1e41f4b71Sopenharmony_ci# FFRT Development 2e41f4b71Sopenharmony_ci 3e41f4b71Sopenharmony_ci## When to Use 4e41f4b71Sopenharmony_ci 5e41f4b71Sopenharmony_ciFunction Flow is a task-based and data-driven concurrent programming model that allows you to develop an application by creating tasks and describing their dependencies. Function Flow Runtime (FFRT) is a software runtime library that works with the Function Flow programming model. It is used to schedule and execute tasks of an application developed on the Function Flow programming model. Specifically, FFRT automatically and concurrently schedules and executes tasks of the application based on the task dependency status and available resources, so that you can focus on feature development. 6e41f4b71Sopenharmony_ci 7e41f4b71Sopenharmony_ciThis topic walks you through how to implement parallel programming based on the Function Flow programming model and FFRT. 8e41f4b71Sopenharmony_ci 9e41f4b71Sopenharmony_ci### Programming Models 10e41f4b71Sopenharmony_ci 11e41f4b71Sopenharmony_ci 12e41f4b71Sopenharmony_ci| Item | Thread Programming Model | FFRT Programming Model | 13e41f4b71Sopenharmony_ci| -------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | 14e41f4b71Sopenharmony_ci| Degree of Parallelism (DOP) mining mode| Programmers create multiple threads and assign tasks to them for parallel execution to achieve the optimal runtime performance.| Programmers, with the help of compilers or programming language features, decompose the application into tasks and describe their data dependencies during static programming. The scheduler allocates tasks to worker threads for execution.| 15e41f4b71Sopenharmony_ci| Owner for creating threads| Programmers are responsible for creating threads. The maximum number of threads that can be created is not under control.| The scheduler is responsible for creating and managing worker threads. Programmers cannot directly create threads.| 16e41f4b71Sopenharmony_ci| Load balancing | Programmers map tasks to threads during static programming. Improper mapping or uncertain task execution time will cause a load imbalance among threads.| A ready task is automatically scheduled to an idle thread for execution, reducing the load imbalance among threads.| 17e41f4b71Sopenharmony_ci| Scheduling overhead | Thread scheduling is implemented by a kernel-mode scheduler, resulting in high scheduling overhead. | Thread scheduling is implemented by a user-mode coroutine scheduler, requiring less scheduling overhead. In addition, FFRT can further reduce the scheduling overhead through hardware-based scheduling offload.| 18e41f4b71Sopenharmony_ci| Dependency expression | A thread is in the executable state once it is created, and it is executed parallelly with other threads, causing frequent thread switching.| FFRT determines whether a task can be executed based on the input and output dependencies explicitly expressed during task creation. If the input dependencies do not meet the requirements, the task is not scheduled.| 19e41f4b71Sopenharmony_ci 20e41f4b71Sopenharmony_ci## Basic Concepts 21e41f4b71Sopenharmony_ci 22e41f4b71Sopenharmony_ci### Function Flow 23e41f4b71Sopenharmony_ci 24e41f4b71Sopenharmony_ciThe Function Flow programming model allows you to develop an application by creating tasks and describing their dependencies. Its most outstanding features are task-based and data-driven. 25e41f4b71Sopenharmony_ci 26e41f4b71Sopenharmony_ci#### Task-based 27e41f4b71Sopenharmony_ci 28e41f4b71Sopenharmony_ciTask-based means that you can use tasks to express an application and schedule the tasks at runtime. 29e41f4b71Sopenharmony_ci 30e41f4b71Sopenharmony_ciA task is defined as a developer-oriented programming clue and a runtime-oriented execution object. It usually contains a set of sequential instructions and a data context environment to run the instructions. 31e41f4b71Sopenharmony_ci 32e41f4b71Sopenharmony_ciTasks in the Function Flow programming model have the following features: 33e41f4b71Sopenharmony_ci 34e41f4b71Sopenharmony_ci- The dependency between tasks can be specified in data-driven form. 35e41f4b71Sopenharmony_ci- Tasks can be nested. That is, when a task is being executed, a new task can be generated and delivered to that task to form a parent-child relationship. 36e41f4b71Sopenharmony_ci- Simultaneous operations, such as wait, lock, and condition variables, are supported. 37e41f4b71Sopenharmony_ci 38e41f4b71Sopenharmony_ci> **NOTE** 39e41f4b71Sopenharmony_ci> 40e41f4b71Sopenharmony_ci> The task granularity determines the number of concurrent tasks and therefore affects the application execution performance. A small granularity increases the scheduling overhead, whereas a large granularity decreases the DOP. The minimum task granularity allowed in the Function Flow programming model is 100 μs. 41e41f4b71Sopenharmony_ci 42e41f4b71Sopenharmony_ci#### Data-driven 43e41f4b71Sopenharmony_ci 44e41f4b71Sopenharmony_ciData-driven means that the dependency between tasks is expressed through data dependencies. 45e41f4b71Sopenharmony_ci 46e41f4b71Sopenharmony_ciData objects associated with a task are read and written during task execution. In the Function Flow programming model, a data object is abstracted as a data signature. They are in one-to-one mapping. 47e41f4b71Sopenharmony_ci 48e41f4b71Sopenharmony_ciData dependencies, consisting of **in_deps** and **out_deps**, are abstracted as a list of data signatures mapping to the data objects manipulated by the task. When the signature of a data object appears in **in_deps** of a task, the task is a consumer task of the data object. The execution of a consumer task does not change the content of the input data object. When the signature of a data object appears in **out_deps** of a task, the task is a producer task of the data object. The execution of a producer task changes the content of the output data object and generates a new version of the data object. 49e41f4b71Sopenharmony_ci 50e41f4b71Sopenharmony_ciA data object may have multiple versions. Each version corresponds to one producer task and zero, one, or more consumer tasks. A sequence of the data object versions and the version-specific producer task and consumer tasks are defined according to the delivery sequence of the producer task and consumer tasks. 51e41f4b71Sopenharmony_ci 52e41f4b71Sopenharmony_ciWhen all producer tasks and consumer tasks of the data object of all the available versions are executed, the data dependency is removed. In this case, the task enters the ready state and can be scheduled for execution. 53e41f4b71Sopenharmony_ci 54e41f4b71Sopenharmony_ciWith the data-driven dependency expression, FFRT can dynamically build different types of data dependencies between tasks and schedule the tasks based on the data dependency status at runtime. The following data dependency types are available: 55e41f4b71Sopenharmony_ci 56e41f4b71Sopenharmony_ci- Producer-Consumer dependency 57e41f4b71Sopenharmony_ci 58e41f4b71Sopenharmony_ci A dependency formed between the producer task of a data object of a specific version and a consumer task of the data object of the same version. It is also referred to as a read-after-write dependency. 59e41f4b71Sopenharmony_ci 60e41f4b71Sopenharmony_ci- Consumer-Producer dependency 61e41f4b71Sopenharmony_ci 62e41f4b71Sopenharmony_ci A dependency formed between a consumer task of a data object of a specific version and the producer task of the data object of the next version. It is also referred to as a write-after-read dependency. 63e41f4b71Sopenharmony_ci 64e41f4b71Sopenharmony_ci- Producer-Producer dependency 65e41f4b71Sopenharmony_ci 66e41f4b71Sopenharmony_ci A dependency formed between the producer task of a data object of a specific version and a producer task of the data object of the next version. It is also referred to as a write-after-write dependency. 67e41f4b71Sopenharmony_ci 68e41f4b71Sopenharmony_ci 69e41f4b71Sopenharmony_ciAssume that the relationship between some tasks and data A is as follows: 70e41f4b71Sopenharmony_ci```{.c} 71e41f4b71Sopenharmony_citask1(OUT A); 72e41f4b71Sopenharmony_citask2(IN A); 73e41f4b71Sopenharmony_citask3(IN A); 74e41f4b71Sopenharmony_citask4(OUT A); 75e41f4b71Sopenharmony_citask5(OUT A); 76e41f4b71Sopenharmony_ci``` 77e41f4b71Sopenharmony_ci 78e41f4b71Sopenharmony_ci<img src="figures/ffrtfigure3.png" style="zoom:40%" /> 79e41f4b71Sopenharmony_ci 80e41f4b71Sopenharmony_ci> **NOTE** 81e41f4b71Sopenharmony_ci> 82e41f4b71Sopenharmony_ci> For ease of description, circles are used to represent tasks and squares are used to represent data. 83e41f4b71Sopenharmony_ci 84e41f4b71Sopenharmony_ciThe following conclusions can be drawn: 85e41f4b71Sopenharmony_ci- task1 and task2/task3 form a producer-consumer dependency. This means that task2/task3 can read data A only after task1 writes data A. 86e41f4b71Sopenharmony_ci- task2/task3 and task4 form a consumer-producer dependency. This means that task4 can write data A only after task2/task3 reads data A. 87e41f4b71Sopenharmony_ci- task 4 and task 5 form a producer-producer dependency. This means that task 5 can write data A only after task 4 writes data A. 88e41f4b71Sopenharmony_ci 89e41f4b71Sopenharmony_ci## Available APIs 90e41f4b71Sopenharmony_ci 91e41f4b71Sopenharmony_ci| API | Description | 92e41f4b71Sopenharmony_ci| ------------------------------------------------------------ | ------------------------------------------------------------ | 93e41f4b71Sopenharmony_ci| ffrt_condattr_init (ffrt_condattr_t* attr) | Initializes a condition variable attribute.| 94e41f4b71Sopenharmony_ci| ffrt_condattr_destroy(ffrt_condattr_t* attr) | Destroys a condition variable attribute.| 95e41f4b71Sopenharmony_ci| ffrt_condattr_setclock(ffrt_condattr_t* attr, ffrt_clockid_t clock) | Sets the clock of a condition variable attribute.| 96e41f4b71Sopenharmony_ci| ffrt_condattr_getclock(const ffrt_condattr_t* attr, ffrt_clockid_t* clock) | Obtains the clock of a condition variable attribute. | 97e41f4b71Sopenharmony_ci| ffrt_cond_init(ffrt_cond_t* cond, const ffrt_condattr_t* attr) | Initializes a condition variable. | 98e41f4b71Sopenharmony_ci| ffrt_cond_signal(ffrt_cond_t* cond) | Unblocks at least one of the threads that are blocked on a condition variable.| 99e41f4b71Sopenharmony_ci| ffrt_cond_broadcast(ffrt_cond_t* cond) | Unblocks all threads currently blocked on a condition variable.| 100e41f4b71Sopenharmony_ci| ffrt_cond_wait(ffrt_cond_t* cond, ffrt_mutex_t* mutex) | Blocks the calling thread on a condition variable.| 101e41f4b71Sopenharmony_ci| ffrt_cond_timedwait(ffrt_cond_t* cond, ffrt_mutex_t* mutex, const struct timespec* time_point) | Blocks the calling thread on a condition variable for a given duration.| 102e41f4b71Sopenharmony_ci| ffrt_cond_destroy(ffrt_cond_t* cond) | Destroys a condition variable.| 103e41f4b71Sopenharmony_ci| ffrt_mutex_init(ffrt_mutex_t* mutex, const ffrt_mutexattr_t* attr) | Initializes a mutex.| 104e41f4b71Sopenharmony_ci| ffrt_mutex_lock(ffrt_mutex_t* mutex) | Locks a mutex.| 105e41f4b71Sopenharmony_ci| ffrt_mutex_unlock(ffrt_mutex_t* mutex) | Unlocks a mutex.| 106e41f4b71Sopenharmony_ci| ffrt_mutex_trylock(ffrt_mutex_t* mutex) | Attempts to lock a mutex.| 107e41f4b71Sopenharmony_ci| ffrt_mutex_destroy(ffrt_mutex_t* mutex) | Destroys a mutex.| 108e41f4b71Sopenharmony_ci| ffrt_queue_attr_init(ffrt_queue_attr_t* attr) | Initializes a queue attribute.| 109e41f4b71Sopenharmony_ci| ffrt_queue_attr_destroy(ffrt_queue_attr_t* attr) | Destroys a queue attribute.| 110e41f4b71Sopenharmony_ci| ffrt_queue_attr_set_qos(ffrt_queue_attr_t* attr, ffrt_qos_t qos) | Sets the QoS for a queue attribute.| 111e41f4b71Sopenharmony_ci| ffrt_queue_attr_get_qos(const ffrt_queue_attr_t* attr) | Obtains the QoS of a queue attribute.| 112e41f4b71Sopenharmony_ci| ffrt_queue_create(ffrt_queue_type_t type, const char* name, const ffrt_queue_attr_t* attr) | Creates a queue.| 113e41f4b71Sopenharmony_ci| ffrt_queue_destroy(ffrt_queue_t queue) | Destroys a queue.| 114e41f4b71Sopenharmony_ci| ffrt_queue_submit(ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr) | Submits a task to a queue.| 115e41f4b71Sopenharmony_ci| ffrt_queue_submit_h(ffrt_queue_t queue, ffrt_function_header_t* f, const ffrt_task_attr_t* attr) | Submits a task to a queue, and obtains a task handle.