1e41f4b71Sopenharmony_ci# Encryption and Decryption with an SM4 Symmetric Key (ECB Mode) (C/C++)
2e41f4b71Sopenharmony_ci
3e41f4b71Sopenharmony_ci
4e41f4b71Sopenharmony_ciFor details about the algorithm specifications, see [SM4](crypto-sym-encrypt-decrypt-spec.md#sm4).
5e41f4b71Sopenharmony_ci
6e41f4b71Sopenharmony_ci## Adding the Dynamic Library in the CMake Script
7e41f4b71Sopenharmony_ci```txt
8e41f4b71Sopenharmony_ci   target_link_libraries(entry PUBLIC libohcrypto.so)
9e41f4b71Sopenharmony_ci```
10e41f4b71Sopenharmony_ci
11e41f4b71Sopenharmony_ci**Encryption**
12e41f4b71Sopenharmony_ci
13e41f4b71Sopenharmony_ci
14e41f4b71Sopenharmony_ci1. Use [OH_CryptoSymKeyGenerator_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_create) and [OH_CryptoSymKeyGenerator_Generate](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_generate) to generate a 128-bit SM4 symmetric key (**OH_CryptoSymKey**).
15e41f4b71Sopenharmony_ci   
16e41f4b71Sopenharmony_ci   In addition to the example in this topic, [SM4](crypto-sym-key-generation-conversion-spec.md#sm4) and [Randomly Generating a Symmetric Key](crypto-generate-sym-key-randomly-ndk.md) may help you better understand how to generate an SM4 symmetric key. Note that the input parameters in the reference documents may be different from those in the example below.
17e41f4b71Sopenharmony_ci
18e41f4b71Sopenharmony_ci2. Use [OH_CryptoSymCipher_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_create) with the string parameter **'SM4_128|ECB|PKCS7'** to create a **Cipher** instance. The key type is **SM4_128**, block cipher mode is **ECB**, and the padding mode is **PKCS7**.
19e41f4b71Sopenharmony_ci
20e41f4b71Sopenharmony_ci3. Use [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_ENCRYPT_MODE**, and specify the key for encryption (**OH_CryptoSymKey**).
21e41f4b71Sopenharmony_ci   
22e41f4b71Sopenharmony_ci   When ECB mode is used, pass in **null** in **params**.
23e41f4b71Sopenharmony_ci
24e41f4b71Sopenharmony_ci4. Use [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) to update the data (plaintext) to be encrypted.
25e41f4b71Sopenharmony_ci   
26e41f4b71Sopenharmony_ci   - If a small amount of data is to be encrypted, you can use **OH_CryptoSymCipher_Final()** immediately after **OH_CryptoSymCipher_Init()**.
27e41f4b71Sopenharmony_ci   - If a large amount of data is to be encrypted, you can call **OH_CryptoSymCipher_Update()** multiple times to pass in the data by segment.
28e41f4b71Sopenharmony_ci
29e41f4b71Sopenharmony_ci5. Use [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the ciphertext.
30e41f4b71Sopenharmony_ci   
31e41f4b71Sopenharmony_ci   - If data has been passed in by **OH_CryptoSymCipher_Update()**, pass in **null** in the **data** parameter of **OH_CryptoSymCipher_Final**.
32e41f4b71Sopenharmony_ci   - The output of **OH_CryptoSymCipher_Final** may be **null**. To avoid exceptions, always check whether the result is **null** before accessing specific data.
33e41f4b71Sopenharmony_ci
34e41f4b71Sopenharmony_ci6. Use [OH_CryptoSymKeyGenerator_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_destroy), [OH_CryptoSymCipher_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_destroy), and [OH_CryptoSymCipherParams_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_destroy) to destroy the instances created.
35e41f4b71Sopenharmony_ci
36e41f4b71Sopenharmony_ci
37e41f4b71Sopenharmony_ci**Decryption**
38e41f4b71Sopenharmony_ci
39e41f4b71Sopenharmony_ci
40e41f4b71Sopenharmony_ci1. Use [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_DECRYPT_MODE**, and specify the key for decryption (**OH_CryptoSymKey**). When ECB mode is used, pass in **null** in **params**.
41e41f4b71Sopenharmony_ci
42e41f4b71Sopenharmony_ci2. Use [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) to update the data (ciphertext) to be decrypted.
43e41f4b71Sopenharmony_ci
44e41f4b71Sopenharmony_ci3. Use [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the plaintext.
