1e41f4b71Sopenharmony_ci# CLOCK 2e41f4b71Sopenharmony_ci 3e41f4b71Sopenharmony_ci## 概述 4e41f4b71Sopenharmony_ci 5e41f4b71Sopenharmony_ci### 功能简介<a name="section1"></a> 6e41f4b71Sopenharmony_ci 7e41f4b71Sopenharmony_ciCLOCK,时钟是系统各个部件运行的基础,以CPU时钟举例,CPU 时钟是指 CPU 内部的时钟发生器,它以频率的形式工作,用来同步和控制 CPU 内部的各个操作。 8e41f4b71Sopenharmony_ci 9e41f4b71Sopenharmony_ci### 基本概念<a name="section2"></a> 10e41f4b71Sopenharmony_ci 11e41f4b71Sopenharmony_ci设备的时钟信号是指在电子设备中用于同步和控制各个模块或组件操作的信号。它是设备内部的一个基本信号源,用于确保设备的正常运行和数据传输的准确性。 12e41f4b71Sopenharmony_ci 13e41f4b71Sopenharmony_ci### 运作机制 14e41f4b71Sopenharmony_ci 15e41f4b71Sopenharmony_ci在HDF框架中,同类型设备对象较多时(可能同时存在十几个同类型配置器),若采用独立服务模式,则需要配置更多的设备节点,且相关服务会占据更多的内存资源。相反,采用统一服务模式可以使用一个设备服务作为管理器,统一处理所有同类型对象的外部访问(这会在配置文件中有所体现),实现便捷管理和节约资源的目的。CLOCK模块即采用统一服务模式(如图1所示)。 16e41f4b71Sopenharmony_ci 17e41f4b71Sopenharmony_ciCLOCK模块各分层的作用为: 18e41f4b71Sopenharmony_ci 19e41f4b71Sopenharmony_ci- 接口层:提供打开设备,写入数据,关闭设备的能力。 20e41f4b71Sopenharmony_ci 21e41f4b71Sopenharmony_ci- 核心层:主要负责服务绑定、初始化以及释放管理器,并提供添加、删除以及获取控制器的能力。 22e41f4b71Sopenharmony_ci 23e41f4b71Sopenharmony_ci- 适配层:由驱动适配者实现与硬件相关的具体功能,如控制器的初始化等。 24e41f4b71Sopenharmony_ci 25e41f4b71Sopenharmony_ci在统一模式下,所有的控制器都被核心层统一管理,并由核心层统一发布一个服务供接口层,因此这种模式下驱动无需再为每个控制器发布服务。 26e41f4b71Sopenharmony_ci 27e41f4b71Sopenharmony_ci**图 1** CLOCK统一服务模式结构图<a name="fig1"></a> 28e41f4b71Sopenharmony_ci 29e41f4b71Sopenharmony_ci 30e41f4b71Sopenharmony_ci## 使用指导 31e41f4b71Sopenharmony_ci 32e41f4b71Sopenharmony_ci### 场景介绍 33e41f4b71Sopenharmony_ci 34e41f4b71Sopenharmony_ciCLOCK提供芯片级别的时钟管理:时钟功能可用于控制芯片内部的时钟分频、时钟倍频、时钟源选择和时钟门控等操作。通过合理的时钟管理,可以提高芯片的能效,并确保各个功能部件的正确协调和协同工作。 35e41f4b71Sopenharmony_ci 36e41f4b71Sopenharmony_ci### 接口说明 37e41f4b71Sopenharmony_ci 38e41f4b71Sopenharmony_ci为了保证上层在调用CLOCK接口时能够正确的操作硬件,核心层在//drivers/hdf_core/framework/support/platform/include/clock/clock_core.h中定义了以下钩子函数。驱动适配者需要在适配层实现这些函数的具体功能,并与这些钩子函数挂接,从而完成接口层与核心层的交互。 39e41f4b71Sopenharmony_ci 40e41f4b71Sopenharmony_ciClockMethod和ClockLockMethod定义: 41e41f4b71Sopenharmony_ci 42e41f4b71Sopenharmony_ci```c 43e41f4b71Sopenharmony_cistruct ClockMethod { 44e41f4b71Sopenharmony_ci int32_t (*start)(struct ClockDevice *device); 45e41f4b71Sopenharmony_ci int32_t (*stop)(struct ClockDevice *device); 46e41f4b71Sopenharmony_ci int32_t (*setRate)(struct ClockDevice *device, uint32_t rate); 47e41f4b71Sopenharmony_ci int32_t (*getRate)(struct ClockDevice *device, uint32_t *rate); 48e41f4b71Sopenharmony_ci int32_t (*disable)(struct ClockDevice *device); 49e41f4b71Sopenharmony_ci int32_t (*enable)(struct ClockDevice *device); 50e41f4b71Sopenharmony_ci struct ClockDevice *(*getParent)(struct ClockDevice *device); 51e41f4b71Sopenharmony_ci int32_t (*setParent)(struct ClockDevice *device, struct ClockDevice *parent); 52e41f4b71Sopenharmony_ci}; 53e41f4b71Sopenharmony_ci 54e41f4b71Sopenharmony_cistruct ClockLockMethod { 55e41f4b71Sopenharmony_ci int32_t (*lock)(struct ClockDevice *device); 56e41f4b71Sopenharmony_ci void (*unlock)(struct ClockDevice *device); 57e41f4b71Sopenharmony_ci}; 58e41f4b71Sopenharmony_ci 59e41f4b71Sopenharmony_ci``` 60e41f4b71Sopenharmony_ci 61e41f4b71Sopenharmony_ci在适配层中,ClockMethod必须被实现,ClockLockMethod可根据实际情况考虑是否实现。