13d0407baSopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
23d0407baSopenharmony_ci/*
33d0407baSopenharmony_ci * Scheduler internal types and methods:
43d0407baSopenharmony_ci */
53d0407baSopenharmony_ci#ifndef COMMON_SDK_LINUX_KERNEL_SCHED_SCHED_H
63d0407baSopenharmony_ci#define COMMON_SDK_LINUX_KERNEL_SCHED_SCHED_H
73d0407baSopenharmony_ci
83d0407baSopenharmony_ci#include <linux/sched.h>
93d0407baSopenharmony_ci#include <linux/sched/autogroup.h>
103d0407baSopenharmony_ci#include <linux/sched/clock.h>
113d0407baSopenharmony_ci#include <linux/sched/coredump.h>
123d0407baSopenharmony_ci#include <linux/sched/cpufreq.h>
133d0407baSopenharmony_ci#include <linux/sched/cputime.h>
143d0407baSopenharmony_ci#include <linux/sched/deadline.h>
153d0407baSopenharmony_ci#include <linux/sched/debug.h>
163d0407baSopenharmony_ci#include <linux/sched/hotplug.h>
173d0407baSopenharmony_ci#include <linux/sched/idle.h>
183d0407baSopenharmony_ci#include <linux/sched/init.h>
193d0407baSopenharmony_ci#include <linux/sched/isolation.h>
203d0407baSopenharmony_ci#include <linux/sched/jobctl.h>
213d0407baSopenharmony_ci#include <linux/sched/loadavg.h>
223d0407baSopenharmony_ci#include <linux/sched/mm.h>
233d0407baSopenharmony_ci#include <linux/sched/nohz.h>
243d0407baSopenharmony_ci#include <linux/sched/numa_balancing.h>
253d0407baSopenharmony_ci#include <linux/sched/prio.h>
263d0407baSopenharmony_ci#include <linux/sched/rt.h>
273d0407baSopenharmony_ci#include <linux/sched/signal.h>
283d0407baSopenharmony_ci#include <linux/sched/smt.h>
293d0407baSopenharmony_ci#include <linux/sched/stat.h>
303d0407baSopenharmony_ci#include <linux/sched/sysctl.h>
313d0407baSopenharmony_ci#include <linux/sched/task.h>
323d0407baSopenharmony_ci#include <linux/sched/task_stack.h>
333d0407baSopenharmony_ci#include <linux/sched/topology.h>
343d0407baSopenharmony_ci#include <linux/sched/user.h>
353d0407baSopenharmony_ci#include <linux/sched/wake_q.h>
363d0407baSopenharmony_ci#include <linux/sched/xacct.h>
373d0407baSopenharmony_ci
383d0407baSopenharmony_ci#include <uapi/linux/sched/types.h>
393d0407baSopenharmony_ci
403d0407baSopenharmony_ci#include <linux/binfmts.h>
413d0407baSopenharmony_ci#include <linux/blkdev.h>
423d0407baSopenharmony_ci#include <linux/compat.h>
433d0407baSopenharmony_ci#include <linux/context_tracking.h>
443d0407baSopenharmony_ci#include <linux/cpufreq.h>
453d0407baSopenharmony_ci#include <linux/cpuidle.h>
463d0407baSopenharmony_ci#include <linux/cpuset.h>
473d0407baSopenharmony_ci#include <linux/ctype.h>
483d0407baSopenharmony_ci#include <linux/debugfs.h>
493d0407baSopenharmony_ci#include <linux/delayacct.h>
503d0407baSopenharmony_ci#include <linux/energy_model.h>
513d0407baSopenharmony_ci#include <linux/init_task.h>
523d0407baSopenharmony_ci#include <linux/kprobes.h>
533d0407baSopenharmony_ci#include <linux/kthread.h>
543d0407baSopenharmony_ci#include <linux/membarrier.h>
553d0407baSopenharmony_ci#include <linux/migrate.h>
563d0407baSopenharmony_ci#include <linux/mmu_context.h>
573d0407baSopenharmony_ci#include <linux/nmi.h>
583d0407baSopenharmony_ci#include <linux/proc_fs.h>
593d0407baSopenharmony_ci#include <linux/prefetch.h>
603d0407baSopenharmony_ci#include <linux/profile.h>
613d0407baSopenharmony_ci#include <linux/psi.h>
623d0407baSopenharmony_ci#include <linux/rcupdate_wait.h>
633d0407baSopenharmony_ci#include <linux/security.h>
643d0407baSopenharmony_ci#include <linux/stop_machine.h>
653d0407baSopenharmony_ci#include <linux/suspend.h>
663d0407baSopenharmony_ci#include <linux/swait.h>
673d0407baSopenharmony_ci#include <linux/syscalls.h>
683d0407baSopenharmony_ci#include <linux/task_work.h>
693d0407baSopenharmony_ci#include <linux/tsacct_kern.h>
703d0407baSopenharmony_ci
713d0407baSopenharmony_ci#include <asm/tlb.h>
723d0407baSopenharmony_ci#include <asm-generic/vmlinux.lds.h>
733d0407baSopenharmony_ci
743d0407baSopenharmony_ci#ifdef CONFIG_PARAVIRT
753d0407baSopenharmony_ci#include <asm/paravirt.h>
763d0407baSopenharmony_ci#endif
773d0407baSopenharmony_ci
783d0407baSopenharmony_ci#include "cpupri.h"
793d0407baSopenharmony_ci#include "cpudeadline.h"
803d0407baSopenharmony_ci
813d0407baSopenharmony_ci#include <trace/events/sched.h>
823d0407baSopenharmony_ci
833d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
843d0407baSopenharmony_ci#define SCHED_WARN_ON(x) (WARN_ONCE(x, #x))
853d0407baSopenharmony_ci#else
863d0407baSopenharmony_ci#define SCHED_WARN_ON(x) ( {               \
873d0407baSopenharmony_ci    (void)(x), 0; })
883d0407baSopenharmony_ci#endif
893d0407baSopenharmony_ci
903d0407baSopenharmony_cistruct rq;
913d0407baSopenharmony_cistruct cpuidle_state;
923d0407baSopenharmony_ci
933d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RT_CAS
943d0407baSopenharmony_ciextern unsigned long uclamp_task_util(struct task_struct *p);
953d0407baSopenharmony_ci#endif
963d0407baSopenharmony_ci
973d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
983d0407baSopenharmony_ciextern unsigned int sched_ravg_window;
993d0407baSopenharmony_ciextern unsigned int walt_cpu_util_freq_divisor;
1003d0407baSopenharmony_ci
1013d0407baSopenharmony_cistruct walt_sched_stats {
1023d0407baSopenharmony_ci    u64 cumulative_runnable_avg_scaled;
1033d0407baSopenharmony_ci};
1043d0407baSopenharmony_ci
1053d0407baSopenharmony_cistruct load_subtractions {
1063d0407baSopenharmony_ci    u64 window_start;
1073d0407baSopenharmony_ci    u64 subs;
1083d0407baSopenharmony_ci    u64 new_subs;
1093d0407baSopenharmony_ci};
1103d0407baSopenharmony_ci
1113d0407baSopenharmony_ci#define NUM_TRACKED_WINDOWS 2
1123d0407baSopenharmony_ci
1133d0407baSopenharmony_cistruct sched_cluster {
1143d0407baSopenharmony_ci    raw_spinlock_t load_lock;
1153d0407baSopenharmony_ci    struct list_head list;
1163d0407baSopenharmony_ci    struct cpumask cpus;
1173d0407baSopenharmony_ci    int id;
1183d0407baSopenharmony_ci    int max_power_cost;
1193d0407baSopenharmony_ci    int min_power_cost;
1203d0407baSopenharmony_ci    int max_possible_capacity;
1213d0407baSopenharmony_ci    int capacity;
1223d0407baSopenharmony_ci    int efficiency; /* Differentiate cpus with different IPC capability */
1233d0407baSopenharmony_ci    int load_scale_factor;
1243d0407baSopenharmony_ci    unsigned int exec_scale_factor;
1253d0407baSopenharmony_ci    /*
1263d0407baSopenharmony_ci     * max_freq = user maximum
1273d0407baSopenharmony_ci     * max_possible_freq = maximum supported by hardware
1283d0407baSopenharmony_ci     */
1293d0407baSopenharmony_ci    unsigned int cur_freq, max_freq, min_freq;
1303d0407baSopenharmony_ci    unsigned int max_possible_freq;
1313d0407baSopenharmony_ci    bool freq_init_done;
1323d0407baSopenharmony_ci};
1333d0407baSopenharmony_ci
1343d0407baSopenharmony_ciextern unsigned int sched_disable_window_stats;
1353d0407baSopenharmony_ci#endif /* CONFIG_SCHED_WALT */
1363d0407baSopenharmony_ci
1373d0407baSopenharmony_ci/* task_struct::on_rq states: */
1383d0407baSopenharmony_ci#define TASK_ON_RQ_QUEUED 1
1393d0407baSopenharmony_ci#define TASK_ON_RQ_MIGRATING 2
1403d0407baSopenharmony_ci
1413d0407baSopenharmony_ciextern __read_mostly int scheduler_running;
1423d0407baSopenharmony_ci
1433d0407baSopenharmony_ciextern unsigned long calc_load_update;
1443d0407baSopenharmony_ciextern atomic_long_t calc_load_tasks;
1453d0407baSopenharmony_ci
1463d0407baSopenharmony_ciextern const u64 max_cfs_quota_period;
1473d0407baSopenharmony_ci
1483d0407baSopenharmony_ciextern void calc_global_load_tick(struct rq *this_rq);
1493d0407baSopenharmony_ciextern long calc_load_fold_active(struct rq *this_rq, long adjust);
1503d0407baSopenharmony_ci
1513d0407baSopenharmony_ci#ifdef CONFIG_SMP
1523d0407baSopenharmony_ciextern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
1533d0407baSopenharmony_ci#endif
1543d0407baSopenharmony_ci
1553d0407baSopenharmony_ciextern void call_trace_sched_update_nr_running(struct rq *rq, int count);
1563d0407baSopenharmony_ci/*
1573d0407baSopenharmony_ci * Helpers for converting nanosecond timing to jiffy resolution
1583d0407baSopenharmony_ci */
1593d0407baSopenharmony_ci#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1603d0407baSopenharmony_ci#ifdef CONFIG_SCHED_LATENCY_NICE
1613d0407baSopenharmony_ci#define MAX_LATENCY_NICE	19
1623d0407baSopenharmony_ci#define MIN_LATENCY_NICE	-20
1633d0407baSopenharmony_ci#define LATENCY_NICE_WIDTH	\
1643d0407baSopenharmony_ci    (MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
1653d0407baSopenharmony_ci#define DEFAULT_LATENCY_NICE	0
1663d0407baSopenharmony_ci#define DEFAULT_LATENCY_PRIO	(DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
1673d0407baSopenharmony_ci#define NICE_TO_LATENCY(nice)	((nice) + DEFAULT_LATENCY_PRIO)
1683d0407baSopenharmony_ci#define LATENCY_TO_NICE(prio)	((prio) - DEFAULT_LATENCY_PRIO)
1693d0407baSopenharmony_ci#define NICE_LATENCY_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
1703d0407baSopenharmony_ci#define NICE_LATENCY_WEIGHT_MAX	(1L << NICE_LATENCY_SHIFT)
1713d0407baSopenharmony_ci#endif /* CONFIG_SCHED_LATENCY_NICE */
1723d0407baSopenharmony_ci
1733d0407baSopenharmony_ci/*
1743d0407baSopenharmony_ci * Increase resolution of nice-level calculations for 64-bit architectures.
1753d0407baSopenharmony_ci * The extra resolution improves shares distribution and load balancing of
1763d0407baSopenharmony_ci * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
1773d0407baSopenharmony_ci * hierarchies, especially on larger systems. This is not a user-visible change
1783d0407baSopenharmony_ci * and does not change the user-interface for setting shares/weights.
1793d0407baSopenharmony_ci *
1803d0407baSopenharmony_ci * We increase resolution only if we have enough bits to allow this increased
1813d0407baSopenharmony_ci * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
1823d0407baSopenharmony_ci * are pretty high and the returns do not justify the increased costs.
1833d0407baSopenharmony_ci *
1843d0407baSopenharmony_ci * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
1853d0407baSopenharmony_ci * increase coverage and consistency always enable it on 64-bit platforms.
1863d0407baSopenharmony_ci */
1873d0407baSopenharmony_ci#ifdef CONFIG_64BIT
1883d0407baSopenharmony_ci#define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
1893d0407baSopenharmony_ci#define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
1903d0407baSopenharmony_ci#define scale_load_down(w)                                                                                             \
1913d0407baSopenharmony_ci    ( {                                                                                                                \
1923d0407baSopenharmony_ci        unsigned long __w = (w);                                                                                       \
1933d0407baSopenharmony_ci        if (__w)                                                                                                       \
1943d0407baSopenharmony_ci            __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);                                                             \
1953d0407baSopenharmony_ci        __w;                                                                                                           \
1963d0407baSopenharmony_ci    })
1973d0407baSopenharmony_ci#else
1983d0407baSopenharmony_ci#define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
1993d0407baSopenharmony_ci#define scale_load(w) (w)
2003d0407baSopenharmony_ci#define scale_load_down(w) (w)
2013d0407baSopenharmony_ci#endif
2023d0407baSopenharmony_ci
2033d0407baSopenharmony_ci/*
2043d0407baSopenharmony_ci * Task weight (visible to users) and its load (invisible to users) have
2053d0407baSopenharmony_ci * independent resolution, but they should be well calibrated. We use
2063d0407baSopenharmony_ci * scale_load() and scale_load_down(w) to convert between them. The
2073d0407baSopenharmony_ci * following must be true:
2083d0407baSopenharmony_ci *
2093d0407baSopenharmony_ci *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
2103d0407baSopenharmony_ci *
2113d0407baSopenharmony_ci */
2123d0407baSopenharmony_ci#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
2133d0407baSopenharmony_ci#define CPU_FREQ_1K 1024
2143d0407baSopenharmony_ci#define CPU_SAMPLE_ARTE 8
2153d0407baSopenharmony_ci
2163d0407baSopenharmony_ciextern struct cpufreq_governor schedutil_gov;
2173d0407baSopenharmony_ci
2183d0407baSopenharmony_ci/*
2193d0407baSopenharmony_ci * Single value that decides SCHED_DEADLINE internal math precision.