| 116e41f4b71Sopenharmony_ci| ffrt_queue_wait(ffrt_task_handle_t handle) | Waits until a task in the queue is complete.| 117e41f4b71Sopenharmony_ci| ffrt_queue_cancel(ffrt_task_handle_t handle) | Cancels a task in the queue.| 118e41f4b71Sopenharmony_ci| ffrt_usleep(uint64_t usec) | Suspends the calling thread for a given duration.| 119e41f4b71Sopenharmony_ci| ffrt_yield(void) | Passes control to other tasks so that they can be executed.| 120e41f4b71Sopenharmony_ci| ffrt_task_attr_init(ffrt_task_attr_t* attr) | Initializes a task attribute.| 121e41f4b71Sopenharmony_ci| ffrt_task_attr_set_name(ffrt_task_attr_t* attr, const char* name) | Sets a task name.| 122e41f4b71Sopenharmony_ci| ffrt_task_attr_get_name(const ffrt_task_attr_t* attr) | Obtains a task name.| 123e41f4b71Sopenharmony_ci| ffrt_task_attr_destroy(ffrt_task_attr_t* attr) | Destroys a task attribute.| 124e41f4b71Sopenharmony_ci| ffrt_task_attr_set_qos(ffrt_task_attr_t* attr, ffrt_qos_t qos) | Sets the QoS for a task attribute.| 125e41f4b71Sopenharmony_ci| ffrt_task_attr_get_qos(const ffrt_task_attr_t* attr) | Obtains the QoS of a task attribute.| 126e41f4b71Sopenharmony_ci| ffrt_task_attr_set_delay(ffrt_task_attr_t* attr, uint64_t delay_us) | Sets the task delay time.| 127e41f4b71Sopenharmony_ci| ffrt_task_attr_get_delay(const ffrt_task_attr_t* attr) | Obtains the task delay time.| 128e41f4b71Sopenharmony_ci| ffrt_this_task_update_qos(ffrt_qos_t qos) | Updates the QoS of this task.| 129e41f4b71Sopenharmony_ci| ffrt_this_task_get_id(void) | Obtains the ID of this task.| 130e41f4b71Sopenharmony_ci| ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_t kind) | Applies for memory for the function execution structure.| 131e41f4b71Sopenharmony_ci| ffrt_submit_base(ffrt_function_header_t* f, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) | Submits a task.| 132e41f4b71Sopenharmony_ci| ffrt_submit_h_base(ffrt_function_header_t* f, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) | Submits a task, and obtains a task handle.| 133e41f4b71Sopenharmony_ci| ffrt_task_handle_destroy(ffrt_task_handle_t handle) | Destroys a task handle.| 134e41f4b71Sopenharmony_ci| ffrt_skip(ffrt_task_handle_t handle) | Skips a task.| 135e41f4b71Sopenharmony_ci| ffrt_wait_deps(const ffrt_deps_t* deps) | Waits until the dependent tasks are complete.| 136e41f4b71Sopenharmony_ci 137e41f4b71Sopenharmony_ci 138e41f4b71Sopenharmony_ci 139e41f4b71Sopenharmony_ci## API Introduction 140e41f4b71Sopenharmony_ci 141e41f4b71Sopenharmony_ci 142e41f4b71Sopenharmony_ci### Task Management APIs 143e41f4b71Sopenharmony_ci 144e41f4b71Sopenharmony_ci#### ffrt_submit_base 145e41f4b71Sopenharmony_ci 146e41f4b71Sopenharmony_ciExports an FFRT dynamic library. You can encapsulate this API into the C API **ffrt_submit** for binary compatibility. 147e41f4b71Sopenharmony_ci 148e41f4b71Sopenharmony_ci##### Declaration 149e41f4b71Sopenharmony_ci 150e41f4b71Sopenharmony_ci```{.c} 151e41f4b71Sopenharmony_ciconst int ffrt_auto_managed_function_storage_size = 64 + sizeof(ffrt_function_header_t); 152e41f4b71Sopenharmony_citypedef enum { 153e41f4b71Sopenharmony_ci ffrt_function_kind_general, 154e41f4b71Sopenharmony_ci ffrt_function_kind_queue 155e41f4b71Sopenharmony_ci} ffrt_function_kind_t; 156e41f4b71Sopenharmony_ci 157e41f4b71Sopenharmony_civoid* ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_t kind); 158e41f4b71Sopenharmony_ci 159e41f4b71Sopenharmony_citypedef void(*ffrt_function_t)(void*); 160e41f4b71Sopenharmony_citypedef struct { 161e41f4b71Sopenharmony_ci ffrt_function_t exec; 162e41f4b71Sopenharmony_ci ffrt_function_t destroy; 163e41f4b71Sopenharmony_ci uint64_t reserve[2]; 164e41f4b71Sopenharmony_ci} ffrt_function_header_t; 165e41f4b71Sopenharmony_ci 166e41f4b71Sopenharmony_civoid ffrt_submit_base(ffrt_function_header_t* func, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr); 167e41f4b71Sopenharmony_ci``` 168e41f4b71Sopenharmony_ci 169e41f4b71Sopenharmony_ci##### Parameters 170e41f4b71Sopenharmony_ci 171e41f4b71Sopenharmony_ci`kind` 172e41f4b71Sopenharmony_ci 173e41f4b71Sopenharmony_ciSubtype of **function**. It is used to optimize the internal data structure. The default value is **ffrt_function_kind_general**. 174e41f4b71Sopenharmony_ci 175e41f4b71Sopenharmony_ci`func` 176e41f4b71Sopenharmony_ci 177e41f4b71Sopenharmony_ciPointer to the CPU function. The struct executed by the pointer describes two function pointers, namely, **exec** and **destroy**, according to the **ffrt_function_header_t** definition. FFRT executes and destroys the task by using the two function pointers. 178e41f4b71Sopenharmony_ci 179e41f4b71Sopenharmony_ci`in_deps` 180e41f4b71Sopenharmony_ci 181e41f4b71Sopenharmony_ci* Optional. 182e41f4b71Sopenharmony_ci* Input dependencies of the task. FFRT establishes the dependency by using the virtual address of the data as the data signature. 183e41f4b71Sopenharmony_ci 184e41f4b71Sopenharmony_ci`out_deps` 185e41f4b71Sopenharmony_ci 186e41f4b71Sopenharmony_ci* Optional. 187e41f4b71Sopenharmony_ci 188e41f4b71Sopenharmony_ci* Output dependencies of the task. 189e41f4b71Sopenharmony_ci 190e41f4b71Sopenharmony_ci **NOTE** 191e41f4b71Sopenharmony_ci 192e41f4b71Sopenharmony_ci The dependency is essentially a value. FFRT cannot determine whether the value is reasonable. It always treats the input value reasonable. However, you are not advised to use inappropriate values such as **NULL**, **1**, or **2** to establish dependencies because doing this will establish unnecessary dependencies and affect concurrency. Instead, use the actual memory address. 193e41f4b71Sopenharmony_ci 194e41f4b71Sopenharmony_ci`attr` 195e41f4b71Sopenharmony_ci 196e41f4b71Sopenharmony_ci* Optional. 197e41f4b71Sopenharmony_ci* Task attribute, such as QoS. For details, see [ffrt_task_attr_t](#ffrt_task_attr_t). 198e41f4b71Sopenharmony_ci 199e41f4b71Sopenharmony_ci##### Return value 200e41f4b71Sopenharmony_ci 201e41f4b71Sopenharmony_ciN/A 202e41f4b71Sopenharmony_ci 203e41f4b71Sopenharmony_ci##### Use guide 204e41f4b71Sopenharmony_ci* You are advised to encapsulate **ffrt_submit_base** first. For details, see **Example** below. 205e41f4b71Sopenharmony_ci* As an underlying capability, **ffrt_submit_base** must meet the following requirements: 206e41f4b71Sopenharmony_ci * The **func** pointer can be allocated by calling **ffrt_alloc_auto_managed_function_storage_base**, and the two function pointers in the struct must be in the specified sequence (**exec** prior to **destroy**). 207e41f4b71Sopenharmony_ci * The memory allocated by calling **ffrt_alloc_auto_managed_function_storage_base** is of the size specified by **ffrt_auto_managed_function_storage_size**. Its lifecycle is managed by FFRT. When the task is complete, FFRT automatically releases the memory. 208e41f4b71Sopenharmony_ci* The following two function pointers are defined in **ffrt_function_header_t**: 209e41f4b71Sopenharmony_ci * **exec**: describes how the task is executed. It is called by FFRT to execute the task. 210e41f4b71Sopenharmony_ci * **destroy**: describes how a task is destroyed. It is called by FFRT to destroy the task. 211e41f4b71Sopenharmony_ci 212e41f4b71Sopenharmony_ci##### Example 213e41f4b71Sopenharmony_ci 214e41f4b71Sopenharmony_ci 215e41f4b71Sopenharmony_ci```{.c} 216e41f4b71Sopenharmony_citemplate<class T> 217e41f4b71Sopenharmony_cistruct function { 218e41f4b71Sopenharmony_ci template<class CT> 219e41f4b71Sopenharmony_ci function(ffrt_function_header_t h, CT&& c) : header(h), closure(std::forward<CT>(c)) {} 220e41f4b71Sopenharmony_ci ffrt_function_header_t header; 221e41f4b71Sopenharmony_ci T closure; 222e41f4b71Sopenharmony_ci}; 223e41f4b71Sopenharmony_ci 224e41f4b71Sopenharmony_citemplate<class T> 225e41f4b71Sopenharmony_civoid exec_function_wrapper(void* t) 226e41f4b71Sopenharmony_ci{ 227e41f4b71Sopenharmony_ci auto f = (function<std::decay_t<T>>*)t; 228e41f4b71Sopenharmony_ci f->closure(); 229e41f4b71Sopenharmony_ci} 230e41f4b71Sopenharmony_ci 231e41f4b71Sopenharmony_citemplate<class T> 232e41f4b71Sopenharmony_civoid destroy_function_wrapper(void* t) 233e41f4b71Sopenharmony_ci{ 234e41f4b71Sopenharmony_ci auto f = (function<std::decay_t<T>>*)t; 235e41f4b71Sopenharmony_ci f->closure = nullptr; 236e41f4b71Sopenharmony_ci} 237e41f4b71Sopenharmony_ci 238e41f4b71Sopenharmony_citemplate<class T> 239e41f4b71Sopenharmony_ciinline ffrt_function_header_t* create_function_wrapper(T&& func) 240e41f4b71Sopenharmony_ci{ 241e41f4b71Sopenharmony_ci using function_type = function<std::decay_t<T>>; 242e41f4b71Sopenharmony_ci static_assert(sizeof(function_type) <= ffrt_auto_managed_function_storage_size, 243e41f4b71Sopenharmony_ci "size of function must be less than ffrt_auto_managed_function_storage_size"); 244e41f4b71Sopenharmony_ci 245e41f4b71Sopenharmony_ci auto p = ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 246e41f4b71Sopenharmony_ci auto f = new (p) function_type( 247e41f4b71Sopenharmony_ci {exec_function_wrapper<T>, destroy_function_wrapper<T>}, 248e41f4b71Sopenharmony_ci std::forward<T>(func)); 249e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 250e41f4b71Sopenharmony_ci} 251e41f4b71Sopenharmony_ci 252e41f4b71Sopenharmony_cistatic inline void submit(std::function<void()>&& func) 253e41f4b71Sopenharmony_ci{ 254e41f4b71Sopenharmony_ci return ffrt_submit_base(create_function_wrapper(std::move(func)), NULL, NULL, NULL); 255e41f4b71Sopenharmony_ci} 256e41f4b71Sopenharmony_ci``` 257e41f4b71Sopenharmony_ci 258e41f4b71Sopenharmony_ci#### ffrt_wait 259e41f4b71Sopenharmony_ci 260e41f4b71Sopenharmony_ci- Used together with **ffrt_submit_base**. 261e41f4b71Sopenharmony_ci- Waits by suspending the current execution context, until the specified data is produced or all subtasks of the current task are complete. 262e41f4b71Sopenharmony_ci 263e41f4b71Sopenharmony_ci##### Declaration 264e41f4b71Sopenharmony_ci 265e41f4b71Sopenharmony_ci```{.c} 266e41f4b71Sopenharmony_civoid ffrt_wait_deps(ffrt_deps_t* deps); 267e41f4b71Sopenharmony_civoid ffrt_wait(); 268e41f4b71Sopenharmony_ci``` 269e41f4b71Sopenharmony_ci 270e41f4b71Sopenharmony_ci##### Parameters 271e41f4b71Sopenharmony_ci 272e41f4b71Sopenharmony_ci`deps` 273e41f4b71Sopenharmony_ci 274e41f4b71Sopenharmony_ciVirtual addresses of the data to be produced. These addresses may be used as **out_deps** in **submit()** of some tasks. For details about how to generate the dependency, see **ffrt_deps_t**. Note that a null pointer indicates no dependency. 275e41f4b71Sopenharmony_ci 276e41f4b71Sopenharmony_ci##### Return value 277e41f4b71Sopenharmony_ci 278e41f4b71Sopenharmony_ciN/A 279e41f4b71Sopenharmony_ci 280e41f4b71Sopenharmony_ci##### Use guide 281e41f4b71Sopenharmony_ci* **ffrt_wait_deps(deps)** is used to suspend code execution before the data specified by **deps** is produced. 282e41f4b71Sopenharmony_ci* **ffrt_wait()** is used to suspend code execution before all subtasks (excluding grandchild tasks and lower-level subtasks) submitted by the current context are complete. 283e41f4b71Sopenharmony_ci* This API can be called inside or outside an FFRT task. 284e41f4b71Sopenharmony_ci* **ffrt_wait_deps(deps)** or **ffrt_wait()** called outside an FFRT task can be sensed by the OS, and therefore it is more expensive than that called inside an FFRT task. As such, you are advised to use **ffrt_wait()** inside an FFRT task whenever possible. 285e41f4b71Sopenharmony_ci 286e41f4b71Sopenharmony_ci##### Example 287e41f4b71Sopenharmony_ci 288e41f4b71Sopenharmony_ci**Recursive Fibonacci** 289e41f4b71Sopenharmony_ci 290e41f4b71Sopenharmony_ciThe Fibonacci Sequence implemented in serial mode is as follows: 291e41f4b71Sopenharmony_ci 292e41f4b71Sopenharmony_ci```{.c} 293e41f4b71Sopenharmony_ci#include <stdio.h> 294e41f4b71Sopenharmony_ci 295e41f4b71Sopenharmony_civoid fib(int x, int* y) { 296e41f4b71Sopenharmony_ci if (x <= 1) { 297e41f4b71Sopenharmony_ci *y = x; 298e41f4b71Sopenharmony_ci } else { 299e41f4b71Sopenharmony_ci int y1, y2; 300e41f4b71Sopenharmony_ci fib(x - 1, &y1); 301e41f4b71Sopenharmony_ci fib(x - 2, &y2); 302e41f4b71Sopenharmony_ci *y = y1 + y2; 303e41f4b71Sopenharmony_ci } 304e41f4b71Sopenharmony_ci} 305e41f4b71Sopenharmony_ciint main(int narg, char** argv) 306e41f4b71Sopenharmony_ci{ 307e41f4b71Sopenharmony_ci int r; 308e41f4b71Sopenharmony_ci fib(10, &r); 309e41f4b71Sopenharmony_ci printf("fibonacci 10: %d\n", r); 310e41f4b71Sopenharmony_ci return 0; 311e41f4b71Sopenharmony_ci} 312e41f4b71Sopenharmony_ci``` 313e41f4b71Sopenharmony_ci 314e41f4b71Sopenharmony_ciUse FFRT to implement the Fibonacci Sequence in parallel mode: (For Fibonacci, the computing workload of a single task is small and parallel acceleration is not required. However, this pattern requires high flexibility of the parallel programming model.) 