1e41f4b71Sopenharmony_ci# Temporally Scalable Video Coding 2e41f4b71Sopenharmony_ci 3e41f4b71Sopenharmony_ci## Basic Concepts 4e41f4b71Sopenharmony_ci 5e41f4b71Sopenharmony_ci### Introduction to Temporally Scalable Video Coding 6e41f4b71Sopenharmony_ci 7e41f4b71Sopenharmony_ciScalable video coding is an extended standard for video coding. SVC (short for Scalable Video Coding, an extension of the H.264 standard) and SHVC (short for Scalable High Efficiency Video Coding, an extension of the H.265 standard) are popular nowadays. 8e41f4b71Sopenharmony_ci 9e41f4b71Sopenharmony_ciScalable video coding allows conveyance of information structured in a hierarchical manner of spatial scalability, temporal scalability, and quality scalability. 10e41f4b71Sopenharmony_ci 11e41f4b71Sopenharmony_ciTemporally scalable video coding refers to the process of encoding a video sequence into a set of layers that provide an increasing temporal resolution. The following figure shows the structure of a bitstream that contains four temporal layers and is constructed based on the reference relationship. 12e41f4b71Sopenharmony_ci 13e41f4b71Sopenharmony_ci 14e41f4b71Sopenharmony_ci 15e41f4b71Sopenharmony_ciIn scenarios where the channel condition is poor, frames can be dropped layer by layer in descending order (L3- > L2- > L1) to meet the changing requirements of transmission and decoding capabilities. 16e41f4b71Sopenharmony_ci 17e41f4b71Sopenharmony_ciThe figure below shows the new bitstream structure when the frames at L3 are dropped. The bitstream can be normally decoded while the frame rate is reduced by half. Dropping can occur at other layers in a similar way. 18e41f4b71Sopenharmony_ci 19e41f4b71Sopenharmony_ci 20e41f4b71Sopenharmony_ci 21e41f4b71Sopenharmony_ci### Structure of a Temporally Scalable Bitstream 22e41f4b71Sopenharmony_ciA bitstream is organized by one or more Group of Pictures (GOPs). A GOP is a collection of consecutive pictures that can be independently decoded. It measures the distance between two I-frames (also named key frames). 23e41f4b71Sopenharmony_ci 24e41f4b71Sopenharmony_ciA GOP can be further divided into one or more Temporal Group of Pictures (TGOPs), and each TGOP is composed by a base layer (BL) and one or more associated enhancement layers (ELs). For example, frame 0 to frame 7 in the foregoing four-layer temporally scalable bitstream form a TGOP. 25e41f4b71Sopenharmony_ci 26e41f4b71Sopenharmony_ci- BL: bottom layer (L0) in the GOP. In temporal scalability, this layer is encoded at the lowest frame rate. 27e41f4b71Sopenharmony_ci 28e41f4b71Sopenharmony_ci- EL: layers above the BL. There are L1, L2, and L3 in ascending order. In temporal scalability, the lowest EL encodes, based on encoding information obtained from the BL, the frames at a higher frame rate; a higher EL encodes, based on the BL or a lower EL, the frames at a higher frame rate. 29e41f4b71Sopenharmony_ci 30e41f4b71Sopenharmony_ci### How to Implement the Structure of a Temporally Scalable Bitstream 31e41f4b71Sopenharmony_ci 32e41f4b71Sopenharmony_ciThe temporally scalable bitstream structure is implemented by specifying reference frames, which are classified into the following types based on the duration of residence in a Decoded Picture Buffer (DPB): 33e41f4b71Sopenharmony_ci 34e41f4b71Sopenharmony_ci- Short-Term Reference (STR): a reference frame that cannot reside in the DPB for a long period of time. It adopts the First In First Out (FIFO) approach, which means that the oldest STR is removed from the DPB once the DPB is full. 35e41f4b71Sopenharmony_ci 36e41f4b71Sopenharmony_ci- Long-Term Reference (LTR): a reference frame that can reside in the DPB for a long period of time. It stays in the DPB until it is replaced by another decoded picture with the same ID. 37e41f4b71Sopenharmony_ci 38e41f4b71Sopenharmony_ciAlthough a specific cross-frame reference structure can be implemented when there is more than one STR, the span supported by temporal scalability is limited due to an excessively short validity period. This problem does not exist when coming to the LTR, which also covers the cross-frame scenario of the STR. Therefore, the LTR is preferably used to implement the structure of a temporally scalable bitstream. 