2203d0407baSopenharmony_ci * 10 -> just above 1us
2213d0407baSopenharmony_ci * 9  -> just above 0.5us
2223d0407baSopenharmony_ci */
2233d0407baSopenharmony_ci#define DL_SCALE 10
2243d0407baSopenharmony_ci
2253d0407baSopenharmony_ci/*
2263d0407baSopenharmony_ci * Single value that denotes runtime == period, ie unlimited time.
2273d0407baSopenharmony_ci */
2283d0407baSopenharmony_ci#define RUNTIME_INF ((u64)~0ULL)
2293d0407baSopenharmony_ci
2303d0407baSopenharmony_cistatic inline int idle_policy(int policy)
2313d0407baSopenharmony_ci{
2323d0407baSopenharmony_ci    return policy == SCHED_IDLE;
2333d0407baSopenharmony_ci}
2343d0407baSopenharmony_cistatic inline int fair_policy(int policy)
2353d0407baSopenharmony_ci{
2363d0407baSopenharmony_ci    return policy == SCHED_NORMAL || policy == SCHED_BATCH;
2373d0407baSopenharmony_ci}
2383d0407baSopenharmony_ci
2393d0407baSopenharmony_cistatic inline int rt_policy(int policy)
2403d0407baSopenharmony_ci{
2413d0407baSopenharmony_ci    return policy == SCHED_FIFO || policy == SCHED_RR;
2423d0407baSopenharmony_ci}
2433d0407baSopenharmony_ci
2443d0407baSopenharmony_cistatic inline int dl_policy(int policy)
2453d0407baSopenharmony_ci{
2463d0407baSopenharmony_ci    return policy == SCHED_DEADLINE;
2473d0407baSopenharmony_ci}
2483d0407baSopenharmony_cistatic inline bool valid_policy(int policy)
2493d0407baSopenharmony_ci{
2503d0407baSopenharmony_ci    return idle_policy(policy) || fair_policy(policy) || rt_policy(policy) || dl_policy(policy);
2513d0407baSopenharmony_ci}
2523d0407baSopenharmony_ci
2533d0407baSopenharmony_cistatic inline int task_has_idle_policy(struct task_struct *p)
2543d0407baSopenharmony_ci{
2553d0407baSopenharmony_ci    return idle_policy(p->policy);
2563d0407baSopenharmony_ci}
2573d0407baSopenharmony_ci
2583d0407baSopenharmony_cistatic inline int task_has_rt_policy(struct task_struct *p)
2593d0407baSopenharmony_ci{
2603d0407baSopenharmony_ci    return rt_policy(p->policy);
2613d0407baSopenharmony_ci}
2623d0407baSopenharmony_ci
2633d0407baSopenharmony_cistatic inline int task_has_dl_policy(struct task_struct *p)
2643d0407baSopenharmony_ci{
2653d0407baSopenharmony_ci    return dl_policy(p->policy);
2663d0407baSopenharmony_ci}
2673d0407baSopenharmony_ci
2683d0407baSopenharmony_ci#define cap_scale(v, s) (((v) * (s)) >> SCHED_CAPACITY_SHIFT)
2693d0407baSopenharmony_ci
2703d0407baSopenharmony_cistatic inline void update_avg(u64 *avg, u64 sample)
2713d0407baSopenharmony_ci{
2723d0407baSopenharmony_ci    s64 diff = sample - *avg;
2733d0407baSopenharmony_ci    *avg += diff / CPU_SAMPLE_ARTE;
2743d0407baSopenharmony_ci}
2753d0407baSopenharmony_ci
2763d0407baSopenharmony_ci/*
2773d0407baSopenharmony_ci * Shifting a value by an exponent greater *or equal* to the size of said value
2783d0407baSopenharmony_ci * is UB; cap at size-1.
2793d0407baSopenharmony_ci */
2803d0407baSopenharmony_ci#define shr_bound(val, shift) ((val) >> min_t(typeof(shift), (shift), BITS_PER_TYPE(typeof(val)) - 1))
2813d0407baSopenharmony_ci
2823d0407baSopenharmony_ci/*
2833d0407baSopenharmony_ci * !! For sched_setattr_nocheck() (kernel) only !!
2843d0407baSopenharmony_ci *
2853d0407baSopenharmony_ci * This is actually gross. :(
2863d0407baSopenharmony_ci *
2873d0407baSopenharmony_ci * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
2883d0407baSopenharmony_ci * tasks, but still be able to sleep. We need this on platforms that cannot
2893d0407baSopenharmony_ci * atomically change clock frequency. Remove once fast switching will be
2903d0407baSopenharmony_ci * available on such platforms.
2913d0407baSopenharmony_ci *
2923d0407baSopenharmony_ci * SUGOV stands for SchedUtil GOVernor.
2933d0407baSopenharmony_ci */
2943d0407baSopenharmony_ci#define SCHED_FLAG_SUGOV 0x10000000
2953d0407baSopenharmony_ci
2963d0407baSopenharmony_ci#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
2973d0407baSopenharmony_ci
2983d0407baSopenharmony_cistatic inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
2993d0407baSopenharmony_ci{
3003d0407baSopenharmony_ci#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
3013d0407baSopenharmony_ci    return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
3023d0407baSopenharmony_ci#else
3033d0407baSopenharmony_ci    return false;
3043d0407baSopenharmony_ci#endif
3053d0407baSopenharmony_ci}
3063d0407baSopenharmony_ci
3073d0407baSopenharmony_ci/*
3083d0407baSopenharmony_ci * Tells if entity @a should preempt entity @b.
3093d0407baSopenharmony_ci */
3103d0407baSopenharmony_cistatic inline bool dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
3113d0407baSopenharmony_ci{
3123d0407baSopenharmony_ci    return dl_entity_is_special(a) || dl_time_before(a->deadline, b->deadline);
3133d0407baSopenharmony_ci}
3143d0407baSopenharmony_ci
3153d0407baSopenharmony_ci/*
3163d0407baSopenharmony_ci * This is the priority-queue data structure of the RT scheduling class:
3173d0407baSopenharmony_ci */
3183d0407baSopenharmony_cistruct rt_prio_array {
3193d0407baSopenharmony_ci    DECLARE_BITMAP(bitmap, MAX_RT_PRIO + 1); /* include 1 bit for delimiter */
3203d0407baSopenharmony_ci    struct list_head queue[MAX_RT_PRIO];
3213d0407baSopenharmony_ci};
3223d0407baSopenharmony_ci
3233d0407baSopenharmony_cistruct rt_bandwidth {
3243d0407baSopenharmony_ci    /* nests inside the rq lock: */
3253d0407baSopenharmony_ci    raw_spinlock_t rt_runtime_lock;
3263d0407baSopenharmony_ci    ktime_t rt_period;
3273d0407baSopenharmony_ci    u64 rt_runtime;
3283d0407baSopenharmony_ci    struct hrtimer rt_period_timer;
3293d0407baSopenharmony_ci    unsigned int rt_period_active;
3303d0407baSopenharmony_ci};
3313d0407baSopenharmony_ci
3323d0407baSopenharmony_civoid __dl_clear_params(struct task_struct *p);
3333d0407baSopenharmony_ci
3343d0407baSopenharmony_cistruct dl_bandwidth {
3353d0407baSopenharmony_ci    raw_spinlock_t dl_runtime_lock;
3363d0407baSopenharmony_ci    u64 dl_runtime;
3373d0407baSopenharmony_ci    u64 dl_period;
3383d0407baSopenharmony_ci};
3393d0407baSopenharmony_ci
3403d0407baSopenharmony_cistatic inline int dl_bandwidth_enabled(void)
3413d0407baSopenharmony_ci{
3423d0407baSopenharmony_ci    return sysctl_sched_rt_runtime >= 0;
3433d0407baSopenharmony_ci}
3443d0407baSopenharmony_ci
3453d0407baSopenharmony_ci/*
3463d0407baSopenharmony_ci * To keep the bandwidth of -deadline tasks under control
3473d0407baSopenharmony_ci * we need some place where:
3483d0407baSopenharmony_ci *  - store the maximum -deadline bandwidth of each cpu;
3493d0407baSopenharmony_ci *  - cache the fraction of bandwidth that is currently allocated in
3503d0407baSopenharmony_ci *    each root domain;
3513d0407baSopenharmony_ci *
3523d0407baSopenharmony_ci * This is all done in the data structure below. It is similar to the
3533d0407baSopenharmony_ci * one used for RT-throttling (rt_bandwidth), with the main difference
3543d0407baSopenharmony_ci * that, since here we are only interested in admission control, we
3553d0407baSopenharmony_ci * do not decrease any runtime while the group "executes", neither we
3563d0407baSopenharmony_ci * need a timer to replenish it.
3573d0407baSopenharmony_ci *
3583d0407baSopenharmony_ci * With respect to SMP, bandwidth is given on a per root domain basis,
3593d0407baSopenharmony_ci * meaning that:
3603d0407baSopenharmony_ci *  - bw (< 100%) is the deadline bandwidth of each CPU;
3613d0407baSopenharmony_ci *  - total_bw is the currently allocated bandwidth in each root domain;
3623d0407baSopenharmony_ci */
3633d0407baSopenharmony_cistruct dl_bw {
3643d0407baSopenharmony_ci    raw_spinlock_t lock;
3653d0407baSopenharmony_ci    u64 bw;
3663d0407baSopenharmony_ci    u64 total_bw;
3673d0407baSopenharmony_ci};
3683d0407baSopenharmony_ci
3693d0407baSopenharmony_cistatic inline void __dl_update(struct dl_bw *dl_b, s64 bw);
3703d0407baSopenharmony_ci
3713d0407baSopenharmony_cistatic inline void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
3723d0407baSopenharmony_ci{
3733d0407baSopenharmony_ci    dl_b->total_bw -= tsk_bw;
3743d0407baSopenharmony_ci    __dl_update(dl_b, (s32)tsk_bw / cpus);
3753d0407baSopenharmony_ci}
3763d0407baSopenharmony_ci
3773d0407baSopenharmony_cistatic inline void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
3783d0407baSopenharmony_ci{
3793d0407baSopenharmony_ci    dl_b->total_bw += tsk_bw;
3803d0407baSopenharmony_ci    __dl_update(dl_b, -((s32)tsk_bw / cpus));
3813d0407baSopenharmony_ci}
3823d0407baSopenharmony_ci
3833d0407baSopenharmony_cistatic inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
3843d0407baSopenharmony_ci{
3853d0407baSopenharmony_ci    return (dl_b->bw != -1) && (cap_scale(dl_b->bw, cap) < (dl_b->total_bw - old_bw + new_bw));
3863d0407baSopenharmony_ci}
3873d0407baSopenharmony_ci
3883d0407baSopenharmony_ci/*
3893d0407baSopenharmony_ci * Verify the fitness of task @p to run on @cpu taking into account the
3903d0407baSopenharmony_ci * CPU original capacity and the runtime/deadline ratio of the task.
3913d0407baSopenharmony_ci *
3923d0407baSopenharmony_ci * The function will return true if the CPU original capacity of the
3933d0407baSopenharmony_ci * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
3943d0407baSopenharmony_ci * task and false otherwise.