315e41f4b71Sopenharmony_ci 316e41f4b71Sopenharmony_ci```{.c} 317e41f4b71Sopenharmony_ci#include <stdio.h> 318e41f4b71Sopenharmony_ci#include "ffrt.h" // All header files related to FFRT are included. 319e41f4b71Sopenharmony_ci 320e41f4b71Sopenharmony_citypedef struct { 321e41f4b71Sopenharmony_ci int x; 322e41f4b71Sopenharmony_ci int* y; 323e41f4b71Sopenharmony_ci} fib_ffrt_s; 324e41f4b71Sopenharmony_ci 325e41f4b71Sopenharmony_citypedef struct { 326e41f4b71Sopenharmony_ci ffrt_function_header_t header; 327e41f4b71Sopenharmony_ci ffrt_function_t func; 328e41f4b71Sopenharmony_ci ffrt_function_t after_func; 329e41f4b71Sopenharmony_ci void* arg; 330e41f4b71Sopenharmony_ci} c_function; 331e41f4b71Sopenharmony_ci 332e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 333e41f4b71Sopenharmony_ci{ 334e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 335e41f4b71Sopenharmony_ci if (f->func) { 336e41f4b71Sopenharmony_ci f->func(f->arg); 337e41f4b71Sopenharmony_ci } 338e41f4b71Sopenharmony_ci} 339e41f4b71Sopenharmony_ci 340e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 341e41f4b71Sopenharmony_ci{ 342e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 343e41f4b71Sopenharmony_ci if (f->after_func) { 344e41f4b71Sopenharmony_ci f->after_func(f->arg); 345e41f4b71Sopenharmony_ci } 346e41f4b71Sopenharmony_ci} 347e41f4b71Sopenharmony_ci 348e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 349e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 350e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 351e41f4b71Sopenharmony_ci{ 352e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 353e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 354e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 355e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 356e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 357e41f4b71Sopenharmony_ci f->func = func; 358e41f4b71Sopenharmony_ci f->after_func = after_func; 359e41f4b71Sopenharmony_ci f->arg = arg; 360e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 361e41f4b71Sopenharmony_ci} 362e41f4b71Sopenharmony_ci 363e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 364e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 365e41f4b71Sopenharmony_ci{ 366e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 367e41f4b71Sopenharmony_ci} 368e41f4b71Sopenharmony_ci 369e41f4b71Sopenharmony_civoid fib_ffrt(void* arg) 370e41f4b71Sopenharmony_ci{ 371e41f4b71Sopenharmony_ci fib_ffrt_s* p = (fib_ffrt_s*)arg; 372e41f4b71Sopenharmony_ci int x = p->x; 373e41f4b71Sopenharmony_ci int* y = p->y; 374e41f4b71Sopenharmony_ci 375e41f4b71Sopenharmony_ci if (x <= 1) { 376e41f4b71Sopenharmony_ci *y = x; 377e41f4b71Sopenharmony_ci } else { 378e41f4b71Sopenharmony_ci int y1, y2; 379e41f4b71Sopenharmony_ci fib_ffrt_s s1 = {x - 1, &y1}; 380e41f4b71Sopenharmony_ci fib_ffrt_s s2 = {x - 2, &y2}; 381e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> dx_deps = {{ffrt_dependence_data, &x}}; 382e41f4b71Sopenharmony_ci ffrt_deps_t dx{static_cast<uint32_t>(dx_deps.size()), dx_deps.data()}; 383e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> dy1_deps = {{ffrt_dependence_data, &y1}}; 384e41f4b71Sopenharmony_ci ffrt_deps_t dy1{static_cast<uint32_t>(dy1_deps.size()), dy1_deps.data()}; 385e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> dy2_deps = {{ffrt_dependence_data, &y2}}; 386e41f4b71Sopenharmony_ci ffrt_deps_t dy2{static_cast<uint32_t>(dy2_deps.size()), dy2_deps.data()}; 387e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> dy12_deps = {{ffrt_dependence_data, &y1}, {ffrt_dependence_data, &y2}}; 388e41f4b71Sopenharmony_ci ffrt_deps_t dy12{static_cast<uint32_t>(dy12_deps.size()), dy12_deps.data()}; 389e41f4b71Sopenharmony_ci ffrt_submit_c(fib_ffrt, NULL, &s1, &dx, &dy1, NULL); 390e41f4b71Sopenharmony_ci ffrt_submit_c(fib_ffrt, NULL, &s2, &dx, &dy2, NULL); 391e41f4b71Sopenharmony_ci ffrt_wait_deps(&dy12); 392e41f4b71Sopenharmony_ci *y = y1 + y2; 393e41f4b71Sopenharmony_ci } 394e41f4b71Sopenharmony_ci} 395e41f4b71Sopenharmony_ci 396e41f4b71Sopenharmony_ciint main(int narg, char** argv) 397e41f4b71Sopenharmony_ci{ 398e41f4b71Sopenharmony_ci int r; 399e41f4b71Sopenharmony_ci fib_ffrt_s s = {10, &r}; 400e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> dr_deps = {{ffrt_dependence_data, &r}}; 401e41f4b71Sopenharmony_ci ffrt_deps_t dr{static_cast<uint32_t>(dr_deps.size()), dr_deps.data()}; 402e41f4b71Sopenharmony_ci ffrt_submit_c(fib_ffrt, NULL, &s, NULL, &dr, NULL); 403e41f4b71Sopenharmony_ci ffrt_wait_deps(&dr); 404e41f4b71Sopenharmony_ci printf("fibonacci 10: %d\n", r); 405e41f4b71Sopenharmony_ci return 0; 406e41f4b71Sopenharmony_ci} 407e41f4b71Sopenharmony_ci``` 408e41f4b71Sopenharmony_ci 409e41f4b71Sopenharmony_ci**NOTE** 410e41f4b71Sopenharmony_ci 411e41f4b71Sopenharmony_ci(1) fibonacci (x-1) and fibonacci (x-2) are submitted to FFRT as two tasks. After the two tasks are complete, the results are accumulated. 412e41f4b71Sopenharmony_ci 413e41f4b71Sopenharmony_ci(2) A single task can be split into only two subtasks, but the subtasks can be further split. Therefore, the entire computing graph delivers a high DOP, and a call tree is formed between tasks in FFRT. 414e41f4b71Sopenharmony_ci 415e41f4b71Sopenharmony_ci<img src="figures/ffrtfigure2.png" style="zoom:100%" /> 416e41f4b71Sopenharmony_ci 417e41f4b71Sopenharmony_ci> **NOTE** 418e41f4b71Sopenharmony_ci> 419e41f4b71Sopenharmony_ci> The preceding implementation requires you to explicitly manage the data lifecycle and encapsulate input parameters, making the code complex. 420e41f4b71Sopenharmony_ci 421e41f4b71Sopenharmony_ci#### ffrt_deps_t 422e41f4b71Sopenharmony_ci 423e41f4b71Sopenharmony_ciAbstraction of dependency arrays in C code, logically equivalent to **std::vector<void*>** in C++ code. 424e41f4b71Sopenharmony_ci 425e41f4b71Sopenharmony_ci##### Declaration 426e41f4b71Sopenharmony_ci 427e41f4b71Sopenharmony_ci```{.c} 428e41f4b71Sopenharmony_citypedef enum { 429e41f4b71Sopenharmony_ci ffrt_dependence_data, 430e41f4b71Sopenharmony_ci ffrt_dependence_task, 431e41f4b71Sopenharmony_ci} ffrt_dependence_type_t; 432e41f4b71Sopenharmony_ci 433e41f4b71Sopenharmony_citypedef struct { 434e41f4b71Sopenharmony_ci ffrt_dependence_type_t type; 435e41f4b71Sopenharmony_ci const void* ptr; 436e41f4b71Sopenharmony_ci} ffrt_dependence_t; 437e41f4b71Sopenharmony_ci 438e41f4b71Sopenharmony_citypedef struct { 439e41f4b71Sopenharmony_ci uint32_t len; 440e41f4b71Sopenharmony_ci const ffrt_dependence_t* items; 441e41f4b71Sopenharmony_ci} ffrt_deps_t; 442e41f4b71Sopenharmony_ci``` 443e41f4b71Sopenharmony_ci 444e41f4b71Sopenharmony_ci##### Parameters 445e41f4b71Sopenharmony_ci 446e41f4b71Sopenharmony_ci`len` 447e41f4b71Sopenharmony_ci 448e41f4b71Sopenharmony_ciNumber of dependent signatures. The value must be greater than or equal to 0. 449e41f4b71Sopenharmony_ci 450e41f4b71Sopenharmony_ci`item` 451e41f4b71Sopenharmony_ci 452e41f4b71Sopenharmony_ciPointer to the start address of each signature. 453e41f4b71Sopenharmony_ci 454e41f4b71Sopenharmony_ci`type` 455e41f4b71Sopenharmony_ci 456e41f4b71Sopenharmony_ciDependency type, which can be data dependency or task dependency. 457e41f4b71Sopenharmony_ci 458e41f4b71Sopenharmony_ci`ptr` 459e41f4b71Sopenharmony_ci 460e41f4b71Sopenharmony_ciActual address of the dependent signature content. 461e41f4b71Sopenharmony_ci 462e41f4b71Sopenharmony_ci##### Return value 463e41f4b71Sopenharmony_ci 464e41f4b71Sopenharmony_ciN/A 465e41f4b71Sopenharmony_ci 466e41f4b71Sopenharmony_ci##### Use guide 467e41f4b71Sopenharmony_ci 468e41f4b71Sopenharmony_ci**item** is the start address pointer of each signature. The pointer can point to the heap space or stack space, but the allocated space must be greater than or equal to len * sizeof(ffrt_dependence_t). 469e41f4b71Sopenharmony_ci 470e41f4b71Sopenharmony_ci##### Example 471e41f4b71Sopenharmony_ci 472e41f4b71Sopenharmony_ciCreate a data dependency or task dependency. 473e41f4b71Sopenharmony_ci 474e41f4b71Sopenharmony_ci```{.c} 475e41f4b71Sopenharmony_ci// Create ffrt_deps_t on which the data depends. 476e41f4b71Sopenharmony_ciint x = 0; 477e41f4b71Sopenharmony_ciconst std::vector<ffrt_dependence_t> in_deps = {{ffrt_dependence_data, &x}}; 478e41f4b71Sopenharmony_ciffrt_deps_t in{static_cast<uint32_t>(in_deps.size()), in_deps.data()}; 479e41f4b71Sopenharmony_ci 480e41f4b71Sopenharmony_ci// Submit a task, and obtain a task handle. 481e41f4b71Sopenharmony_ciffrt_task_handle_t task = ffrt_submit_h_base( 482e41f4b71Sopenharmony_ci ffrt_create_function_wrapper(OnePlusForTest, NULL, &a), NULL, NULL, &attr); 483e41f4b71Sopenharmony_ci// Create ffrt_deps_t on which the task depends. 484e41f4b71Sopenharmony_ciconst std::vector<ffrt_dependence_t> wait_deps = {{ffrt_dependence_task, task}}; 485e41f4b71Sopenharmony_ciffrt_deps_t wait{static_cast<uint32_t>(wait_deps.size()), wait_deps.data()}; 486e41f4b71Sopenharmony_ci``` 487e41f4b71Sopenharmony_ci 488e41f4b71Sopenharmony_ci#### ffrt_task_attr_t 489e41f4b71Sopenharmony_ci 490e41f4b71Sopenharmony_ciAuxiliary class for defining task attributes. It is used together with **ffrt_submit_base**. 491e41f4b71Sopenharmony_ci 492e41f4b71Sopenharmony_ci##### Declaration 493e41f4b71Sopenharmony_ci 494e41f4b71Sopenharmony_ci```{.c} 495e41f4b71Sopenharmony_citypedef enum { 496e41f4b71Sopenharmony_ci ffrt_qos_inherent = -1, 497e41f4b71Sopenharmony_ci ffrt_qos_background, 498e41f4b71Sopenharmony_ci ffrt_qos_utility, 499e41f4b71Sopenharmony_ci ffrt_qos_default, 500e41f4b71Sopenharmony_ci ffrt_qos_user_initiated, 501e41f4b71Sopenharmony_ci} ffrt_qos_default_t; 502e41f4b71Sopenharmony_ci 503e41f4b71Sopenharmony_citypedef int ffrt_qos_t; 504e41f4b71Sopenharmony_ci 505e41f4b71Sopenharmony_citypedef struct { 506e41f4b71Sopenharmony_ci uint32_t storage[(ffrt_task_attr_storage_size + sizeof(uint32_t) - 1) / sizeof(uint32_t)]; 507e41f4b71Sopenharmony_ci} ffrt_task_attr_t; 508e41f4b71Sopenharmony_citypedef void* ffrt_task_handle_t; 509e41f4b71Sopenharmony_ci 510e41f4b71Sopenharmony_ciint ffrt_task_attr_init(ffrt_task_attr_t* attr); 511e41f4b71Sopenharmony_civoid ffrt_task_attr_destroy(ffrt_task_attr_t* attr); 512e41f4b71Sopenharmony_civoid ffrt_task_attr_set_qos(ffrt_task_attr_t* attr, ffrt_qos_t qos); 513e41f4b71Sopenharmony_ciffrt_qos_t ffrt_task_attr_get_qos(const ffrt_task_attr_t* attr); 514e41f4b71Sopenharmony_civoid ffrt_task_attr_set_name(ffrt_task_attr_t* attr, const char* name); 515e41f4b71Sopenharmony_ciconst char* ffrt_task_attr_get_name(const ffrt_task_attr_t* attr); 516e41f4b71Sopenharmony_civoid ffrt_task_attr_set_delay(ffrt_task_attr_t* attr, uint64_t delay_us); 517e41f4b71Sopenharmony_ciuint64_t ffrt_task_attr_get_delay(const ffrt_task_attr_t* attr); 518e41f4b71Sopenharmony_ci``` 519e41f4b71Sopenharmony_ci 520e41f4b71Sopenharmony_ci##### Parameters 521e41f4b71Sopenharmony_ci 522e41f4b71Sopenharmony_ci`attr` 523e41f4b71Sopenharmony_ci 524e41f4b71Sopenharmony_ciHandle of the target task attribute. 525e41f4b71Sopenharmony_ci 526e41f4b71Sopenharmony_ci`qos` 527e41f4b71Sopenharmony_ci 528e41f4b71Sopenharmony_ci* Enumerated type of QoS. 529e41f4b71Sopenharmony_ci* **ffrt_qos_inherent** is a QoS type, indicating that the QoS of the task to be submitted by **ffrt_submit** inherits the QoS of the current task. 530e41f4b71Sopenharmony_ci 531e41f4b71Sopenharmony_ci`delay_us` 532e41f4b71Sopenharmony_ci 533e41f4b71Sopenharmony_ciDelay for executing the task, in μs. 534e41f4b71Sopenharmony_ci 535e41f4b71Sopenharmony_ci##### Return value 536e41f4b71Sopenharmony_ci 537e41f4b71Sopenharmony_ciN/A 538e41f4b71Sopenharmony_ci 539e41f4b71Sopenharmony_ci##### Use guide 540e41f4b71Sopenharmony_ci* The content passed by **attr** is fetched and stored when **ffrt_submit** is being executed. You can destroy the content on receiving the return value of **ffrt_submit**. 