1e41f4b71Sopenharmony_ci# ArrayBuffer序列化和转移 2e41f4b71Sopenharmony_ci 3e41f4b71Sopenharmony_ci## 简介 4e41f4b71Sopenharmony_ci 5e41f4b71Sopenharmony_ci在应用开发中,为了避免主线程阻塞,提高应用性能,需要将一些耗时操作放在子线程中执行。此时,子线程就需要访问主线程中的数据。ArkTS采用了基于[消息通信的Actor并发模型](../arkts-utils/multi-thread-concurrency-overview.md#actor模型),不需要开发者去面对锁带来的一系列复杂偶发问题,同时并发度也相对较高。由于Actor并发模型具有内存隔离的特性,所以跨线程传输[普通对象](../arkts-utils/normal-object.md)时是使用拷贝的方式进行传递,就会导致这样一种现象:同一份数据,在主线程和子线程内分别占用一份内存。在数据量较小时,对应用性能不会有明显的影响;但是如果数据量较大时(比如传递一个音频或者视频数据),就可能会因为占用内存较多,内存资源不足,影响其他任务的执行。 6e41f4b71Sopenharmony_ci 7e41f4b71Sopenharmony_ci除了普通对象,ArkTS还支持在线程间传递ArrayBuffer对象。这是一种[可转移对象](../arkts-utils/transferabled-object.md),传递时不需要进行拷贝,所以不会出现同一份数据占用两份内存的情况。本篇文章将通过示例代码,对比两种数据对象在线程间传递时的性能数据,同时给出优化建议,使开发者可以更好地实现线程间大数据的传输。 8e41f4b71Sopenharmony_ci 9e41f4b71Sopenharmony_ci关于多线程的使用和原理,可参考[OpenHarmony多线程能力场景化示例实践](multi_thread_capability.md),本文将不再详细讲述。 10e41f4b71Sopenharmony_ci 11e41f4b71Sopenharmony_ci## 场景示例 12e41f4b71Sopenharmony_ci 13e41f4b71Sopenharmony_ci在应用开发中,会遇到需要进行图片处理的场景(比如需要调整一张图片的亮度、饱和度、大小等),为了避免阻塞主线程,可以将图片传递到子线程中执行这些操作。下面将分别通过拷贝和转移的方式,将图片传递到子线程中,并对比两种方式的性能数据。 14e41f4b71Sopenharmony_ci 15e41f4b71Sopenharmony_ci### 使用拷贝方式传递 16e41f4b71Sopenharmony_ci 17e41f4b71Sopenharmony_ci在ArkTS中,TaskPool传递ArrayBuffer数据时,默认使用转移的方式,通过调用task.setTransferList([])接口,可以切换成拷贝的方式。 18e41f4b71Sopenharmony_ci 19e41f4b71Sopenharmony_ci首先,实现一个需要在Task中执行的用于调整饱和度的接口。 20e41f4b71Sopenharmony_ci 21e41f4b71Sopenharmony_ci```typescript 22e41f4b71Sopenharmony_ci// code/Performance/PerformanceLibrary/feature/ThreadDataTransfer/src/main/ets/utils/TreadUtil.ets 23e41f4b71Sopenharmony_ci@Concurrent 24e41f4b71Sopenharmony_cifunction adjustImageValue(arrayBuffer: ArrayBuffer, lastAdjustData: number, currentAdjustData: number): ArrayBuffer { 25e41f4b71Sopenharmony_ci return execColorInfo(arrayBuffer, lastAdjustData, currentAdjustData); 26e41f4b71Sopenharmony_ci} 27e41f4b71Sopenharmony_ci``` 28e41f4b71Sopenharmony_ci 29e41f4b71Sopenharmony_ci然后,通过拷贝的方式将图片数据传递到Task中,并在Task中将图片进行饱和度调整。 30e41f4b71Sopenharmony_ci 31e41f4b71Sopenharmony_ci```typescript 32e41f4b71Sopenharmony_ci// code/Performance/PerformanceLibrary/feature/ThreadDataTransfer/src/main/ets/utils/TreadUtil.ets 33e41f4b71Sopenharmony_ci// 创建Task,传入数据 34e41f4b71Sopenharmony_cifunction createImageTask(arrayBuffer: ArrayBuffer, lastAdjustData: number, currentAdjustData: number, isParamsByTransfer: boolean): taskpool.Task { 35e41f4b71Sopenharmony_ci let task: taskpool.Task = new taskpool.Task(adjustImageValue, arrayBuffer, lastAdjustData, currentAdjustData); 36e41f4b71Sopenharmony_ci if (!isParamsByTransfer) { // 是否使用转移方式 37e41f4b71Sopenharmony_ci task.setTransferList([]); 38e41f4b71Sopenharmony_ci } 39e41f4b71Sopenharmony_ci return task; 40e41f4b71Sopenharmony_ci} 41e41f4b71Sopenharmony_ci...... 42e41f4b71Sopenharmony_ci// 创建taskNum个Task 43e41f4b71Sopenharmony_cifor (let i: number = 0; i < taskNum; i++) { 44e41f4b71Sopenharmony_ci let arrayBufferSlice: ArrayBuffer = arrayBuffer.slice(arrayBuffer.byteLength / taskNum * i, arrayBuffer.byteLength / taskNum * (i + 1)); 45e41f4b71Sopenharmony_ci // 使用拷贝方式传入ArrayBuffer,所以isParamsByTransfer是false 46e41f4b71Sopenharmony_ci taskPoolGroup.addTask(createImageTask(arrayBufferSlice, lastAdjustData, currentAdjustData, isParamsByTransfer)); 47e41f4b71Sopenharmony_ci} 48e41f4b71Sopenharmony_cilet start: number = new Date().getTime(); 49e41f4b71Sopenharmony_ci// 执行Task 50e41f4b71Sopenharmony_citaskpool.execute(taskPoolGroup).then((data: ArrayBuffer[]) => { 51e41f4b71Sopenharmony_ci if (callback !== undefined) { 52e41f4b71Sopenharmony_ci let end : number = new Date().getTime(); 53e41f4b71Sopenharmony_ci AppStorage.set<String>('timeCost', util.format('%s s', ((end - start) / 60).toFixed(2).toString())); 54e41f4b71Sopenharmony_ci callback(concatenateArrayBuffers(data)); 55e41f4b71Sopenharmony_ci } 56e41f4b71Sopenharmony_ci}).catch((e: BusinessError) => { 57e41f4b71Sopenharmony_ci Logger.error(e.message); 58e41f4b71Sopenharmony_ci}) 59e41f4b71Sopenharmony_ci...... 60e41f4b71Sopenharmony_ci``` 61e41f4b71Sopenharmony_ci 62e41f4b71Sopenharmony_ci最后,主线程接收到Task执行完毕后返回的ArrayBuffer数据,转换为PixelMap后在Image组件上显示。 63e41f4b71Sopenharmony_ci```typescript 64e41f4b71Sopenharmony_ci// code/Performance/PerformanceLibrary/feature/ThreadDataTransfer/src/main/ets/view/AdjustImageView.ets 65e41f4b71Sopenharmony_ci...... 66e41f4b71Sopenharmony_ci// 将处理后的ArrayBuffer转换为PixelMap,并在Image组件上显示 67e41f4b71Sopenharmony_cipixelMapProcessByTaskPool(this.pixelMap, this.lastAdjustData, this.currentAdjustData, this.currentTaskNum, 68e41f4b71Sopenharmony_ci this.isParamsByTransfer, (data: ArrayBuffer) => { 69e41f4b71Sopenharmony_ci if (this.pixelMap !== undefined) { 70e41f4b71Sopenharmony_ci const newPixel: image.PixelMap = this.pixelMap; 71e41f4b71Sopenharmony_ci newPixel.writeBufferToPixels(data).then(() => { 72e41f4b71Sopenharmony_ci this.pixelMap = newPixel; 73e41f4b71Sopenharmony_ci this.lastAdjustData = Math.round(value); 74e41f4b71Sopenharmony_ci this.isPixelMapChanged = !this.isPixelMapChanged; 75e41f4b71Sopenharmony_ci this.deviceListDialogController.close(); 76e41f4b71Sopenharmony_ci this.postState = true; 77e41f4b71Sopenharmony_ci }); 78e41f4b71Sopenharmony_ci } 79e41f4b71Sopenharmony_ci}); 80e41f4b71Sopenharmony_ci...... 81e41f4b71Sopenharmony_ci``` 82e41f4b71Sopenharmony_ci编译运行后,通过脚本工具抓取Trace并在SmartPerf Host中查看,如图1所示。