核心层提供了默认的ClockLockMethod,其中使用Spinlock作为保护临界区的锁: 62e41f4b71Sopenharmony_ci 63e41f4b71Sopenharmony_ci```c 64e41f4b71Sopenharmony_cistatic int32_t ClockDeviceLockDefault(struct ClockDevice *device) 65e41f4b71Sopenharmony_ci{ 66e41f4b71Sopenharmony_ci if (device == NULL) { 67e41f4b71Sopenharmony_ci HDF_LOGE("ClockDeviceLockDefault: device is null!"); 68e41f4b71Sopenharmony_ci return HDF_ERR_INVALID_OBJECT; 69e41f4b71Sopenharmony_ci } 70e41f4b71Sopenharmony_ci return OsalSpinLock(&device->spin); 71e41f4b71Sopenharmony_ci} 72e41f4b71Sopenharmony_ci 73e41f4b71Sopenharmony_cistatic void ClockDeviceUnlockDefault(struct ClockDevice *device) 74e41f4b71Sopenharmony_ci{ 75e41f4b71Sopenharmony_ci if (device == NULL) { 76e41f4b71Sopenharmony_ci HDF_LOGE("ClockDeviceUnlockDefault: device is null!"); 77e41f4b71Sopenharmony_ci return; 78e41f4b71Sopenharmony_ci } 79e41f4b71Sopenharmony_ci (void)OsalSpinUnlock(&device->spin); 80e41f4b71Sopenharmony_ci} 81e41f4b71Sopenharmony_ci 82e41f4b71Sopenharmony_cistatic const struct ClockLockMethod g_clockLockOpsDefault = { 83e41f4b71Sopenharmony_ci .lock = ClockDeviceLockDefault, 84e41f4b71Sopenharmony_ci .unlock = ClockDeviceUnlockDefault, 85e41f4b71Sopenharmony_ci}; 86e41f4b71Sopenharmony_ci 87e41f4b71Sopenharmony_ci``` 88e41f4b71Sopenharmony_ci 89e41f4b71Sopenharmony_ci若实际情况不允许使用Spinlock,驱动适配者可以考虑使用其他类型的锁来实现一个自定义的ClockLockMethod。一旦实现了自定义的ClockLockMethod,默认的ClockLockMethod将被覆盖。 90e41f4b71Sopenharmony_ci 91e41f4b71Sopenharmony_ci**表 1** ClockMethod结构体成员的钩子函数功能说明 92e41f4b71Sopenharmony_ci 93e41f4b71Sopenharmony_ci| 函数成员 | 入参 | 出参 | 返回值 | 功能 | 94e41f4b71Sopenharmony_ci| -------- | -------- | -------- | -------- | -------- | 95e41f4b71Sopenharmony_ci| start | device:结构体指针,核心层CLOCK控制器 | 无| HDF_STATUS相关状态 | 打开CLOCK设备 | 96e41f4b71Sopenharmony_ci| stop | device:结构体指针,核心层CLOCK控制器 | 无 | HDF_STATUS相关状态 | 关闭CLOCK设备 | 97e41f4b71Sopenharmony_ci| setRate | device:结构体指针,核心层CLOCK控制器 | 无 | HDF_STATUS相关状态 | 设置CLOCK设备的速率 | 98e41f4b71Sopenharmony_ci| getRate | device:结构体指针,核心层CLOCK控制器 | 获取的速率 | HDF_STATUS相关状态 | 获取CLOCK设备的速率 | 99e41f4b71Sopenharmony_ci| disable | device:结构体指针,核心层CLOCK控制器 | 无 | HDF_STATUS相关状态 | 使能CLOCK设备 | 100e41f4b71Sopenharmony_ci| enable | device:结构体指针,核心层CLOCK控制器 | 无 | HDF_STATUS相关状态 | 去使能CLOCK设备 | 101e41f4b71Sopenharmony_ci| getParent | device:结构体指针,核心层CLOCK控制器 | 获取的device:结构体指针,核心层CLOCK控制器 | HDF_STATUS相关状态 | 设置CLOCK设备的父设备 | 102e41f4b71Sopenharmony_ci| setParent | device:结构体指针,核心层CLOCK控制器 | 无 | HDF_STATUS相关状态 | 设置CLOCK设备的父设备 | 103e41f4b71Sopenharmony_ci 104e41f4b71Sopenharmony_ci**表 2** ClockLockMethod结构体成员函数功能说明 105e41f4b71Sopenharmony_ci 106e41f4b71Sopenharmony_ci| 函数成员 | 入参 | 出参 | 返回值 | 功能 | 107e41f4b71Sopenharmony_ci| -------- | -------- | -------- | -------- | -------- | 108e41f4b71Sopenharmony_ci| lock | device:结构体指针,核心层CLOCK设备对象。 | 无 | HDF_STATUS相关状态 | 获取临界区锁 | 109e41f4b71Sopenharmony_ci| unlock | device:结构体指针,核心层CLOCK设备对象。 | 无 | HDF_STATUS相关状态 | 释放临界区锁 | 110e41f4b71Sopenharmony_ci 111e41f4b71Sopenharmony_ci### 开发步骤 112e41f4b71Sopenharmony_ci 113e41f4b71Sopenharmony_ciCLOCK模块适配包含以下四个步骤: 114e41f4b71Sopenharmony_ci 115e41f4b71Sopenharmony_ci1. 实例化驱动入口 116e41f4b71Sopenharmony_ci 117e41f4b71Sopenharmony_ci - 实例化HdfDriverEntry结构体成员。 118e41f4b71Sopenharmony_ci 119e41f4b71Sopenharmony_ci - 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。 120e41f4b71Sopenharmony_ci 121e41f4b71Sopenharmony_ci2. 配置属性文件 122e41f4b71Sopenharmony_ci 123e41f4b71Sopenharmony_ci - 在device_info.hcs文件中添加deviceNode描述。 124e41f4b71Sopenharmony_ci 125e41f4b71Sopenharmony_ci - 【可选】添加clock_config.hcs器件属性文件。 126e41f4b71Sopenharmony_ci 127e41f4b71Sopenharmony_ci3. 实例化核心层接口函数 128e41f4b71Sopenharmony_ci 129e41f4b71Sopenharmony_ci - 初始化ClockDevice成员。 130e41f4b71Sopenharmony_ci 131e41f4b71Sopenharmony_ci - 实例化ClockDevice成员ClockMethod。 132e41f4b71Sopenharmony_ci 133e41f4b71Sopenharmony_ci >  **说明:**<br> 134e41f4b71Sopenharmony_ci > 实例化ClockDevice成员ClockMethod,其定义和成员说明见[接口说明](#接口说明)。 135e41f4b71Sopenharmony_ci 136e41f4b71Sopenharmony_ci4. 驱动调试 137e41f4b71Sopenharmony_ci 138e41f4b71Sopenharmony_ci 【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。 139e41f4b71Sopenharmony_ci 140e41f4b71Sopenharmony_ci### 开发实例 141e41f4b71Sopenharmony_ci 142e41f4b71Sopenharmony_ci下方将基于RK3568开发板以//drivers/hdf_core/adapter/khdf/linux/platform/clock/clock_adapter.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。 143e41f4b71Sopenharmony_ci 144e41f4b71Sopenharmony_ci1. 实例化驱动入口 145e41f4b71Sopenharmony_ci 146e41f4b71Sopenharmony_ci 驱动入口必须为HdfDriverEntry(在//drivers/hdf_core/interfaces/inner_api/host/shared/hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。 147e41f4b71Sopenharmony_ci 148e41f4b71Sopenharmony_ci 一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。 149e41f4b71Sopenharmony_ci 150e41f4b71Sopenharmony_ci CLOCK驱动入口参考: 151e41f4b71Sopenharmony_ci 152e41f4b71Sopenharmony_ci CLOCK控制器会出现多个设备挂接的情况,因而在HDF框架中首先会为此类型的设备创建一个管理器对象。这样,需要打开某个设备时,管理器对象会根据指定参数查找到指定设备。 153e41f4b71Sopenharmony_ci 154e41f4b71Sopenharmony_ci CLOCK管理器的驱动由核心层实现,驱动适配者不需要关注这部分内容的实现,但在实现Init函数的时候需要调用核心层的ClockDeviceAdd函数,它会实现相应功能。 155e41f4b71Sopenharmony_ci 156e41f4b71Sopenharmony_ci ```c 157e41f4b71Sopenharmony_ci struct HdfDriverEntry g_clockLinuxDriverEntry = { 158e41f4b71Sopenharmony_ci .moduleVersion = 1, 159e41f4b71Sopenharmony_ci .Bind = NULL, 160e41f4b71Sopenharmony_ci .Init = LinuxClockInit, 161e41f4b71Sopenharmony_ci .Release = LinuxClockRelease, 162e41f4b71Sopenharmony_ci .moduleName = "linux_clock_adapter", // 【必要且与device_info.hcs文件内的模块名匹配】 163e41f4b71Sopenharmony_ci }; 164e41f4b71Sopenharmony_ci HDF_INIT(g_clockLinuxDriverEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中 165e41f4b71Sopenharmony_ci 166e41f4b71Sopenharmony_ci // 核心层clock_core.c管理器服务的驱动入口 167e41f4b71Sopenharmony_ci struct HdfDriverEntry g_clockManagerEntry = { 168e41f4b71Sopenharmony_ci .moduleVersion = 1, 169e41f4b71Sopenharmony_ci .Bind = ClockManagerBind, // CLOCK不需要实现Bind,本例是一个空实现,驱动适配者可根据自身需要添加相关操作 170e41f4b71Sopenharmony_ci .Init = ClockManagerInit, // 见Init参考 171e41f4b71Sopenharmony_ci .Release = ClockManagerRelease, // 见Release参考 172e41f4b71Sopenharmony_ci .moduleName = "HDF_PLATFORM_CLOCK_MANAGER", // 这与device_info.hcs文件中device0对应 173e41f4b71Sopenharmony_ci }; 174e41f4b71Sopenharmony_ci HDF_INIT(g_clockManagerEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中 175e41f4b71Sopenharmony_ci ``` 176e41f4b71Sopenharmony_ci 177e41f4b71Sopenharmony_ci2. 