1e41f4b71Sopenharmony_ci# ArkGraphics 3D场景搭建以及管理 2e41f4b71Sopenharmony_ci 3e41f4b71Sopenharmony_ci一个3D场景通常由光源、相机、模型三个关键部分组成。 4e41f4b71Sopenharmony_ci- 光源:为整个3D场景提供光照,使得3D场景中的模型变得可见。与真实物理场景一致,没有光源场景将变得一片漆黑,得到的渲染结果也就是全黑色。 5e41f4b71Sopenharmony_ci- 相机:为3D场景提供一个观察者。3D渲染本质上是从一个角度观察3D场景并投影到一张2D图片上。没有相机就没有3D场景的观察者,也就不会得到渲染结果。 6e41f4b71Sopenharmony_ci- 模型:3D场景中的模型用于描述对象的形状、结构和外观,一般具有网格、材质、纹理、动画等属性。一些常见的3D模型格式有OBJ、FBX、glTF等。 7e41f4b71Sopenharmony_ci 8e41f4b71Sopenharmony_ci模型加载后,可以通过ArkUI的[Component3D](../reference/apis-arkui/arkui-ts/ts-basic-components-component3d.md)渲染组件呈现给用户,Component3D也可以对3D模型做自定义渲染。开发者也可以使用ArkTS API对相机和光源进行调节,获得合适的观察角度和光照效果。ArkTS API可通过napi调用AGP中由C++实现的相应能力。 9e41f4b71Sopenharmony_ci 10e41f4b71Sopenharmony_ci 11e41f4b71Sopenharmony_ci 12e41f4b71Sopenharmony_ci## 模型的加载及呈现 13e41f4b71Sopenharmony_ci模型的格式多种多样,目前ArkGraphics 3D仅支持glTF模型的加载,glTF是一种对于3D场景描述的格式,glTF作为一种开源3D场景格式在业界被广泛采用。关于glTF的介绍可以参照[glTF-2.0](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html)。 14e41f4b71Sopenharmony_ci 15e41f4b71Sopenharmony_ci一个glTF模型可以包含光源、相机、模型等3D场景关键要素,如果一个glTF模型中包含相机,使用ArkGraphics 3D提供的接口加载glTF就可以直接完成该相机视角下3D场景的渲染。如果不包含相机,也可以利用ArkGraphics 3D创建一个相机完成渲染。由于3D模型往往数据量很大,通常采用异步方式进行加载,加载成功后将返回一个scene对象,通过该对象可对整个3D场景进行编辑。 16e41f4b71Sopenharmony_ci 17e41f4b71Sopenharmony_ciglTF模型可用Scene提供的[load](../reference/apis-arkgraphics3d/js-apis-inner-scene.md#load)接口加载,示例代码如下: 18e41f4b71Sopenharmony_ci```ts 19e41f4b71Sopenharmony_ciimport { Image, Shader, MaterialType, Material, ShaderMaterial, Animation, Environment, Container, SceneNodeParameters, 20e41f4b71Sopenharmony_ci LightType, Light, Camera, SceneResourceParameters, SceneResourceFactory, Scene, Node } from '@kit.ArkGraphics3D'; 21e41f4b71Sopenharmony_ci 22e41f4b71Sopenharmony_cifunction loadModel() : void { 23e41f4b71Sopenharmony_ci // 加载模型 24e41f4b71Sopenharmony_ci let scene: Promise<Scene> = Scene.load($rawfile("gltf/DamagedHelmet/glTF/DamagedHelmet.gltf")); 25e41f4b71Sopenharmony_ci scene.then(async (result: Scene) => {}); 26e41f4b71Sopenharmony_ci} 27e41f4b71Sopenharmony_ci``` 28e41f4b71Sopenharmony_ci 29e41f4b71Sopenharmony_ci模型加载成功后,可通过SceneResourceFactory实例创建相机、光源等,再对相机和光源的参数做调节,调整观察角度和光照效果。最后,将Scene实例和ModelType作为SceneOptions传给Component3D组件显示到屏幕。 30e41f4b71Sopenharmony_ci 31e41f4b71Sopenharmony_ci模型显示的示例代码如下: 32e41f4b71Sopenharmony_ci```ts 33e41f4b71Sopenharmony_ciimport { Image, Shader, MaterialType, Material, ShaderMaterial, Animation, Environment, Container, SceneNodeParameters, 34e41f4b71Sopenharmony_ci LightType, Light, Camera, SceneResourceParameters, SceneResourceFactory, Scene, Node } from '@kit.ArkGraphics3D'; 35e41f4b71Sopenharmony_ci 36e41f4b71Sopenharmony_ci@Entry 37e41f4b71Sopenharmony_ci@Component 38e41f4b71Sopenharmony_cistruct Model { 39e41f4b71Sopenharmony_ci scene: Scene | null = null; 40e41f4b71Sopenharmony_ci @State sceneOpt: SceneOptions | null = null; 41e41f4b71Sopenharmony_ci cam: Camera | null = null; 42e41f4b71Sopenharmony_ci 43e41f4b71Sopenharmony_ci onPageShow(): void { 44e41f4b71Sopenharmony_ci