1/* 2 * Copyright (c) 2020-2021 Huawei Device Co., Ltd. 3 * Licensed under the Apache License, Version 2.0 (the "License"); 4 * you may not use this file except in compliance with the License. 5 * You may obtain a copy of the License at 6 * 7 * http://www.apache.org/licenses/LICENSE-2.0 8 * 9 * Unless required by applicable law or agreed to in writing, software 10 * distributed under the License is distributed on an "AS IS" BASIS, 11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 * See the License for the specific language governing permissions and 13 * limitations under the License. 14 */ 15 16#include "animator/interpolation.h" 17 18#include "gfx_utils/graphic_math.h" 19 20namespace OHOS { 21/* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */ 22int16_t Interpolation::GetBezierInterpolation(int16_t t, int16_t u0, int16_t u1, int16_t u2, int16_t u3) 23{ 24 int64_t invT = 1024 - t; // Intergerlize the standard equation, 1.0f is divided into 1024 parts 25 int64_t invT2 = invT * invT; 26 int64_t invT3 = invT2 * invT; 27 int64_t t2 = t * t; 28 int64_t t3 = t2 * t; 29 30 int64_t ret = invT3 * u0; 31 ret += BEZIER_COEFFICIENT * invT2 * t * u1; 32 ret += BEZIER_COEFFICIENT * invT * t2 * u2; 33 ret += t3 * u3; 34 35 uint64_t uret = (ret < 0) ? (-ret) : ret; 36 int16_t value = static_cast<int16_t>(uret >> 30); // 30: cubic shift 37 return (ret < 0) ? (-value) : value; 38} 39 40/* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */ 41float Interpolation::GetBezierInterpolation(float t, float u0, float u1, float u2, float u3) 42{ 43 float invT = 1 - t; 44 float invT2 = invT * invT; 45 float invT3 = invT2 * invT; 46 float t2 = t * t; 47 float t3 = t2 * t; 48 49 float ret = invT3 * u0; 50 ret += BEZIER_COEFFICIENT * invT2 * t * u1; 51 ret += BEZIER_COEFFICIENT * invT * t2 * u2; 52 ret += t3 * u3; 53 return ret; 54} 55 56/* B(t) = 3(P1-P0)(1-t)^2 + 6(P2-P1)t(1-t) + 3(P3-P2)t^2 */ 57float Interpolation::GetBezierDerivative(float t, float u0, float u1, float u2, float u3) 58{ 59 float invT = 1 - t; 60 float d0 = u1 - u0; 61 float d1 = u2 - u1; 62 float d2 = u3 - u2; 63 constexpr int8_t BESSEL_SQUARE_COEFFICIENT = (BEZIER_COEFFICIENT - 1) * BEZIER_COEFFICIENT; 64 65 float ret = BEZIER_COEFFICIENT * d0 * invT * invT; 66 ret += BESSEL_SQUARE_COEFFICIENT * d1 * invT * t; 67 ret += BEZIER_COEFFICIENT * d2 * t * t; 68 return ret; 69} 70 71float Interpolation::GetBezierY(float x, float x1, float y1, float x2, float y2) 72{ 73 /* P={x,y}; P0={0,0}; P1={x1,y1}; P2={x2,y2}; P3={1,1} 74 * P = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 75 */ 76 float t = x; 77 float xt = GetBezierInterpolation(t, 0, x1, x2, 1); 78 /* Attention: precision must be carefully selected 79 * too small may lead to misconvergence and a decrease of performance 80 * too large may cause the curve rugged even make some points outlier */ 81 constexpr float PRECISION = 0.05f; // 0.05f make several outliers near inflection point 82 int8_t iterationCnt = 10; // iterate at most 10 times 83 84 /* Newton Method to solve t from x */ 85 while ((MATH_ABS(xt - x) > PRECISION) && (iterationCnt-- > 0)) { 86 t = t + (x - xt) / GetBezierDerivative(t, 0, x1, x2, 1); 87 xt = GetBezierInterpolation(t, 0, x1, x2, 1); 88 } 89 return GetBezierInterpolation(t, 0, y1, y2, 1); 90} 91} // namespace OHOS 92