配置属性文件 178e41f4b71Sopenharmony_ci 179e41f4b71Sopenharmony_ci 完成驱动入口注册之后,下一步请在//vendor/hihope/rk3568/hdf_config/khdf/device_info/device_info.hcs文件中添加deviceNode信息,并在clock_config.hcs中配置器件属性。 180e41f4b71Sopenharmony_ci 181e41f4b71Sopenharmony_ci deviceNode信息与驱动入口注册相关,器件属性值对于驱动适配者的驱动实现以及核心层ClockDevice相关成员的默认值或限制范围有密切关系。 182e41f4b71Sopenharmony_ci 183e41f4b71Sopenharmony_ci 统一服务模式的特点是device_info.hcs文件中第一个设备节点必须为CLOCK管理器,其各项参数如表3所示: 184e41f4b71Sopenharmony_ci 185e41f4b71Sopenharmony_ci **表 3** device_info.hcs节点参数说明 186e41f4b71Sopenharmony_ci 187e41f4b71Sopenharmony_ci | 成员名 | 值 | 188e41f4b71Sopenharmony_ci | -------- | -------- | 189e41f4b71Sopenharmony_ci | policy | 驱动服务发布的策略,CLOCK管理器具体配置为2,表示驱动对内核态和用户态都发布服务 | 190e41f4b71Sopenharmony_ci | priority | 驱动启动优先级(0-200),值越大优先级越低。CLOCK管理器具体配置为59 | 191e41f4b71Sopenharmony_ci | permission | 驱动创建设备节点权限,CLOCK管理器具体配置为0664 | 192e41f4b71Sopenharmony_ci | moduleName | 驱动名称,CLOCK管理器固定为HDF_PLATFORM_CLOCK_MANAGER | 193e41f4b71Sopenharmony_ci | serviceName | 驱动对外发布服务的名称,CLOCK管理器服务名设置为HDF_PLATFORM_CLOCK_MANAGER | 194e41f4b71Sopenharmony_ci | deviceMatchAttr | 驱动私有数据匹配的关键字,CLOCK管理器没有使用,可忽略 | 195e41f4b71Sopenharmony_ci 196e41f4b71Sopenharmony_ci 从第二个节点开始配置具体CLOCK控制器信息,第一个节点并不表示某一路CLOCK控制器,而是代表一个资源性质设备,用于描述一类CLOCK控制器的信息。本例只有一个CLOCK设备,如有多个设备,则需要在device_info.hcs文件增加deviceNode信息,以及在clock_config.hcs文件中增加对应的器件属性。 197e41f4b71Sopenharmony_ci 198e41f4b71Sopenharmony_ci - device_info.hcs配置参考 199e41f4b71Sopenharmony_ci ``` 200e41f4b71Sopenharmony_ci root { 201e41f4b71Sopenharmony_ci device_info { 202e41f4b71Sopenharmony_ci platform :: host { 203e41f4b71Sopenharmony_ci device_clock :: device { 204e41f4b71Sopenharmony_ci device0 :: deviceNode { 205e41f4b71Sopenharmony_ci policy = 2; 206e41f4b71Sopenharmony_ci priority = 59; 207e41f4b71Sopenharmony_ci permission = 0644; 208e41f4b71Sopenharmony_ci moduleName = "HDF_PLATFORM_CLOCK_MANAGER"; 209e41f4b71Sopenharmony_ci serviceName = "HDF_PLATFORM_CLOCK_MANAGER"; 210e41f4b71Sopenharmony_ci } 211e41f4b71Sopenharmony_ci device1 :: deviceNode { 212e41f4b71Sopenharmony_ci policy = 0; // 等于0,不需要发布服务。 213e41f4b71Sopenharmony_ci priority = 65; // 驱动启动优先级。 214e41f4b71Sopenharmony_ci permission = 0644; // 驱动创建设备节点权限。 215e41f4b71Sopenharmony_ci moduleName = "linux_clock_adapter"; //【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致。 216e41f4b71Sopenharmony_ci deviceMatchAttr = "linux_clock_adapter_0"; //【必要】用于配置控制器私有数据,要与clock_config.hcs中对应控制器保持一致,具体的控制器信息在clock_config.hcs中。 217e41f4b71Sopenharmony_ci } 218e41f4b71Sopenharmony_ci } 219e41f4b71Sopenharmony_ci } 220e41f4b71Sopenharmony_ci } 221e41f4b71Sopenharmony_ci } 222e41f4b71Sopenharmony_ci ``` 223e41f4b71Sopenharmony_ci 224e41f4b71Sopenharmony_ci - clock_config.hcs配置参考 225e41f4b71Sopenharmony_ci 226e41f4b71Sopenharmony_ci 此处以RK3568为例,给出HCS配置参考。 