this.Init(); 45e41f4b71Sopenharmony_ci } 46e41f4b71Sopenharmony_ci 47e41f4b71Sopenharmony_ci Init(): void { 48e41f4b71Sopenharmony_ci if (this.scene == null) { 49e41f4b71Sopenharmony_ci // 加载模型,将gltf文件放置到相关路径,加载时以实际路径为准 50e41f4b71Sopenharmony_ci Scene.load($rawfile('gltf/DamagedHelmet/glTF/DamagedHelmet.gltf')) 51e41f4b71Sopenharmony_ci .then(async (result: Scene) => { 52e41f4b71Sopenharmony_ci this.scene = result; 53e41f4b71Sopenharmony_ci let rf:SceneResourceFactory = this.scene.getResourceFactory(); 54e41f4b71Sopenharmony_ci // 创建相机 55e41f4b71Sopenharmony_ci this.cam = await rf.createCamera({ "name": "Camera" }); 56e41f4b71Sopenharmony_ci // 设置合适的相机参数 57e41f4b71Sopenharmony_ci this.cam.enabled = true; 58e41f4b71Sopenharmony_ci this.cam.position.z = 5; 59e41f4b71Sopenharmony_ci this.sceneOpt = { scene: this.scene, modelType: ModelType.SURFACE } as SceneOptions; 60e41f4b71Sopenharmony_ci }) 61e41f4b71Sopenharmony_ci .catch((reason: string) => { 62e41f4b71Sopenharmony_ci console.log(reason); 63e41f4b71Sopenharmony_ci }); 64e41f4b71Sopenharmony_ci } 65e41f4b71Sopenharmony_ci } 66e41f4b71Sopenharmony_ci 67e41f4b71Sopenharmony_ci build() { 68e41f4b71Sopenharmony_ci Row() { 69e41f4b71Sopenharmony_ci Column() { 70e41f4b71Sopenharmony_ci if (this.sceneOpt) { 71e41f4b71Sopenharmony_ci // 通过Component3D呈现3D场景 72e41f4b71Sopenharmony_ci Component3D(this.sceneOpt) 73e41f4b71Sopenharmony_ci } else { 74e41f4b71Sopenharmony_ci Text("loading ...") 75e41f4b71Sopenharmony_ci } 76e41f4b71Sopenharmony_ci }.width('100%') 77e41f4b71Sopenharmony_ci }.height('60%') 78e41f4b71Sopenharmony_ci } 79e41f4b71Sopenharmony_ci} 80e41f4b71Sopenharmony_ci``` 81e41f4b71Sopenharmony_ci 82e41f4b71Sopenharmony_ci## 相机的创建及管理 83e41f4b71Sopenharmony_ci 84e41f4b71Sopenharmony_ci相机作为3D场景中的重要部分,决定了整个3D场景向2D图片的投影过程,相机的近远平面、Fov角等关键参数也会对整个3D渲染产生重要的影响。开发者可以通过对于相机参数的设置。控制这个渲染过程,得到开发者想要的渲染效果。 85e41f4b71Sopenharmony_ci 86e41f4b71Sopenharmony_ci相机相关控制的示例代码如下: 87e41f4b71Sopenharmony_ci```ts 88e41f4b71Sopenharmony_ciimport { Image, Shader, MaterialType, Material, ShaderMaterial, Animation, Environment, Container, SceneNodeParameters, 89e41f4b71Sopenharmony_ci LightType, Light, Camera, SceneResourceParameters, SceneResourceFactory, Scene, Node } from '@kit.ArkGraphics3D'; 90e41f4b71Sopenharmony_ci 91e41f4b71Sopenharmony_cifunction createCameraPromise() : Promise<Camera> { 92e41f4b71Sopenharmony_ci return new Promise(() => { 93e41f4b71Sopenharmony_ci let scene: Promise<Scene> = Scene.load($rawfile("gltf/CubeWithFloor/glTF/AnimatedCube.gltf")); 94e41f4b71Sopenharmony_ci scene.then(async (result: Scene) => { 95e41f4b71Sopenharmony_ci let sceneFactory: SceneResourceFactory = result.getResourceFactory(); 96e41f4b71Sopenharmony_ci let sceneCameraParameter: SceneNodeParameters = { name: "camera1" }; 97e41f4b71Sopenharmony_ci // 创建相机 98e41f4b71Sopenharmony_ci let camera: Promise<Camera> = sceneFactory.createCamera(sceneCameraParameter); 99e41f4b71Sopenharmony_ci camera.then(async (cameraEntity: Camera) => { 100e41f4b71Sopenharmony_ci // 使能相机节点 101e41f4b71Sopenharmony_ci cameraEntity.enabled = true; 102e41f4b71Sopenharmony_ci 103e41f4b71Sopenharmony_ci // 设置相机的位置 104e41f4b71Sopenharmony_ci cameraEntity.position.z = 5; 105e41f4b71Sopenharmony_ci 106e41f4b71Sopenharmony_ci // 设置相机Fov参数 107e41f4b71Sopenharmony_ci cameraEntity.fov = 60 * Math.PI / 180; 108e41f4b71Sopenharmony_ci 109e41f4b71Sopenharmony_ci // 可以参照此方式设置相机很多其他的参数 110e41f4b71Sopenharmony_ci // ... 