541e41f4b71Sopenharmony_ci* Conventions: 542e41f4b71Sopenharmony_ci * If **task_attr** is not used for QoS setting during task submission, the QoS of the task is **ffrt_qos_default**. 543e41f4b71Sopenharmony_ci * If **task_attr** is set to **ffrt_qos_inherent** during task submission, the QoS of the task to be submitted is the same as that of the current task. If a task with the **ffrt_qos_inherent** attribute is submitted outside an FFRT task, its QoS is **ffrt_qos_default**. 544e41f4b71Sopenharmony_ci * In other cases, the QoS value passed in is used. 545e41f4b71Sopenharmony_ci* You need to set the **ffrt_task_attr_t** object to null or destroy the object. For the same **ffrt_task_attr_t** object, **ffrt_task_attr_destroy** can be called only once. Otherwise, undefined behavior may occur. 546e41f4b71Sopenharmony_ci* If **task_attr** is accessed after **ffrt_task_attr_destroy** is called, undefined behavior may occur. 547e41f4b71Sopenharmony_ci 548e41f4b71Sopenharmony_ci##### Example 549e41f4b71Sopenharmony_ci 550e41f4b71Sopenharmony_ciSubmit a task with the QoS set to **ffrt_qos_background**: 551e41f4b71Sopenharmony_ci 552e41f4b71Sopenharmony_ci```{.c} 553e41f4b71Sopenharmony_ci#include <stdio.h> 554e41f4b71Sopenharmony_ci#include "ffrt.h" 555e41f4b71Sopenharmony_ci 556e41f4b71Sopenharmony_civoid my_print(void* arg) 557e41f4b71Sopenharmony_ci{ 558e41f4b71Sopenharmony_ci printf("hello ffrt\n"); 559e41f4b71Sopenharmony_ci} 560e41f4b71Sopenharmony_ci 561e41f4b71Sopenharmony_citypedef struct { 562e41f4b71Sopenharmony_ci ffrt_function_header_t header; 563e41f4b71Sopenharmony_ci ffrt_function_t func; 564e41f4b71Sopenharmony_ci ffrt_function_t after_func; 565e41f4b71Sopenharmony_ci void* arg; 566e41f4b71Sopenharmony_ci} c_function; 567e41f4b71Sopenharmony_ci 568e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 569e41f4b71Sopenharmony_ci{ 570e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 571e41f4b71Sopenharmony_ci if (f->func) { 572e41f4b71Sopenharmony_ci f->func(f->arg); 573e41f4b71Sopenharmony_ci } 574e41f4b71Sopenharmony_ci} 575e41f4b71Sopenharmony_ci 576e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 577e41f4b71Sopenharmony_ci{ 578e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 579e41f4b71Sopenharmony_ci if (f->after_func) { 580e41f4b71Sopenharmony_ci f->after_func(f->arg); 581e41f4b71Sopenharmony_ci } 582e41f4b71Sopenharmony_ci} 583e41f4b71Sopenharmony_ci 584e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 585e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 586e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 587e41f4b71Sopenharmony_ci{ 588e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 589e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 590e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 591e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 592e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 593e41f4b71Sopenharmony_ci f->func = func; 594e41f4b71Sopenharmony_ci f->after_func = after_func; 595e41f4b71Sopenharmony_ci f->arg = arg; 596e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 597e41f4b71Sopenharmony_ci} 598e41f4b71Sopenharmony_ci 599e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 600e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 601e41f4b71Sopenharmony_ci{ 602e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 603e41f4b71Sopenharmony_ci} 604e41f4b71Sopenharmony_ci 605e41f4b71Sopenharmony_ciint main(int narg, char** argv) 606e41f4b71Sopenharmony_ci{ 607e41f4b71Sopenharmony_ci ffrt_task_attr_t attr; 608e41f4b71Sopenharmony_ci ffrt_task_attr_init(&attr); 609e41f4b71Sopenharmony_ci ffrt_task_attr_set_qos(&attr, ffrt_qos_background); 610e41f4b71Sopenharmony_ci ffrt_task_attr_set_delay(&attr, 10000); 611e41f4b71Sopenharmony_ci ffrt_submit_c(my_print, NULL, NULL, NULL, NULL, &attr); 612e41f4b71Sopenharmony_ci ffrt_task_attr_destroy(&attr); 613e41f4b71Sopenharmony_ci ffrt_wait(); 614e41f4b71Sopenharmony_ci return 0; 615e41f4b71Sopenharmony_ci} 616e41f4b71Sopenharmony_ci``` 617e41f4b71Sopenharmony_ci 618e41f4b71Sopenharmony_ci 619e41f4b71Sopenharmony_ci 620e41f4b71Sopenharmony_ci 621e41f4b71Sopenharmony_ci#### ffrt_submit_h_base 622e41f4b71Sopenharmony_ci 623e41f4b71Sopenharmony_ciSubmits a task to the scheduler. Different from **ffrt_submit_base**, **ffrt_submit_h_base** returns a task handle. The handle can be used to establish the dependency between tasks or implement synchronization in the **wait** statements. 624e41f4b71Sopenharmony_ci 625e41f4b71Sopenharmony_ci##### Declaration 626e41f4b71Sopenharmony_ci 627e41f4b71Sopenharmony_ci```{.c} 628e41f4b71Sopenharmony_citypedef void* ffrt_task_handle_t; 629e41f4b71Sopenharmony_ci 630e41f4b71Sopenharmony_ciffrt_task_handle_t ffrt_submit_h_base(ffrt_function_t func, void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr); 631e41f4b71Sopenharmony_civoid ffrt_task_handle_destroy(ffrt_task_handle_t handle); 632e41f4b71Sopenharmony_ci``` 633e41f4b71Sopenharmony_ci 634e41f4b71Sopenharmony_ci##### Parameters 635e41f4b71Sopenharmony_ci 636e41f4b71Sopenharmony_ci`func` 637e41f4b71Sopenharmony_ci 638e41f4b71Sopenharmony_ciPointer to the CPU function. The struct executed by the pointer describes, two function pointers, namely, **exec** and **destroy**, according to the **ffrt_function_header_t** definition. FFRT executes and destroys the task by using the two function pointers. 639e41f4b71Sopenharmony_ci 640e41f4b71Sopenharmony_ci`in_deps` 641e41f4b71Sopenharmony_ci 642e41f4b71Sopenharmony_ci* Optional. 643e41f4b71Sopenharmony_ci* Input dependencies of the task. FFRT establishes the dependency by using the virtual address of the data as the data signature. 644e41f4b71Sopenharmony_ci 645e41f4b71Sopenharmony_ci`out_deps` 646e41f4b71Sopenharmony_ci 647e41f4b71Sopenharmony_ci* Optional. 648e41f4b71Sopenharmony_ci 649e41f4b71Sopenharmony_ci* Output dependencies of the task. 650e41f4b71Sopenharmony_ci 651e41f4b71Sopenharmony_ci **NOTE** 652e41f4b71Sopenharmony_ci 653e41f4b71Sopenharmony_ci The dependency is essentially a value. FFRT cannot determine whether the value is reasonable. It always treats the input value reasonable. However, you are not advised to use inappropriate values such as **NULL**, **1**, or **2** to establish dependencies because doing this will establish unnecessary dependencies and affect concurrency. Instead, use the actual memory address. 654e41f4b71Sopenharmony_ci 655e41f4b71Sopenharmony_ci`attr` 656e41f4b71Sopenharmony_ci 657e41f4b71Sopenharmony_ci* Optional. 658e41f4b71Sopenharmony_ci* Task attribute, such as QoS. For details, see [ffrt_task_attr_t](#ffrt_task_attr_t). 659e41f4b71Sopenharmony_ci 660e41f4b71Sopenharmony_ci##### Return value 661e41f4b71Sopenharmony_ci 662e41f4b71Sopenharmony_ciTake handle. The handle can be used to establish the dependency between tasks or implement synchronization in the wait statements. 663e41f4b71Sopenharmony_ci 664e41f4b71Sopenharmony_ci##### Use guide 665e41f4b71Sopenharmony_ci 666e41f4b71Sopenharmony_ci* **ffrt_task_handle_t** in the C code must be explicitly destroyed by calling **ffrt_task_handle_destroy**. 667e41f4b71Sopenharmony_ci* You need to set the **ffrt_task_handle_t** object in the C code to null or destroy the object. For the same **ffrt_task_handle_t** object, **ffrt_task_handle_destroy** can be called only once. Otherwise, undefined behavior may occur. 668e41f4b71Sopenharmony_ci* If **ffrt_task_handle_t** is accessed after **ffrt_task_handle_destroy** is called, undefined behavior may occur. 669e41f4b71Sopenharmony_ci 670e41f4b71Sopenharmony_ci##### Example 671e41f4b71Sopenharmony_ci 672e41f4b71Sopenharmony_ci```{.c} 673e41f4b71Sopenharmony_ci#include <stdio.h> 674e41f4b71Sopenharmony_ci#include "ffrt.h" 675e41f4b71Sopenharmony_ci 676e41f4b71Sopenharmony_civoid func0(void* arg) 677e41f4b71Sopenharmony_ci{ 678e41f4b71Sopenharmony_ci printf("hello "); 679e41f4b71Sopenharmony_ci} 680e41f4b71Sopenharmony_ci 681e41f4b71Sopenharmony_civoid func1(void* arg) 682e41f4b71Sopenharmony_ci{ 683e41f4b71Sopenharmony_ci (*(int*)arg)++; 684e41f4b71Sopenharmony_ci} 685e41f4b71Sopenharmony_ci 686e41f4b71Sopenharmony_civoid func2(void* arg) 687e41f4b71Sopenharmony_ci{ 688e41f4b71Sopenharmony_ci printf("world, x = %d\n", *(int*)arg); 689e41f4b71Sopenharmony_ci} 690e41f4b71Sopenharmony_ci 691e41f4b71Sopenharmony_civoid func3(void* arg) 692e41f4b71Sopenharmony_ci{ 693e41f4b71Sopenharmony_ci printf("handle wait"); 694e41f4b71Sopenharmony_ci (*(int*)arg)++; 695e41f4b71Sopenharmony_ci} 696e41f4b71Sopenharmony_ci 697e41f4b71Sopenharmony_citypedef struct { 698e41f4b71Sopenharmony_ci ffrt_function_header_t header; 699e41f4b71Sopenharmony_ci ffrt_function_t func; 700e41f4b71Sopenharmony_ci ffrt_function_t after_func; 701e41f4b71Sopenharmony_ci void* arg; 702e41f4b71Sopenharmony_ci} c_function; 703e41f4b71Sopenharmony_ci 704e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 705e41f4b71Sopenharmony_ci{ 706e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 707e41f4b71Sopenharmony_ci if (f->func) { 708e41f4b71Sopenharmony_ci f->func(f->arg); 709e41f4b71Sopenharmony_ci } 710e41f4b71Sopenharmony_ci} 711e41f4b71Sopenharmony_ci 712e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 713e41f4b71Sopenharmony_ci{ 714e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 715e41f4b71Sopenharmony_ci if (f->after_func) { 716e41f4b71Sopenharmony_ci f->after_func(f->arg); 717e41f4b71Sopenharmony_ci } 718e41f4b71Sopenharmony_ci} 719e41f4b71Sopenharmony_ci 720e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 721e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 722e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 723e41f4b71Sopenharmony_ci{ 724e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 725e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 726e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 727e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 728e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 729e41f4b71Sopenharmony_ci f->func = func; 730e41f4b71Sopenharmony_ci f->after_func = after_func; 731e41f4b71Sopenharmony_ci f->arg = arg; 732e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 733e41f4b71Sopenharmony_ci} 734e41f4b71Sopenharmony_ci 735e41f4b71Sopenharmony_cistatic inline ffrt_task_handle_t ffrt_submit_h_c(ffrt_function_t func, const ffrt_function_t after_func, 736e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 737e41f4b71Sopenharmony_ci{ 738e41f4b71Sopenharmony_ci return ffrt_submit_h_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 739e41f4b71Sopenharmony_ci} 740e41f4b71Sopenharmony_ci 741e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 742e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 743e41f4b71Sopenharmony_ci{ 744e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 745e41f4b71Sopenharmony_ci} 746e41f4b71Sopenharmony_ci 747e41f4b71Sopenharmony_ci 748e41f4b71Sopenharmony_ciint main(int narg, char** argv) 749e41f4b71Sopenharmony_ci{ 750e41f4b71Sopenharmony_ci // Handle the work with submit. 751e41f4b71Sopenharmony_ci ffrt_task_handle_t h = ffrt_submit_h_c(func0, NULL, NULL, NULL, NULL, NULL); // not need some data in this task 752e41f4b71Sopenharmony_ci int x = 1; 753e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> in_deps = {{ffrt_dependence_data, &x}}; 754e41f4b71Sopenharmony_ci ffrt_deps_t d2{static_cast<uint32_t>(in_deps.size()), in_deps.data()}; 755e41f4b71Sopenharmony_ci 756e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> out_deps = {{ffrt_dependence_data, &x}}; 757e41f4b71Sopenharmony_ci ffrt_deps_t d1{static_cast<uint32_t>(out_deps.size()), out_deps.data()}; 758e41f4b71Sopenharmony_ci 759e41f4b71Sopenharmony_ci ffrt_submit_c(func1, NULL, &x, NULL, &d1, NULL); 760e41f4b71Sopenharmony_ci ffrt_submit_c(func2, NULL, &x, &d2, NULL, NULL); // this task depend x and h 761e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(h); 762e41f4b71Sopenharmony_ci 763e41f4b71Sopenharmony_ci // Handle the work with wait. 764e41f4b71Sopenharmony_ci ffrt_task_handle_t h2 = ffrt_submit_h_c(func3, NULL, &x, NULL, NULL, NULL); 765e41f4b71Sopenharmony_ci 766e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> wait_deps = {{ffrt_dependence_task, h2}}; 767e41f4b71Sopenharmony_ci ffrt_deps_t d3{static_cast<uint32_t>(wait_deps.size()), wait_deps.data()}; 768e41f4b71Sopenharmony_ci ffrt_wait_deps(&d3); 769e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(h2); 770e41f4b71Sopenharmony_ci printf("x = %d", x); 771e41f4b71Sopenharmony_ci ffrt_wait(); 772e41f4b71Sopenharmony_ci return 0; 773e41f4b71Sopenharmony_ci} 774e41f4b71Sopenharmony_ci``` 775e41f4b71Sopenharmony_ci 776e41f4b71Sopenharmony_ciExpected output: 777e41f4b71Sopenharmony_ci 778e41f4b71Sopenharmony_ci``` 779e41f4b71Sopenharmony_cihello 780e41f4b71Sopenharmony_cihandle wait 781e41f4b71Sopenharmony_cix = 2 782e41f4b71Sopenharmony_ciworld, x = 3 783e41f4b71Sopenharmony_ci``` 784e41f4b71Sopenharmony_ci 785e41f4b71Sopenharmony_ci 786e41f4b71Sopenharmony_ci 787e41f4b71Sopenharmony_ci#### ffrt_this_task_get_id 788e41f4b71Sopenharmony_ci 789e41f4b71Sopenharmony_ciObtains the ID of this task. This API is used for maintenance and testing. (The task ID is unique, but the task name may be duplicate.) 