227e41f4b71Sopenharmony_ci 228e41f4b71Sopenharmony_ci ``` 229e41f4b71Sopenharmony_ci root { 230e41f4b71Sopenharmony_ci platform { 231e41f4b71Sopenharmony_ci clock_config { 232e41f4b71Sopenharmony_ci match_attr = "linux_clock_adapter_0"; 233e41f4b71Sopenharmony_ci template clock_device { 234e41f4b71Sopenharmony_ci } 235e41f4b71Sopenharmony_ci device_clock_0x0000 :: clock_device { 236e41f4b71Sopenharmony_ci deviceName = "/cpus/cpu@0"; 237e41f4b71Sopenharmony_ci deviceIndex = 1; 238e41f4b71Sopenharmony_ci } 239e41f4b71Sopenharmony_ci } 240e41f4b71Sopenharmony_ci } 241e41f4b71Sopenharmony_ci } 242e41f4b71Sopenharmony_ci ``` 243e41f4b71Sopenharmony_ci 244e41f4b71Sopenharmony_ci 需要注意的是,新增clock_config.hcs配置文件后,必须在hdf.hcs文件中将其包含,否则配置文件无法生效。 245e41f4b71Sopenharmony_ci 246e41f4b71Sopenharmony_ci 例如:本例中clock_config.hcs所在路径为//vendor/hihope/rk3568/hdf_config/ hdf_config/khdf/hdf.hcs,则必须在产品对应的hdf.hcs中添加如下语句: 247e41f4b71Sopenharmony_ci 248e41f4b71Sopenharmony_ci ``` 249e41f4b71Sopenharmony_ci #include "platform/clock_config_linux.hcs" // 配置文件相对路径 250e41f4b71Sopenharmony_ci ``` 251e41f4b71Sopenharmony_ci 252e41f4b71Sopenharmony_ci 本例基于RK3568开发板的标准系统Linux内核运行,对应的hdf.hcs文件路径为//vendor/hihope/rk3568/hdf_config/ hdf_config/khdf/hdf.hcs驱动适配者需根据实际情况选择对应路径下的文件进行修改。 253e41f4b71Sopenharmony_ci 254e41f4b71Sopenharmony_ci3. 实例化核心层函数 255e41f4b71Sopenharmony_ci 256e41f4b71Sopenharmony_ci 完成驱动入口注册之后,下一步就是以核心层ClockDevice对象的初始化为核心,包括初始化驱动适配者自定义结构体(传递参数和数据),实例化ClockDevice成员ClockMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。 257e41f4b71Sopenharmony_ci 258e41f4b71Sopenharmony_ci - 自定义结构体参考。 259e41f4b71Sopenharmony_ci 260e41f4b71Sopenharmony_ci 从驱动的角度看,自定义结构体是参数和数据的载体,而且clock_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,其中一些重要数值(例如设备号、总线号等)也会传递给核心层ClockDevice对象。 261e41f4b71Sopenharmony_ci ```c 262e41f4b71Sopenharmony_ci // ClockDevice是核心层控制器结构体,其中的成员在Init函数中会被赋值。 263e41f4b71Sopenharmony_ci struct ClockDevice { 264e41f4b71Sopenharmony_ci const struct ClockMethod *ops; 265e41f4b71Sopenharmony_ci OsalSpinlock spin; 266e41f4b71Sopenharmony_ci const char *deviceName; 267e41f4b71Sopenharmony_ci const char *clockName; 268e41f4b71Sopenharmony_ci uint32_t deviceIndex; 269e41f4b71Sopenharmony_ci const struct ClockLockMethod *lockOps; 270e41f4b71Sopenharmony_ci void *clk; 271e41f4b71Sopenharmony_ci void *priv; 272e41f4b71Sopenharmony_ci struct ClockDevice *parent; 273e41f4b71Sopenharmony_ci }; 274e41f4b71Sopenharmony_ci ``` 275e41f4b71Sopenharmony_ci - ClockDevice成员钩子函数结构体ClockMethod的实例化。 276e41f4b71Sopenharmony_ci 277e41f4b71Sopenharmony_ci ClockLockMethod钩子函数结构体本例未实现,若要实例化,可参考I2C驱动开发。 