3953d0407baSopenharmony_ci */
3963d0407baSopenharmony_cistatic inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3973d0407baSopenharmony_ci{
3983d0407baSopenharmony_ci    unsigned long cap = arch_scale_cpu_capacity(cpu);
3993d0407baSopenharmony_ci
4003d0407baSopenharmony_ci    return ((cap_scale(p->dl.dl_deadline, cap)) >= (p->dl.dl_runtime));
4013d0407baSopenharmony_ci}
4023d0407baSopenharmony_ci
4033d0407baSopenharmony_ciextern void init_dl_bw(struct dl_bw *dl_b);
4043d0407baSopenharmony_ciextern int sched_dl_global_validate(void);
4053d0407baSopenharmony_ciextern void sched_dl_do_global(void);
4063d0407baSopenharmony_ciextern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
4073d0407baSopenharmony_ciextern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
4083d0407baSopenharmony_ciextern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
4093d0407baSopenharmony_ciextern bool __checkparam_dl(const struct sched_attr *attr);
4103d0407baSopenharmony_ciextern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
4113d0407baSopenharmony_ciextern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
4123d0407baSopenharmony_ciextern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
4133d0407baSopenharmony_ciextern int  dl_cpu_busy(int cpu, struct task_struct *p);
4143d0407baSopenharmony_ci
4153d0407baSopenharmony_ci#ifdef CONFIG_CGROUP_SCHED
4163d0407baSopenharmony_ci
4173d0407baSopenharmony_ci#include <linux/cgroup.h>
4183d0407baSopenharmony_ci#include <linux/psi.h>
4193d0407baSopenharmony_ci
4203d0407baSopenharmony_cistruct cfs_rq;
4213d0407baSopenharmony_cistruct rt_rq;
4223d0407baSopenharmony_ci
4233d0407baSopenharmony_ciextern struct list_head task_groups;
4243d0407baSopenharmony_ci
4253d0407baSopenharmony_cistruct cfs_bandwidth {
4263d0407baSopenharmony_ci#ifdef CONFIG_CFS_BANDWIDTH
4273d0407baSopenharmony_ci    raw_spinlock_t lock;
4283d0407baSopenharmony_ci    ktime_t period;
4293d0407baSopenharmony_ci    u64 quota;
4303d0407baSopenharmony_ci    u64 runtime;
4313d0407baSopenharmony_ci    s64 hierarchical_quota;
4323d0407baSopenharmony_ci
4333d0407baSopenharmony_ci    u8 idle;
4343d0407baSopenharmony_ci    u8 period_active;
4353d0407baSopenharmony_ci    u8 slack_started;
4363d0407baSopenharmony_ci    struct hrtimer period_timer;
4373d0407baSopenharmony_ci    struct hrtimer slack_timer;
4383d0407baSopenharmony_ci    struct list_head throttled_cfs_rq;
4393d0407baSopenharmony_ci
4403d0407baSopenharmony_ci    /* Statistics: */
4413d0407baSopenharmony_ci    int nr_periods;
4423d0407baSopenharmony_ci    int nr_throttled;
4433d0407baSopenharmony_ci    u64 throttled_time;
4443d0407baSopenharmony_ci#endif
4453d0407baSopenharmony_ci};
4463d0407baSopenharmony_ci
4473d0407baSopenharmony_ci/* Task group related information */
4483d0407baSopenharmony_cistruct task_group {
4493d0407baSopenharmony_ci    struct cgroup_subsys_state css;
4503d0407baSopenharmony_ci
4513d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
4523d0407baSopenharmony_ci    /* schedulable entities of this group on each CPU */
4533d0407baSopenharmony_ci    struct sched_entity **se;
4543d0407baSopenharmony_ci    /* runqueue "owned" by this group on each CPU */
4553d0407baSopenharmony_ci    struct cfs_rq **cfs_rq;
4563d0407baSopenharmony_ci    unsigned long shares;
4573d0407baSopenharmony_ci
4583d0407baSopenharmony_ci#ifdef CONFIG_SMP
4593d0407baSopenharmony_ci    /*
4603d0407baSopenharmony_ci     * load_avg can be heavily contended at clock tick time, so put
4613d0407baSopenharmony_ci     * it in its own cacheline separated from the fields above which
4623d0407baSopenharmony_ci     * will also be accessed at each tick.
4633d0407baSopenharmony_ci     */
4643d0407baSopenharmony_ci    atomic_long_t load_avg ____cacheline_aligned;
4653d0407baSopenharmony_ci#endif
4663d0407baSopenharmony_ci#endif
4673d0407baSopenharmony_ci
4683d0407baSopenharmony_ci#ifdef CONFIG_RT_GROUP_SCHED
4693d0407baSopenharmony_ci    struct sched_rt_entity **rt_se;
4703d0407baSopenharmony_ci    struct rt_rq **rt_rq;
4713d0407baSopenharmony_ci
4723d0407baSopenharmony_ci    struct rt_bandwidth rt_bandwidth;
4733d0407baSopenharmony_ci#endif
4743d0407baSopenharmony_ci
4753d0407baSopenharmony_ci    struct rcu_head rcu;
4763d0407baSopenharmony_ci    struct list_head list;
4773d0407baSopenharmony_ci
4783d0407baSopenharmony_ci    struct task_group *parent;
4793d0407baSopenharmony_ci    struct list_head siblings;
4803d0407baSopenharmony_ci    struct list_head children;
4813d0407baSopenharmony_ci
4823d0407baSopenharmony_ci#ifdef CONFIG_SCHED_AUTOGROUP
4833d0407baSopenharmony_ci    struct autogroup *autogroup;
4843d0407baSopenharmony_ci#endif
4853d0407baSopenharmony_ci
4863d0407baSopenharmony_ci    struct cfs_bandwidth cfs_bandwidth;
4873d0407baSopenharmony_ci
4883d0407baSopenharmony_ci#ifdef CONFIG_UCLAMP_TASK_GROUP
4893d0407baSopenharmony_ci    /* The two decimal precision [%] value requested from user-space */
4903d0407baSopenharmony_ci    unsigned int uclamp_pct[UCLAMP_CNT];
4913d0407baSopenharmony_ci    /* Clamp values requested for a task group */
4923d0407baSopenharmony_ci    struct uclamp_se uclamp_req[UCLAMP_CNT];
4933d0407baSopenharmony_ci    /* Effective clamp values used for a task group */
4943d0407baSopenharmony_ci    struct uclamp_se uclamp[UCLAMP_CNT];
4953d0407baSopenharmony_ci#endif
4963d0407baSopenharmony_ci
4973d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RTG_CGROUP
4983d0407baSopenharmony_ci    /*
4993d0407baSopenharmony_ci     * Controls whether tasks of this cgroup should be colocated with each
5003d0407baSopenharmony_ci     * other and tasks of other cgroups that have the same flag turned on.
5013d0407baSopenharmony_ci     */
5023d0407baSopenharmony_ci    bool colocate;
5033d0407baSopenharmony_ci
5043d0407baSopenharmony_ci    /* Controls whether further updates are allowed to the colocate flag */
5053d0407baSopenharmony_ci    bool colocate_update_disabled;
5063d0407baSopenharmony_ci#endif
5073d0407baSopenharmony_ci};
5083d0407baSopenharmony_ci
5093d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
5103d0407baSopenharmony_ci#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
5113d0407baSopenharmony_ci
5123d0407baSopenharmony_ci/*
5133d0407baSopenharmony_ci * A weight of 0 or 1 can cause arithmetics problems.
5143d0407baSopenharmony_ci * A weight of a cfs_rq is the sum of weights of which entities
5153d0407baSopenharmony_ci * are queued on this cfs_rq, so a weight of a entity should not be
5163d0407baSopenharmony_ci * too large, so as the shares value of a task group.
5173d0407baSopenharmony_ci * (The default weight is 1024 - so there's no practical
5183d0407baSopenharmony_ci *  limitation from this.)
5193d0407baSopenharmony_ci */
5203d0407baSopenharmony_ci#define MIN_SHARES (1UL << 1)
5213d0407baSopenharmony_ci#define MAX_SHARES (1UL << 18)
5223d0407baSopenharmony_ci#endif
5233d0407baSopenharmony_ci
5243d0407baSopenharmony_citypedef int (*tg_visitor)(struct task_group *, void *);
5253d0407baSopenharmony_ci
5263d0407baSopenharmony_ciextern int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data);
5273d0407baSopenharmony_ci
5283d0407baSopenharmony_ci/*
5293d0407baSopenharmony_ci * Iterate the full tree, calling @down when first entering a node and @up when
5303d0407baSopenharmony_ci * leaving it for the final time.
5313d0407baSopenharmony_ci *
5323d0407baSopenharmony_ci * Caller must hold rcu_lock or sufficient equivalent.
5333d0407baSopenharmony_ci */
5343d0407baSopenharmony_cistatic inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
5353d0407baSopenharmony_ci{
5363d0407baSopenharmony_ci    return walk_tg_tree_from(&root_task_group, down, up, data);
5373d0407baSopenharmony_ci}
5383d0407baSopenharmony_ci
5393d0407baSopenharmony_ciextern int tg_nop(struct task_group *tg, void *data);
5403d0407baSopenharmony_ci
5413d0407baSopenharmony_ciextern void free_fair_sched_group(struct task_group *tg);
5423d0407baSopenharmony_ciextern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
5433d0407baSopenharmony_ciextern void online_fair_sched_group(struct task_group *tg);
5443d0407baSopenharmony_ciextern void unregister_fair_sched_group(struct task_group *tg);
5453d0407baSopenharmony_ciextern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu,
5463d0407baSopenharmony_ci                              struct sched_entity *parent);
5473d0407baSopenharmony_ciextern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
5483d0407baSopenharmony_ci
5493d0407baSopenharmony_ciextern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
5503d0407baSopenharmony_ciextern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
5513d0407baSopenharmony_ciextern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
5523d0407baSopenharmony_ci
5533d0407baSopenharmony_ciextern void free_rt_sched_group(struct task_group *tg);
5543d0407baSopenharmony_ciextern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
5553d0407baSopenharmony_ciextern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu,
5563d0407baSopenharmony_ci                             struct sched_rt_entity *parent);
5573d0407baSopenharmony_ciextern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
5583d0407baSopenharmony_ciextern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
5593d0407baSopenharmony_ciextern long sched_group_rt_runtime(struct task_group *tg);
5603d0407baSopenharmony_ciextern long sched_group_rt_period(struct task_group *tg);
5613d0407baSopenharmony_ciextern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
5623d0407baSopenharmony_ci
5633d0407baSopenharmony_ciextern struct task_group *sched_create_group(struct task_group *parent);
5643d0407baSopenharmony_ciextern void sched_online_group(struct task_group *tg, struct task_group *parent);
5653d0407baSopenharmony_ciextern void sched_destroy_group(struct task_group *tg);
5663d0407baSopenharmony_ciextern void sched_offline_group(struct task_group *tg);
5673d0407baSopenharmony_ci
5683d0407baSopenharmony_ciextern void sched_move_task(struct task_struct *tsk);
5693d0407baSopenharmony_ci
5703d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
5713d0407baSopenharmony_ciextern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
5723d0407baSopenharmony_ci
5733d0407baSopenharmony_ci#ifdef CONFIG_SMP
5743d0407baSopenharmony_ciextern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next);
5753d0407baSopenharmony_ci#else  /* !CONFIG_SMP */
5763d0407baSopenharmony_cistatic inline void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next)
5773d0407baSopenharmony_ci{
5783d0407baSopenharmony_ci}
5793d0407baSopenharmony_ci#endif /* CONFIG_SMP */
5803d0407baSopenharmony_ci#endif /* CONFIG_FAIR_GROUP_SCHED */
5813d0407baSopenharmony_ci
5823d0407baSopenharmony_ci#else /* CONFIG_CGROUP_SCHED */
5833d0407baSopenharmony_ci
5843d0407baSopenharmony_cistruct cfs_bandwidth {
5853d0407baSopenharmony_ci};
5863d0407baSopenharmony_ci
5873d0407baSopenharmony_ci#endif /* CONFIG_CGROUP_SCHED */
5883d0407baSopenharmony_ci
5893d0407baSopenharmony_ci/* CFS-related fields in a runqueue */
5903d0407baSopenharmony_cistruct cfs_rq {
5913d0407baSopenharmony_ci    struct load_weight load;
5923d0407baSopenharmony_ci    unsigned int nr_running;
5933d0407baSopenharmony_ci    unsigned int h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
5943d0407baSopenharmony_ci    unsigned int idle_h_nr_running; /* SCHED_IDLE */
5953d0407baSopenharmony_ci
5963d0407baSopenharmony_ci    u64 exec_clock;
5973d0407baSopenharmony_ci    u64 min_vruntime;
5983d0407baSopenharmony_ci#ifndef CONFIG_64BIT
5993d0407baSopenharmony_ci    u64 min_vruntime_copy;
6003d0407baSopenharmony_ci#endif
6013d0407baSopenharmony_ci
6023d0407baSopenharmony_ci    struct rb_root_cached tasks_timeline;
6033d0407baSopenharmony_ci
6043d0407baSopenharmony_ci    /*
6053d0407baSopenharmony_ci     * 'curr' points to currently running entity on this cfs_rq.
6063d0407baSopenharmony_ci     * It is set to NULL otherwise (i.e when none are currently running).
6073d0407baSopenharmony_ci     */
6083d0407baSopenharmony_ci    struct sched_entity *curr;
6093d0407baSopenharmony_ci    struct sched_entity *next;
6103d0407baSopenharmony_ci    struct sched_entity *last;
6113d0407baSopenharmony_ci    struct sched_entity *skip;
6123d0407baSopenharmony_ci
6133d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
6143d0407baSopenharmony_ci    unsigned int nr_spread_over;
6153d0407baSopenharmony_ci#endif
6163d0407baSopenharmony_ci
6173d0407baSopenharmony_ci#ifdef CONFIG_SMP
6183d0407baSopenharmony_ci    /*
6193d0407baSopenharmony_ci     * CFS load tracking
6203d0407baSopenharmony_ci     */
6213d0407baSopenharmony_ci    struct sched_avg avg;
6223d0407baSopenharmony_ci#ifndef CONFIG_64BIT
6233d0407baSopenharmony_ci    u64 load_last_update_time_copy;
6243d0407baSopenharmony_ci#endif
6253d0407baSopenharmony_ci    struct {
6263d0407baSopenharmony_ci        raw_spinlock_t lock ____cacheline_aligned;
6273d0407baSopenharmony_ci        int nr;
6283d0407baSopenharmony_ci        unsigned long load_avg;
6293d0407baSopenharmony_ci        unsigned long util_avg;
6303d0407baSopenharmony_ci        unsigned long runnable_avg;
6313d0407baSopenharmony_ci    } removed;
6323d0407baSopenharmony_ci
6333d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
6343d0407baSopenharmony_ci    unsigned long tg_load_avg_contrib;
6353d0407baSopenharmony_ci    long propagate;
6363d0407baSopenharmony_ci    long prop_runnable_sum;
6373d0407baSopenharmony_ci
6383d0407baSopenharmony_ci    /*
6393d0407baSopenharmony_ci     *   h_load = weight * f(tg)
6403d0407baSopenharmony_ci     *
6413d0407baSopenharmony_ci     * Where f(tg) is the recursive weight fraction assigned to
6423d0407baSopenharmony_ci     * this group.
6433d0407baSopenharmony_ci     */
6443d0407baSopenharmony_ci    unsigned long h_load;
6453d0407baSopenharmony_ci    u64 last_h_load_update;
6463d0407baSopenharmony_ci    struct sched_entity *h_load_next;
6473d0407baSopenharmony_ci#endif /* CONFIG_FAIR_GROUP_SCHED */
6483d0407baSopenharmony_ci#endif /* CONFIG_SMP */
6493d0407baSopenharmony_ci
6503d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
6513d0407baSopenharmony_ci    struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
6523d0407baSopenharmony_ci
6533d0407baSopenharmony_ci    /*
6543d0407baSopenharmony_ci     * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6553d0407baSopenharmony_ci     * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
6563d0407baSopenharmony_ci     * (like users, containers etc.)
