1a3e0fd82Sopenharmony_ci/*
2a3e0fd82Sopenharmony_ci * Copyright (c) 2020-2021 Huawei Device Co., Ltd.
3a3e0fd82Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
4a3e0fd82Sopenharmony_ci * you may not use this file except in compliance with the License.
5a3e0fd82Sopenharmony_ci * You may obtain a copy of the License at
6a3e0fd82Sopenharmony_ci *
7a3e0fd82Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
8a3e0fd82Sopenharmony_ci *
9a3e0fd82Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software
10a3e0fd82Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS,
11a3e0fd82Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12a3e0fd82Sopenharmony_ci * See the License for the specific language governing permissions and
13a3e0fd82Sopenharmony_ci * limitations under the License.
14a3e0fd82Sopenharmony_ci */
15a3e0fd82Sopenharmony_ci
16a3e0fd82Sopenharmony_ci#include "animator/interpolation.h"
17a3e0fd82Sopenharmony_ci
18a3e0fd82Sopenharmony_ci#include "gfx_utils/graphic_math.h"
19a3e0fd82Sopenharmony_ci
20a3e0fd82Sopenharmony_cinamespace OHOS {
21a3e0fd82Sopenharmony_ci/* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */
22a3e0fd82Sopenharmony_ciint16_t Interpolation::GetBezierInterpolation(int16_t t, int16_t u0, int16_t u1, int16_t u2, int16_t u3)
23a3e0fd82Sopenharmony_ci{
24a3e0fd82Sopenharmony_ci    int64_t invT = 1024 - t; // Intergerlize the standard equation, 1.0f is divided into 1024 parts
25a3e0fd82Sopenharmony_ci    int64_t invT2 = invT * invT;
26a3e0fd82Sopenharmony_ci    int64_t invT3 = invT2 * invT;
27a3e0fd82Sopenharmony_ci    int64_t t2 = t * t;
28a3e0fd82Sopenharmony_ci    int64_t t3 = t2 * t;
29a3e0fd82Sopenharmony_ci
30a3e0fd82Sopenharmony_ci    int64_t ret = invT3 * u0;
31a3e0fd82Sopenharmony_ci    ret += BEZIER_COEFFICIENT * invT2 * t * u1;
32a3e0fd82Sopenharmony_ci    ret += BEZIER_COEFFICIENT * invT * t2 * u2;
33a3e0fd82Sopenharmony_ci    ret += t3 * u3;
34a3e0fd82Sopenharmony_ci
35a3e0fd82Sopenharmony_ci    uint64_t uret = (ret < 0) ? (-ret) : ret;
36a3e0fd82Sopenharmony_ci    int16_t value = static_cast<int16_t>(uret >> 30); // 30: cubic shift
37a3e0fd82Sopenharmony_ci    return (ret < 0) ? (-value) : value;
38a3e0fd82Sopenharmony_ci}
39a3e0fd82Sopenharmony_ci
40a3e0fd82Sopenharmony_ci/* B(t) = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3 */
41a3e0fd82Sopenharmony_cifloat Interpolation::GetBezierInterpolation(float t, float u0, float u1, float u2, float u3)
42a3e0fd82Sopenharmony_ci{
43a3e0fd82Sopenharmony_ci    float invT = 1 - t;
44a3e0fd82Sopenharmony_ci    float invT2 = invT * invT;
45a3e0fd82Sopenharmony_ci    float invT3 = invT2 * invT;
46a3e0fd82Sopenharmony_ci    float t2 = t * t;
47a3e0fd82Sopenharmony_ci    float t3 = t2 * t;