278e41f4b71Sopenharmony_ci 279e41f4b71Sopenharmony_ci ```c 280e41f4b71Sopenharmony_ci struct ClockMethod { 281e41f4b71Sopenharmony_ci int32_t (*start)(struct ClockDevice *device); 282e41f4b71Sopenharmony_ci int32_t (*stop)(struct ClockDevice *device); 283e41f4b71Sopenharmony_ci int32_t (*setRate)(struct ClockDevice *device, uint32_t rate); 284e41f4b71Sopenharmony_ci int32_t (*getRate)(struct ClockDevice *device, uint32_t *rate); 285e41f4b71Sopenharmony_ci int32_t (*disable)(struct ClockDevice *device); 286e41f4b71Sopenharmony_ci int32_t (*enable)(struct ClockDevice *device); 287e41f4b71Sopenharmony_ci struct ClockDevice *(*getParent)(struct ClockDevice *device); 288e41f4b71Sopenharmony_ci int32_t (*setParent)(struct ClockDevice *device, struct ClockDevice *parent); 289e41f4b71Sopenharmony_ci }; 290e41f4b71Sopenharmony_ci ``` 291e41f4b71Sopenharmony_ci 292e41f4b71Sopenharmony_ci - Init函数开发参考 293e41f4b71Sopenharmony_ci 294e41f4b71Sopenharmony_ci 入参: 295e41f4b71Sopenharmony_ci 296e41f4b71Sopenharmony_ci HdfDeviceObject是整个驱动对外提供的接口参数,具备HCS配置文件的信息。 297e41f4b71Sopenharmony_ci 298e41f4b71Sopenharmony_ci 返回值: 299e41f4b71Sopenharmony_ci 300e41f4b71Sopenharmony_ci HDF_STATUS相关状态(表4为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS定义)。 301e41f4b71Sopenharmony_ci 302e41f4b71Sopenharmony_ci **表 4** HDF_STATUS相关状态说明 303e41f4b71Sopenharmony_ci 304e41f4b71Sopenharmony_ci | 状态(值) | 问题描述 | 305e41f4b71Sopenharmony_ci | -------- | -------- | 306e41f4b71Sopenharmony_ci | HDF_ERR_INVALID_OBJECT | 控制器对象非法 | 307e41f4b71Sopenharmony_ci | HDF_ERR_INVALID_PARAM | 参数非法 | 308e41f4b71Sopenharmony_ci | HDF_ERR_MALLOC_FAIL | 内存分配失败 | 309e41f4b71Sopenharmony_ci | HDF_ERR_IO | I/O错误 | 310e41f4b71Sopenharmony_ci | HDF_SUCCESS | 传输成功 | 311e41f4b71Sopenharmony_ci | HDF_FAILURE | 传输失败 | 312e41f4b71Sopenharmony_ci 313e41f4b71Sopenharmony_ci 函数说明: 314e41f4b71Sopenharmony_ci 315e41f4b71Sopenharmony_ci 初始化自定义结构体对象,初始化ClockDevice成员,并调用核心层ClockDeviceAdd函数。 316e41f4b71Sopenharmony_ci 317e41f4b71Sopenharmony_ci ```c 318e41f4b71Sopenharmony_ci static int32_t LinuxClockInit(struct HdfDeviceObject *device) 319e41f4b71Sopenharmony_ci { 320e41f4b71Sopenharmony_ci int32_t ret = HDF_SUCCESS; 321e41f4b71Sopenharmony_ci struct DeviceResourceNode *childNode = NULL; 322e41f4b71Sopenharmony_ci 323e41f4b71Sopenharmony_ci if (device == NULL || device->property == NULL) { 324e41f4b71Sopenharmony_ci HDF_LOGE("LinuxClockInit: device or property is null"); 325e41f4b71Sopenharmony_ci return HDF_ERR_INVALID_OBJECT; 326e41f4b71Sopenharmony_ci } 327e41f4b71Sopenharmony_ci 328e41f4b71Sopenharmony_ci DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) { 329e41f4b71Sopenharmony_ci ret = ClockParseAndDeviceAdd(device, childNode); 330e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 331e41f4b71Sopenharmony_ci HDF_LOGE("LinuxClockInit: clock init fail!"); 332e41f4b71Sopenharmony_ci return ret; 333e41f4b71Sopenharmony_ci } 334e41f4b71Sopenharmony_ci } 335e41f4b71Sopenharmony_ci HDF_LOGE("LinuxClockInit: clock init success!"); 336e41f4b71Sopenharmony_ci 337e41f4b71Sopenharmony_ci return HDF_SUCCESS; 338e41f4b71Sopenharmony_ci } 339e41f4b71Sopenharmony_ci 340e41f4b71Sopenharmony_ci static int32_t ClockParseAndDeviceAdd(struct HdfDeviceObject *device, struct DeviceResourceNode *node) 341e41f4b71Sopenharmony_ci { 342e41f4b71Sopenharmony_ci int32_t ret; 343e41f4b71Sopenharmony_ci struct ClockDevice *clockDevice = NULL; 