6573d0407baSopenharmony_ci     *
6583d0407baSopenharmony_ci     * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
6593d0407baSopenharmony_ci     * This list is used during load balance.
6603d0407baSopenharmony_ci     */
6613d0407baSopenharmony_ci    int on_list;
6623d0407baSopenharmony_ci    struct list_head leaf_cfs_rq_list;
6633d0407baSopenharmony_ci    struct task_group *tg; /* group that "owns" this runqueue */
6643d0407baSopenharmony_ci
6653d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
6663d0407baSopenharmony_ci    struct walt_sched_stats walt_stats;
6673d0407baSopenharmony_ci#endif
6683d0407baSopenharmony_ci
6693d0407baSopenharmony_ci#ifdef CONFIG_CFS_BANDWIDTH
6703d0407baSopenharmony_ci    int runtime_enabled;
6713d0407baSopenharmony_ci    s64 runtime_remaining;
6723d0407baSopenharmony_ci
6733d0407baSopenharmony_ci    u64 throttled_clock;
6743d0407baSopenharmony_ci    u64 throttled_clock_pelt;
6753d0407baSopenharmony_ci    u64 throttled_clock_pelt_time;
6763d0407baSopenharmony_ci    int throttled;
6773d0407baSopenharmony_ci    int throttle_count;
6783d0407baSopenharmony_ci    struct list_head throttled_list;
6793d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
6803d0407baSopenharmony_ci    u64 cumulative_runnable_avg;
6813d0407baSopenharmony_ci#endif
6823d0407baSopenharmony_ci#endif /* CONFIG_CFS_BANDWIDTH */
6833d0407baSopenharmony_ci#endif /* CONFIG_FAIR_GROUP_SCHED */
6843d0407baSopenharmony_ci};
6853d0407baSopenharmony_ci
6863d0407baSopenharmony_cistatic inline int rt_bandwidth_enabled(void)
6873d0407baSopenharmony_ci{
6883d0407baSopenharmony_ci    return sysctl_sched_rt_runtime >= 0;
6893d0407baSopenharmony_ci}
6903d0407baSopenharmony_ci
6913d0407baSopenharmony_ci/* RT IPI pull logic requires IRQ_WORK */
6923d0407baSopenharmony_ci#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
6933d0407baSopenharmony_ci#define HAVE_RT_PUSH_IPI
6943d0407baSopenharmony_ci#endif
6953d0407baSopenharmony_ci
6963d0407baSopenharmony_ci/* Real-Time classes' related field in a runqueue: */
6973d0407baSopenharmony_cistruct rt_rq {
6983d0407baSopenharmony_ci    struct rt_prio_array active;
6993d0407baSopenharmony_ci    unsigned int rt_nr_running;
7003d0407baSopenharmony_ci    unsigned int rr_nr_running;
7013d0407baSopenharmony_ci#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7023d0407baSopenharmony_ci    struct {
7033d0407baSopenharmony_ci        int curr; /* highest queued rt task prio */
7043d0407baSopenharmony_ci#ifdef CONFIG_SMP
7053d0407baSopenharmony_ci        int next; /* next highest */
7063d0407baSopenharmony_ci#endif
7073d0407baSopenharmony_ci    } highest_prio;
7083d0407baSopenharmony_ci#endif
7093d0407baSopenharmony_ci#ifdef CONFIG_SMP
7103d0407baSopenharmony_ci    unsigned long rt_nr_migratory;
7113d0407baSopenharmony_ci    unsigned long rt_nr_total;
7123d0407baSopenharmony_ci    int overloaded;
7133d0407baSopenharmony_ci    struct plist_head pushable_tasks;
7143d0407baSopenharmony_ci
7153d0407baSopenharmony_ci#endif /* CONFIG_SMP */
7163d0407baSopenharmony_ci    int rt_queued;
7173d0407baSopenharmony_ci
7183d0407baSopenharmony_ci    int rt_throttled;
7193d0407baSopenharmony_ci    u64 rt_time;
7203d0407baSopenharmony_ci    u64 rt_runtime;
7213d0407baSopenharmony_ci    /* Nests inside the rq lock: */
7223d0407baSopenharmony_ci    raw_spinlock_t rt_runtime_lock;
7233d0407baSopenharmony_ci
7243d0407baSopenharmony_ci#ifdef CONFIG_RT_GROUP_SCHED
7253d0407baSopenharmony_ci    unsigned long rt_nr_boosted;
7263d0407baSopenharmony_ci
7273d0407baSopenharmony_ci    struct rq *rq;
7283d0407baSopenharmony_ci    struct task_group *tg;
7293d0407baSopenharmony_ci#endif
7303d0407baSopenharmony_ci};
7313d0407baSopenharmony_ci
7323d0407baSopenharmony_cistatic inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
7333d0407baSopenharmony_ci{
7343d0407baSopenharmony_ci    return rt_rq->rt_queued && rt_rq->rt_nr_running;
7353d0407baSopenharmony_ci}
7363d0407baSopenharmony_ci
7373d0407baSopenharmony_ci/* Deadline class' related fields in a runqueue */
7383d0407baSopenharmony_cistruct dl_rq {
7393d0407baSopenharmony_ci    /* runqueue is an rbtree, ordered by deadline */
7403d0407baSopenharmony_ci    struct rb_root_cached root;
7413d0407baSopenharmony_ci
7423d0407baSopenharmony_ci    unsigned long dl_nr_running;
7433d0407baSopenharmony_ci
7443d0407baSopenharmony_ci#ifdef CONFIG_SMP
7453d0407baSopenharmony_ci    /*
7463d0407baSopenharmony_ci     * Deadline values of the currently executing and the
7473d0407baSopenharmony_ci     * earliest ready task on this rq. Caching these facilitates
7483d0407baSopenharmony_ci     * the decision whether or not a ready but not running task
7493d0407baSopenharmony_ci     * should migrate somewhere else.
7503d0407baSopenharmony_ci     */
7513d0407baSopenharmony_ci    struct {
7523d0407baSopenharmony_ci        u64 curr;
7533d0407baSopenharmony_ci        u64 next;
7543d0407baSopenharmony_ci    } earliest_dl;
7553d0407baSopenharmony_ci
7563d0407baSopenharmony_ci    unsigned long dl_nr_migratory;
7573d0407baSopenharmony_ci    int overloaded;
7583d0407baSopenharmony_ci
7593d0407baSopenharmony_ci    /*
7603d0407baSopenharmony_ci     * Tasks on this rq that can be pushed away. They are kept in
7613d0407baSopenharmony_ci     * an rb-tree, ordered by tasks' deadlines, with caching
7623d0407baSopenharmony_ci     * of the leftmost (earliest deadline) element.
7633d0407baSopenharmony_ci     */
7643d0407baSopenharmony_ci    struct rb_root_cached pushable_dl_tasks_root;
7653d0407baSopenharmony_ci#else
7663d0407baSopenharmony_ci    struct dl_bw dl_bw;
7673d0407baSopenharmony_ci#endif
7683d0407baSopenharmony_ci    /*
7693d0407baSopenharmony_ci     * "Active utilization" for this runqueue: increased when a
7703d0407baSopenharmony_ci     * task wakes up (becomes TASK_RUNNING) and decreased when a
7713d0407baSopenharmony_ci     * task blocks
7723d0407baSopenharmony_ci     */
7733d0407baSopenharmony_ci    u64 running_bw;
7743d0407baSopenharmony_ci
7753d0407baSopenharmony_ci    /*
7763d0407baSopenharmony_ci     * Utilization of the tasks "assigned" to this runqueue (including
7773d0407baSopenharmony_ci     * the tasks that are in runqueue and the tasks that executed on this
7783d0407baSopenharmony_ci     * CPU and blocked). Increased when a task moves to this runqueue, and
7793d0407baSopenharmony_ci     * decreased when the task moves away (migrates, changes scheduling
7803d0407baSopenharmony_ci     * policy, or terminates).
7813d0407baSopenharmony_ci     * This is needed to compute the "inactive utilization" for the
7823d0407baSopenharmony_ci     * runqueue (inactive utilization = this_bw - running_bw).
7833d0407baSopenharmony_ci     */
7843d0407baSopenharmony_ci    u64 this_bw;
7853d0407baSopenharmony_ci    u64 extra_bw;
7863d0407baSopenharmony_ci
7873d0407baSopenharmony_ci    /*
7883d0407baSopenharmony_ci     * Inverse of the fraction of CPU utilization that can be reclaimed
7893d0407baSopenharmony_ci     * by the GRUB algorithm.
7903d0407baSopenharmony_ci     */
7913d0407baSopenharmony_ci    u64 bw_ratio;
7923d0407baSopenharmony_ci};
7933d0407baSopenharmony_ci
7943d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
7953d0407baSopenharmony_ci/* An entity is a task if it doesn't "own" a runqueue */
7963d0407baSopenharmony_ci#define entity_is_task(se) (!se->my_q)
7973d0407baSopenharmony_ci
7983d0407baSopenharmony_cistatic inline void se_update_runnable(struct sched_entity *se)
7993d0407baSopenharmony_ci{
8003d0407baSopenharmony_ci    if (!entity_is_task(se)) {
8013d0407baSopenharmony_ci        se->runnable_weight = se->my_q->h_nr_running;
8023d0407baSopenharmony_ci    }
8033d0407baSopenharmony_ci}
8043d0407baSopenharmony_ci
8053d0407baSopenharmony_cistatic inline long se_runnable(struct sched_entity *se)
8063d0407baSopenharmony_ci{
8073d0407baSopenharmony_ci    if (entity_is_task(se)) {
8083d0407baSopenharmony_ci        return !!se->on_rq;
8093d0407baSopenharmony_ci    } else {
8103d0407baSopenharmony_ci        return se->runnable_weight;
8113d0407baSopenharmony_ci    }
8123d0407baSopenharmony_ci}
8133d0407baSopenharmony_ci
8143d0407baSopenharmony_ci#else
8153d0407baSopenharmony_ci#define entity_is_task(se) 1
8163d0407baSopenharmony_ci
8173d0407baSopenharmony_cistatic inline void se_update_runnable(struct sched_entity *se)
8183d0407baSopenharmony_ci{
8193d0407baSopenharmony_ci}
8203d0407baSopenharmony_ci
8213d0407baSopenharmony_cistatic inline long se_runnable(struct sched_entity *se)
8223d0407baSopenharmony_ci{
8233d0407baSopenharmony_ci    return !!se->on_rq;
8243d0407baSopenharmony_ci}
8253d0407baSopenharmony_ci#endif
8263d0407baSopenharmony_ci
8273d0407baSopenharmony_ci#ifdef CONFIG_SMP
8283d0407baSopenharmony_ci/*
8293d0407baSopenharmony_ci * XXX we want to get rid of these helpers and use the full load resolution.
8303d0407baSopenharmony_ci */
8313d0407baSopenharmony_cistatic inline long se_weight(struct sched_entity *se)
8323d0407baSopenharmony_ci{
8333d0407baSopenharmony_ci    return scale_load_down(se->load.weight);
8343d0407baSopenharmony_ci}
8353d0407baSopenharmony_ci
8363d0407baSopenharmony_cistatic inline bool sched_asym_prefer(int a, int b)
8373d0407baSopenharmony_ci{
8383d0407baSopenharmony_ci    return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
8393d0407baSopenharmony_ci}
8403d0407baSopenharmony_ci
8413d0407baSopenharmony_cistruct perf_domain {
8423d0407baSopenharmony_ci    struct em_perf_domain *em_pd;
8433d0407baSopenharmony_ci    struct perf_domain *next;
8443d0407baSopenharmony_ci    struct rcu_head rcu;
8453d0407baSopenharmony_ci};
8463d0407baSopenharmony_ci
8473d0407baSopenharmony_ci/* Scheduling group status flags */
8483d0407baSopenharmony_ci#define SG_OVERLOAD 0x1     /* More than one runnable task on a CPU. */
8493d0407baSopenharmony_ci#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
8503d0407baSopenharmony_ci
8513d0407baSopenharmony_ci/*
8523d0407baSopenharmony_ci * We add the notion of a root-domain which will be used to define per-domain
8533d0407baSopenharmony_ci * variables. Each exclusive cpuset essentially defines an island domain by
8543d0407baSopenharmony_ci * fully partitioning the member CPUs from any other cpuset. Whenever a new
8553d0407baSopenharmony_ci * exclusive cpuset is created, we also create and attach a new root-domain
8563d0407baSopenharmony_ci * object.
8573d0407baSopenharmony_ci *
8583d0407baSopenharmony_ci */
8593d0407baSopenharmony_cistruct root_domain {
8603d0407baSopenharmony_ci    atomic_t refcount;
8613d0407baSopenharmony_ci    atomic_t rto_count;
8623d0407baSopenharmony_ci    struct rcu_head rcu;
8633d0407baSopenharmony_ci    cpumask_var_t span;
8643d0407baSopenharmony_ci    cpumask_var_t online;
8653d0407baSopenharmony_ci
8663d0407baSopenharmony_ci    /*
8673d0407baSopenharmony_ci     * Indicate pullable load on at least one CPU, e.g:
8683d0407baSopenharmony_ci     * - More than one runnable task
8693d0407baSopenharmony_ci     * - Running task is misfit
8703d0407baSopenharmony_ci     */
8713d0407baSopenharmony_ci    int overload;
8723d0407baSopenharmony_ci
8733d0407baSopenharmony_ci    /* Indicate one or more cpus over-utilized (tipping point) */
8743d0407baSopenharmony_ci    int overutilized;
8753d0407baSopenharmony_ci
8763d0407baSopenharmony_ci    /*
8773d0407baSopenharmony_ci     * The bit corresponding to a CPU gets set here if such CPU has more
8783d0407baSopenharmony_ci     * than one runnable -deadline task (as it is below for RT tasks).