45e41f4b71Sopenharmony_ci
46e41f4b71Sopenharmony_ci
47e41f4b71Sopenharmony_ci**Example**
48e41f4b71Sopenharmony_ci
49e41f4b71Sopenharmony_ci```c++
50e41f4b71Sopenharmony_ci#include "CryptoArchitectureKit/crypto_common.h"
51e41f4b71Sopenharmony_ci#include "CryptoArchitectureKit/crypto/crypto_sym_cipher.h"
52e41f4b71Sopenharmony_ci
53e41f4b71Sopenharmony_cistatic OH_Crypto_ErrCode doTestSm4Ecb() {
54e41f4b71Sopenharmony_ci    OH_CryptoSymKeyGenerator *genCtx = nullptr;
55e41f4b71Sopenharmony_ci    OH_CryptoSymCipher *encCtx = nullptr;
56e41f4b71Sopenharmony_ci    OH_CryptoSymCipher *decCtx = nullptr;
57e41f4b71Sopenharmony_ci    OH_CryptoSymKey *keyCtx = nullptr;
58e41f4b71Sopenharmony_ci    OH_CryptoSymCipherParams *params = nullptr;
59e41f4b71Sopenharmony_ci    uint8_t plainText[] = "this is test";
60e41f4b71Sopenharmony_ci    Crypto_DataBlob input = {.data = reinterpret_cast<uint8_t *>(plainText), .len = sizeof(plainText)};
61e41f4b71Sopenharmony_ci    Crypto_DataBlob outUpdate = {.data = nullptr, .len = 0};
62e41f4b71Sopenharmony_ci    Crypto_DataBlob decUpdate = {.data = nullptr, .len = 0};
63e41f4b71Sopenharmony_ci
64e41f4b71Sopenharmony_ci    // Generate a symmetric key randomly.
65e41f4b71Sopenharmony_ci    OH_Crypto_ErrCode ret;
66e41f4b71Sopenharmony_ci    ret = OH_CryptoSymKeyGenerator_Create("SM4_128", &genCtx);
67e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
68e41f4b71Sopenharmony_ci        goto end;
69e41f4b71Sopenharmony_ci    }
70e41f4b71Sopenharmony_ci    ret = OH_CryptoSymKeyGenerator_Generate(genCtx, &keyCtx);
71e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
72e41f4b71Sopenharmony_ci        goto end;
73e41f4b71Sopenharmony_ci    }
74e41f4b71Sopenharmony_ci    // Create a parameter instance.
75e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipherParams_Create(&params);
76e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
77e41f4b71Sopenharmony_ci        goto end;
78e41f4b71Sopenharmony_ci    }
79e41f4b71Sopenharmony_ci
80e41f4b71Sopenharmony_ci    // Encrypt data.
81e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Create("SM4_128|ECB|PKCS7", &encCtx);
82e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
83e41f4b71Sopenharmony_ci        goto end;
84e41f4b71Sopenharmony_ci    }
85e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Init(encCtx, CRYPTO_ENCRYPT_MODE, keyCtx, params);
86e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
87e41f4b71Sopenharmony_ci        goto end;
88e41f4b71Sopenharmony_ci    }
89e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Final(encCtx, &input, &outUpdate);
90e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
91e41f4b71Sopenharmony_ci        goto end;
92e41f4b71Sopenharmony_ci    }
93e41f4b71Sopenharmony_ci
94e41f4b71Sopenharmony_ci    // Decrypt data.
95e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Create("SM4_128|ECB|PKCS7", &decCtx);
96e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
97e41f4b71Sopenharmony_ci        goto end;
98e41f4b71Sopenharmony_ci    }
99e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Init(decCtx, CRYPTO_DECRYPT_MODE, keyCtx, params);
100e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
101e41f4b71Sopenharmony_ci        goto end;
102e41f4b71Sopenharmony_ci    }
103e41f4b71Sopenharmony_ci    ret = OH_CryptoSymCipher_Final(decCtx, &outUpdate, &decUpdate);
104e41f4b71Sopenharmony_ci    if (ret != CRYPTO_SUCCESS) {
105e41f4b71Sopenharmony_ci        goto end;
106e41f4b71Sopenharmony_ci    }
107e41f4b71Sopenharmony_ci    // Release resources.
108e41f4b71Sopenharmony_ciend:
109e41f4b71Sopenharmony_ci    OH_CryptoSymCipherParams_Destroy(params);
110e41f4b71Sopenharmony_ci    OH_CryptoSymCipher_Destroy(encCtx);
111e41f4b71Sopenharmony_ci    OH_CryptoSymCipher_Destroy(decCtx);
112e41f4b71Sopenharmony_ci    OH_CryptoSymKeyGenerator_Destroy(genCtx);
113e41f4b71Sopenharmony_ci    OH_CryptoSymKey_Destroy(keyCtx);
114e41f4b71Sopenharmony_ci    OH_Crypto_FreeDataBlob(&outUpdate);
115e41f4b71Sopenharmony_ci    OH_Crypto_FreeDataBlob(&decUpdate);
116e41f4b71Sopenharmony_ci    return ret;
117e41f4b71Sopenharmony_ci}
118e41f4b71Sopenharmony_ci```
119