39e41f4b71Sopenharmony_ci 40e41f4b71Sopenharmony_ci## When to Use 41e41f4b71Sopenharmony_ciYou are advised to use temporal scalability in the following scenarios: 42e41f4b71Sopenharmony_ci 43e41f4b71Sopenharmony_ci- Real-time encoding and transmission scenarios with no cache or low cache on the playback side, for example, video conferencing, live streaming, and collaborative office. 44e41f4b71Sopenharmony_ci 45e41f4b71Sopenharmony_ci- Video encoding and recording scenario that requires video preview or multi-speed playback. 46e41f4b71Sopenharmony_ci 47e41f4b71Sopenharmony_ciIf your development scenario does not involve dynamic adjustment of the temporal reference structure and the hierarchical structure is simple, you are advised to use [global temporal scalability](#global-temporal-scalability). Otherwise, enable [LTR](#ltr). 48e41f4b71Sopenharmony_ci 49e41f4b71Sopenharmony_ci## Constraints 50e41f4b71Sopenharmony_ci 51e41f4b71Sopenharmony_ci- The global temporal scalability and LTR features are mutually exclusive. 52e41f4b71Sopenharmony_ci 53e41f4b71Sopenharmony_ci The two features cannot be both enabled because they have normalized bottom-layer implementation. 54e41f4b71Sopenharmony_ci 55e41f4b71Sopenharmony_ci- When using the forcible IDR configuration along with the two features, use the frame channel configuration. 56e41f4b71Sopenharmony_ci 57e41f4b71Sopenharmony_ci The reference frame is valid only in the GOP. After an I-frame is refreshed, the DPB is cleared, so does the reference frame. In other words, the I-frame refresh location has a great impact on the reference relationship. 58e41f4b71Sopenharmony_ci 59e41f4b71Sopenharmony_ci When temporal scalability is enabled, to temporarily request the I-frame through **OH_MD_KEY_REQUEST_I_FRAME**, you must configure the frame channel with a determined effective time to notify the framework of the I-frame refresh location, so as to avoid disorder of the reference relationship. For details, see the configuration guide of the frame channel. Do not use **OH_VideoEncoder_SetParameter**, which uses an uncertain effective time. 60e41f4b71Sopenharmony_ci 61e41f4b71Sopenharmony_ci- The callback using **OH_AVBuffer** is supported, but the callback using **OH_AVMemory** is not. 62e41f4b71Sopenharmony_ci 63e41f4b71Sopenharmony_ci Temporal scalability depends on the frame feature. Do not use **OH_AVMemory** to trigger **OH_AVCodecAsyncCallback**. Instead, use **OH_AVBuffer** to trigger **OH_AVCodecCallback**. 64e41f4b71Sopenharmony_ci 65e41f4b71Sopenharmony_ci- Temporal scalability employs P-pictures, but not B-pictures. 66e41f4b71Sopenharmony_ci 67e41f4b71Sopenharmony_ci Temporal scalability can be hierarchical-P or hierarchical-B. Currently, this feature can only be hierarchical-P. 68e41f4b71Sopenharmony_ci 69e41f4b71Sopenharmony_ci- In the case of **UNIFORMLY_SCALED_REFERENCE**, TGOP can only be 2 or 4. 70e41f4b71Sopenharmony_ci 71e41f4b71Sopenharmony_ci## Global Temporal Scalability 72e41f4b71Sopenharmony_ci 73e41f4b71Sopenharmony_ci### Available APIs 74e41f4b71Sopenharmony_ci 75e41f4b71Sopenharmony_ciGlobal temporal scalability is suitable for encoding frames into a stable and simple temporal structure. Its initial configuration takes effect globally and cannot be dynamically modified. The configuration parameters are as follows: 76e41f4b71Sopenharmony_ci 77e41f4b71Sopenharmony_ci| Parameter| Description | 78e41f4b71Sopenharmony_ci| -------- | ---------------------------- | 79e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_ENABLE_TEMPORAL_SCALABILITY | Enabled status of the global temporal scalability feature.