8793d0407baSopenharmony_ci     */
8803d0407baSopenharmony_ci    cpumask_var_t dlo_mask;
8813d0407baSopenharmony_ci    atomic_t dlo_count;
8823d0407baSopenharmony_ci    struct dl_bw dl_bw;
8833d0407baSopenharmony_ci    struct cpudl cpudl;
8843d0407baSopenharmony_ci
8853d0407baSopenharmony_ci#ifdef HAVE_RT_PUSH_IPI
8863d0407baSopenharmony_ci    /*
8873d0407baSopenharmony_ci     * For IPI pull requests, loop across the rto_mask.
8883d0407baSopenharmony_ci     */
8893d0407baSopenharmony_ci    struct irq_work rto_push_work;
8903d0407baSopenharmony_ci    raw_spinlock_t rto_lock;
8913d0407baSopenharmony_ci    /* These are only updated and read within rto_lock */
8923d0407baSopenharmony_ci    int rto_loop;
8933d0407baSopenharmony_ci    int rto_cpu;
8943d0407baSopenharmony_ci    /* These atomics are updated outside of a lock */
8953d0407baSopenharmony_ci    atomic_t rto_loop_next;
8963d0407baSopenharmony_ci    atomic_t rto_loop_start;
8973d0407baSopenharmony_ci#endif
8983d0407baSopenharmony_ci    /*
8993d0407baSopenharmony_ci     * The "RT overload" flag: it gets set if a CPU has more than
9003d0407baSopenharmony_ci     * one runnable RT task.
9013d0407baSopenharmony_ci     */
9023d0407baSopenharmony_ci    cpumask_var_t rto_mask;
9033d0407baSopenharmony_ci    struct cpupri cpupri;
9043d0407baSopenharmony_ci
9053d0407baSopenharmony_ci    unsigned long max_cpu_capacity;
9063d0407baSopenharmony_ci
9073d0407baSopenharmony_ci    /*
9083d0407baSopenharmony_ci     * NULL-terminated list of performance domains intersecting with the
9093d0407baSopenharmony_ci     * CPUs of the rd. Protected by RCU.
9103d0407baSopenharmony_ci     */
9113d0407baSopenharmony_ci    struct perf_domain __rcu *pd;
9123d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RT_CAS
9133d0407baSopenharmony_ci    int max_cap_orig_cpu;
9143d0407baSopenharmony_ci#endif
9153d0407baSopenharmony_ci};
9163d0407baSopenharmony_ci
9173d0407baSopenharmony_ciextern void init_defrootdomain(void);
9183d0407baSopenharmony_ciextern int sched_init_domains(const struct cpumask *cpu_map);
9193d0407baSopenharmony_ciextern void rq_attach_root(struct rq *rq, struct root_domain *rd);
9203d0407baSopenharmony_ciextern void sched_get_rd(struct root_domain *rd);
9213d0407baSopenharmony_ciextern void sched_put_rd(struct root_domain *rd);
9223d0407baSopenharmony_ci
9233d0407baSopenharmony_ci#ifdef HAVE_RT_PUSH_IPI
9243d0407baSopenharmony_ciextern void rto_push_irq_work_func(struct irq_work *work);
9253d0407baSopenharmony_ci#endif
9263d0407baSopenharmony_ci#endif /* CONFIG_SMP */
9273d0407baSopenharmony_ci
9283d0407baSopenharmony_ci#ifdef CONFIG_UCLAMP_TASK
9293d0407baSopenharmony_ci/*
9303d0407baSopenharmony_ci * struct uclamp_bucket - Utilization clamp bucket
9313d0407baSopenharmony_ci * @value: utilization clamp value for tasks on this clamp bucket
9323d0407baSopenharmony_ci * @tasks: number of RUNNABLE tasks on this clamp bucket
9333d0407baSopenharmony_ci *
9343d0407baSopenharmony_ci * Keep track of how many tasks are RUNNABLE for a given utilization
9353d0407baSopenharmony_ci * clamp value.
9363d0407baSopenharmony_ci */
9373d0407baSopenharmony_cistruct uclamp_bucket {
9383d0407baSopenharmony_ci    unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
9393d0407baSopenharmony_ci    unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
9403d0407baSopenharmony_ci};
9413d0407baSopenharmony_ci
9423d0407baSopenharmony_ci/*
9433d0407baSopenharmony_ci * struct uclamp_rq - rq's utilization clamp
9443d0407baSopenharmony_ci * @value: currently active clamp values for a rq
9453d0407baSopenharmony_ci * @bucket: utilization clamp buckets affecting a rq
9463d0407baSopenharmony_ci *
9473d0407baSopenharmony_ci * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
9483d0407baSopenharmony_ci * A clamp value is affecting a rq when there is at least one task RUNNABLE
9493d0407baSopenharmony_ci * (or actually running) with that value.
9503d0407baSopenharmony_ci *
9513d0407baSopenharmony_ci * There are up to UCLAMP_CNT possible different clamp values, currently there
9523d0407baSopenharmony_ci * are only two: minimum utilization and maximum utilization.
9533d0407baSopenharmony_ci *
9543d0407baSopenharmony_ci * All utilization clamping values are MAX aggregated, since:
9553d0407baSopenharmony_ci * - for util_min: we want to run the CPU at least at the max of the minimum
9563d0407baSopenharmony_ci *   utilization required by its currently RUNNABLE tasks.
9573d0407baSopenharmony_ci * - for util_max: we want to allow the CPU to run up to the max of the
9583d0407baSopenharmony_ci *   maximum utilization allowed by its currently RUNNABLE tasks.
9593d0407baSopenharmony_ci *
9603d0407baSopenharmony_ci * Since on each system we expect only a limited number of different
9613d0407baSopenharmony_ci * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
9623d0407baSopenharmony_ci * the metrics required to compute all the per-rq utilization clamp values.
9633d0407baSopenharmony_ci */
9643d0407baSopenharmony_cistruct uclamp_rq {
9653d0407baSopenharmony_ci    unsigned int value;
9663d0407baSopenharmony_ci    struct uclamp_bucket bucket[UCLAMP_BUCKETS];
9673d0407baSopenharmony_ci};
9683d0407baSopenharmony_ci
9693d0407baSopenharmony_ciDECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
9703d0407baSopenharmony_ci#endif /* CONFIG_UCLAMP_TASK */
9713d0407baSopenharmony_ci
9723d0407baSopenharmony_ci/*
9733d0407baSopenharmony_ci * This is the main, per-CPU runqueue data structure.
9743d0407baSopenharmony_ci *
9753d0407baSopenharmony_ci * Locking rule: those places that want to lock multiple runqueues
9763d0407baSopenharmony_ci * (such as the load balancing or the thread migration code), lock
9773d0407baSopenharmony_ci * acquire operations must be ordered by ascending &runqueue.
9783d0407baSopenharmony_ci */
9793d0407baSopenharmony_cistruct rq {
9803d0407baSopenharmony_ci    /* runqueue lock: */
9813d0407baSopenharmony_ci    raw_spinlock_t lock;
9823d0407baSopenharmony_ci
9833d0407baSopenharmony_ci    /*
9843d0407baSopenharmony_ci     * nr_running and cpu_load should be in the same cacheline because
9853d0407baSopenharmony_ci     * remote CPUs use both these fields when doing load calculation.
9863d0407baSopenharmony_ci     */
9873d0407baSopenharmony_ci    unsigned int nr_running;
9883d0407baSopenharmony_ci#ifdef CONFIG_NUMA_BALANCING
9893d0407baSopenharmony_ci    unsigned int nr_numa_running;
9903d0407baSopenharmony_ci    unsigned int nr_preferred_running;
9913d0407baSopenharmony_ci    unsigned int numa_migrate_on;
9923d0407baSopenharmony_ci#endif
9933d0407baSopenharmony_ci#ifdef CONFIG_NO_HZ_COMMON
9943d0407baSopenharmony_ci#ifdef CONFIG_SMP
9953d0407baSopenharmony_ci    unsigned long last_blocked_load_update_tick;
9963d0407baSopenharmony_ci    unsigned int has_blocked_load;
9973d0407baSopenharmony_ci    call_single_data_t nohz_csd;
9983d0407baSopenharmony_ci#endif /* CONFIG_SMP */
9993d0407baSopenharmony_ci    unsigned int nohz_tick_stopped;
10003d0407baSopenharmony_ci    atomic_t nohz_flags;
10013d0407baSopenharmony_ci#endif /* CONFIG_NO_HZ_COMMON */
10023d0407baSopenharmony_ci
10033d0407baSopenharmony_ci#ifdef CONFIG_SMP
10043d0407baSopenharmony_ci    unsigned int ttwu_pending;
10053d0407baSopenharmony_ci#endif
10063d0407baSopenharmony_ci    u64 nr_switches;
10073d0407baSopenharmony_ci
10083d0407baSopenharmony_ci#ifdef CONFIG_UCLAMP_TASK
10093d0407baSopenharmony_ci    /* Utilization clamp values based on CPU's RUNNABLE tasks */
10103d0407baSopenharmony_ci    struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
10113d0407baSopenharmony_ci    unsigned int uclamp_flags;
10123d0407baSopenharmony_ci#define UCLAMP_FLAG_IDLE 0x01
10133d0407baSopenharmony_ci#endif
10143d0407baSopenharmony_ci
10153d0407baSopenharmony_ci    struct cfs_rq cfs;
10163d0407baSopenharmony_ci    struct rt_rq rt;
10173d0407baSopenharmony_ci    struct dl_rq dl;
10183d0407baSopenharmony_ci
10193d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
10203d0407baSopenharmony_ci    /* list of leaf cfs_rq on this CPU: */
10213d0407baSopenharmony_ci    struct list_head leaf_cfs_rq_list;
10223d0407baSopenharmony_ci    struct list_head *tmp_alone_branch;
10233d0407baSopenharmony_ci#endif /* CONFIG_FAIR_GROUP_SCHED */
10243d0407baSopenharmony_ci
10253d0407baSopenharmony_ci    /*
10263d0407baSopenharmony_ci     * This is part of a global counter where only the total sum
10273d0407baSopenharmony_ci     * over all CPUs matters. A task can increase this counter on
10283d0407baSopenharmony_ci     * one CPU and if it got migrated afterwards it may decrease
10293d0407baSopenharmony_ci     * it on another CPU. Always updated under the runqueue lock:
10303d0407baSopenharmony_ci     */
10313d0407baSopenharmony_ci    unsigned long nr_uninterruptible;
10323d0407baSopenharmony_ci
10333d0407baSopenharmony_ci    struct task_struct __rcu *curr;
10343d0407baSopenharmony_ci    struct task_struct *idle;
10353d0407baSopenharmony_ci    struct task_struct *stop;
10363d0407baSopenharmony_ci    unsigned long next_balance;
10373d0407baSopenharmony_ci    struct mm_struct *prev_mm;
10383d0407baSopenharmony_ci
10393d0407baSopenharmony_ci    unsigned int clock_update_flags;
10403d0407baSopenharmony_ci    u64 clock;
10413d0407baSopenharmony_ci    /* Ensure that all clocks are in the same cache line */
10423d0407baSopenharmony_ci    u64 clock_task ____cacheline_aligned;
10433d0407baSopenharmony_ci    u64 clock_pelt;
10443d0407baSopenharmony_ci    unsigned long lost_idle_time;
10453d0407baSopenharmony_ci
10463d0407baSopenharmony_ci    atomic_t nr_iowait;
10473d0407baSopenharmony_ci
10483d0407baSopenharmony_ci#ifdef CONFIG_MEMBARRIER
10493d0407baSopenharmony_ci    int membarrier_state;
10503d0407baSopenharmony_ci#endif
10513d0407baSopenharmony_ci
10523d0407baSopenharmony_ci#ifdef CONFIG_SMP
10533d0407baSopenharmony_ci    struct root_domain *rd;
10543d0407baSopenharmony_ci    struct sched_domain __rcu *sd;
10553d0407baSopenharmony_ci
10563d0407baSopenharmony_ci    unsigned long cpu_capacity;
10573d0407baSopenharmony_ci    unsigned long cpu_capacity_orig;
10583d0407baSopenharmony_ci
10593d0407baSopenharmony_ci    struct callback_head *balance_callback;
10603d0407baSopenharmony_ci
10613d0407baSopenharmony_ci    unsigned char nohz_idle_balance;
10623d0407baSopenharmony_ci    unsigned char idle_balance;
10633d0407baSopenharmony_ci
10643d0407baSopenharmony_ci    unsigned long misfit_task_load;
10653d0407baSopenharmony_ci
10663d0407baSopenharmony_ci    /* For active balancing */
10673d0407baSopenharmony_ci    int active_balance;
10683d0407baSopenharmony_ci    int push_cpu;
10693d0407baSopenharmony_ci#ifdef CONFIG_SCHED_EAS
10703d0407baSopenharmony_ci    struct task_struct *push_task;
10713d0407baSopenharmony_ci#endif
10723d0407baSopenharmony_ci    struct cpu_stop_work active_balance_work;
10733d0407baSopenharmony_ci
10743d0407baSopenharmony_ci    /* For rt active balancing */
10753d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RT_ACTIVE_LB
10763d0407baSopenharmony_ci    int rt_active_balance;
10773d0407baSopenharmony_ci    struct task_struct *rt_push_task;
10783d0407baSopenharmony_ci    struct cpu_stop_work rt_active_balance_work;
10793d0407baSopenharmony_ci#endif
10803d0407baSopenharmony_ci
10813d0407baSopenharmony_ci    /* CPU of this runqueue: */
10823d0407baSopenharmony_ci    int cpu;
