	t12, $u_head	# U : (stall)
3638c2ecf20Sopenharmony_ci
3648c2ecf20Sopenharmony_ci	extql	t2, a1, t2	# U :
3658c2ecf20Sopenharmony_ci	cmpbge	zero, t1, t8	# E : is there a zero?
3668c2ecf20Sopenharmony_ci	andnot	t2, t6, t2	# E : dest mask for a single word copy
3678c2ecf20Sopenharmony_ci	or	t8, t10, t5	# E : test for end-of-count too
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci	cmpbge	zero, t2, t3	# E :
3708c2ecf20Sopenharmony_ci	cmoveq	a2, t5, t8	# E : Latency=2, extra map slot
3718c2ecf20Sopenharmony_ci	nop			# E : keep with cmoveq
3728c2ecf20Sopenharmony_ci	andnot	t8, t3, t8	# E : (stall)
3738c2ecf20Sopenharmony_ci
3748c2ecf20Sopenharmony_ci	beq	t8, $u_head	# U :
3758c2ecf20Sopenharmony_ci	/* At this point we've found a zero in the first partial word of
3768c2ecf20Sopenharmony_ci	   the source.  We need to isolate the valid source data and mask
3778c2ecf20Sopenharmony_ci	   it into the original destination data.  (Incidentally, we know
3788c2ecf20Sopenharmony_ci	   that we'll need at least one byte of that original dest word.) */
3798c2ecf20Sopenharmony_ci	ldq_u	t0, 0(a0)	# L :
3808c2ecf20Sopenharmony_ci	negq	t8, t6		# E : build bitmask of bytes <= zero
3818c2ecf20Sopenharmony_ci	mskqh	t1, t4, t1	# U :
3828c2ecf20Sopenharmony_ci
3838c2ecf20Sopenharmony_ci	and	t6, t8, t12	# E :
3848c2ecf20Sopenharmony_ci	subq	t12, 1, t6	# E : (stall)
3858c2ecf20Sopenharmony_ci	or	t6, t12, t8	# E : (stall)
3868c2ecf20Sopenharmony_ci	zapnot	t2, t8, t2	# U : prepare source word; mirror changes (stall)
3878c2ecf20Sopenharmony_ci
3888c2ecf20Sopenharmony_ci	zapnot	t1, t8, t1	# U : to source validity mask
3898c2ecf20Sopenharmony_ci	andnot	t0, t2, t0	# E : zero place for source to reside
3908c2ecf20Sopenharmony_ci	or	t0, t1, t0	# E : and put it there (stall both t0, t1)
3918c2ecf20Sopenharmony_ci	stq_u	t0, 0(a0)	# L : (stall)
3928c2ecf20Sopenharmony_ci
3938c2ecf20Sopenharmony_ci	ret	(t9)		# L0 : Latency=3
3948c2ecf20Sopenharmony_ci	nop
3958c2ecf20Sopenharmony_ci	nop
3968c2ecf20Sopenharmony_ci	nop
3978c2ecf20Sopenharmony_ci
3988c2ecf20Sopenharmony_ci	.end __stxncpy
399