790e41f4b71Sopenharmony_ci 791e41f4b71Sopenharmony_ci##### Declaration 792e41f4b71Sopenharmony_ci 793e41f4b71Sopenharmony_ci```{.c} 794e41f4b71Sopenharmony_ciuint64_t ffrt_this_task_get_id(); 795e41f4b71Sopenharmony_ci``` 796e41f4b71Sopenharmony_ci 797e41f4b71Sopenharmony_ci##### Parameters 798e41f4b71Sopenharmony_ci 799e41f4b71Sopenharmony_ciN/A 800e41f4b71Sopenharmony_ci 801e41f4b71Sopenharmony_ci##### Return value 802e41f4b71Sopenharmony_ci 803e41f4b71Sopenharmony_ciID of the task being executed. 804e41f4b71Sopenharmony_ci 805e41f4b71Sopenharmony_ci##### Use guide 806e41f4b71Sopenharmony_ci 807e41f4b71Sopenharmony_ci* If this API is called inside a task, the ID of this task is returned. If this API is called outside a task, **0** is returned. 808e41f4b71Sopenharmony_ci* You can determine whether the function runs on an FFRT or a non-FFRT worker thread based on the return value. 809e41f4b71Sopenharmony_ci* The task ID starts from 1 and is incremented by 1 each time a task is submitted. The task ID contains 64 bits. Even if one million tasks are submitted per second, it takes 292471.2 years to finish one loop. 810e41f4b71Sopenharmony_ci 811e41f4b71Sopenharmony_ci##### Example 812e41f4b71Sopenharmony_ci 813e41f4b71Sopenharmony_ciN/A 814e41f4b71Sopenharmony_ci 815e41f4b71Sopenharmony_ci#### ffrt_this_task_update_qos 816e41f4b71Sopenharmony_ci 817e41f4b71Sopenharmony_ciUpdates the QoS of the task being executed. 818e41f4b71Sopenharmony_ci 819e41f4b71Sopenharmony_ci##### Declaration 820e41f4b71Sopenharmony_ci 821e41f4b71Sopenharmony_ci```{.c} 822e41f4b71Sopenharmony_ciint ffrt_this_task_update_qos(ffrt_qos_t qos); 823e41f4b71Sopenharmony_ci``` 824e41f4b71Sopenharmony_ci 825e41f4b71Sopenharmony_ci##### Parameters 826e41f4b71Sopenharmony_ci 827e41f4b71Sopenharmony_ci`qos` 828e41f4b71Sopenharmony_ci 829e41f4b71Sopenharmony_ciNew QoS. 830e41f4b71Sopenharmony_ci 831e41f4b71Sopenharmony_ci##### Return value 832e41f4b71Sopenharmony_ci 833e41f4b71Sopenharmony_ciReturns **0** if the operation is successful; returns a non-zero value otherwise. 834e41f4b71Sopenharmony_ci 835e41f4b71Sopenharmony_ci##### Use guide 836e41f4b71Sopenharmony_ci 837e41f4b71Sopenharmony_ci* The QoS update takes effect immediately. 838e41f4b71Sopenharmony_ci* If the new QoS is different from the current QoS, the task is blocked and then resumed based on the new QoS. 839e41f4b71Sopenharmony_ci* If the new QoS is the same as the current QoS, the API returns **0** immediately without any processing. 840e41f4b71Sopenharmony_ci* If this API is called not inside a task, a non-zero value is returned. You can ignore the value or perform other operations. 841e41f4b71Sopenharmony_ci 842e41f4b71Sopenharmony_ci##### Example 843e41f4b71Sopenharmony_ci 844e41f4b71Sopenharmony_ciN/A 845e41f4b71Sopenharmony_ci 846e41f4b71Sopenharmony_ci### Serial Queue 847e41f4b71Sopenharmony_ci 848e41f4b71Sopenharmony_ciFFRT provides **queue** to implement capabilities similar to **WorkQueue** in Android. It can deliver excellent performance if being used properly. 849e41f4b71Sopenharmony_ci 850e41f4b71Sopenharmony_ci#### ffrt_queue_attr_t 851e41f4b71Sopenharmony_ci 852e41f4b71Sopenharmony_ci##### Declaration 853e41f4b71Sopenharmony_ci```{.c} 854e41f4b71Sopenharmony_citypedef struct { 855e41f4b71Sopenharmony_ci uint32_t storage[(ffrt_queue_attr_storage_size + sizeof(uint32_t) - 1) / sizeof(uint32_t)]; 856e41f4b71Sopenharmony_ci} ffrt_queue_attr_t; 857e41f4b71Sopenharmony_ci 858e41f4b71Sopenharmony_ciint ffrt_queue_attr_init(ffrt_queue_attr_t* attr); 859e41f4b71Sopenharmony_civoid ffrt_queue_attr_destroy(ffrt_queue_attr_t* attr); 860e41f4b71Sopenharmony_ci``` 861e41f4b71Sopenharmony_ci 862e41f4b71Sopenharmony_ci##### Parameters 863e41f4b71Sopenharmony_ci 864e41f4b71Sopenharmony_ci`attr` 865e41f4b71Sopenharmony_ci 866e41f4b71Sopenharmony_ciPointer to the uninitialized **ffrt_queue_attr_t** object. 867e41f4b71Sopenharmony_ci 868e41f4b71Sopenharmony_ci##### Return value 869e41f4b71Sopenharmony_ciReturns **0** if the API is called successfully; returns **-1** otherwise. 870e41f4b71Sopenharmony_ci 871e41f4b71Sopenharmony_ci##### Use guide 872e41f4b71Sopenharmony_ci* An **ffrt_queue_attr_t** object must be created prior to an **ffrt_queue_t** object. 873e41f4b71Sopenharmony_ci* You need to set the **ffrt_queue_attr_t** object to null or destroy the object. For the same **ffrt_queue_attr_t** object, **ffrt_queue_attr_destroy** can be called only once. Otherwise, undefined behavior may occur. 874e41f4b71Sopenharmony_ci* If **ffrt_queue_attr_t** is accessed after **ffrt_queue_attr_destroy** is called, undefined behavior may occur. 875e41f4b71Sopenharmony_ci 876e41f4b71Sopenharmony_ci##### Example 877e41f4b71Sopenharmony_ciSee the example provided in **ffrt_queue_t**. 878e41f4b71Sopenharmony_ci 879e41f4b71Sopenharmony_ci#### ffrt_queue_t 880e41f4b71Sopenharmony_ci 881e41f4b71Sopenharmony_ci##### Declaration 882e41f4b71Sopenharmony_ci```{.c} 883e41f4b71Sopenharmony_citypedef enum { ffrt_queue_serial, ffrt_queue_max } ffrt_queue_type_t; 884e41f4b71Sopenharmony_citypedef void* ffrt_queue_t; 885e41f4b71Sopenharmony_ci 886e41f4b71Sopenharmony_ciffrt_queue_t ffrt_queue_create(ffrt_queue_type_t type, const char* name, const ffrt_queue_attr_t* attr) 887e41f4b71Sopenharmony_civoid ffrt_queue_destroy(ffrt_queue_t queue) 888e41f4b71Sopenharmony_ci``` 889e41f4b71Sopenharmony_ci 890e41f4b71Sopenharmony_ci##### Parameters 891e41f4b71Sopenharmony_ci 892e41f4b71Sopenharmony_ci`type` 893e41f4b71Sopenharmony_ci 894e41f4b71Sopenharmony_ciQueue type. 895e41f4b71Sopenharmony_ci 896e41f4b71Sopenharmony_ci`name` 897e41f4b71Sopenharmony_ci 898e41f4b71Sopenharmony_ciPointer to the queue name. 899e41f4b71Sopenharmony_ci 900e41f4b71Sopenharmony_ci`attr` 901e41f4b71Sopenharmony_ci 902e41f4b71Sopenharmony_ciPointer to the queue attribute. For details, see **ffrt_queue_attr_t**. 903e41f4b71Sopenharmony_ci 904e41f4b71Sopenharmony_ci##### Return value 905e41f4b71Sopenharmony_ciReturns the queue created if the API is called successfully; returns a null pointer otherwise. 906e41f4b71Sopenharmony_ci 907e41f4b71Sopenharmony_ci##### Use guide 908e41f4b71Sopenharmony_ci* Tasks submitted to the queue are executed in sequence. If a task is blocked, the execution sequence of the task cannot be ensured. 909e41f4b71Sopenharmony_ci* You need to set the **ffrt_queue_t** object to null or destroy the object. For the same **ffrt_queue_t** object, **ffrt_queue_destroy** can be called only once. Otherwise, undefined behavior may occur. 910e41f4b71Sopenharmony_ci* If **ffrt_queue_t** is accessed after **ffrt_queue_destroy** is called, undefined behavior may occur. 911e41f4b71Sopenharmony_ci 912e41f4b71Sopenharmony_ci##### Example 913e41f4b71Sopenharmony_ci``` 914e41f4b71Sopenharmony_ci#include <stdio.h> 915e41f4b71Sopenharmony_ci#include "ffrt.h" 916e41f4b71Sopenharmony_ci 917e41f4b71Sopenharmony_ciusing namespace std; 918e41f4b71Sopenharmony_ci 919e41f4b71Sopenharmony_citemplate<class T> 920e41f4b71Sopenharmony_cistruct Function { 921e41f4b71Sopenharmony_ci ffrt_function_header_t header; 922e41f4b71Sopenharmony_ci T closure; 923e41f4b71Sopenharmony_ci}; 924e41f4b71Sopenharmony_ci 925e41f4b71Sopenharmony_citemplate<class T> 926e41f4b71Sopenharmony_civoid ExecFunctionWrapper(void* t) 927e41f4b71Sopenharmony_ci{ 928e41f4b71Sopenharmony_ci auto f = reinterpret_cast<Function<std::decay_t<T>>*>(t); 929e41f4b71Sopenharmony_ci f->closure(); 930e41f4b71Sopenharmony_ci} 931e41f4b71Sopenharmony_ci 932e41f4b71Sopenharmony_citemplate<class T> 933e41f4b71Sopenharmony_civoid DestroyFunctionWrapper(void* t) 934e41f4b71Sopenharmony_ci{ 935e41f4b71Sopenharmony_ci auto f = reinterpret_cast<Function<std::decay_t<T>>*>(t); 936e41f4b71Sopenharmony_ci f = nullptr; 937e41f4b71Sopenharmony_ci} 938e41f4b71Sopenharmony_ci 939e41f4b71Sopenharmony_citemplate<class T> 940e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* create_function_wrapper(T&& func, 941e41f4b71Sopenharmony_ci ffrt_function_kind_t kind = ffrt_function_kind_general) 942e41f4b71Sopenharmony_ci{ 943e41f4b71Sopenharmony_ci using function_type = Function<std::decay_t<T>>; 944e41f4b71Sopenharmony_ci auto p = ffrt_alloc_auto_managed_function_storage_base(kind); 945e41f4b71Sopenharmony_ci auto f = new (p)function_type; 946e41f4b71Sopenharmony_ci f->header.exec = ExecFunctionWrapper<T>; 947e41f4b71Sopenharmony_ci f->header.destroy = DestroyFunctionWrapper<T>; 948e41f4b71Sopenharmony_ci f->closure = std::forward<T>(func); 949e41f4b71Sopenharmony_ci return reinterpret_cast<ffrt_function_header_t*>(f); 950e41f4b71Sopenharmony_ci} 951e41f4b71Sopenharmony_ci 952e41f4b71Sopenharmony_ciint main(int narg, char** argv) 953e41f4b71Sopenharmony_ci{ 954e41f4b71Sopenharmony_ci ffrt_queue_attr_t queue_attr; 955e41f4b71Sopenharmony_ci (void)ffrt_queue_attr_init(&queue_attr); 956e41f4b71Sopenharmony_ci ffrt_queue_t queue_handle = ffrt_queue_create(ffrt_queue_serial, "test_queue", &queue_attr); 957e41f4b71Sopenharmony_ci std::function<void()>&& queueFunc = [] () {printf("Task done.\n");}; 958e41f4b71Sopenharmony_ci ffrt_function_header_t* queueFunc_t = create_function_wrapper((queueFunc), ffrt_function_kind_queue); 959e41f4b71Sopenharmony_ci ffrt_queue_submit(queue_handle, queueFunc_t, nullptr); 960e41f4b71Sopenharmony_ci 961e41f4b71Sopenharmony_ci ffrt_queue_attr_destroy(&queue_attr); 962e41f4b71Sopenharmony_ci ffrt_queue_destroy(queue_handle); 963e41f4b71Sopenharmony_ci} 964e41f4b71Sopenharmony_ci``` 965e41f4b71Sopenharmony_ci### Synchronization Primitive 966e41f4b71Sopenharmony_ci 967e41f4b71Sopenharmony_ci#### ffrt_mutex_t 968e41f4b71Sopenharmony_ci 969e41f4b71Sopenharmony_ciProvides performance implementation similar to pthread mutex. 970e41f4b71Sopenharmony_ci 971e41f4b71Sopenharmony_ci##### Declaration 972e41f4b71Sopenharmony_ci 973e41f4b71Sopenharmony_ci```{.c} 974e41f4b71Sopenharmony_citypedef enum { 975e41f4b71Sopenharmony_ci ffrt_error = -1, 976e41f4b71Sopenharmony_ci ffrt_success = 0, 977e41f4b71Sopenharmony_ci ffrt_error_nomem = ENOMEM, 978e41f4b71Sopenharmony_ci ffrt_error_timedout = ETIMEDOUT, 979e41f4b71Sopenharmony_ci ffrt_error_busy = EBUSY, 980e41f4b71Sopenharmony_ci ffrt_error_inval = EINVAL 981e41f4b71Sopenharmony_ci} ffrt_error_t; 982e41f4b71Sopenharmony_ci 983e41f4b71Sopenharmony_cistruct ffrt_mutex_t; 984e41f4b71Sopenharmony_ci 985e41f4b71Sopenharmony_ciint ffrt_mutex_init(ffrt_mutex_t* mutex, const ffrt_mutexattr_t* attr); 986e41f4b71Sopenharmony_ciint ffrt_mutex_lock(ffrt_mutex_t* mutex); 987e41f4b71Sopenharmony_ciint ffrt_mutex_unlock(ffrt_mutex_t* mutex); 988e41f4b71Sopenharmony_ciint ffrt_mutex_trylock(ffrt_mutex_t* mutex); 989e41f4b71Sopenharmony_ciint ffrt_mutex_destroy(ffrt_mutex_t* mutex); 990e41f4b71Sopenharmony_ci``` 991e41f4b71Sopenharmony_ci 992e41f4b71Sopenharmony_ci##### Parameters 993e41f4b71Sopenharmony_ci 994e41f4b71Sopenharmony_ci`attr` 995e41f4b71Sopenharmony_ci 996e41f4b71Sopenharmony_ciAttribute of the mutex. Set it to a null pointer. This is because FFRT supports only mutex of the basic type currently. 997e41f4b71Sopenharmony_ci 998e41f4b71Sopenharmony_ci`mutex` 999e41f4b71Sopenharmony_ci 1000e41f4b71Sopenharmony_ciPointer to the target mutex. 1001e41f4b71Sopenharmony_ci 1002e41f4b71Sopenharmony_ci##### Return value 1003e41f4b71Sopenharmony_ci 1004e41f4b71Sopenharmony_ciReturns **ffrt_success** if the API is called successfully; returns an error code otherwise. 