10833d0407baSopenharmony_ci    int online;
10843d0407baSopenharmony_ci
10853d0407baSopenharmony_ci    struct list_head cfs_tasks;
10863d0407baSopenharmony_ci
10873d0407baSopenharmony_ci    struct sched_avg avg_rt;
10883d0407baSopenharmony_ci    struct sched_avg avg_dl;
10893d0407baSopenharmony_ci#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
10903d0407baSopenharmony_ci    struct sched_avg avg_irq;
10913d0407baSopenharmony_ci#endif
10923d0407baSopenharmony_ci#ifdef CONFIG_SCHED_THERMAL_PRESSURE
10933d0407baSopenharmony_ci    struct sched_avg avg_thermal;
10943d0407baSopenharmony_ci#endif
10953d0407baSopenharmony_ci    u64 idle_stamp;
10963d0407baSopenharmony_ci    u64 avg_idle;
10973d0407baSopenharmony_ci
10983d0407baSopenharmony_ci    /* This is used to determine avg_idle's max value */
10993d0407baSopenharmony_ci    u64 max_idle_balance_cost;
11003d0407baSopenharmony_ci#endif /* CONFIG_SMP */
11013d0407baSopenharmony_ci
11023d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
11033d0407baSopenharmony_ci    struct sched_cluster *cluster;
11043d0407baSopenharmony_ci    struct cpumask freq_domain_cpumask;
11053d0407baSopenharmony_ci    struct walt_sched_stats walt_stats;
11063d0407baSopenharmony_ci
11073d0407baSopenharmony_ci    u64 window_start;
11083d0407baSopenharmony_ci    unsigned long walt_flags;
11093d0407baSopenharmony_ci
11103d0407baSopenharmony_ci    u64 cur_irqload;
11113d0407baSopenharmony_ci    u64 avg_irqload;
11123d0407baSopenharmony_ci    u64 irqload_ts;
11133d0407baSopenharmony_ci    u64 curr_runnable_sum;
11143d0407baSopenharmony_ci    u64 prev_runnable_sum;
11153d0407baSopenharmony_ci    u64 nt_curr_runnable_sum;
11163d0407baSopenharmony_ci    u64 nt_prev_runnable_sum;
11173d0407baSopenharmony_ci    u64 cum_window_demand_scaled;
11183d0407baSopenharmony_ci    struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
11193d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RTG
11203d0407baSopenharmony_ci    struct group_cpu_time grp_time;
11213d0407baSopenharmony_ci#endif
11223d0407baSopenharmony_ci#endif /* CONFIG_SCHED_WALT */
11233d0407baSopenharmony_ci
11243d0407baSopenharmony_ci#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11253d0407baSopenharmony_ci    u64 prev_irq_time;
11263d0407baSopenharmony_ci#endif
11273d0407baSopenharmony_ci#ifdef CONFIG_PARAVIRT
11283d0407baSopenharmony_ci    u64 prev_steal_time;
11293d0407baSopenharmony_ci#endif
11303d0407baSopenharmony_ci#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
11313d0407baSopenharmony_ci    u64 prev_steal_time_rq;
11323d0407baSopenharmony_ci#endif
11333d0407baSopenharmony_ci
11343d0407baSopenharmony_ci    /* calc_load related fields */
11353d0407baSopenharmony_ci    unsigned long calc_load_update;
11363d0407baSopenharmony_ci    long calc_load_active;
11373d0407baSopenharmony_ci
11383d0407baSopenharmony_ci#ifdef CONFIG_SCHED_HRTICK
11393d0407baSopenharmony_ci#ifdef CONFIG_SMP
11403d0407baSopenharmony_ci    call_single_data_t hrtick_csd;
11413d0407baSopenharmony_ci#endif
11423d0407baSopenharmony_ci    struct hrtimer hrtick_timer;
11433d0407baSopenharmony_ci    ktime_t hrtick_time;
11443d0407baSopenharmony_ci#endif
11453d0407baSopenharmony_ci
11463d0407baSopenharmony_ci#ifdef CONFIG_SCHEDSTATS
11473d0407baSopenharmony_ci    /* latency stats */
11483d0407baSopenharmony_ci    struct sched_info rq_sched_info;
11493d0407baSopenharmony_ci    unsigned long long rq_cpu_time;
11503d0407baSopenharmony_ci    /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
11513d0407baSopenharmony_ci
11523d0407baSopenharmony_ci    /* sys_sched_yield() stats */
11533d0407baSopenharmony_ci    unsigned int yld_count;
11543d0407baSopenharmony_ci
11553d0407baSopenharmony_ci    /* schedule() stats */
11563d0407baSopenharmony_ci    unsigned int sched_count;
11573d0407baSopenharmony_ci    unsigned int sched_goidle;
11583d0407baSopenharmony_ci
11593d0407baSopenharmony_ci    /* try_to_wake_up() stats */
11603d0407baSopenharmony_ci    unsigned int ttwu_count;
11613d0407baSopenharmony_ci    unsigned int ttwu_local;
11623d0407baSopenharmony_ci#endif
11633d0407baSopenharmony_ci
11643d0407baSopenharmony_ci#ifdef CONFIG_CPU_IDLE
11653d0407baSopenharmony_ci    /* Must be inspected within a rcu lock section */
11663d0407baSopenharmony_ci    struct cpuidle_state *idle_state;
11673d0407baSopenharmony_ci#endif
11683d0407baSopenharmony_ci};
11693d0407baSopenharmony_ci
11703d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
11713d0407baSopenharmony_ci
11723d0407baSopenharmony_ci/* CPU runqueue to which this cfs_rq is attached */
11733d0407baSopenharmony_cistatic inline struct rq *rq_of(struct cfs_rq *cfs_rq)
11743d0407baSopenharmony_ci{
11753d0407baSopenharmony_ci    return cfs_rq->rq;
11763d0407baSopenharmony_ci}
11773d0407baSopenharmony_ci
11783d0407baSopenharmony_ci#else
11793d0407baSopenharmony_ci
11803d0407baSopenharmony_cistatic inline struct rq *rq_of(struct cfs_rq *cfs_rq)
11813d0407baSopenharmony_ci{
11823d0407baSopenharmony_ci    return container_of(cfs_rq, struct rq, cfs);
11833d0407baSopenharmony_ci}
11843d0407baSopenharmony_ci#endif
11853d0407baSopenharmony_ci
11863d0407baSopenharmony_cistatic inline int cpu_of(struct rq *rq)
11873d0407baSopenharmony_ci{
11883d0407baSopenharmony_ci#ifdef CONFIG_SMP
11893d0407baSopenharmony_ci    return rq->cpu;
11903d0407baSopenharmony_ci#else
11913d0407baSopenharmony_ci    return 0;
11923d0407baSopenharmony_ci#endif
11933d0407baSopenharmony_ci}
11943d0407baSopenharmony_ci
11953d0407baSopenharmony_ci#ifdef CONFIG_SCHED_SMT
11963d0407baSopenharmony_ciextern void __update_idle_core(struct rq *rq);
11973d0407baSopenharmony_ci
11983d0407baSopenharmony_cistatic inline void update_idle_core(struct rq *rq)
11993d0407baSopenharmony_ci{
12003d0407baSopenharmony_ci    if (static_branch_unlikely(&sched_smt_present)) {
12013d0407baSopenharmony_ci        __update_idle_core(rq);
12023d0407baSopenharmony_ci    }
12033d0407baSopenharmony_ci}
12043d0407baSopenharmony_ci
12053d0407baSopenharmony_ci#else
12063d0407baSopenharmony_cistatic inline void update_idle_core(struct rq *rq)
12073d0407baSopenharmony_ci{
12083d0407baSopenharmony_ci}
12093d0407baSopenharmony_ci#endif
12103d0407baSopenharmony_ci
12113d0407baSopenharmony_ciDECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
12123d0407baSopenharmony_ci
12133d0407baSopenharmony_ci#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
12143d0407baSopenharmony_ci#define this_rq() this_cpu_ptr(&runqueues)
12153d0407baSopenharmony_ci#define task_rq(p) cpu_rq(task_cpu(p))
12163d0407baSopenharmony_ci#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
12173d0407baSopenharmony_ci#define raw_rq() raw_cpu_ptr(&runqueues)
12183d0407baSopenharmony_ci
12193d0407baSopenharmony_ciextern void update_rq_clock(struct rq *rq);
12203d0407baSopenharmony_ci
12213d0407baSopenharmony_cistatic inline u64 __rq_clock_broken(struct rq *rq)
12223d0407baSopenharmony_ci{
12233d0407baSopenharmony_ci    return READ_ONCE(rq->clock);
12243d0407baSopenharmony_ci}
12253d0407baSopenharmony_ci
12263d0407baSopenharmony_ci/*
12273d0407baSopenharmony_ci * rq::clock_update_flags bits
12283d0407baSopenharmony_ci *
12293d0407baSopenharmony_ci * %RQCF_REQ_SKIP - will request skipping of clock update on the next
12303d0407baSopenharmony_ci *  call to __schedule(). This is an optimisation to avoid
12313d0407baSopenharmony_ci *  neighbouring rq clock updates.
12323d0407baSopenharmony_ci *
12333d0407baSopenharmony_ci * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
12343d0407baSopenharmony_ci *  in effect and calls to update_rq_clock() are being ignored.
12353d0407baSopenharmony_ci *
12363d0407baSopenharmony_ci * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
12373d0407baSopenharmony_ci *  made to update_rq_clock() since the last time rq::lock was pinned.
12383d0407baSopenharmony_ci *
12393d0407baSopenharmony_ci * If inside of __schedule(), clock_update_flags will have been
12403d0407baSopenharmony_ci * shifted left (a left shift is a cheap operation for the fast path
12413d0407baSopenharmony_ci * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
12423d0407baSopenharmony_ci *
12433d0407baSopenharmony_ci *    if (rq-clock_update_flags >= RQCF_UPDATED)
12443d0407baSopenharmony_ci *
12453d0407baSopenharmony_ci * to check if %RQCF_UPADTED is set. It'll never be shifted more than
12463d0407baSopenharmony_ci * one position though, because the next rq_unpin_lock() will shift it
12473d0407baSopenharmony_ci * back.
12483d0407baSopenharmony_ci */
12493d0407baSopenharmony_ci#define RQCF_REQ_SKIP 0x01
12503d0407baSopenharmony_ci#define RQCF_ACT_SKIP 0x02
12513d0407baSopenharmony_ci#define RQCF_UPDATED 0x04
12523d0407baSopenharmony_ci
12533d0407baSopenharmony_cistatic inline void assert_clock_updated(struct rq *rq)
12543d0407baSopenharmony_ci{
12553d0407baSopenharmony_ci    /*
12563d0407baSopenharmony_ci     * The only reason for not seeing a clock update since the
12573d0407baSopenharmony_ci     * last rq_pin_lock() is if we're currently skipping updates.
12583d0407baSopenharmony_ci     */
12593d0407baSopenharmony_ci    SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
12603d0407baSopenharmony_ci}
12613d0407baSopenharmony_ci
12623d0407baSopenharmony_cistatic inline u64 rq_clock(struct rq *rq)
12633d0407baSopenharmony_ci{
12643d0407baSopenharmony_ci    lockdep_assert_held(&rq->lock);
12653d0407baSopenharmony_ci    assert_clock_updated(rq);
12663d0407baSopenharmony_ci
12673d0407baSopenharmony_ci    return rq->clock;
12683d0407baSopenharmony_ci}
12693d0407baSopenharmony_ci
12703d0407baSopenharmony_cistatic inline u64 rq_clock_task(struct rq *rq)
12713d0407baSopenharmony_ci{
12723d0407baSopenharmony_ci    lockdep_assert_held(&rq->lock);
12733d0407baSopenharmony_ci    assert_clock_updated(rq);
12743d0407baSopenharmony_ci
12753d0407baSopenharmony_ci    return rq->clock_task;
12763d0407baSopenharmony_ci}
12773d0407baSopenharmony_ci
12783d0407baSopenharmony_ci/**
12793d0407baSopenharmony_ci * By default the decay is the default pelt decay period.
12803d0407baSopenharmony_ci * The decay shift can change the decay period in
12813d0407baSopenharmony_ci * multiples of 32.
12823d0407baSopenharmony_ci *  Decay shift        Decay period(ms)
12833d0407baSopenharmony_ci *    0            32
12843d0407baSopenharmony_ci *    1            64
12853d0407baSopenharmony_ci *    2            128
12863d0407baSopenharmony_ci *    3            256
12873d0407baSopenharmony_ci *    4            512
12883d0407baSopenharmony_ci */
12893d0407baSopenharmony_ciextern int sched_thermal_decay_shift;
12903d0407baSopenharmony_ci
12913d0407baSopenharmony_cistatic inline u64 rq_clock_thermal(struct rq *rq)
12923d0407baSopenharmony_ci{
12933d0407baSopenharmony_ci    return rq_clock_task(rq) >> sched_thermal_decay_shift;
12943d0407baSopenharmony_ci}
12953d0407baSopenharmony_ci
12963d0407baSopenharmony_cistatic inline void rq_clock_skip_update(struct rq *rq)
12973d0407baSopenharmony_ci{
12983d0407baSopenharmony_ci    lockdep_assert_held(&rq->lock);
12993d0407baSopenharmony_ci    rq->clock_update_flags |= RQCF_REQ_SKIP;
13003d0407baSopenharmony_ci}
13013d0407baSopenharmony_ci
13023d0407baSopenharmony_ci/*
13033d0407baSopenharmony_ci * See rt task throttling, which is the only time a skip
13043d0407baSopenharmony_ci * request is cancelled.
