1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7#include "sched.h" 8 9void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 10{ 11 spin_lock_init(&wq_head->lock); 12 lockdep_set_class_and_name(&wq_head->lock, key, name); 13 INIT_LIST_HEAD(&wq_head->head); 14} 15 16EXPORT_SYMBOL(__init_waitqueue_head); 17 18void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 19{ 20 unsigned long flags; 21 22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 23 spin_lock_irqsave(&wq_head->lock, flags); 24 __add_wait_queue(wq_head, wq_entry); 25 spin_unlock_irqrestore(&wq_head->lock, flags); 26} 27EXPORT_SYMBOL(add_wait_queue); 28 29void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 30{ 31 unsigned long flags; 32 33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 34 spin_lock_irqsave(&wq_head->lock, flags); 35 __add_wait_queue_entry_tail(wq_head, wq_entry); 36 spin_unlock_irqrestore(&wq_head->lock, flags); 37} 38EXPORT_SYMBOL(add_wait_queue_exclusive); 39 40void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 41{ 42 unsigned long flags; 43 44 spin_lock_irqsave(&wq_head->lock, flags); 45 __remove_wait_queue(wq_head, wq_entry); 46 spin_unlock_irqrestore(&wq_head->lock, flags); 47} 48EXPORT_SYMBOL(remove_wait_queue); 49 50/* 51 * Scan threshold to break wait queue walk. 52 * This allows a waker to take a break from holding the 53 * wait queue lock during the wait queue walk. 54 */ 55#define WAITQUEUE_WALK_BREAK_CNT 64 56 57/* 58 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 59 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 60 * number) then we wake all the non-exclusive tasks and one exclusive task. 61 * 62 * There are circumstances in which we can try to wake a task which has already 63 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 64 * zero in this (rare) case, and we handle it by continuing to scan the queue. 65 */ 66static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, int wake_flags, 67 void *key, wait_queue_entry_t *bookmark) 68{ 69 wait_queue_entry_t *curr, *next; 70 int cnt = 0; 71 72 lockdep_assert_held(&wq_head->lock); 73 74 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) { 75 curr = list_next_entry(bookmark, entry); 76 77 list_del(&bookmark->entry); 78 bookmark->flags = 0; 79 } else { 80 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 81 } 82 83 if (&curr->entry == &wq_head->head) { 84 return nr_exclusive; 85 } 86 87 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) 88 { 89 unsigned flags = curr->flags; 90 int ret; 91 92 if (flags & WQ_FLAG_BOOKMARK) { 93 continue; 94 } 95 96 ret = curr->func(curr, mode, wake_flags, key); 97 if (ret < 0) { 98 break; 99 } 100 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) { 101 break; 102 } 103 104 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) && (&next->entry != &wq_head->head)) { 105 bookmark->flags = WQ_FLAG_BOOKMARK; 106 list_add_tail(&bookmark->entry, &next->entry); 107 break; 108 } 109 } 110 111 return nr_exclusive; 112} 113 114static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, int wake_flags, 115 void *key) 116{ 117 unsigned long flags; 118 wait_queue_entry_t bookmark; 119 120 bookmark.flags = 0; 121 bookmark.private = NULL; 122 bookmark.func = NULL; 123 INIT_LIST_HEAD(&bookmark.entry); 124 125 do { 126 spin_lock_irqsave(&wq_head->lock, flags); 127 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key, &bookmark); 128 spin_unlock_irqrestore(&wq_head->lock, flags); 129 } while (bookmark.flags & WQ_FLAG_BOOKMARK); 130} 131 132/** 133 * __wake_up - wake up threads blocked on a waitqueue. 134 * @wq_head: the waitqueue 135 * @mode: which threads 136 * @nr_exclusive: how many wake-one or wake-many threads to wake up 137 * @key: is directly passed to the wakeup function 138 * 139 * If this function wakes up a task, it executes a full memory barrier before 140 * accessing the task state. 141 */ 142void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, void *key) 143{ 144 __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 145} 146EXPORT_SYMBOL(__wake_up); 147 148/* 149 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 150 */ 151void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 152{ 153 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL); 154} 155EXPORT_SYMBOL_GPL(__wake_up_locked); 156 157void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 158{ 159 __wake_up_common(wq_head, mode, 1, 0, key, NULL); 160} 161EXPORT_SYMBOL_GPL(__wake_up_locked_key); 162 163void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head, unsigned int mode, void *key, 164 wait_queue_entry_t *bookmark) 165{ 166 __wake_up_common(wq_head, mode, 1, 0, key, bookmark); 167} 168EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark); 169 170/** 171 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 172 * @wq_head: the waitqueue 173 * @mode: which threads 174 * @key: opaque value to be passed to wakeup targets 175 * 176 * The sync wakeup differs that the waker knows that it will schedule 177 * away soon, so while the target thread will be woken up, it will not 178 * be migrated to another CPU - ie. the two threads are 'synchronized' 179 * with each other. This can prevent needless bouncing between CPUs. 180 * 181 * On UP it can prevent extra preemption. 