其中,All Heap表示应用占用的内存,BeforePassParameter表示ArrayBuffer开始从主线程传递到子线程,AfterPassParameter表示子线程收到完整的ArrayBuffer数据。 83e41f4b71Sopenharmony_ci 84e41f4b71Sopenharmony_ci图1 拷贝方式Trace泳道图 85e41f4b71Sopenharmony_ci 86e41f4b71Sopenharmony_ci 87e41f4b71Sopenharmony_ci 88e41f4b71Sopenharmony_ci图1中可以看到,ArrayBuffer传递到TaskPool时,内存有2.5M的上升,耗时是19ms。 89e41f4b71Sopenharmony_ci 90e41f4b71Sopenharmony_ci### 使用转移方式传递 91e41f4b71Sopenharmony_ci 92e41f4b71Sopenharmony_ci在TaskPool中,传递ArrayBuffer数据,是默认使用转移方式的,所以在上面示例的基础上,去除task.setTransferList([])接口就可以实现。 93e41f4b71Sopenharmony_ci```typescript 94e41f4b71Sopenharmony_ci// code/Performance/PerformanceLibrary/feature/ThreadDataTransfer/src/main/ets/utils/TreadUtil.ets 95e41f4b71Sopenharmony_ci// 创建Task,传入数据 96e41f4b71Sopenharmony_cifunction createImageTask(arrayBuffer: ArrayBuffer, lastAdjustData: number, currentAdjustData: number, isParamsByTransfer: boolean): taskpool.Task { 97e41f4b71Sopenharmony_ci let task: taskpool.Task = new taskpool.Task(adjustImageValue, arrayBuffer, lastAdjustData, currentAdjustData); 98e41f4b71Sopenharmony_ci if (!isParamsByTransfer) { // 是否使用转移方式 99e41f4b71Sopenharmony_ci task.setTransferList([]); 100e41f4b71Sopenharmony_ci } 101e41f4b71Sopenharmony_ci return task; 102e41f4b71Sopenharmony_ci} 103e41f4b71Sopenharmony_ci...... 104e41f4b71Sopenharmony_ci// 创建taskNum个Task 105e41f4b71Sopenharmony_cifor (let i: number = 0; i < taskNum; i++) { 106e41f4b71Sopenharmony_ci let arrayBufferSlice: ArrayBuffer = arrayBuffer.slice(arrayBuffer.byteLength / taskNum * i, arrayBuffer.byteLength / taskNum * (i + 1)); 107e41f4b71Sopenharmony_ci // 使用转移方式传入ArrayBuffer,所以isParamsByTransfer是true 108e41f4b71Sopenharmony_ci taskPoolGroup.addTask(createImageTask(arrayBufferSlice, lastAdjustData, currentAdjustData, isParamsByTransfer)); 109e41f4b71Sopenharmony_ci} 110e41f4b71Sopenharmony_cilet start: number = new Date().getTime(); 111e41f4b71Sopenharmony_ci// 执行Task 112e41f4b71Sopenharmony_citaskpool.execute(taskPoolGroup).then((data: ArrayBuffer[]) => { 113e41f4b71Sopenharmony_ci if (callback !== undefined) { 114e41f4b71Sopenharmony_ci let end : number = new Date().getTime(); 115e41f4b71Sopenharmony_ci AppStorage.set<String>('timeCost', util.format('%s s', ((end - start) / 60).toFixed(2).toString())); 116e41f4b71Sopenharmony_ci callback(concatenateArrayBuffers(data)); 117e41f4b71Sopenharmony_ci } 118e41f4b71Sopenharmony_ci}).catch((e: BusinessError) => { 119e41f4b71Sopenharmony_ci Logger.error(e.message); 120e41f4b71Sopenharmony_ci}) 121e41f4b71Sopenharmony_ci...... 122e41f4b71Sopenharmony_ci``` 123e41f4b71Sopenharmony_ci 124e41f4b71Sopenharmony_ci编译运行后,通过脚本工具抓取Trace并在SmartPerf Host中查看,如图2所示。 