13053d0407baSopenharmony_ci */
13063d0407baSopenharmony_cistatic inline void rq_clock_cancel_skipupdate(struct rq *rq)
13073d0407baSopenharmony_ci{
13083d0407baSopenharmony_ci    lockdep_assert_held(&rq->lock);
13093d0407baSopenharmony_ci    rq->clock_update_flags &= ~RQCF_REQ_SKIP;
13103d0407baSopenharmony_ci}
13113d0407baSopenharmony_ci
13123d0407baSopenharmony_cistruct rq_flags {
13133d0407baSopenharmony_ci    unsigned long flags;
13143d0407baSopenharmony_ci    struct pin_cookie cookie;
13153d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
13163d0407baSopenharmony_ci    /*
13173d0407baSopenharmony_ci     * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
13183d0407baSopenharmony_ci     * current pin context is stashed here in case it needs to be
13193d0407baSopenharmony_ci     * restored in rq_repin_lock().
13203d0407baSopenharmony_ci     */
13213d0407baSopenharmony_ci    unsigned int clock_update_flags;
13223d0407baSopenharmony_ci#endif
13233d0407baSopenharmony_ci};
13243d0407baSopenharmony_ci
13253d0407baSopenharmony_ci/*
13263d0407baSopenharmony_ci * Lockdep annotation that avoids accidental unlocks; it's like a
13273d0407baSopenharmony_ci * sticky/continuous lockdep_assert_held().
13283d0407baSopenharmony_ci *
13293d0407baSopenharmony_ci * This avoids code that has access to 'struct rq *rq' (basically everything in
13303d0407baSopenharmony_ci * the scheduler) from accidentally unlocking the rq if they do not also have a
13313d0407baSopenharmony_ci * copy of the (on-stack) 'struct rq_flags rf'.
13323d0407baSopenharmony_ci *
13333d0407baSopenharmony_ci * Also see Documentation/locking/lockdep-design.rst.
13343d0407baSopenharmony_ci */
13353d0407baSopenharmony_cistatic inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
13363d0407baSopenharmony_ci{
13373d0407baSopenharmony_ci    rf->cookie = lockdep_pin_lock(&rq->lock);
13383d0407baSopenharmony_ci
13393d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
13403d0407baSopenharmony_ci    rq->clock_update_flags &= (RQCF_REQ_SKIP | RQCF_ACT_SKIP);
13413d0407baSopenharmony_ci    rf->clock_update_flags = 0;
13423d0407baSopenharmony_ci#endif
13433d0407baSopenharmony_ci}
13443d0407baSopenharmony_ci
13453d0407baSopenharmony_cistatic inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
13463d0407baSopenharmony_ci{
13473d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
13483d0407baSopenharmony_ci    if (rq->clock_update_flags > RQCF_ACT_SKIP) {
13493d0407baSopenharmony_ci        rf->clock_update_flags = RQCF_UPDATED;
13503d0407baSopenharmony_ci    }
13513d0407baSopenharmony_ci#endif
13523d0407baSopenharmony_ci
13533d0407baSopenharmony_ci    lockdep_unpin_lock(&rq->lock, rf->cookie);
13543d0407baSopenharmony_ci}
13553d0407baSopenharmony_ci
13563d0407baSopenharmony_cistatic inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
13573d0407baSopenharmony_ci{
13583d0407baSopenharmony_ci    lockdep_repin_lock(&rq->lock, rf->cookie);
13593d0407baSopenharmony_ci
13603d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
13613d0407baSopenharmony_ci    /*
13623d0407baSopenharmony_ci     * Restore the value we stashed in @rf for this pin context.
13633d0407baSopenharmony_ci     */
13643d0407baSopenharmony_ci    rq->clock_update_flags |= rf->clock_update_flags;
13653d0407baSopenharmony_ci#endif
13663d0407baSopenharmony_ci}
13673d0407baSopenharmony_ci
13683d0407baSopenharmony_cistruct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(rq->lock);
13693d0407baSopenharmony_ci
13703d0407baSopenharmony_cistruct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(p->pi_lock) __acquires(rq->lock);
13713d0407baSopenharmony_ci
13723d0407baSopenharmony_cistatic inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
13733d0407baSopenharmony_ci{
13743d0407baSopenharmony_ci    rq_unpin_lock(rq, rf);
13753d0407baSopenharmony_ci    raw_spin_unlock(&rq->lock);
13763d0407baSopenharmony_ci}
13773d0407baSopenharmony_ci
13783d0407baSopenharmony_cistatic inline void task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock)
13793d0407baSopenharmony_ci    __releases(p->pi_lock)
13803d0407baSopenharmony_ci{
13813d0407baSopenharmony_ci    rq_unpin_lock(rq, rf);
13823d0407baSopenharmony_ci    raw_spin_unlock(&rq->lock);
13833d0407baSopenharmony_ci    raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
13843d0407baSopenharmony_ci}
13853d0407baSopenharmony_ci
13863d0407baSopenharmony_cistatic inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
13873d0407baSopenharmony_ci{
13883d0407baSopenharmony_ci    raw_spin_lock_irqsave(&rq->lock, rf->flags);
13893d0407baSopenharmony_ci    rq_pin_lock(rq, rf);
13903d0407baSopenharmony_ci}
13913d0407baSopenharmony_ci
13923d0407baSopenharmony_cistatic inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
13933d0407baSopenharmony_ci{
13943d0407baSopenharmony_ci    raw_spin_lock_irq(&rq->lock);
13953d0407baSopenharmony_ci    rq_pin_lock(rq, rf);
13963d0407baSopenharmony_ci}
13973d0407baSopenharmony_ci
13983d0407baSopenharmony_cistatic inline void rq_lock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
13993d0407baSopenharmony_ci{
14003d0407baSopenharmony_ci    raw_spin_lock(&rq->lock);
14013d0407baSopenharmony_ci    rq_pin_lock(rq, rf);
14023d0407baSopenharmony_ci}
14033d0407baSopenharmony_ci
14043d0407baSopenharmony_cistatic inline void rq_relock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
14053d0407baSopenharmony_ci{
14063d0407baSopenharmony_ci    raw_spin_lock(&rq->lock);
14073d0407baSopenharmony_ci    rq_repin_lock(rq, rf);
14083d0407baSopenharmony_ci}
14093d0407baSopenharmony_ci
14103d0407baSopenharmony_cistatic inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
14113d0407baSopenharmony_ci{
14123d0407baSopenharmony_ci    rq_unpin_lock(rq, rf);
14133d0407baSopenharmony_ci    raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
14143d0407baSopenharmony_ci}
14153d0407baSopenharmony_ci
14163d0407baSopenharmony_cistatic inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
14173d0407baSopenharmony_ci{
14183d0407baSopenharmony_ci    rq_unpin_lock(rq, rf);
14193d0407baSopenharmony_ci    raw_spin_unlock_irq(&rq->lock);
14203d0407baSopenharmony_ci}
14213d0407baSopenharmony_ci
14223d0407baSopenharmony_cistatic inline void rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
14233d0407baSopenharmony_ci{
14243d0407baSopenharmony_ci    rq_unpin_lock(rq, rf);
14253d0407baSopenharmony_ci    raw_spin_unlock(&rq->lock);
14263d0407baSopenharmony_ci}
14273d0407baSopenharmony_ci
14283d0407baSopenharmony_cistatic inline struct rq *this_rq_lock_irq(struct rq_flags *rf) __acquires(rq->lock)
14293d0407baSopenharmony_ci{
14303d0407baSopenharmony_ci    struct rq *rq;
14313d0407baSopenharmony_ci
14323d0407baSopenharmony_ci    local_irq_disable();
14333d0407baSopenharmony_ci    rq = this_rq();
14343d0407baSopenharmony_ci    rq_lock(rq, rf);
14353d0407baSopenharmony_ci    return rq;
14363d0407baSopenharmony_ci}
14373d0407baSopenharmony_ci
14383d0407baSopenharmony_ci#ifdef CONFIG_NUMA
14393d0407baSopenharmony_cienum numa_topology_type {
14403d0407baSopenharmony_ci    NUMA_DIRECT,
14413d0407baSopenharmony_ci    NUMA_GLUELESS_MESH,
14423d0407baSopenharmony_ci    NUMA_BACKPLANE,
14433d0407baSopenharmony_ci};
14443d0407baSopenharmony_ciextern enum numa_topology_type sched_numa_topology_type;
14453d0407baSopenharmony_ciextern int sched_max_numa_distance;
14463d0407baSopenharmony_ciextern bool find_numa_distance(int distance);
14473d0407baSopenharmony_ciextern void sched_init_numa(void);
14483d0407baSopenharmony_ciextern void sched_domains_numa_masks_set(unsigned int cpu);
14493d0407baSopenharmony_ciextern void sched_domains_numa_masks_clear(unsigned int cpu);
14503d0407baSopenharmony_ciextern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
14513d0407baSopenharmony_ci#else
14523d0407baSopenharmony_cistatic inline void sched_init_numa(void)
14533d0407baSopenharmony_ci{
14543d0407baSopenharmony_ci}
14553d0407baSopenharmony_cistatic inline void sched_domains_numa_masks_set(unsigned int cpu)
14563d0407baSopenharmony_ci{
14573d0407baSopenharmony_ci}
14583d0407baSopenharmony_cistatic inline void sched_domains_numa_masks_clear(unsigned int cpu)
14593d0407baSopenharmony_ci{
14603d0407baSopenharmony_ci}
14613d0407baSopenharmony_cistatic inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
14623d0407baSopenharmony_ci{
14633d0407baSopenharmony_ci    return nr_cpu_ids;
14643d0407baSopenharmony_ci}
14653d0407baSopenharmony_ci#endif
14663d0407baSopenharmony_ci
14673d0407baSopenharmony_ci#ifdef CONFIG_NUMA_BALANCING
14683d0407baSopenharmony_ci/* The regions in numa_faults array from task_struct */
14693d0407baSopenharmony_cienum numa_faults_stats { NUMA_MEM = 0, NUMA_CPU, NUMA_MEMBUF, NUMA_CPUBUF };
14703d0407baSopenharmony_ciextern void sched_setnuma(struct task_struct *p, int node);
14713d0407baSopenharmony_ciextern int migrate_task_to(struct task_struct *p, int cpu);
14723d0407baSopenharmony_ciextern int migrate_swap(struct task_struct *p, struct task_struct *t, int cpu, int scpu);
14733d0407baSopenharmony_ciextern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
14743d0407baSopenharmony_ci#else
14753d0407baSopenharmony_cistatic inline void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
14763d0407baSopenharmony_ci{
14773d0407baSopenharmony_ci}
14783d0407baSopenharmony_ci#endif /* CONFIG_NUMA_BALANCING */
14793d0407baSopenharmony_ci
14803d0407baSopenharmony_ci#ifdef CONFIG_SMP
14813d0407baSopenharmony_ci
14823d0407baSopenharmony_cistatic inline void queue_balance_callback(struct rq *rq, struct callback_head *head, void (*func)(struct rq *rq))
14833d0407baSopenharmony_ci{
14843d0407baSopenharmony_ci    lockdep_assert_held(&rq->lock);
14853d0407baSopenharmony_ci
14863d0407baSopenharmony_ci    if (unlikely(head->next)) {
14873d0407baSopenharmony_ci        return;
14883d0407baSopenharmony_ci    }
14893d0407baSopenharmony_ci
14903d0407baSopenharmony_ci    head->func = (void (*)(struct callback_head *))func;
14913d0407baSopenharmony_ci    head->next = rq->balance_callback;
14923d0407baSopenharmony_ci    rq->balance_callback = head;
14933d0407baSopenharmony_ci}
14943d0407baSopenharmony_ci
14953d0407baSopenharmony_ci#define rcu_dereference_check_sched_domain(p) rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
14963d0407baSopenharmony_ci
14973d0407baSopenharmony_ci/*
14983d0407baSopenharmony_ci * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
14993d0407baSopenharmony_ci * See destroy_sched_domains: call_rcu for details.
15003d0407baSopenharmony_ci *
15013d0407baSopenharmony_ci * The domain tree of any CPU may only be accessed from within
15023d0407baSopenharmony_ci * preempt-disabled sections.
15033d0407baSopenharmony_ci */
15043d0407baSopenharmony_ci#define for_each_domain(cpu, __sd)                                                                                     \
15053d0407baSopenharmony_ci    for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
15063d0407baSopenharmony_ci
15073d0407baSopenharmony_ci/**
15083d0407baSopenharmony_ci * highest_flag_domain - Return highest sched_domain containing flag.
15093d0407baSopenharmony_ci * @cpu:    The CPU whose highest level of sched domain is to
15103d0407baSopenharmony_ci *        be returned.
15113d0407baSopenharmony_ci * @flag:    The flag to check for the highest sched_domain
15123d0407baSopenharmony_ci *        for the given CPU.
15133d0407baSopenharmony_ci *
15143d0407baSopenharmony_ci * Returns the highest sched_domain of a CPU which contains the given flag.