1005e41f4b71Sopenharmony_ci 1006e41f4b71Sopenharmony_ci##### Use guide 1007e41f4b71Sopenharmony_ci* This API can be called only inside an FFRT task. If it is called outside an FFRT task, undefined behavior may occur. 1008e41f4b71Sopenharmony_ci* The traditional function **pthread_mutex_t** may cause unexpected kernel mode trap when it fails to lock a mutex. **ffrt_mutex_t** solves this problem and therefore provides better performance if used properly. 1009e41f4b71Sopenharmony_ci* Currently, recursion and timing are not supported. 1010e41f4b71Sopenharmony_ci* **ffrt_mutex_t** in the C code must be explicitly created and destroyed by calling **ffrt_mutex_init** and **ffrt_mutex_destroy**, respectively. 1011e41f4b71Sopenharmony_ci* You need to set the **ffrt_mutex_t** object in the C code to null or destroy the object. For the same **ffrt_mutex_t** object, **ffrt_mutex_destroy** can be called only once. Otherwise, undefined behavior may occur. 1012e41f4b71Sopenharmony_ci* If **ffrt_mutex_t** is accessed after **ffrt_mutex_destroy** is called, undefined behavior may occur. 1013e41f4b71Sopenharmony_ci 1014e41f4b71Sopenharmony_ci##### Example 1015e41f4b71Sopenharmony_ci 1016e41f4b71Sopenharmony_ci```{.c} 1017e41f4b71Sopenharmony_ci#include <stdio.h> 1018e41f4b71Sopenharmony_ci#include "ffrt.h" 1019e41f4b71Sopenharmony_ci 1020e41f4b71Sopenharmony_citypedef struct { 1021e41f4b71Sopenharmony_ci int* sum; 1022e41f4b71Sopenharmony_ci ffrt_mutex_t* mtx; 1023e41f4b71Sopenharmony_ci} tuple; 1024e41f4b71Sopenharmony_ci 1025e41f4b71Sopenharmony_civoid func(void* arg) 1026e41f4b71Sopenharmony_ci{ 1027e41f4b71Sopenharmony_ci tuple* t = (tuple*)arg; 1028e41f4b71Sopenharmony_ci 1029e41f4b71Sopenharmony_ci int ret = ffrt_mutex_lock(t->mtx); 1030e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1031e41f4b71Sopenharmony_ci printf("error\n"); 1032e41f4b71Sopenharmony_ci } 1033e41f4b71Sopenharmony_ci (*t->sum)++; 1034e41f4b71Sopenharmony_ci ret = ffrt_mutex_unlock(t->mtx); 1035e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1036e41f4b71Sopenharmony_ci printf("error\n"); 1037e41f4b71Sopenharmony_ci } 1038e41f4b71Sopenharmony_ci} 1039e41f4b71Sopenharmony_ci 1040e41f4b71Sopenharmony_citypedef struct { 1041e41f4b71Sopenharmony_ci ffrt_function_header_t header; 1042e41f4b71Sopenharmony_ci ffrt_function_t func; 1043e41f4b71Sopenharmony_ci ffrt_function_t after_func; 1044e41f4b71Sopenharmony_ci void* arg; 1045e41f4b71Sopenharmony_ci} c_function; 1046e41f4b71Sopenharmony_ci 1047e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 1048e41f4b71Sopenharmony_ci{ 1049e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1050e41f4b71Sopenharmony_ci if (f->func) { 1051e41f4b71Sopenharmony_ci f->func(f->arg); 1052e41f4b71Sopenharmony_ci } 1053e41f4b71Sopenharmony_ci} 1054e41f4b71Sopenharmony_ci 1055e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 1056e41f4b71Sopenharmony_ci{ 1057e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1058e41f4b71Sopenharmony_ci if (f->after_func) { 1059e41f4b71Sopenharmony_ci f->after_func(f->arg); 1060e41f4b71Sopenharmony_ci } 1061e41f4b71Sopenharmony_ci} 1062e41f4b71Sopenharmony_ci 1063e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 1064e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 1065e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 1066e41f4b71Sopenharmony_ci{ 1067e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 1068e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 1069e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 1070e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 1071e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 1072e41f4b71Sopenharmony_ci f->func = func; 1073e41f4b71Sopenharmony_ci f->after_func = after_func; 1074e41f4b71Sopenharmony_ci f->arg = arg; 1075e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 1076e41f4b71Sopenharmony_ci} 1077e41f4b71Sopenharmony_ci 1078e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 1079e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 1080e41f4b71Sopenharmony_ci{ 1081e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 1082e41f4b71Sopenharmony_ci} 1083e41f4b71Sopenharmony_ci 1084e41f4b71Sopenharmony_civoid ffrt_mutex_task(void *) 1085e41f4b71Sopenharmony_ci{ 1086e41f4b71Sopenharmony_ci int sum = 0; 1087e41f4b71Sopenharmony_ci ffrt_mutex_t mtx; 1088e41f4b71Sopenharmony_ci tuple t = {&sum, &mtx}; 1089e41f4b71Sopenharmony_ci int ret = ffrt_mutex_init(&mtx, NULL); 1090e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1091e41f4b71Sopenharmony_ci printf("error\n"); 1092e41f4b71Sopenharmony_ci } 1093e41f4b71Sopenharmony_ci for (int i = 0; i < 10; i++) { 1094e41f4b71Sopenharmony_ci ffrt_submit_c(func, NULL, &t, NULL, NULL, NULL); 1095e41f4b71Sopenharmony_ci } 1096e41f4b71Sopenharmony_ci ffrt_mutex_destroy(&mtx); 1097e41f4b71Sopenharmony_ci ffrt_wait(); 1098e41f4b71Sopenharmony_ci printf("sum = %d\n", sum); 1099e41f4b71Sopenharmony_ci} 1100e41f4b71Sopenharmony_ci 1101e41f4b71Sopenharmony_ciint main(int narg, char** argv) 1102e41f4b71Sopenharmony_ci{ 1103e41f4b71Sopenharmony_ci int r; 1104e41f4b71Sopenharmony_ci ffrt_submit_c(ffrt_mutex_task, NULL, NULL, NULL, NULL, NULL); 1105e41f4b71Sopenharmony_ci ffrt_wait(); 1106e41f4b71Sopenharmony_ci return 0; 1107e41f4b71Sopenharmony_ci} 1108e41f4b71Sopenharmony_ci``` 1109e41f4b71Sopenharmony_ci 1110e41f4b71Sopenharmony_ciExpected output: 1111e41f4b71Sopenharmony_ci 1112e41f4b71Sopenharmony_ci``` 1113e41f4b71Sopenharmony_cisum=10 1114e41f4b71Sopenharmony_ci``` 1115e41f4b71Sopenharmony_ci 1116e41f4b71Sopenharmony_ciThis example is for reference only and is not encouraged in practice. 1117e41f4b71Sopenharmony_ci 1118e41f4b71Sopenharmony_ci 1119e41f4b71Sopenharmony_ci#### ffrt_cond_t 1120e41f4b71Sopenharmony_ci 1121e41f4b71Sopenharmony_ciProvides performance implementation similar to pthread semaphore. 1122e41f4b71Sopenharmony_ci 1123e41f4b71Sopenharmony_ci##### Declaration 1124e41f4b71Sopenharmony_ci 1125e41f4b71Sopenharmony_ci```{.c} 1126e41f4b71Sopenharmony_citypedef enum { 1127e41f4b71Sopenharmony_ci ffrt_error = -1, 1128e41f4b71Sopenharmony_ci ffrt_success = 0, 1129e41f4b71Sopenharmony_ci ffrt_error_nomem = ENOMEM, 1130e41f4b71Sopenharmony_ci ffrt_error_timedout = ETIMEDOUT, 1131e41f4b71Sopenharmony_ci ffrt_error_busy = EBUSY, 1132e41f4b71Sopenharmony_ci ffrt_error_inval = EINVAL 1133e41f4b71Sopenharmony_ci} ffrt_error_t; 1134e41f4b71Sopenharmony_ci 1135e41f4b71Sopenharmony_cistruct ffrt_cond_t; 1136e41f4b71Sopenharmony_ci 1137e41f4b71Sopenharmony_ciint ffrt_cond_init(ffrt_cond_t* cond, const ffrt_condattr_t* attr); 1138e41f4b71Sopenharmony_ciint ffrt_cond_signal(ffrt_cond_t* cond); 1139e41f4b71Sopenharmony_ciint ffrt_cond_broadcast(ffrt_cond_t* cond); 1140e41f4b71Sopenharmony_ciint ffrt_cond_wait(ffrt_cond_t*cond, ffrt_mutex_t* mutex); 1141e41f4b71Sopenharmony_ciint ffrt_cond_timedwait(ffrt_cond_t* cond, ffrt_mutex_t* mutex, const struct timespec* time_point); 1142e41f4b71Sopenharmony_ciint ffrt_cond_destroy(ffrt_cond_t* cond); 1143e41f4b71Sopenharmony_ci``` 1144e41f4b71Sopenharmony_ci 1145e41f4b71Sopenharmony_ci##### Parameters 1146e41f4b71Sopenharmony_ci 1147e41f4b71Sopenharmony_ci`cond` 1148e41f4b71Sopenharmony_ci 1149e41f4b71Sopenharmony_ciPointer to the target semaphore. 1150e41f4b71Sopenharmony_ci 1151e41f4b71Sopenharmony_ci`attr` 1152e41f4b71Sopenharmony_ci 1153e41f4b71Sopenharmony_ciPointer to the attribute. A null pointer indicates that the default attribute is used. 1154e41f4b71Sopenharmony_ci 1155e41f4b71Sopenharmony_ci`mutex` 1156e41f4b71Sopenharmony_ci 1157e41f4b71Sopenharmony_ciPointer to the target mutex. 1158e41f4b71Sopenharmony_ci 1159e41f4b71Sopenharmony_ci`time_point` 1160e41f4b71Sopenharmony_ci 1161e41f4b71Sopenharmony_ciPointer to the maximum duration during which the thread is blocked. 1162e41f4b71Sopenharmony_ci 1163e41f4b71Sopenharmony_ci 1164e41f4b71Sopenharmony_ci##### Return value 1165e41f4b71Sopenharmony_ci 1166e41f4b71Sopenharmony_ciReturns **ffrt_success** if the API is successfully called; returns **ffrt_error_timedout** if the maximum duration is reached before the mutex is locked. 1167e41f4b71Sopenharmony_ci 1168e41f4b71Sopenharmony_ci##### Use guide 1169e41f4b71Sopenharmony_ci* This API can be called only inside an FFRT task. If it is called outside an FFRT task, undefined behavior may occur. 1170e41f4b71Sopenharmony_ci* The traditional function **pthread_cond_t** may cause unexpected kernel mode trap when the conditions are not met. **ffrt_cond_t** solves this problem and therefore provides better performance if being used properly. 1171e41f4b71Sopenharmony_ci* **ffrt_cond_t** in the C code must be explicitly created and destroyed by calling **ffrt_cond_init** and **ffrt_cond_destroy**, respectively. 1172e41f4b71Sopenharmony_ci* You need to set the **ffrt_cond_t** object in the C code to null or destroy the object. For the same **ffrt_cond_t** object, **ffrt_cond_destroy** can be called only once. Otherwise, undefined behavior may occur. 1173e41f4b71Sopenharmony_ci* If **ffrt_cond_t** is accessed after **ffrt_cond_destroy** is called, undefined behavior may occur. 1174e41f4b71Sopenharmony_ci 1175e41f4b71Sopenharmony_ci##### Example 1176e41f4b71Sopenharmony_ci 1177e41f4b71Sopenharmony_ci```{.c} 1178e41f4b71Sopenharmony_ci#include <stdio.h> 1179e41f4b71Sopenharmony_ci#include "ffrt.h" 1180e41f4b71Sopenharmony_ci 1181e41f4b71Sopenharmony_citypedef struct { 1182e41f4b71Sopenharmony_ci ffrt_cond_t* cond; 1183e41f4b71Sopenharmony_ci int* a; 1184e41f4b71Sopenharmony_ci ffrt_mutex_t* lock_; 1185e41f4b71Sopenharmony_ci} tuple; 1186e41f4b71Sopenharmony_ci 1187e41f4b71Sopenharmony_civoid func1(void* arg) 1188e41f4b71Sopenharmony_ci{ 1189e41f4b71Sopenharmony_ci tuple* t = (tuple*)arg; 1190e41f4b71Sopenharmony_ci int ret = ffrt_mutex_lock(t->lock_); 1191e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1192e41f4b71Sopenharmony_ci printf("error\n"); 1193e41f4b71Sopenharmony_ci } 1194e41f4b71Sopenharmony_ci while (*t->a != 1) { 1195e41f4b71Sopenharmony_ci ret = ffrt_cond_wait(t->cond, t->lock_); 1196e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1197e41f4b71Sopenharmony_ci printf("error\n"); 1198e41f4b71Sopenharmony_ci } 1199e41f4b71Sopenharmony_ci } 1200e41f4b71Sopenharmony_ci ret = ffrt_mutex_unlock(t->lock_); 1201e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1202e41f4b71Sopenharmony_ci printf("error\n"); 1203e41f4b71Sopenharmony_ci } 1204e41f4b71Sopenharmony_ci printf("a = %d\n", *(t->a)); 1205e41f4b71Sopenharmony_ci} 1206e41f4b71Sopenharmony_ci 1207e41f4b71Sopenharmony_civoid func2(void* arg) 1208e41f4b71Sopenharmony_ci{ 1209e41f4b71Sopenharmony_ci tuple* t = (tuple*)arg; 1210e41f4b71Sopenharmony_ci int ret = ffrt_mutex_lock(t->lock_); 1211e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1212e41f4b71Sopenharmony_ci printf("error\n"); 1213e41f4b71Sopenharmony_ci } 1214e41f4b71Sopenharmony_ci *(t->a) = 1; 1215e41f4b71Sopenharmony_ci ret = ffrt_cond_signal(t->cond); 1216e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1217e41f4b71Sopenharmony_ci printf("error\n"); 1218e41f4b71Sopenharmony_ci } 1219e41f4b71Sopenharmony_ci ret = ffrt_mutex_unlock(t->lock_); 1220e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1221e41f4b71Sopenharmony_ci printf("error\n"); 1222e41f4b71Sopenharmony_ci } 1223e41f4b71Sopenharmony_ci} 1224e41f4b71Sopenharmony_ci 1225e41f4b71Sopenharmony_citypedef struct { 1226e41f4b71Sopenharmony_ci ffrt_function_header_t header; 1227e41f4b71Sopenharmony_ci ffrt_function_t func; 1228e41f4b71Sopenharmony_ci ffrt_function_t after_func; 1229e41f4b71Sopenharmony_ci void* arg; 1230e41f4b71Sopenharmony_ci} c_function; 1231e41f4b71Sopenharmony_ci 1232e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 1233e41f4b71Sopenharmony_ci{ 1234e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1235e41f4b71Sopenharmony_ci if (f->func) { 1236e41f4b71Sopenharmony_ci f->func(f->arg); 1237e41f4b71Sopenharmony_ci } 1238e41f4b71Sopenharmony_ci} 1239e41f4b71Sopenharmony_ci 1240e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 1241e41f4b71Sopenharmony_ci{ 1242e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1243e41f4b71Sopenharmony_ci if (f->after_func) { 1244e41f4b71Sopenharmony_ci f->after_func(f->arg); 1245e41f4b71Sopenharmony_ci } 1246e41f4b71Sopenharmony_ci} 1247e41f4b71Sopenharmony_ci 1248e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 1249e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 