344e41f4b71Sopenharmony_ci 345e41f4b71Sopenharmony_ci (void)device; 346e41f4b71Sopenharmony_ci clockDevice = (struct ClockDevice *)OsalMemCalloc(sizeof(*clockDevice)); 347e41f4b71Sopenharmony_ci if (clockDevice == NULL) { 348e41f4b71Sopenharmony_ci HDF_LOGE("ClockParseAndDeviceAdd: alloc clockDevice fail!"); 349e41f4b71Sopenharmony_ci return HDF_ERR_MALLOC_FAIL; 350e41f4b71Sopenharmony_ci } 351e41f4b71Sopenharmony_ci ret = ClockReadDrs(clockDevice, node); 352e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 353e41f4b71Sopenharmony_ci HDF_LOGE("ClockParseAndDeviceAdd: read drs fail, ret: %d!", ret); 354e41f4b71Sopenharmony_ci OsalMemFree(clockDevice); 355e41f4b71Sopenharmony_ci return ret; 356e41f4b71Sopenharmony_ci } 357e41f4b71Sopenharmony_ci 358e41f4b71Sopenharmony_ci clockDevice->priv = (void *)node; 359e41f4b71Sopenharmony_ci clockDevice->ops = &g_method; 360e41f4b71Sopenharmony_ci 361e41f4b71Sopenharmony_ci ret = ClockDeviceAdd(clockDevice); 362e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 363e41f4b71Sopenharmony_ci HDF_LOGE("ClockParseAndDeviceAdd: add clock device:%u fail!", clockDevice->deviceIndex); 364e41f4b71Sopenharmony_ci OsalMemFree(clockDevice); 365e41f4b71Sopenharmony_ci return ret; 366e41f4b71Sopenharmony_ci } 367e41f4b71Sopenharmony_ci 368e41f4b71Sopenharmony_ci return HDF_SUCCESS; 369e41f4b71Sopenharmony_ci } 370e41f4b71Sopenharmony_ci 371e41f4b71Sopenharmony_ci static int32_t ClockReadDrs(struct ClockDevice *clockDevice, const struct DeviceResourceNode *node) 372e41f4b71Sopenharmony_ci { 373e41f4b71Sopenharmony_ci int32_t ret; 374e41f4b71Sopenharmony_ci struct DeviceResourceIface *drsOps = NULL; 375e41f4b71Sopenharmony_ci 376e41f4b71Sopenharmony_ci drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); 377e41f4b71Sopenharmony_ci if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetString == NULL) { 378e41f4b71Sopenharmony_ci HDF_LOGE("ClockReadDrs: invalid drs ops!"); 379e41f4b71Sopenharmony_ci return HDF_ERR_NOT_SUPPORT; 380e41f4b71Sopenharmony_ci } 381e41f4b71Sopenharmony_ci ret = drsOps->GetUint32(node, "deviceIndex", &clockDevice->deviceIndex, 0); 382e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 383e41f4b71Sopenharmony_ci HDF_LOGE("ClockReadDrs: read deviceIndex fail, ret: %d!", ret); 384e41f4b71Sopenharmony_ci return ret; 385e41f4b71Sopenharmony_ci } 386e41f4b71Sopenharmony_ci 387e41f4b71Sopenharmony_ci drsOps->GetString(node, "clockName", &clockDevice->clockName, 0); 388e41f4b71Sopenharmony_ci 389e41f4b71Sopenharmony_ci ret = drsOps->GetString(node, "deviceName", &clockDevice->deviceName, 0); 390e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 391e41f4b71Sopenharmony_ci HDF_LOGE("ClockReadDrs: read deviceName fail, ret: %d!", ret); 392e41f4b71Sopenharmony_ci return ret; 393e41f4b71Sopenharmony_ci } 394e41f4b71Sopenharmony_ci return HDF_SUCCESS; 395e41f4b71Sopenharmony_ci } 396e41f4b71Sopenharmony_ci ``` 397e41f4b71Sopenharmony_ci 398e41f4b71Sopenharmony_ci - Release函数开发参考 399e41f4b71Sopenharmony_ci 400e41f4b71Sopenharmony_ci 入参: 401e41f4b71Sopenharmony_ci 402e41f4b71Sopenharmony_ci HdfDeviceObject是整个驱动对外提供的接口参数,具备HCS配置文件的信息。 