| 80e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_SIZE | TGOP size of the global temporal scalability feature.| 81e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_REFERENCE_MODE | TGOP reference mode of the global temporal scalability feature. | 82e41f4b71Sopenharmony_ci 83e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_ENABLE_TEMPORAL_SCALABILITY**: This parameter is set in the configuration phase. The feature can be successfully enabled only when it is supported. 84e41f4b71Sopenharmony_ci 85e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_SIZE**: This parameter is optional and specifies the distance between two I-frames. You need to customize the I-frame density based on the frame extraction requirements. The value range is [2, GopSize). If no value is passed in, the default value is used. 86e41f4b71Sopenharmony_ci 87e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_REFERENCE_MODE**: This parameter is optional and affects the reference mode of non-I-frames. The value can be **ADJACENT_REFERENCE**, **JUMP_REFERENCE**, or **UNIFORMLY_SCALED_REFERENCE**. **ADJACENT_REFERENCE** provides better compression performance, whereas **JUMP_REFERENCE** is more flexible in dropping frames. **UNIFORMLY_SCALED_REFERENCE** enables streams to be distributed more evenly in the case of frame loss. If no value is passed in, the default value is used. 88e41f4b71Sopenharmony_ci 89e41f4b71Sopenharmony_ci > **NOTE** 90e41f4b71Sopenharmony_ci > 91e41f4b71Sopenharmony_ci > In the case of **UNIFORMLY_SCALED_REFERENCE**, TGOP can only be 2 or 4. 92e41f4b71Sopenharmony_ci 93e41f4b71Sopenharmony_ciExample 1: TGOP=4, ADJACENT_REFERENCE 94e41f4b71Sopenharmony_ci 95e41f4b71Sopenharmony_ci 96e41f4b71Sopenharmony_ci 97e41f4b71Sopenharmony_ciExample 2: TGOP=4, JUMP_REFERENCE 98e41f4b71Sopenharmony_ci 99e41f4b71Sopenharmony_ci 100e41f4b71Sopenharmony_ci 101e41f4b71Sopenharmony_ciExample 3: TGOP = 4, UNIFORMLY_SCALED_REFERENCE 102e41f4b71Sopenharmony_ci 103e41f4b71Sopenharmony_ci 104e41f4b71Sopenharmony_ci 105e41f4b71Sopenharmony_ci### How to Develop 106e41f4b71Sopenharmony_ci 107e41f4b71Sopenharmony_ciThis section describes only the steps that are different from the basic encoding process. You can learn the basic encoding process in [Video Encoding](video-encoding.md). 108e41f4b71Sopenharmony_ci 109e41f4b71Sopenharmony_ci1. When creating an encoder instance, check whether the video encoder supports the global temporal scalability feature. 110e41f4b71Sopenharmony_ci 111e41f4b71Sopenharmony_ci ```c++ 112e41f4b71Sopenharmony_ci // 1.1 Obtain the handle to the capability of the video encoder. The following uses H.264 as an example. 113e41f4b71Sopenharmony_ci OH_AVCapability *cap = OH_AVCodec_GetCapability(OH_AVCODEC_MIMETYPE_VIDEO_AVC, true); 114e41f4b71Sopenharmony_ci // 1.2 Check whether the global temporal scalability feature is supported. 115e41f4b71Sopenharmony_ci bool isSupported = OH_AVCapability_isFeatureSupported(cap, VIDEO_ENCODER_TEMPORAL_SCALABILITY); 116e41f4b71Sopenharmony_ci ``` 117e41f4b71Sopenharmony_ci 118e41f4b71Sopenharmony_ci If the feature is supported, it can be enabled. 119e41f4b71Sopenharmony_ci 120e41f4b71Sopenharmony_ci2. In the configuration phase, configure the parameters related to the global temporal scalability feature. 121e41f4b71Sopenharmony_ci 122e41f4b71Sopenharmony_ci ```c++ 123e41f4b71Sopenharmony_ci constexpr int32_t TGOP_SIZE = 3; 124e41f4b71Sopenharmony_ci // 2.1 Create a temporary AV format used for configuration. 