1250e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 1251e41f4b71Sopenharmony_ci{ 1252e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 1253e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 1254e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 1255e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 1256e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 1257e41f4b71Sopenharmony_ci f->func = func; 1258e41f4b71Sopenharmony_ci f->after_func = after_func; 1259e41f4b71Sopenharmony_ci f->arg = arg; 1260e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 1261e41f4b71Sopenharmony_ci} 1262e41f4b71Sopenharmony_ci 1263e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 1264e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 1265e41f4b71Sopenharmony_ci{ 1266e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 1267e41f4b71Sopenharmony_ci} 1268e41f4b71Sopenharmony_ci 1269e41f4b71Sopenharmony_civoid ffrt_cv_task(void *) 1270e41f4b71Sopenharmony_ci{ 1271e41f4b71Sopenharmony_ci ffrt_cond_t cond; 1272e41f4b71Sopenharmony_ci int ret = ffrt_cond_init(&cond, NULL); 1273e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1274e41f4b71Sopenharmony_ci printf("error\n"); 1275e41f4b71Sopenharmony_ci } 1276e41f4b71Sopenharmony_ci int a = 0; 1277e41f4b71Sopenharmony_ci ffrt_mutex_t lock_; 1278e41f4b71Sopenharmony_ci tuple t = {&cond, &a, &lock_}; 1279e41f4b71Sopenharmony_ci ret = ffrt_mutex_init(&lock_, NULL); 1280e41f4b71Sopenharmony_ci if (ret != ffrt_success) { 1281e41f4b71Sopenharmony_ci printf("error\n"); 1282e41f4b71Sopenharmony_ci } 1283e41f4b71Sopenharmony_ci ffrt_submit_c(func1, NULL, &t, NULL, NULL, NULL); 1284e41f4b71Sopenharmony_ci ffrt_submit_c(func2, NULL, &t, NULL, NULL, NULL); 1285e41f4b71Sopenharmony_ci ffrt_wait(); 1286e41f4b71Sopenharmony_ci ffrt_cond_destroy(&cond); 1287e41f4b71Sopenharmony_ci ffrt_mutex_destroy(&lock_); 1288e41f4b71Sopenharmony_ci} 1289e41f4b71Sopenharmony_ci 1290e41f4b71Sopenharmony_ciint main(int narg, char** argv) 1291e41f4b71Sopenharmony_ci{ 1292e41f4b71Sopenharmony_ci ffrt_submit_c(ffrt_cv_task, NULL, NULL, NULL, NULL, NULL); 1293e41f4b71Sopenharmony_ci ffrt_wait(); 1294e41f4b71Sopenharmony_ci return 0; 1295e41f4b71Sopenharmony_ci} 1296e41f4b71Sopenharmony_ci``` 1297e41f4b71Sopenharmony_ci 1298e41f4b71Sopenharmony_ciExpected output: 1299e41f4b71Sopenharmony_ci 1300e41f4b71Sopenharmony_ci``` 1301e41f4b71Sopenharmony_cia=1 1302e41f4b71Sopenharmony_ci``` 1303e41f4b71Sopenharmony_ci 1304e41f4b71Sopenharmony_ciThis example is for reference only and is not encouraged in practice. 1305e41f4b71Sopenharmony_ci 1306e41f4b71Sopenharmony_ci### Miscellaneous 1307e41f4b71Sopenharmony_ci 1308e41f4b71Sopenharmony_ci#### ffrt_usleep 1309e41f4b71Sopenharmony_ci 1310e41f4b71Sopenharmony_ciProvides performance implementation similar to C11 sleep and Linux usleep. 1311e41f4b71Sopenharmony_ci 1312e41f4b71Sopenharmony_ci##### Declaration 1313e41f4b71Sopenharmony_ci 1314e41f4b71Sopenharmony_ci```{.c} 1315e41f4b71Sopenharmony_ciint ffrt_usleep(uint64_t usec); 1316e41f4b71Sopenharmony_ci``` 1317e41f4b71Sopenharmony_ci 1318e41f4b71Sopenharmony_ci##### Parameters 1319e41f4b71Sopenharmony_ci 1320e41f4b71Sopenharmony_ci`usec` 1321e41f4b71Sopenharmony_ci 1322e41f4b71Sopenharmony_ciDuration that the calling thread is suspended, in μs. 1323e41f4b71Sopenharmony_ci 1324e41f4b71Sopenharmony_ci##### Return value 1325e41f4b71Sopenharmony_ci 1326e41f4b71Sopenharmony_ciN/A 1327e41f4b71Sopenharmony_ci 1328e41f4b71Sopenharmony_ci##### Use guide 1329e41f4b71Sopenharmony_ci* This API can be called only inside an FFRT task. If it is called outside an FFRT task, undefined behavior may occur. 1330e41f4b71Sopenharmony_ci* The traditional function **sleep** may cause unexpected kernel mode trap. **ffrt_usleep** solves this problem and therefore provides better performance if used properly. 1331e41f4b71Sopenharmony_ci 1332e41f4b71Sopenharmony_ci##### Example 1333e41f4b71Sopenharmony_ci 1334e41f4b71Sopenharmony_ci```{.c} 1335e41f4b71Sopenharmony_ci#include <time.h> 1336e41f4b71Sopenharmony_ci#include <stdio.h> 1337e41f4b71Sopenharmony_ci#include "ffrt.h" 1338e41f4b71Sopenharmony_ci 1339e41f4b71Sopenharmony_civoid func(void* arg) 1340e41f4b71Sopenharmony_ci{ 1341e41f4b71Sopenharmony_ci time_t current_time = time(NULL); 1342e41f4b71Sopenharmony_ci printf("Time: %s", ctime(¤t_time)); 1343e41f4b71Sopenharmony_ci ffrt_usleep(2000000); // Suspend for 2 seconds 1344e41f4b71Sopenharmony_ci current_time = time(NULL); 1345e41f4b71Sopenharmony_ci printf("Time: %s", ctime(¤t_time)); 1346e41f4b71Sopenharmony_ci} 1347e41f4b71Sopenharmony_ci 1348e41f4b71Sopenharmony_citypedef struct { 1349e41f4b71Sopenharmony_ci ffrt_function_header_t header; 1350e41f4b71Sopenharmony_ci ffrt_function_t func; 1351e41f4b71Sopenharmony_ci ffrt_function_t after_func; 1352e41f4b71Sopenharmony_ci void* arg; 1353e41f4b71Sopenharmony_ci} c_function; 1354e41f4b71Sopenharmony_ci 1355e41f4b71Sopenharmony_cistatic void ffrt_exec_function_wrapper(void* t) 1356e41f4b71Sopenharmony_ci{ 1357e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1358e41f4b71Sopenharmony_ci if (f->func) { 1359e41f4b71Sopenharmony_ci f->func(f->arg); 1360e41f4b71Sopenharmony_ci } 1361e41f4b71Sopenharmony_ci} 1362e41f4b71Sopenharmony_ci 1363e41f4b71Sopenharmony_cistatic void ffrt_destroy_function_wrapper(void* t) 1364e41f4b71Sopenharmony_ci{ 1365e41f4b71Sopenharmony_ci c_function* f = (c_function*)t; 1366e41f4b71Sopenharmony_ci if (f->after_func) { 1367e41f4b71Sopenharmony_ci f->after_func(f->arg); 1368e41f4b71Sopenharmony_ci } 1369e41f4b71Sopenharmony_ci} 1370e41f4b71Sopenharmony_ci 1371e41f4b71Sopenharmony_ci#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 1372e41f4b71Sopenharmony_cistatic inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 1373e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg) 1374e41f4b71Sopenharmony_ci{ 1375e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(c_function) <= ffrt_auto_managed_function_storage_size, 1376e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 1377e41f4b71Sopenharmony_ci c_function* f = (c_function*)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_general); 1378e41f4b71Sopenharmony_ci f->header.exec = ffrt_exec_function_wrapper; 1379e41f4b71Sopenharmony_ci f->header.destroy = ffrt_destroy_function_wrapper; 1380e41f4b71Sopenharmony_ci f->func = func; 1381e41f4b71Sopenharmony_ci f->after_func = after_func; 1382e41f4b71Sopenharmony_ci f->arg = arg; 1383e41f4b71Sopenharmony_ci return (ffrt_function_header_t*)f; 1384e41f4b71Sopenharmony_ci} 1385e41f4b71Sopenharmony_ci 1386e41f4b71Sopenharmony_cistatic inline void ffrt_submit_c(ffrt_function_t func, const ffrt_function_t after_func, 1387e41f4b71Sopenharmony_ci void* arg, const ffrt_deps_t* in_deps, const ffrt_deps_t* out_deps, const ffrt_task_attr_t* attr) 1388e41f4b71Sopenharmony_ci{ 1389e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(func, after_func, arg), in_deps, out_deps, attr); 1390e41f4b71Sopenharmony_ci} 1391e41f4b71Sopenharmony_ci 1392e41f4b71Sopenharmony_ciint main(int narg, char** argv) 1393e41f4b71Sopenharmony_ci{ 1394e41f4b71Sopenharmony_ci ffrt_submit_c(func, NULL, NULL, NULL, NULL, NULL); 1395e41f4b71Sopenharmony_ci ffrt_wait(); 1396e41f4b71Sopenharmony_ci return 0; 1397e41f4b71Sopenharmony_ci} 1398e41f4b71Sopenharmony_ci``` 1399e41f4b71Sopenharmony_ci 1400e41f4b71Sopenharmony_ciAn output case is as follows: 1401e41f4b71Sopenharmony_ci 1402e41f4b71Sopenharmony_ci``` 1403e41f4b71Sopenharmony_ciTime: Tue Aug 13 15:45:30 2024 1404e41f4b71Sopenharmony_ciTime: Tue Aug 13 15:45:32 2024 1405e41f4b71Sopenharmony_ci``` 1406e41f4b71Sopenharmony_ci 1407e41f4b71Sopenharmony_ci#### ffrt_yield 1408e41f4b71Sopenharmony_ci 1409e41f4b71Sopenharmony_ciPasses control to other tasks so that they can be executed. If there is no other task that can be executed, this API is invalid. 1410e41f4b71Sopenharmony_ci 1411e41f4b71Sopenharmony_ci##### Declaration 1412e41f4b71Sopenharmony_ci 1413e41f4b71Sopenharmony_ci```{.c} 1414e41f4b71Sopenharmony_civoid ffrt_yield(); 1415e41f4b71Sopenharmony_ci``` 1416e41f4b71Sopenharmony_ci 1417e41f4b71Sopenharmony_ci##### Parameters 1418e41f4b71Sopenharmony_ci 1419e41f4b71Sopenharmony_ciN/A 1420e41f4b71Sopenharmony_ci 1421e41f4b71Sopenharmony_ci##### Return value 1422e41f4b71Sopenharmony_ci 1423e41f4b71Sopenharmony_ciN/A 1424e41f4b71Sopenharmony_ci 1425e41f4b71Sopenharmony_ci##### Use guide 1426e41f4b71Sopenharmony_ci* This API can be called only inside an FFRT task. If it is called outside an FFRT task, undefined behavior may occur. 1427e41f4b71Sopenharmony_ci* The exact behavior of this API depends on the implementation, especially the mechanism and system state of the FFRT scheduler in use. 1428e41f4b71Sopenharmony_ci 1429e41f4b71Sopenharmony_ci##### Example 1430e41f4b71Sopenharmony_ci 1431e41f4b71Sopenharmony_ciN/A 1432e41f4b71Sopenharmony_ci 1433e41f4b71Sopenharmony_ci 1434e41f4b71Sopenharmony_ci## How to Develop 1435e41f4b71Sopenharmony_ci 1436e41f4b71Sopenharmony_ciThe following describes how to use the native APIs provided by FFRT to create parallel tasks and serial queue tasks and destroy corresponding resources. 1437e41f4b71Sopenharmony_ci 1438e41f4b71Sopenharmony_ci**Adding Dynamic Link Libraries** 1439e41f4b71Sopenharmony_ci 1440e41f4b71Sopenharmony_ciAdd the following libraries to **CMakeLists.txt**. 1441e41f4b71Sopenharmony_ci```txt 1442e41f4b71Sopenharmony_cilibffrt.z.so 1443e41f4b71Sopenharmony_ci``` 1444e41f4b71Sopenharmony_ci 1445e41f4b71Sopenharmony_ci**Including Header Files** 1446e41f4b71Sopenharmony_ci```c++ 1447e41f4b71Sopenharmony_ci#include "ffrt/task.h" 1448e41f4b71Sopenharmony_ci#include "ffrt/type_def.h" 1449e41f4b71Sopenharmony_ci#include "ffrt/condition_variable.h" 1450e41f4b71Sopenharmony_ci#include "ffrt/mutex.h" 1451e41f4b71Sopenharmony_ci#include "ffrt/queue.h" 1452e41f4b71Sopenharmony_ci#include "ffrt/sleep.h" 1453e41f4b71Sopenharmony_ci``` 1454e41f4b71Sopenharmony_ci 1455e41f4b71Sopenharmony_ci1. **Encapsulate the function to be executed.** 1456e41f4b71Sopenharmony_ci ```c++ 1457e41f4b71Sopenharmony_ci // Method 1: Use the template. C++ is supported. 1458e41f4b71Sopenharmony_ci template<class T> 1459e41f4b71Sopenharmony_ci struct Function { 1460e41f4b71Sopenharmony_ci ffrt_function_header_t header; 1461e41f4b71Sopenharmony_ci T closure; 1462e41f4b71Sopenharmony_ci }; 1463e41f4b71Sopenharmony_ci 1464e41f4b71Sopenharmony_ci template<class T> 1465e41f4b71Sopenharmony_ci void ExecFunctionWrapper(void* t) 1466e41f4b71Sopenharmony_ci { 1467e41f4b71Sopenharmony_ci auto f = reinterpret_cast<Function<std::decay_t<T>>*>(t); 1468e41f4b71Sopenharmony_ci f->closure(); 1469e41f4b71Sopenharmony_ci } 1470e41f4b71Sopenharmony_ci 1471e41f4b71Sopenharmony_ci template<class T> 1472e41f4b71Sopenharmony_ci void DestroyFunctionWrapper(void* t) 1473e41f4b71Sopenharmony_ci { 1474e41f4b71Sopenharmony_ci auto f = reinterpret_cast<Function<std::decay_t<T>>*>(t); 1475e41f4b71Sopenharmony_ci f->closure = nullptr; 1476e41f4b71Sopenharmony_ci } 1477e41f4b71Sopenharmony_ci 1478e41f4b71Sopenharmony_ci template<class T> 1479e41f4b71Sopenharmony_ci static inline ffrt_function_header_t* create_function_wrapper(T&& func, 1480e41f4b71Sopenharmony_ci ffrt_function_kind_t kind = ffrt_function_kind_general) 1481e41f4b71Sopenharmony_ci { 1482e41f4b71Sopenharmony_ci using function_type = Function<std::decay_t<T>>; 1483e41f4b71Sopenharmony_ci auto p = ffrt_alloc_auto_managed_function_storage_base(kind); 1484e41f4b71Sopenharmony_ci auto f = new (p)function_type; 1485e41f4b71Sopenharmony_ci f->header.exec = ExecFunctionWrapper<T>; 1486e41f4b71Sopenharmony_ci f->header.destroy = DestroyFunctionWrapper<T>; 1487e41f4b71Sopenharmony_ci f->closure = std::forward<T>(func); 1488e41f4b71Sopenharmony_ci return reinterpret_cast<ffrt_function_header_t*>(f); 1489e41f4b71Sopenharmony_ci } 1490e41f4b71Sopenharmony_ci 1491e41f4b71Sopenharmony_ci // Method 2 1492e41f4b71Sopenharmony_ci typedef struct { 1493e41f4b71Sopenharmony_ci ffrt_function_header_t header; 1494e41f4b71Sopenharmony_ci ffrt_function_t func; 1495e41f4b71Sopenharmony_ci ffrt_function_t after_func; 1496e41f4b71Sopenharmony_ci void* arg; 1497e41f4b71Sopenharmony_ci } CFunction; 1498e41f4b71Sopenharmony_ci 1499e41f4b71Sopenharmony_ci static void FfrtExecFunctionWrapper(void* t) 1500e41f4b71Sopenharmony_ci { 1501e41f4b71Sopenharmony_ci CFunction* f = static_cast<CFunction*>(t); 1502e41f4b71Sopenharmony_ci if (f->func) { 1503e41f4b71Sopenharmony_ci f->func(f->arg); 1504e41f4b71Sopenharmony_ci } 1505e41f4b71Sopenharmony_ci } 1506e41f4b71Sopenharmony_ci 1507e41f4b71Sopenharmony_ci static void FfrtDestroyFunctionWrapper(void* t) 1508e41f4b71Sopenharmony_ci { 1509e41f4b71Sopenharmony_ci CFunction* f = static_cast<CFunction*>(t); 1510e41f4b71Sopenharmony_ci if (f->after_func) { 1511e41f4b71Sopenharmony_ci f->after_func(f->arg); 1512e41f4b71Sopenharmony_ci } 1513e41f4b71Sopenharmony_ci } 1514e41f4b71Sopenharmony_ci 1515e41f4b71Sopenharmony_ci #define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 1516e41f4b71Sopenharmony_ci static inline ffrt_function_header_t* ffrt_create_function_wrapper(const ffrt_function_t func, 1517e41f4b71Sopenharmony_ci const ffrt_function_t after_func, void* arg, ffrt_function_kind_t kind_t = ffrt_function_kind_general) 1518e41f4b71Sopenharmony_ci { 1519e41f4b71Sopenharmony_ci FFRT_STATIC_ASSERT(sizeof(CFunction) <= ffrt_auto_managed_function_storage_size, 1520e41f4b71Sopenharmony_ci size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 1521e41f4b71Sopenharmony_ci CFunction* f = static_cast<CFunction*>(ffrt_alloc_auto_managed_function_storage_base(kind_t)); 1522e41f4b71Sopenharmony_ci f->header.exec = FfrtExecFunctionWrapper; 1523e41f4b71Sopenharmony_ci f->header.destroy = FfrtDestroyFunctionWrapper; 1524e41f4b71Sopenharmony_ci f->func = func; 1525e41f4b71Sopenharmony_ci f->after_func = after_func; 1526e41f4b71Sopenharmony_ci f->arg = arg; 1527e41f4b71Sopenharmony_ci return reinterpret_cast<ffrt_function_header_t*>(f); 1528e41f4b71Sopenharmony_ci } 1529e41f4b71Sopenharmony_ci 1530e41f4b71Sopenharmony_ci // Example: function to be submitted for execution. 