403e41f4b71Sopenharmony_ci 404e41f4b71Sopenharmony_ci 返回值: 405e41f4b71Sopenharmony_ci 406e41f4b71Sopenharmony_ci 无。 407e41f4b71Sopenharmony_ci 408e41f4b71Sopenharmony_ci 函数说明: 409e41f4b71Sopenharmony_ci 释放内存和删除控制器,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。 410e41f4b71Sopenharmony_ci 411e41f4b71Sopenharmony_ci ```c 412e41f4b71Sopenharmony_ci static void LinuxClockRelease(struct HdfDeviceObject *device) 413e41f4b71Sopenharmony_ci { 414e41f4b71Sopenharmony_ci const struct DeviceResourceNode *childNode = NULL; 415e41f4b71Sopenharmony_ci if (device == NULL || device->property == NULL) { 416e41f4b71Sopenharmony_ci HDF_LOGE("LinuxClockRelease: device or property is null!"); 417e41f4b71Sopenharmony_ci return; 418e41f4b71Sopenharmony_ci } 419e41f4b71Sopenharmony_ci DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) { 420e41f4b71Sopenharmony_ci ClockRemoveByNode(childNode); 421e41f4b71Sopenharmony_ci } 422e41f4b71Sopenharmony_ci } 423e41f4b71Sopenharmony_ci 424e41f4b71Sopenharmony_ci static void ClockRemoveByNode(const struct DeviceResourceNode *node) 425e41f4b71Sopenharmony_ci { 426e41f4b71Sopenharmony_ci int32_t ret; 427e41f4b71Sopenharmony_ci int32_t deviceIndex; 428e41f4b71Sopenharmony_ci struct ClockDevice *device = NULL; 429e41f4b71Sopenharmony_ci struct DeviceResourceIface *drsOps = NULL; 430e41f4b71Sopenharmony_ci 431e41f4b71Sopenharmony_ci drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); 432e41f4b71Sopenharmony_ci if (drsOps == NULL || drsOps->GetUint32 == NULL) { 433e41f4b71Sopenharmony_ci HDF_LOGE("ClockRemoveByNode: invalid drs ops!"); 434e41f4b71Sopenharmony_ci return; 435e41f4b71Sopenharmony_ci } 436e41f4b71Sopenharmony_ci 437e41f4b71Sopenharmony_ci ret = drsOps->GetUint32(node, "deviceIndex", (uint32_t *)&deviceIndex, 0); 438e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 439e41f4b71Sopenharmony_ci HDF_LOGE("ClockRemoveByNode: read deviceIndex fail, ret: %d!", ret); 440e41f4b71Sopenharmony_ci return; 441e41f4b71Sopenharmony_ci } 442e41f4b71Sopenharmony_ci 443e41f4b71Sopenharmony_ci device = ClockDeviceGet(deviceIndex); 444e41f4b71Sopenharmony_ci if (device != NULL && device->priv == node) { 445e41f4b71Sopenharmony_ci ret = ClockStop(device); 446e41f4b71Sopenharmony_ci if (ret != HDF_SUCCESS) { 447e41f4b71Sopenharmony_ci HDF_LOGE("ClockRemoveByNode: close fail, ret: %d!", ret); 448e41f4b71Sopenharmony_ci } 449e41f4b71Sopenharmony_ci if (device->parent && device->parent->deviceName == NULL) { 450e41f4b71Sopenharmony_ci ClockDeviceRemove(device->parent); 451e41f4b71Sopenharmony_ci OsalMemFree(device->parent); 452e41f4b71Sopenharmony_ci } 453e41f4b71Sopenharmony_ci ClockDeviceRemove(device); 454e41f4b71Sopenharmony_ci OsalMemFree(device); 455e41f4b71Sopenharmony_ci } 456e41f4b71Sopenharmony_ci } 457e41f4b71Sopenharmony_ci ``` 458e41f4b71Sopenharmony_ci 459e41f4b71Sopenharmony_ci4. 驱动调试 460e41f4b71Sopenharmony_ci 461e41f4b71Sopenharmony_ci 【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。 462