125e41f4b71Sopenharmony_ci OH_AVFormat *format = OH_AVFormat_Create(); 126e41f4b71Sopenharmony_ci // 2.2 Fill in the key-value pair of the parameter used to enable the feature. 127e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_ENABLE_TEMPORAL_SCALABILITY, 1); 128e41f4b71Sopenharmony_ci // 2.3 (Optional) Fill in the key-value pairs of the parameters that specify the TGOP size and reference mode. 129e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_SIZE, TGOP_SIZE); 130e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_TEMPORAL_GOP_REFERENCE_MODE, ADJACENT_REFERENCE); 131e41f4b71Sopenharmony_ci // 2.4 Configure the parameters. 132e41f4b71Sopenharmony_ci int32_t ret = OH_VideoEncoder_Configure(videoEnc, format); 133e41f4b71Sopenharmony_ci if (ret != AV_ERR_OK) { 134e41f4b71Sopenharmony_ci // Exception handling. 135e41f4b71Sopenharmony_ci } 136e41f4b71Sopenharmony_ci // 2.5 Destroy the temporary AV format after the configuration is complete. 137e41f4b71Sopenharmony_ci OH_AVFormat_Destroy(format); 138e41f4b71Sopenharmony_ci ``` 139e41f4b71Sopenharmony_ci 140e41f4b71Sopenharmony_ci3. (Optional) During output rotation in the running phase, obtain the temporal layer information corresponding to the bitstream. 141e41f4b71Sopenharmony_ci 142e41f4b71Sopenharmony_ci You can periodically obtain the number of encoded frames based on the configured TGOP parameters. 143e41f4b71Sopenharmony_ci 144e41f4b71Sopenharmony_ci The sample code is as follows: 145e41f4b71Sopenharmony_ci 146e41f4b71Sopenharmony_ci ```c++ 147e41f4b71Sopenharmony_ci uint32_t outPoc = 0; 148e41f4b71Sopenharmony_ci // Obtain the relative position in the TGOP based on the number of valid frames in the output callback and determine the layer based on the configuration. 149e41f4b71Sopenharmony_ci static void OnNewOutputBuffer(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *buffer, void *userData) 150e41f4b71Sopenharmony_ci { 151e41f4b71Sopenharmony_ci // Note: If complex processing is involved, you are advised to create an association. 152e41f4b71Sopenharmony_ci struct OH_AVCodecBufferAttr attr; 153e41f4b71Sopenharmony_ci (void)buffer->GetBufferAttr(attr); 154e41f4b71Sopenharmony_ci // Set POC to 0 after the I-frame is refreshed. 155e41f4b71Sopenharmony_ci if (attr.flags & AVCODEC_BUFFER_FLAG_KEY_FRAME) { 156e41f4b71Sopenharmony_ci outPoc = 0; 157e41f4b71Sopenharmony_ci } 158e41f4b71Sopenharmony_ci // Skip the process when there is only the XPS output, but no frame stream. 159e41f4b71Sopenharmony_ci if (attr.flags != AVCODEC_BUFFER_FLAG_CODEC_DATA) { 160e41f4b71Sopenharmony_ci int32_t tGopInner = outPoc % TGOP_SIZE; 161e41f4b71Sopenharmony_ci if (tGopInner == 0) { 162e41f4b71Sopenharmony_ci // I-frames cannot be dropped in subsequent transmission and decoding processes. 163e41f4b71Sopenharmony_ci } else { 164e41f4b71Sopenharmony_ci // Non-I-frames can be dropped in subsequent transmission and decoding processes. 165e41f4b71Sopenharmony_ci } 166e41f4b71Sopenharmony_ci outPoc++; 167e41f4b71Sopenharmony_ci } 168e41f4b71Sopenharmony_ci } 169e41f4b71Sopenharmony_ci ``` 170e41f4b71Sopenharmony_ci 171e41f4b71Sopenharmony_ci4. (Optional) During output rotation in the running phase, use the temporal layer information obtained for adaptive transmission or decoding. 172e41f4b71Sopenharmony_ci 173e41f4b71Sopenharmony_ci Based on the temporally scalable bitstream and layer information, select a required layer for transmission, or carry the information to the peer for adaptive decoding. 174e41f4b71Sopenharmony_ci 175e41f4b71Sopenharmony_ci## LTR 176e41f4b71Sopenharmony_ci 177e41f4b71Sopenharmony_ci### Available APIs 178e41f4b71Sopenharmony_ci 179e41f4b71Sopenharmony_ciThe LTR feature provides a flexible configuration of the frame-level reference relationship. It is suitable for flexible and complex temporally hierarchical structures. 