48a3e0fd82Sopenharmony_ci
49a3e0fd82Sopenharmony_ci    float ret = invT3 * u0;
50a3e0fd82Sopenharmony_ci    ret += BEZIER_COEFFICIENT * invT2 * t * u1;
51a3e0fd82Sopenharmony_ci    ret += BEZIER_COEFFICIENT * invT * t2 * u2;
52a3e0fd82Sopenharmony_ci    ret += t3 * u3;
53a3e0fd82Sopenharmony_ci    return ret;
54a3e0fd82Sopenharmony_ci}
55a3e0fd82Sopenharmony_ci
56a3e0fd82Sopenharmony_ci/* B(t) = 3(P1-P0)(1-t)^2 + 6(P2-P1)t(1-t) + 3(P3-P2)t^2 */
57a3e0fd82Sopenharmony_cifloat Interpolation::GetBezierDerivative(float t, float u0, float u1, float u2, float u3)
58a3e0fd82Sopenharmony_ci{
59a3e0fd82Sopenharmony_ci    float invT = 1 - t;
60a3e0fd82Sopenharmony_ci    float d0 = u1 - u0;
61a3e0fd82Sopenharmony_ci    float d1 = u2 - u1;
62a3e0fd82Sopenharmony_ci    float d2 = u3 - u2;
63a3e0fd82Sopenharmony_ci    constexpr int8_t BESSEL_SQUARE_COEFFICIENT = (BEZIER_COEFFICIENT - 1) * BEZIER_COEFFICIENT;
64a3e0fd82Sopenharmony_ci
65a3e0fd82Sopenharmony_ci    float ret = BEZIER_COEFFICIENT * d0 * invT * invT;
66a3e0fd82Sopenharmony_ci    ret += BESSEL_SQUARE_COEFFICIENT * d1 * invT * t;
67a3e0fd82Sopenharmony_ci    ret += BEZIER_COEFFICIENT * d2 * t * t;
68a3e0fd82Sopenharmony_ci    return ret;
69a3e0fd82Sopenharmony_ci}
70a3e0fd82Sopenharmony_ci
71a3e0fd82Sopenharmony_cifloat Interpolation::GetBezierY(float x, float x1, float y1, float x2, float y2)
72a3e0fd82Sopenharmony_ci{
73a3e0fd82Sopenharmony_ci    /* P={x,y}; P0={0,0}; P1={x1,y1}; P2={x2,y2}; P3={1,1}
74a3e0fd82Sopenharmony_ci     * P = P0*(1-t)^3 + 3*P1*t*(1-t)^2 + 3*P2*t^2*(1-t) + P3*t^3
75a3e0fd82Sopenharmony_ci     */
76a3e0fd82Sopenharmony_ci    float t = x;
77a3e0fd82Sopenharmony_ci    float xt = GetBezierInterpolation(t, 0, x1, x2, 1);
78a3e0fd82Sopenharmony_ci    /* Attention: precision must be carefully selected
79a3e0fd82Sopenharmony_ci     * too small may lead to misconvergence and a decrease of performance
80a3e0fd82Sopenharmony_ci     * too large may cause the curve rugged even make some points outlier */
81a3e0fd82Sopenharmony_ci    constexpr float PRECISION = 0.05f; // 0.05f make several outliers near inflection point
82a3e0fd82Sopenharmony_ci    int8_t iterationCnt = 10;          // iterate at most 10 times
83a3e0fd82Sopenharmony_ci
84a3e0fd82Sopenharmony_ci    /* Newton Method to solve t from x */
85a3e0fd82Sopenharmony_ci    while ((MATH_ABS(xt - x) > PRECISION) && (iterationCnt-- > 0)) {
86a3e0fd82Sopenharmony_ci        t = t + (x - xt) / GetBezierDerivative(t, 0, x1, x2, 1);
87a3e0fd82Sopenharmony_ci        xt = GetBezierInterpolation(t, 0, x1, x2, 1);
88a3e0fd82Sopenharmony_ci    }
89a3e0fd82Sopenharmony_ci    return GetBezierInterpolation(t, 0, y1, y2, 1);
90a3e0fd82Sopenharmony_ci}
91a3e0fd82Sopenharmony_ci} // namespace OHOS
92