111e41f4b71Sopenharmony_ci }); 112e41f4b71Sopenharmony_ci return camera; 113e41f4b71Sopenharmony_ci }); 114e41f4b71Sopenharmony_ci }); 115e41f4b71Sopenharmony_ci} 116e41f4b71Sopenharmony_ci``` 117e41f4b71Sopenharmony_ci 118e41f4b71Sopenharmony_ci 119e41f4b71Sopenharmony_ci## 光源的创建及管理 120e41f4b71Sopenharmony_ci 121e41f4b71Sopenharmony_ci3D场景的光源是对于物理世界中光源的一种数据建模,模拟物理世界的光源对于3D场景中的物体产生影响。 122e41f4b71Sopenharmony_ci 123e41f4b71Sopenharmony_ci光源具有很多的类型,比如平行光、锥形光。平行光即是用来模拟生活中的太阳光照,发出的光线处处平行且强度均匀。锥形光则像是我们使用的手电筒,以一个点向一个扇形区域发射光线,且发出的光线会随着距离而衰减。光源的颜色也会对场景中的物体最终的着色产生影响,光源颜色与物体颜色相互作用的计算与真实物理世界保持一致。ArkGraphics 3D提供了创建光源,修改光源各种参数的能力,支撑开发者通过对于光源属性的设置对于3D场景进行调整,得到期望的渲染效果。 124e41f4b71Sopenharmony_ci 125e41f4b71Sopenharmony_ci光源相关控制的示例代码如下: 126e41f4b71Sopenharmony_ci```ts 127e41f4b71Sopenharmony_ciimport { Image, Shader, MaterialType, Material, ShaderMaterial, Animation, Environment, Container, SceneNodeParameters, 128e41f4b71Sopenharmony_ci LightType, Light, Camera, SceneResourceParameters, SceneResourceFactory, Scene, Node } from '@kit.ArkGraphics3D'; 129e41f4b71Sopenharmony_ci 130e41f4b71Sopenharmony_cifunction createLightPromise() : Promise<Light> { 131e41f4b71Sopenharmony_ci return new Promise(() => { 132e41f4b71Sopenharmony_ci let scene: Promise<Scene> = Scene.load($rawfile("gltf/CubeWithFloor/glTF/AnimatedCube.gltf")); 133e41f4b71Sopenharmony_ci scene.then(async (result: Scene) => { 134e41f4b71Sopenharmony_ci let sceneFactory: SceneResourceFactory = result.getResourceFactory(); 135e41f4b71Sopenharmony_ci let sceneLightParameter: SceneNodeParameters = { name: "light" }; 136e41f4b71Sopenharmony_ci // 创建平行光 137e41f4b71Sopenharmony_ci let light: Promise<Light> = sceneFactory.createLight(sceneLightParameter, LightType.DIRECTIONAL); 138e41f4b71Sopenharmony_ci light.then(async (lightEntity: Light) => { 139e41f4b71Sopenharmony_ci // 设置平行光的颜色属性 140e41f4b71Sopenharmony_ci lightEntity.color = { r: 0.8, g: 0.1, b: 0.2, a: 1.0 }; 141e41f4b71Sopenharmony_ci 142e41f4b71Sopenharmony_ci // 可以参照此方式设置光源很多其他的参数 143e41f4b71Sopenharmony_ci // ... 144e41f4b71Sopenharmony_ci }); 145e41f4b71Sopenharmony_ci return light; 146e41f4b71Sopenharmony_ci }); 147e41f4b71Sopenharmony_ci }); 148e41f4b71Sopenharmony_ci} 149e41f4b71Sopenharmony_ci``` 150e41f4b71Sopenharmony_ci 151e41f4b71Sopenharmony_ci## 相关实例 152e41f4b71Sopenharmony_ci 153e41f4b71Sopenharmony_ci对于模型、相机和光源更加综合的使用可以参考以下实例: 154e41f4b71Sopenharmony_ci- [3D引擎接口示例(ArkTS)(API12)](https://gitee.com/openharmony/applications_app_samples/tree/master/code/BasicFeature/Graphics/Graphics3d) 155e41f4b71Sopenharmony_ci 156