180e41f4b71Sopenharmony_ci 181e41f4b71Sopenharmony_ci| Parameter| Description | 182e41f4b71Sopenharmony_ci| -------- | ---------------------------- | 183e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_LTR_FRAME_COUNT | Number of LTR frames.| 184e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_MARK_LTR | Marked as an LTR frame.| 185e41f4b71Sopenharmony_ci| OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_USE_LTR | Number of the LTR frame referenced by the current frame. | 186e41f4b71Sopenharmony_ci 187e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_LTR_FRAME_COUNT**: This parameter is set in the configuration phase and must be less than or equal to the maximum number of LTR frames supported. 188e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_MARK_LTR **: The BL layer is marked as an LTR frame, and the EL layer to skip is also marked as an LTR frame. 189e41f4b71Sopenharmony_ci- **OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_USE_LTR **: Number of the frame marked as the LTR frame. 190e41f4b71Sopenharmony_ci 191e41f4b71Sopenharmony_ciFor example, to implement the four-layer temporally hierarchical structure described in [Introduction to Temporally Scalable Video Coding](#introduction-to-temporally-scalable-video-coding), perform the following steps: 192e41f4b71Sopenharmony_ci 193e41f4b71Sopenharmony_ci1. In the configuration phase, set **OH_MD_KEY_VIDEO_ENCODER_LTR_FRAME_COUNT** to **5**. 194e41f4b71Sopenharmony_ci 195e41f4b71Sopenharmony_ci2. In the input rotation of the running phase, configure the LTR parameters according to the following table, where **\** means that no configuration is required. 196e41f4b71Sopenharmony_ci 197e41f4b71Sopenharmony_ci | Configuration\POC| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 198e41f4b71Sopenharmony_ci | -------- |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----| 199e41f4b71Sopenharmony_ci | MARK_LTR | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 200e41f4b71Sopenharmony_ci | USE_LTR | \ | \ | 0 | \ | 0 | \ | 4 | \ | 0 | \ | 8 | \ | 8 | \ | 12 | 0 | 8 | 201e41f4b71Sopenharmony_ci 202e41f4b71Sopenharmony_ci### How to Develop 203e41f4b71Sopenharmony_ci 204e41f4b71Sopenharmony_ciThis section describes only the steps that are different from the basic encoding process. You can learn the basic encoding process in [Video Encoding](video-encoding.md). 205e41f4b71Sopenharmony_ci 206e41f4b71Sopenharmony_ci1. When creating an encoder instance, check whether the video encoder supports the LTR feature. 207e41f4b71Sopenharmony_ci 208e41f4b71Sopenharmony_ci ```c++ 209e41f4b71Sopenharmony_ci constexpr int32_t NEEDED_LTR_COUNT = 5; 210e41f4b71Sopenharmony_ci bool isSupported = false; 211e41f4b71Sopenharmony_ci int32_t supportedLTRCount = 0; 212e41f4b71Sopenharmony_ci // 1.1 Obtain the handle to the capability of the encoder. The following uses H.264 as an example. 213e41f4b71Sopenharmony_ci OH_AVCapability *cap = OH_AVCodec_GetCapability(OH_AVCODEC_MIMETYPE_VIDEO_AVC, true); 214e41f4b71Sopenharmony_ci // 1.2 Check whether the LTR feature is supported. 215e41f4b71Sopenharmony_ci isSupported = OH_AVCapability_isFeatureSupported(cap, VIDEO_ENCODER_LONG_TERM_REFERENCE); 216e41f4b71Sopenharmony_ci // 1.3 Determine the number of supported LTR frames. 217e41f4b71Sopenharmony_ci if (isSupported) { 218e41f4b71Sopenharmony_ci OH_AVFormat *properties = OH_AVCapability_GetFeatureProperties(cap, VIDEO_ENCODER_LONG_TERM_REFERENCE); 219e41f4b71Sopenharmony_ci OH_AVFormat_GetIntValue(properties, OH_FEATURE_PROPERTY_KEY_VIDEO_ENCODER_MAX_LTR_FRAME_COUNT, &supportedLTRCount); 220e41f4b71Sopenharmony_ci OH_AVFormat_Destroy(properties); 221e41f4b71Sopenharmony_ci // 1.4 Check whether the number of supported LTR frames meets the structure requirements. 