125e41f4b71Sopenharmony_ci 126e41f4b71Sopenharmony_ci图2 转移方式Trace泳道图 127e41f4b71Sopenharmony_ci 128e41f4b71Sopenharmony_ci 129e41f4b71Sopenharmony_ci 130e41f4b71Sopenharmony_ci在图2中可以看到,ArrayBuffer传递到TaskPool时,内存并没有明显的变化,耗时只有5.2ms。 131e41f4b71Sopenharmony_ci 132e41f4b71Sopenharmony_ci### 性能对比 133e41f4b71Sopenharmony_ci 134e41f4b71Sopenharmony_ci通过对比上面两个场景中的Trace数据可以发现,相对于拷贝,转移的内存占用明显变少,耗时也减少了72%。 135e41f4b71Sopenharmony_ci 136e41f4b71Sopenharmony_ci使用拷贝方式传递数据时,会将ArrayBuffer对象拷贝一次。不仅会多占用了一部分内存,还会消耗一定的时间进行拷贝对象的序列化操作。而通过转移的方式传递数据时,并不需要将传递的对象拷贝一次,而是通过地址转移进行序列化,将ArrayBuffer的内存资源从原始的缓冲区分离出来,附加到子线程TaskPool创建的缓冲区对象中,也就是将ArrayBuffer的所有权从主线程移交给了子线程。 137e41f4b71Sopenharmony_ci 138e41f4b71Sopenharmony_ci所以,使用转移方式,可以减少线程间传递数据时的内存占用和CPU耗时。 139e41f4b71Sopenharmony_ci 140e41f4b71Sopenharmony_ci## 使用建议 141e41f4b71Sopenharmony_ci 142e41f4b71Sopenharmony_ci在ArkTS的多线程中传递数据时,应保证线程间的通信数据量尽可能的小,输入输出都要简单,避免传输影响耗时;而且并发任务要相对独立,不要频繁跨线程交互。上一部分的例子中,虽然将图片处理的操作放在了TaskPool子线程中,但是由于图片数据较大,处理时间还是较长,如图3所示。其中,BeforePassParameter表示ArrayBuffer开始从主线程传递到子线程,AfterPassParameter表示子线程收到完整的ArrayBuffer数据,AfterImageDarken表示计算(图片饱和度调节)结束。在图中可以看到,有5.8s的耗时,虽然在这段时间内并不会阻塞主线程中的操作,但是对于用户来说,等待时间依然较长。 143e41f4b71Sopenharmony_ci 144e41f4b71Sopenharmony_ci图3 子线程计算耗时泳道图 145e41f4b71Sopenharmony_ci 146e41f4b71Sopenharmony_ci 147e41f4b71Sopenharmony_ci 148e41f4b71Sopenharmony_ci下面将通过示例代码说明如何进一步优化图片处理的时间。详细代码请参考[ThreadDataTransfer](https://gitee.com/openharmony/applications_app_samples/tree/master/code/Performance/PerformanceLibrary/feature/ThreadDataTransfer)。 149e41f4b71Sopenharmony_ci```typescript 150e41f4b71Sopenharmony_ci// code/Performance/PerformanceLibrary/feature/ThreadDataTransfer/src/main/ets/utils/TreadUtil.ets 151e41f4b71Sopenharmony_ci...... 152e41f4b71Sopenharmony_ci// 根据传入的taskNum,创建对应数量的Task 153e41f4b71Sopenharmony_ciexport async function pixelMapProcessByTaskPool(pixelMap: image.PixelMap, lastAdjustData: number, currentAdjustData: number, taskNum: number, isParamsByTransfer: boolean, callback?: Callback<ArrayBuffer>): Promise<void> { 154e41f4b71Sopenharmony_ci let arrayBuffer: ArrayBuffer = await convertPixelMapToArrayBuffer(pixelMap); 155e41f4b71Sopenharmony_ci let taskPoolGroup: taskpool.TaskGroup = new taskpool.TaskGroup(); 156e41f4b71Sopenharmony_ci for (let i: number = 0; i < taskNum; i++) { 157e41f4b71Sopenharmony_ci let arrayBufferSlice: ArrayBuffer = arrayBuffer.slice(arrayBuffer.byteLength / taskNum * i, arrayBuffer.byteLength / taskNum * (i + 1)); 158e41f4b71Sopenharmony_ci taskPoolGroup.addTask(createImageTask(arrayBufferSlice, lastAdjustData, currentAdjustData, isParamsByTransfer)); 159e41f4b71Sopenharmony_ci } 160e41f4b71Sopenharmony_ci let start: number = new Date().getTime(); 161e41f4b71Sopenharmony_ci taskpool.execute(taskPoolGroup).then((data: ArrayBuffer[]) => { 162e41f4b71Sopenharmony_ci if (callback !