182 * 183 * If this function wakes up a task, it executes a full memory barrier before 184 * accessing the task state. 185 */ 186void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 187{ 188 if (unlikely(!wq_head)) { 189 return; 190 } 191 192 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key); 193} 194EXPORT_SYMBOL_GPL(__wake_up_sync_key); 195 196/** 197 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue. 198 * @wq_head: the waitqueue 199 * @mode: which threads 200 * @key: opaque value to be passed to wakeup targets 201 * 202 * The sync wakeup differs in that the waker knows that it will schedule 203 * away soon, so while the target thread will be woken up, it will not 204 * be migrated to another CPU - ie. the two threads are 'synchronized' 205 * with each other. This can prevent needless bouncing between CPUs. 206 * 207 * On UP it can prevent extra preemption. 208 * 209 * If this function wakes up a task, it executes a full memory barrier before 210 * accessing the task state. 211 */ 212void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 213{ 214 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL); 215} 216EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key); 217 218/* 219 * __wake_up_sync - see __wake_up_sync_key() 220 */ 221void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode) 222{ 223 __wake_up_sync_key(wq_head, mode, NULL); 224} 225EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 226 227void __wake_up_pollfree(struct wait_queue_head *wq_head) 228{ 229 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE)); 230 /* POLLFREE must have cleared the queue. */ 231 WARN_ON_ONCE(waitqueue_active(wq_head)); 232} 233 234/* 235 * Note: we use "set_current_state()" _after_ the wait-queue add, 236 * because we need a memory barrier there on SMP, so that any 237 * wake-function that tests for the wait-queue being active 238 * will be guaranteed to see waitqueue addition _or_ subsequent 239 * tests in this thread will see the wakeup having taken place. 240 * 241 * The spin_unlock() itself is semi-permeable and only protects 242 * one way (it only protects stuff inside the critical region and 243 * stops them from bleeding out - it would still allow subsequent 244 * loads to move into the critical region). 245 */ 246void prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 247{ 248 unsigned long flags; 249 250 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 251 spin_lock_irqsave(&wq_head->lock, flags); 252 if (list_empty(&wq_entry->entry)) { 253 __add_wait_queue(wq_head, wq_entry); 254 } 255 set_current_state(state); 256 spin_unlock_irqrestore(&wq_head->lock, flags); 257} 258EXPORT_SYMBOL(prepare_to_wait); 259 260/* Returns true if we are the first waiter in the queue, false otherwise. */ 261bool prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 262{ 263 unsigned long flags; 264 bool was_empty = false; 265 266 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 267 spin_lock_irqsave(&wq_head->lock, flags); 268 if (list_empty(&wq_entry->entry)) { 269 was_empty = list_empty(&wq_head->head); 270 __add_wait_queue_entry_tail(wq_head, wq_entry); 271 } 272 set_current_state(state); 273 spin_unlock_irqrestore(&wq_head->lock, flags); 274 return was_empty; 275} 276EXPORT_SYMBOL(prepare_to_wait_exclusive); 277 278void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 279{ 280 wq_entry->flags = flags; 281 wq_entry->private = current; 282 wq_entry->func = autoremove_wake_function; 283 INIT_LIST_HEAD(&wq_entry->entry); 284} 285EXPORT_SYMBOL(init_wait_entry); 286 287long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 288{ 289 unsigned long flags; 290 long ret = 0; 291 292 spin_lock_irqsave(&wq_head->lock, flags); 293 if (signal_pending_state(state, current)) { 294 /* 295 * Exclusive waiter must not fail if it was selected by wakeup, 296 * it should "consume" the condition we were waiting for. 297 * 298 * The caller will recheck the condition and return success if 299 * we were already woken up, we can not miss the event because 300 * wakeup locks/unlocks the same wq_head->lock. 301 * 302 * But we need to ensure that set-condition + wakeup after that 303 * can't see us, it should wake up another exclusive waiter if 304 * we fail. 305 */ 306 list_del_init(&wq_entry->entry); 307 ret = -ERESTARTSYS; 308 } else { 309 if (list_empty(&wq_entry->entry)) { 310 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) { 311 __add_wait_queue_entry_tail(wq_head, wq_entry); 312 } else { 313 __add_wait_queue(wq_head, wq_entry); 314 } 315 } 316 set_current_state(state); 317 } 318 spin_unlock_irqrestore(&wq_head->lock, flags); 319 320 return ret; 321} 322EXPORT_SYMBOL(prepare_to_wait_event); 323 324/* 325 * Note! These two wait functions are entered with the 326 * wait-queue lock held (and interrupts off in the _irq 327 * case), so there is no race with testing the wakeup 328 * condition in the caller before they add the wait 329 * entry to the wake queue. 