222e41f4b71Sopenharmony_ci isSupported = supportedLTRCount >= NEEDED_LTR_COUNT; 223e41f4b71Sopenharmony_ci } 224e41f4b71Sopenharmony_ci ``` 225e41f4b71Sopenharmony_ci 226e41f4b71Sopenharmony_ci If the LTR feature is supported and the number of supported LTR frames meets the requirements, the feature can be enabled. 227e41f4b71Sopenharmony_ci 228e41f4b71Sopenharmony_ci2. Register the frame channel callback functions. 229e41f4b71Sopenharmony_ci 230e41f4b71Sopenharmony_ci The following is an example of the configuration in buffer input mode: 231e41f4b71Sopenharmony_ci 232e41f4b71Sopenharmony_ci ```c++ 233e41f4b71Sopenharmony_ci // 2.1 Implement the OH_AVCodecOnNeedInputBuffer callback function. 234e41f4b71Sopenharmony_ci static void OnNeedInputBuffer(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *buffer, void *userData) 235e41f4b71Sopenharmony_ci { 236e41f4b71Sopenharmony_ci // The index of the input frame buffer is sent to InIndexQueue. 237e41f4b71Sopenharmony_ci // The input frame data (specified by buffer) is sent to InBufferQueue. 238e41f4b71Sopenharmony_ci // Perform data processing. For details, see: 239e41f4b71Sopenharmony_ci // - Write the stream to encode. 240e41f4b71Sopenharmony_ci // - Notify the encoder of EOS. 241e41f4b71Sopenharmony_ci // - Write the frame parameter. 242e41f4b71Sopenharmony_ci OH_AVFormat *format = OH_AVBuffer_GetParameter(buffer); 243e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_MARK_LTR, 1); 244e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_USE_LTR, 4); 245e41f4b71Sopenharmony_ci OH_AVBuffer_SetParameter(buffer, format); 246e41f4b71Sopenharmony_ci // Notify the encoder that the buffer input is complete. 247e41f4b71Sopenharmony_ci OH_VideoEncoder_PushInputBuffer(codec, index); 248e41f4b71Sopenharmony_ci } 249e41f4b71Sopenharmony_ci 250e41f4b71Sopenharmony_ci // 2.2 Implement the OH_AVCodecOnNewOutputBuffer callback function. 251e41f4b71Sopenharmony_ci static void OnNewOutputBuffer(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *buffer, void *userData) 252e41f4b71Sopenharmony_ci { 253e41f4b71Sopenharmony_ci // The index of the output frame buffer is sent to outIndexQueue. 254e41f4b71Sopenharmony_ci // The encoded frame data (specified by buffer) is sent to outBufferQueue. 255e41f4b71Sopenharmony_ci // Perform data processing. For details, see: 256e41f4b71Sopenharmony_ci // - Release the encoded frame. 257e41f4b71Sopenharmony_ci // - Record POC and the enabled status of LTR. 258e41f4b71Sopenharmony_ci } 259e41f4b71Sopenharmony_ci 260e41f4b71Sopenharmony_ci // 2.3 Register the callback functions. 261e41f4b71Sopenharmony_ci OH_AVCodecCallback cb; 262e41f4b71Sopenharmony_ci cb.onNeedInputBuffer = OnNeedInputBuffer; 263e41f4b71Sopenharmony_ci cb.onNewOutputBuffer = OnNewOutputBuffer; 264e41f4b71Sopenharmony_ci OH_VideoEncoder_RegisterCallback(codec, cb, nullptr); 265e41f4b71Sopenharmony_ci ``` 266e41f4b71Sopenharmony_ci 267e41f4b71Sopenharmony_ci The following is an example of the configuration in surface input mode: 268e41f4b71Sopenharmony_ci 269e41f4b71Sopenharmony_ci ```c++ 270e41f4b71Sopenharmony_ci // 2.1 Implement the OH_VideoEncoder_OnNeedInputParameter callback function. 271e41f4b71Sopenharmony_ci static void OnNeedInputParameter(OH_AVCodec *codec, uint32_t index, OH_AVFormat *parameter, void *userData) 272e41f4b71Sopenharmony_ci { 273e41f4b71Sopenharmony_ci // The index of the input frame buffer is sent to InIndexQueue. 274e41f4b71Sopenharmony_ci // The input frame data (specified by avformat) is sent to InFormatQueue. 275e41f4b71Sopenharmony_ci // Perform data processing. For details, see: 276e41f4b71Sopenharmony_ci // - Write the stream to encode. 277e41f4b71Sopenharmony_ci // - Notify the encoder of EOS. 278e41f4b71Sopenharmony_ci // - Write the frame parameter. 