== undefined) { 163e41f4b71Sopenharmony_ci let end : number = new Date().getTime(); 164e41f4b71Sopenharmony_ci AppStorage.set<String>('timeCost', util.format('%s s', ((end - start) / 60).toFixed(2).toString())); 165e41f4b71Sopenharmony_ci // 将Task处理完成的数据合并在一个ArrayBuffer中 166e41f4b71Sopenharmony_ci callback(concatenateArrayBuffers(data)); 167e41f4b71Sopenharmony_ci } 168e41f4b71Sopenharmony_ci }).catch((e: BusinessError) => { 169e41f4b71Sopenharmony_ci Logger.error(e.message); 170e41f4b71Sopenharmony_ci }) 171e41f4b71Sopenharmony_ci} 172e41f4b71Sopenharmony_ci``` 173e41f4b71Sopenharmony_ci在这段代码中,将图片转换为ArrayBuffer后,并没有直接传递到子线程中,而是先进行了切片处理,分成taskNum个独立的ArrayBuffer。之后分别传入到taskNum个Task中,并通过TaskGroup统一管理。在图片饱和度调节完成后,再将taskNum个处理结果拼接成一个ArrayBuffer,并转换为PixelMap在Image组件上显示。此示例代码也是使用了转移方式进行传递,因为上一部分的示例已经说明了转移比拷贝的方式更加高效,所以这里不再进行重复的对比。编译运行代码后,通过脚本工具抓取Trace并在SmartPerf Host中查看,如图4所示。 174e41f4b71Sopenharmony_ci 175e41f4b71Sopenharmony_ci图4 图片切成3份处理后的泳道图 176e41f4b71Sopenharmony_ci 177e41f4b71Sopenharmony_ci 178e41f4b71Sopenharmony_ci 179e41f4b71Sopenharmony_ci通过图4可以看到,将原ArrayBuffer切成3段,分别放在3个子线程中处理,图片饱和度调节的操作耗时只有3.4s,计算时间减少了44%。因为有3个线程在同时进行操作,大大减少了计算的耗时。但是,这并不代表可以随意增加Task的数量。由于在TaskPool中,并不是创建了多少个Task,就会有多少个Task在同时执行。随着Task的增多,同时执行的线程也会越多,并发执行的任务就会增多,CPU的占用率就会升高,从而影响到其他需要CPU计算的任务。虽然在硬件配置高的设备上表现不明显,但是对于低配置的设备,影响会较大。下面的表格,列出了示例中不同数量Task时的CPU耗时供开发者参考。 180e41f4b71Sopenharmony_ci 181e41f4b71Sopenharmony_ci| **任务数** | **实际子线程数** | **序列化时间(ms)** | **计算时间(s)** | 182e41f4b71Sopenharmony_ci| ---------- | ---------------- | -------------------- | ----------------- | 183e41f4b71Sopenharmony_ci| 1 | 1 | 3.30792 | 3.967 | 184e41f4b71Sopenharmony_ci| 2 | 2 | 2.62345 | 2.646 | 185e41f4b71Sopenharmony_ci| 3 | 3 | 6.11258 | 1.875 | 186e41f4b71Sopenharmony_ci| 4 | 3 | 7.25295 | 2.579 | 187e41f4b71Sopenharmony_ci| 5 | 3 | 2.7032 | 2.266 | 188e41f4b71Sopenharmony_ci| 6 | 3 | 3.213 | 1.970 | 189e41f4b71Sopenharmony_ci| 7 | 3 | 5.260 | 2.096 | 190e41f4b71Sopenharmony_ci| 8 | 3 | 2.704 | 2.067 | 191e41f4b71Sopenharmony_ci| 9 | 3 | 3.986 | 2.116 | 192e41f4b71Sopenharmony_ci| 10 | 5 | 3.811 | 1.844 | 193e41f4b71Sopenharmony_ci| 15 | 5 | 2.879 | 2.079 | 194e41f4b71Sopenharmony_ci| 20 | 5 | 3.526 | 2.015 | 195e41f4b71Sopenharmony_ci 196e41f4b71Sopenharmony_ci因此,在分段传输大数据时,需要合理调整子线程的数量和传入子线程的数据量,加快子线程处理速度,同时减少对其他功能的影响,提升用户的应用体验。 197e41f4b71Sopenharmony_ci 198e41f4b71Sopenharmony_ci## 相关示例 199e41f4b71Sopenharmony_ci 200e41f4b71Sopenharmony_ci[ArrayBuffer序列化和转移示例代码](https://gitee.com/openharmony/applications_app_samples/tree/master/code/Performance/PerformanceLibrary/feature/ThreadDataTransfer)