1531e41f4b71Sopenharmony_ci void OnePlusForTest(void* arg) 1532e41f4b71Sopenharmony_ci { 1533e41f4b71Sopenharmony_ci (*static_cast<int*>(arg)) += 1; 1534e41f4b71Sopenharmony_ci } 1535e41f4b71Sopenharmony_ci ``` 1536e41f4b71Sopenharmony_ci 1537e41f4b71Sopenharmony_ci2. **Set the task attributes.** 1538e41f4b71Sopenharmony_ci 1539e41f4b71Sopenharmony_ci Set the task attributes, including the QoS and task name, before submitting the task. 1540e41f4b71Sopenharmony_ci ```c++ 1541e41f4b71Sopenharmony_ci // ******Initialize the attributes of the parallel task****** 1542e41f4b71Sopenharmony_ci ffrt_task_attr_t attr; 1543e41f4b71Sopenharmony_ci ffrt_task_attr_init(&attr); 1544e41f4b71Sopenharmony_ci 1545e41f4b71Sopenharmony_ci // ******Create a serial queue****** 1546e41f4b71Sopenharmony_ci 1547e41f4b71Sopenharmony_ci // Create the attributes of the serial queue. 1548e41f4b71Sopenharmony_ci ffrt_queue_attr_t queue_attr; 1549e41f4b71Sopenharmony_ci // Create the handle of the serial queue. 1550e41f4b71Sopenharmony_ci ffrt_queue_t queue_handle; 1551e41f4b71Sopenharmony_ci 1552e41f4b71Sopenharmony_ci // Initialize the queue attribute. 1553e41f4b71Sopenharmony_ci (void)ffrt_queue_attr_init(&queue_attr); 1554e41f4b71Sopenharmony_ci 1555e41f4b71Sopenharmony_ci // Set the QoS if necessary. 1556e41f4b71Sopenharmony_ci ffrt_queue_attr_set_qos(&queue_attr, static_cast<ffrt_qos_t>(ffrt_qos_inherit)); 1557e41f4b71Sopenharmony_ci // Set the timeout period (ms) if necessary. 1558e41f4b71Sopenharmony_ci ffrt_queue_attr_set_timeout(&queue_attr, 10000); 1559e41f4b71Sopenharmony_ci // Set the timeout callback if necessary. 1560e41f4b71Sopenharmony_ci int x = 0; 1561e41f4b71Sopenharmony_ci ffrt_queue_attr_set_callback(&queue_attr, ffrt_create_function_wrapper(OnePlusForTest, NULL, &x, 1562e41f4b71Sopenharmony_ci ffrt_function_kind_queue)); 1563e41f4b71Sopenharmony_ci 1564e41f4b71Sopenharmony_ci // Initialize the queue based on the attributes. 1565e41f4b71Sopenharmony_ci queue_handle = ffrt_queue_create(ffrt_queue_serial, "test_queue", &queue_attr); 1566e41f4b71Sopenharmony_ci ``` 1567e41f4b71Sopenharmony_ci 1568e41f4b71Sopenharmony_ci3. **Submit the task.** 1569e41f4b71Sopenharmony_ci ```c++ 1570e41f4b71Sopenharmony_ci int a = 0; 1571e41f4b71Sopenharmony_ci // ******Parallel task****** 1572e41f4b71Sopenharmony_ci // Submit the parallel task without obtaining a handle. 1573e41f4b71Sopenharmony_ci ffrt_submit_base(ffrt_create_function_wrapper(OnePlusForTest, NULL, &a), NULL, NULL, &attr); 1574e41f4b71Sopenharmony_ci // Submit the parallel task and obtain a handle. 1575e41f4b71Sopenharmony_ci ffrt_task_handle_t task = ffrt_submit_h_base( 1576e41f4b71Sopenharmony_ci ffrt_create_function_wrapper(OnePlusForTest, NULL, &a), NULL, NULL, &attr); 1577e41f4b71Sopenharmony_ci 1578e41f4b71Sopenharmony_ci // ******Serial queue task****** 1579e41f4b71Sopenharmony_ci // Submit the serial queue task without obtaining a handle. 1580e41f4b71Sopenharmony_ci ffrt_queue_submit(queue_handle, ffrt_create_function_wrapper(OnePlusForTest, nullptr, &a, 1581e41f4b71Sopenharmony_ci ffrt_function_kind_queue), nullptr); 1582e41f4b71Sopenharmony_ci // Submit the serial queue task and obtain a handle. 1583e41f4b71Sopenharmony_ci ffrt_task_handle_t handle = ffrt_queue_submit_h(queue_handle, 1584e41f4b71Sopenharmony_ci ffrt_create_function_wrapper(OnePlusForTest, nullptr, &a, ffrt_function_kind_queue), nullptr); 1585e41f4b71Sopenharmony_ci 1586e41f4b71Sopenharmony_ci // Call wait if you need to wait for the execution result. 1587e41f4b71Sopenharmony_ci const std::vector<ffrt_dependence_t> wait_deps = {{ffrt_dependence_task, task}}; 1588e41f4b71Sopenharmony_ci ffrt_deps_t wait{static_cast<uint32_t>(wait_deps.size()), wait_deps.data()}; 1589e41f4b71Sopenharmony_ci ffrt_wait_deps(&wait); 1590e41f4b71Sopenharmony_ci 1591e41f4b71Sopenharmony_ci ffrt_queue_wait(handle); 1592e41f4b71Sopenharmony_ci ``` 1593e41f4b71Sopenharmony_ci 1594e41f4b71Sopenharmony_ci4. **Destroy the resources after the task is submitted.** 1595e41f4b71Sopenharmony_ci ```c++ 1596e41f4b71Sopenharmony_ci // ******Destroy the parallel task****** 1597e41f4b71Sopenharmony_ci ffrt_task_attr_destroy(&attr); 1598e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(task); 1599e41f4b71Sopenharmony_ci 1600e41f4b71Sopenharmony_ci // ******Destroy the serial queue task****** 1601e41f4b71Sopenharmony_ci // Destroy the task handle and then the queue. 1602e41f4b71Sopenharmony_ci ffrt_queue_attr_destroy(&queue_attr); 1603e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(handle); 1604e41f4b71Sopenharmony_ci ffrt_queue_destroy(queue_handle); 1605e41f4b71Sopenharmony_ci ``` 1606e41f4b71Sopenharmony_ci 1607e41f4b71Sopenharmony_ci## Suggestions 1608e41f4b71Sopenharmony_ci 1609e41f4b71Sopenharmony_ci### Suggestion 1: Functional programming 1610e41f4b71Sopenharmony_ci 1611e41f4b71Sopenharmony_ciBasic idea: Use functional programming for the calculation process. 1612e41f4b71Sopenharmony_ci 1613e41f4b71Sopenharmony_ci* Use pure functions and encapsulate them to express each step of the process. 1614e41f4b71Sopenharmony_ci* There is no global data access. 1615e41f4b71Sopenharmony_ci* There is no internal state reserved. 1616e41f4b71Sopenharmony_ci* Use **ffrt_submit_base()** to submit a function in asynchronous mode for execution. 1617e41f4b71Sopenharmony_ci* Use **in_deps** and **out_deps** of **ffrt_submit_base()** to specify the data objects to be accessed by the function and the access mode. 1618e41f4b71Sopenharmony_ci* Use **inDeps** and **outDeps** to specify the dependency between tasks to ensure the correctness of program execution. 1619e41f4b71Sopenharmony_ci 1620e41f4b71Sopenharmony_ci> **NOTE** 1621e41f4b71Sopenharmony_ci> 1622e41f4b71Sopenharmony_ci> Using pure functions helps you maximize the parallelism and avoid data races and lock abuse. 1623e41f4b71Sopenharmony_ci 1624e41f4b71Sopenharmony_ciIn practice, you may not use pure functions in certain scenarios, with the following prerequisites: 1625e41f4b71Sopenharmony_ci 1626e41f4b71Sopenharmony_ci* **in_deps** and **out_deps** can ensure the correctness of program execution. 1627e41f4b71Sopenharmony_ci* The lock mechanism provided by FFRT is used to protect access to global variables. 1628e41f4b71Sopenharmony_ci 1629e41f4b71Sopenharmony_ci 1630e41f4b71Sopenharmony_ci### Suggestion 2: Use FFRT APIs 1631e41f4b71Sopenharmony_ci 1632e41f4b71Sopenharmony_ci* Do not use the APIs of the system thread library to create threads in FFRT tasks. Instead, use **ffrt_submit_base** or **ffrt_submit_h_base** to submit tasks. 1633e41f4b71Sopenharmony_ci* Use the lock, condition variable, sleep, and I/O APIs provided by FFRT to replace the APIs of the system thread library. 1634e41f4b71Sopenharmony_ci* Using the APIs of the system thread library may block worker threads and result in extra performance overhead. 1635e41f4b71Sopenharmony_ci 1636e41f4b71Sopenharmony_ci### Suggestion 3: Deadline mechanism 1637e41f4b71Sopenharmony_ci 1638e41f4b71Sopenharmony_ci* Use FFRT APIs in processing flows that feature periodic/repeated execution. 1639e41f4b71Sopenharmony_ci* Use FFRT APIs in processing flows with clear time constraints and is performance critical. 1640e41f4b71Sopenharmony_ci* Use FFRT APIs in relatively large-granularity processing flows, such as the frame processing flow with the 16.6 ms time constraint. 1641e41f4b71Sopenharmony_ci 1642e41f4b71Sopenharmony_ci### Suggestion 4: Migration from the thread model 1643e41f4b71Sopenharmony_ci 1644e41f4b71Sopenharmony_ci* Create a thread instead of creating an FFRT task. 1645e41f4b71Sopenharmony_ci* A thread is logically similar to a task without **in_deps**. 1646e41f4b71Sopenharmony_ci* Identify the dependency between threads and express the dependencies in **in_deps** or **out_deps** of the task. 1647e41f4b71Sopenharmony_ci* Decompose an intra-thread computing process into asynchronous tasks for invoking. 1648e41f4b71Sopenharmony_ci* Use the task dependency and lock mechanism to avoid data races of concurrent tasks. 1649e41f4b71Sopenharmony_ci 1650e41f4b71Sopenharmony_ci## Restrictions 1651e41f4b71Sopenharmony_ci 1652e41f4b71Sopenharmony_ciAfter an FFRT object is initialized in the C code, you are responsible for setting the object to null or destroying the object. 1653e41f4b71Sopenharmony_ci 1654e41f4b71Sopenharmony_ciTo ensure high performance, the C APIs of FFRT do not use a flag to indicate the object destruction status. You need to release resources properly. Repeatedly destroying an object will cause undefined behavior. 1655e41f4b71Sopenharmony_ci 1656e41f4b71Sopenharmony_ciNoncompliant example 1: Repeated calling of **destroy()** may cause unpredictable data damage. 1657e41f4b71Sopenharmony_ci 1658e41f4b71Sopenharmony_ci```{.c} 1659e41f4b71Sopenharmony_ci#include "ffrt.h" 1660e41f4b71Sopenharmony_civoid abnormal_case_1() 1661e41f4b71Sopenharmony_ci{ 1662e41f4b71Sopenharmony_ci ffrt_task_handle_t h = ffrt_submit_h_base([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL); 1663e41f4b71Sopenharmony_ci ... 1664e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(h); 1665e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(h); // double free 1666e41f4b71Sopenharmony_ci} 1667e41f4b71Sopenharmony_ci``` 1668e41f4b71Sopenharmony_ci 1669e41f4b71Sopenharmony_ciNoncompliant example 2: A memory leak occurs if **destroy()** is not called. 1670e41f4b71Sopenharmony_ci 1671e41f4b71Sopenharmony_ci```{.c} 1672e41f4b71Sopenharmony_ci#include "ffrt.h" 1673e41f4b71Sopenharmony_civoid abnormal_case_2() 1674e41f4b71Sopenharmony_ci{ 1675e41f4b71Sopenharmony_ci ffrt_task_handle_t h = ffrt_submit_h_base([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL); 1676e41f4b71Sopenharmony_ci ... 1677e41f4b71Sopenharmony_ci // Memory leak 1678e41f4b71Sopenharmony_ci} 1679e41f4b71Sopenharmony_ci``` 1680e41f4b71Sopenharmony_ci 1681e41f4b71Sopenharmony_ciRecommended example: Call **destroy()** only once; set the object to null if necessary. 1682e41f4b71Sopenharmony_ci 1683e41f4b71Sopenharmony_ci```{.c} 1684e41f4b71Sopenharmony_ci#include "ffrt.h" 1685e41f4b71Sopenharmony_civoid normal_case() 1686e41f4b71Sopenharmony_ci{ 1687e41f4b71Sopenharmony_ci ffrt_task_handle_t h = ffrt_submit_h_base([](){printf("Test task running...\n");}, NULL, NULL, NULL, NULL, NULL); 1688e41f4b71Sopenharmony_ci ... 1689e41f4b71Sopenharmony_ci ffrt_task_handle_destroy(h); 1690e41f4b71Sopenharmony_ci h = nullptr; // if necessary 1691e41f4b71Sopenharmony_ci} 1692e41f4b71Sopenharmony_ci``` 1693