330 */ 331int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 332{ 333 if (likely(list_empty(&wait->entry))) { 334 __add_wait_queue_entry_tail(wq, wait); 335 } 336 337 set_current_state(TASK_INTERRUPTIBLE); 338 if (signal_pending(current)) { 339 return -ERESTARTSYS; 340 } 341 342 spin_unlock(&wq->lock); 343 schedule(); 344 spin_lock(&wq->lock); 345 346 return 0; 347} 348EXPORT_SYMBOL(do_wait_intr); 349 350int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 351{ 352 if (likely(list_empty(&wait->entry))) { 353 __add_wait_queue_entry_tail(wq, wait); 354 } 355 356 set_current_state(TASK_INTERRUPTIBLE); 357 if (signal_pending(current)) { 358 return -ERESTARTSYS; 359 } 360 361 spin_unlock_irq(&wq->lock); 362 schedule(); 363 spin_lock_irq(&wq->lock); 364 365 return 0; 366} 367EXPORT_SYMBOL(do_wait_intr_irq); 368 369/** 370 * finish_wait - clean up after waiting in a queue 371 * @wq_head: waitqueue waited on 372 * @wq_entry: wait descriptor 373 * 374 * Sets current thread back to running state and removes 375 * the wait descriptor from the given waitqueue if still 376 * queued. 377 */ 378void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 379{ 380 unsigned long flags; 381 382 __set_current_state(TASK_RUNNING); 383 /* 384 * We can check for list emptiness outside the lock 385 * IFF: 386 * - we use the "careful" check that verifies both 387 * the next and prev pointers, so that there cannot 388 * be any half-pending updates in progress on other 389 * CPU's that we haven't seen yet (and that might 390 * still change the stack area. 391 * and 392 * - all other users take the lock (ie we can only 393 * have _one_ other CPU that looks at or modifies 394 * the list). 395 */ 396 if (!list_empty_careful(&wq_entry->entry)) { 397 spin_lock_irqsave(&wq_head->lock, flags); 398 list_del_init(&wq_entry->entry); 399 spin_unlock_irqrestore(&wq_head->lock, flags); 400 } 401} 402EXPORT_SYMBOL(finish_wait); 403 404__sched int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, int sync, void *key) 405{ 406 int ret = default_wake_function(wq_entry, mode, sync, key); 407 if (ret) { 408 list_del_init_careful(&wq_entry->entry); 409 } 410 411 return ret; 412} 413EXPORT_SYMBOL(autoremove_wake_function); 414 415static inline bool is_kthread_should_stop(void) 416{ 417 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 418} 419 420/* 421 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 422 * 423 * add_wait_queue(&wq_head, &wait); 424 * for (;;) { 425 * if (condition) 426 * break; 427 * 428 * // in wait_woken() // in woken_wake_function() 429 * 430 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 431 * smp_mb(); // A try_to_wake_up(): 432 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 433 * schedule() if (p->state & mode) 434 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 435 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 436 * smp_mb(); // B condition = true; 437 * } smp_mb(); // C 438 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 439 */ 440__sched long wait_woken(struct wait_queue_entry *wq_entry, unsigned int mode, long timeout) 441{ 442 /* 443 * The below executes an smp_mb(), which matches with the full barrier 444 * executed by the try_to_wake_up() in woken_wake_function() such that 445 * either we see the store to wq_entry->flags in woken_wake_function() 446 * or woken_wake_function() sees our store to current->state. 447 */ 448 set_current_state(mode); /* A */ 449 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) { 450 timeout = schedule_timeout(timeout); 451 } 452 __set_current_state(TASK_RUNNING); 453 454 /* 455 * The below executes an smp_mb(), which matches with the smp_mb() (C) 456 * in woken_wake_function() such that either we see the wait condition 457 * being true or the store to wq_entry->flags in woken_wake_function() 458 * follows ours in the coherence order. 459 */ 460 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 461 462 return timeout; 463} 464EXPORT_SYMBOL(wait_woken); 465 466__sched int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, int sync, void *key) 467{ 468 /* Pairs with the smp_store_mb() in wait_woken(). */ 469 smp_mb(); /* C */ 470 wq_entry->flags |= WQ_FLAG_WOKEN; 471 472 return default_wake_function(wq_entry, mode, sync, key); 473} 474EXPORT_SYMBOL(woken_wake_function); 475