279e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(parameter, OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_MARK_LTR, 1); 280e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(parameter, OH_MD_KEY_VIDEO_ENCODER_PER_FRAME_USE_LTR, 4); 281e41f4b71Sopenharmony_ci // Notify the encoder that the frame input is complete. 282e41f4b71Sopenharmony_ci OH_VideoEncoder_PushInputParameter(codec, index); 283e41f4b71Sopenharmony_ci } 284e41f4b71Sopenharmony_ci 285e41f4b71Sopenharmony_ci // 2.2 Implement the OH_AVCodecOnNewOutputBuffer callback function. 286e41f4b71Sopenharmony_ci static void OnNewOutputBuffer(OH_AVCodec *codec, uint32_t index, OH_AVBuffer *buffer, void *userData) 287e41f4b71Sopenharmony_ci { 288e41f4b71Sopenharmony_ci // The index of the output frame buffer is sent to outIndexQueue. 289e41f4b71Sopenharmony_ci // The encoded frame data (specified by buffer) is sent to outBufferQueue. 290e41f4b71Sopenharmony_ci // Perform data processing. For details, see: 291e41f4b71Sopenharmony_ci // - Release the encoded frame. 292e41f4b71Sopenharmony_ci // - Record POC and the enabled status of LTR. 293e41f4b71Sopenharmony_ci } 294e41f4b71Sopenharmony_ci 295e41f4b71Sopenharmony_ci // 2.3 Register the callback functions. 296e41f4b71Sopenharmony_ci OH_AVCodecCallback cb; 297e41f4b71Sopenharmony_ci cb.onNewOutputBuffer = OnNewOutputBuffer; 298e41f4b71Sopenharmony_ci OH_VideoEncoder_RegisterCallback(codec, cb, nullptr); 299e41f4b71Sopenharmony_ci // 2.4 Register the frame channel callback functions. 300e41f4b71Sopenharmony_ci OH_VideoEncoder_OnNeedInputParameter inParaCb = OnNeedInputParameter; 301e41f4b71Sopenharmony_ci OH_VideoEncoder_RegisterParameterCallback(codec, inParaCb, nullptr); 302e41f4b71Sopenharmony_ci ``` 303e41f4b71Sopenharmony_ci 304e41f4b71Sopenharmony_ci3. In the configuration phase, configure the maximum number of LTR frames. 305e41f4b71Sopenharmony_ci 306e41f4b71Sopenharmony_ci ```c++ 307e41f4b71Sopenharmony_ci constexpr int32_t TGOP_SIZE = 3; 308e41f4b71Sopenharmony_ci // 3.1 Create a temporary AV format used for configuration. 309e41f4b71Sopenharmony_ci OH_AVFormat *format = OH_AVFormat_Create(); 310e41f4b71Sopenharmony_ci // 3.2 Fill in the key-value pair of the parameter that specifies the number of LTR frames. 311e41f4b71Sopenharmony_ci OH_AVFormat_SetIntValue(format, OH_MD_KEY_VIDEO_ENCODER_LTR_FRAME_COUNT, NEEDED_LTR_COUNT); 312e41f4b71Sopenharmony_ci // 3.3 Configure the parameters. 313e41f4b71Sopenharmony_ci int32_t ret = OH_VideoEncoder_Configure(videoEnc, format); 314e41f4b71Sopenharmony_ci if (ret != AV_ERR_OK) { 315e41f4b71Sopenharmony_ci // Exception handling. 316e41f4b71Sopenharmony_ci } 317e41f4b71Sopenharmony_ci // 3.4 Destroy the temporary AV format after the configuration is complete. 318e41f4b71Sopenharmony_ci OH_AVFormat_Destroy(format); 319e41f4b71Sopenharmony_ci ``` 320e41f4b71Sopenharmony_ci 321e41f4b71Sopenharmony_ci4. (Optional) During output rotation in the running phase, obtain the temporal layer information corresponding to the bitstream. 322e41f4b71Sopenharmony_ci 323e41f4b71Sopenharmony_ci This procedure is the same as that described in the global temporal scalability feature. 324e41f4b71Sopenharmony_ci 325e41f4b71Sopenharmony_ci The LTR parameters are configured in the input rotation. You can also record the LTR parameters in the input rotation and find the corresponding input parameters in the output rotation. 326e41f4b71Sopenharmony_ci 327e41f4b71Sopenharmony_ci5. (Optional) During output rotation in the running phase, use the temporal layer information obtained for adaptive transmission or decoding. 328e41f4b71Sopenharmony_ci 329e41f4b71Sopenharmony_ci This procedure is the same as that described in the global temporal scalability feature. 330