15153d0407baSopenharmony_ci */
15163d0407baSopenharmony_cistatic inline struct sched_domain *highest_flag_domain(int cpu, int flag)
15173d0407baSopenharmony_ci{
15183d0407baSopenharmony_ci    struct sched_domain *sd, *hsd = NULL;
15193d0407baSopenharmony_ci
15203d0407baSopenharmony_ci    for (sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); sd; sd = sd->parent) {
15213d0407baSopenharmony_ci        if (!(sd->flags & flag)) {
15223d0407baSopenharmony_ci            break;
15233d0407baSopenharmony_ci        }
15243d0407baSopenharmony_ci        hsd = sd;
15253d0407baSopenharmony_ci    }
15263d0407baSopenharmony_ci
15273d0407baSopenharmony_ci    return hsd;
15283d0407baSopenharmony_ci}
15293d0407baSopenharmony_ci
15303d0407baSopenharmony_cistatic inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
15313d0407baSopenharmony_ci{
15323d0407baSopenharmony_ci    struct sched_domain *sd;
15333d0407baSopenharmony_ci
15343d0407baSopenharmony_ci    for (sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); sd; sd = sd->parent) {
15353d0407baSopenharmony_ci        if (sd->flags & flag) {
15363d0407baSopenharmony_ci            break;
15373d0407baSopenharmony_ci        }
15383d0407baSopenharmony_ci    }
15393d0407baSopenharmony_ci
15403d0407baSopenharmony_ci    return sd;
15413d0407baSopenharmony_ci}
15423d0407baSopenharmony_ci
15433d0407baSopenharmony_ciDECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
15443d0407baSopenharmony_ciDECLARE_PER_CPU(int, sd_llc_size);
15453d0407baSopenharmony_ciDECLARE_PER_CPU(int, sd_llc_id);
15463d0407baSopenharmony_ciDECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
15473d0407baSopenharmony_ciDECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
15483d0407baSopenharmony_ciDECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
15493d0407baSopenharmony_ciDECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
15503d0407baSopenharmony_ciextern struct static_key_false sched_asym_cpucapacity;
15513d0407baSopenharmony_ci
15523d0407baSopenharmony_cistruct sched_group_capacity {
15533d0407baSopenharmony_ci    atomic_t ref;
15543d0407baSopenharmony_ci    /*
15553d0407baSopenharmony_ci     * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
15563d0407baSopenharmony_ci     * for a single CPU.
15573d0407baSopenharmony_ci     */
15583d0407baSopenharmony_ci    unsigned long capacity;
15593d0407baSopenharmony_ci    unsigned long min_capacity; /* Min per-CPU capacity in group */
15603d0407baSopenharmony_ci    unsigned long max_capacity; /* Max per-CPU capacity in group */
15613d0407baSopenharmony_ci    unsigned long next_update;
15623d0407baSopenharmony_ci    int imbalance; /* XXX unrelated to capacity but shared group state */
15633d0407baSopenharmony_ci
15643d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
15653d0407baSopenharmony_ci    int id;
15663d0407baSopenharmony_ci#endif
15673d0407baSopenharmony_ci
15683d0407baSopenharmony_ci    unsigned long cpumask[]; /* Balance mask */
15693d0407baSopenharmony_ci};
15703d0407baSopenharmony_ci
15713d0407baSopenharmony_cistruct sched_group {
15723d0407baSopenharmony_ci    struct sched_group *next; /* Must be a circular list */
15733d0407baSopenharmony_ci    atomic_t ref;
15743d0407baSopenharmony_ci
15753d0407baSopenharmony_ci    unsigned int group_weight;
15763d0407baSopenharmony_ci    struct sched_group_capacity *sgc;
15773d0407baSopenharmony_ci    int asym_prefer_cpu; /* CPU of highest priority in group */
15783d0407baSopenharmony_ci
15793d0407baSopenharmony_ci    /*
15803d0407baSopenharmony_ci     * The CPUs this group covers.
15813d0407baSopenharmony_ci     *
15823d0407baSopenharmony_ci     * NOTE: this field is variable length. (Allocated dynamically
15833d0407baSopenharmony_ci     * by attaching extra space to the end of the structure,
15843d0407baSopenharmony_ci     * depending on how many CPUs the kernel has booted up with)
15853d0407baSopenharmony_ci     */
15863d0407baSopenharmony_ci    unsigned long cpumask[];
15873d0407baSopenharmony_ci};
15883d0407baSopenharmony_ci
15893d0407baSopenharmony_cistatic inline struct cpumask *sched_group_span(struct sched_group *sg)
15903d0407baSopenharmony_ci{
15913d0407baSopenharmony_ci    return to_cpumask(sg->cpumask);
15923d0407baSopenharmony_ci}
15933d0407baSopenharmony_ci
15943d0407baSopenharmony_ci/*
15953d0407baSopenharmony_ci * See build_balance_mask().
15963d0407baSopenharmony_ci */
15973d0407baSopenharmony_cistatic inline struct cpumask *group_balance_mask(struct sched_group *sg)
15983d0407baSopenharmony_ci{
15993d0407baSopenharmony_ci    return to_cpumask(sg->sgc->cpumask);
16003d0407baSopenharmony_ci}
16013d0407baSopenharmony_ci
16023d0407baSopenharmony_ci/**
16033d0407baSopenharmony_ci * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
16043d0407baSopenharmony_ci * @group: The group whose first CPU is to be returned.
16053d0407baSopenharmony_ci */
16063d0407baSopenharmony_cistatic inline unsigned int group_first_cpu(struct sched_group *group)
16073d0407baSopenharmony_ci{
16083d0407baSopenharmony_ci    return cpumask_first(sched_group_span(group));
16093d0407baSopenharmony_ci}
16103d0407baSopenharmony_ci
16113d0407baSopenharmony_ciextern int group_balance_cpu(struct sched_group *sg);
16123d0407baSopenharmony_ci
16133d0407baSopenharmony_ci#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
16143d0407baSopenharmony_civoid register_sched_domain_sysctl(void);
16153d0407baSopenharmony_civoid dirty_sched_domain_sysctl(int cpu);
16163d0407baSopenharmony_civoid unregister_sched_domain_sysctl(void);
16173d0407baSopenharmony_ci#else
16183d0407baSopenharmony_cistatic inline void register_sched_domain_sysctl(void)
16193d0407baSopenharmony_ci{
16203d0407baSopenharmony_ci}
16213d0407baSopenharmony_cistatic inline void dirty_sched_domain_sysctl(int cpu)
16223d0407baSopenharmony_ci{
16233d0407baSopenharmony_ci}
16243d0407baSopenharmony_cistatic inline void unregister_sched_domain_sysctl(void)
16253d0407baSopenharmony_ci{
16263d0407baSopenharmony_ci}
16273d0407baSopenharmony_ci#endif
16283d0407baSopenharmony_ci
16293d0407baSopenharmony_ciextern void flush_smp_call_function_from_idle(void);
16303d0407baSopenharmony_ci
16313d0407baSopenharmony_ci#else /* !CONFIG_SMP: */
16323d0407baSopenharmony_cistatic inline void flush_smp_call_function_from_idle(void)
16333d0407baSopenharmony_ci{
16343d0407baSopenharmony_ci}
16353d0407baSopenharmony_ci#endif
16363d0407baSopenharmony_ci
16373d0407baSopenharmony_ci#include "stats.h"
16383d0407baSopenharmony_ci#include "autogroup.h"
16393d0407baSopenharmony_ci
16403d0407baSopenharmony_ci#ifdef CONFIG_CGROUP_SCHED
16413d0407baSopenharmony_ci
16423d0407baSopenharmony_ci/*
16433d0407baSopenharmony_ci * Return the group to which this tasks belongs.
16443d0407baSopenharmony_ci *
16453d0407baSopenharmony_ci * We cannot use task_css() and friends because the cgroup subsystem
16463d0407baSopenharmony_ci * changes that value before the cgroup_subsys::attach() method is called,
16473d0407baSopenharmony_ci * therefore we cannot pin it and might observe the wrong value.
16483d0407baSopenharmony_ci *
16493d0407baSopenharmony_ci * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
16503d0407baSopenharmony_ci * core changes this before calling sched_move_task().
16513d0407baSopenharmony_ci *
16523d0407baSopenharmony_ci * Instead we use a 'copy' which is updated from sched_move_task() while
16533d0407baSopenharmony_ci * holding both task_struct::pi_lock and rq::lock.
16543d0407baSopenharmony_ci */
16553d0407baSopenharmony_cistatic inline struct task_group *task_group(struct task_struct *p)
16563d0407baSopenharmony_ci{
16573d0407baSopenharmony_ci    return p->sched_task_group;
16583d0407baSopenharmony_ci}
16593d0407baSopenharmony_ci
16603d0407baSopenharmony_ci/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
16613d0407baSopenharmony_cistatic inline void set_task_rq(struct task_struct *p, unsigned int cpu)
16623d0407baSopenharmony_ci{
16633d0407baSopenharmony_ci#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
16643d0407baSopenharmony_ci    struct task_group *tg = task_group(p);
16653d0407baSopenharmony_ci#endif
16663d0407baSopenharmony_ci
16673d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
16683d0407baSopenharmony_ci    set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
16693d0407baSopenharmony_ci    p->se.cfs_rq = tg->cfs_rq[cpu];
16703d0407baSopenharmony_ci    p->se.parent = tg->se[cpu];
16713d0407baSopenharmony_ci#endif
16723d0407baSopenharmony_ci
16733d0407baSopenharmony_ci#ifdef CONFIG_RT_GROUP_SCHED
16743d0407baSopenharmony_ci    p->rt.rt_rq = tg->rt_rq[cpu];
16753d0407baSopenharmony_ci    p->rt.parent = tg->rt_se[cpu];
16763d0407baSopenharmony_ci#endif
16773d0407baSopenharmony_ci}
16783d0407baSopenharmony_ci
16793d0407baSopenharmony_ci#else /* CONFIG_CGROUP_SCHED */
16803d0407baSopenharmony_ci
16813d0407baSopenharmony_cistatic inline void set_task_rq(struct task_struct *p, unsigned int cpu)
16823d0407baSopenharmony_ci{
16833d0407baSopenharmony_ci}
16843d0407baSopenharmony_cistatic inline struct task_group *task_group(struct task_struct *p)
16853d0407baSopenharmony_ci{
16863d0407baSopenharmony_ci    return NULL;
16873d0407baSopenharmony_ci}
16883d0407baSopenharmony_ci
16893d0407baSopenharmony_ci#endif /* CONFIG_CGROUP_SCHED */
16903d0407baSopenharmony_ci
16913d0407baSopenharmony_cistatic inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
16923d0407baSopenharmony_ci{
16933d0407baSopenharmony_ci    set_task_rq(p, cpu);
16943d0407baSopenharmony_ci#ifdef CONFIG_SMP
16953d0407baSopenharmony_ci    /*
16963d0407baSopenharmony_ci     * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
16973d0407baSopenharmony_ci     * successfully executed on another CPU. We must ensure that updates of
16983d0407baSopenharmony_ci     * per-task data have been completed by this moment.
16993d0407baSopenharmony_ci     */
17003d0407baSopenharmony_ci    smp_wmb();
17013d0407baSopenharmony_ci#ifdef CONFIG_THREAD_INFO_IN_TASK
17023d0407baSopenharmony_ci    WRITE_ONCE(p->cpu, cpu);
17033d0407baSopenharmony_ci#else
17043d0407baSopenharmony_ci    WRITE_ONCE(task_thread_info(p)->cpu, cpu);
17053d0407baSopenharmony_ci#endif
17063d0407baSopenharmony_ci    p->wake_cpu = cpu;
17073d0407baSopenharmony_ci#endif
17083d0407baSopenharmony_ci}
17093d0407baSopenharmony_ci
17103d0407baSopenharmony_ci/*
17113d0407baSopenharmony_ci * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
17123d0407baSopenharmony_ci */
17133d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
17143d0407baSopenharmony_ci#include <linux/static_key.h>
17153d0407baSopenharmony_ci#define const_debug __read_mostly
17163d0407baSopenharmony_ci#else
17173d0407baSopenharmony_ci#define const_debug const
17183d0407baSopenharmony_ci#endif
17193d0407baSopenharmony_ci
17203d0407baSopenharmony_ci#define SCHED_FEAT(name, enabled) __SCHED_FEAT_##name,
17213d0407baSopenharmony_ci
17223d0407baSopenharmony_cienum {
17233d0407baSopenharmony_ci#include "features.h"
17243d0407baSopenharmony_ci    __SCHED_FEAT_NR,
17253d0407baSopenharmony_ci};
17263d0407baSopenharmony_ci
17273d0407baSopenharmony_ci#undef SCHED_FEAT
17283d0407baSopenharmony_ci
17293d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
17303d0407baSopenharmony_ci
17313d0407baSopenharmony_ci/*
17323d0407baSopenharmony_ci * To support run-time toggling of sched features, all the translation units
17333d0407baSopenharmony_ci * (but core.c) reference the sysctl_sched_features defined in core.c.
17343d0407baSopenharmony_ci */
17353d0407baSopenharmony_ciextern const_debug unsigned int sysctl_sched_features;
17363d0407baSopenharmony_ci
17373d0407baSopenharmony_ci#ifdef CONFIG_JUMP_LABEL
17383d0407baSopenharmony_ci#define SCHED_FEAT(name, enabled)                                                                                      \
17393d0407baSopenharmony_ci    static __always_inline bool static_branch_##name(struct static_key *key)                                           \
17403d0407baSopenharmony_ci    {                                                                                                                  \
17413d0407baSopenharmony_ci        return static_key_##enabled(key);                                                                              \
17423d0407baSopenharmony_ci    }
17433d0407baSopenharmony_ci
17443d0407baSopenharmony_ci#include "features.h"
17453d0407baSopenharmony_ci#undef SCHED_FEAT
17463d0407baSopenharmony_ci
17473d0407baSopenharmony_ciextern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
17483d0407baSopenharmony_ci#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
17493d0407baSopenharmony_ci
17503d0407baSopenharmony_ci#else /* !CONFIG_JUMP_LABEL */
17513d0407baSopenharmony_ci
17523d0407baSopenharmony_ci#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
17533d0407baSopenharmony_ci
17543d0407baSopenharmony_ci#endif /* CONFIG_JUMP_LABEL */
17553d0407baSopenharmony_ci
17563d0407baSopenharmony_ci#else /* !SCHED_DEBUG */
17573d0407baSopenharmony_ci
17583d0407baSopenharmony_ci/*
17593d0407baSopenharmony_ci * Each translation unit has its own copy of sysctl_sched_features to allow
17603d0407baSopenharmony_ci * constants propagation at compile time and compiler optimization based on
17613d0407baSopenharmony_ci * features default.
17623d0407baSopenharmony_ci */
17633d0407baSopenharmony_ci#define SCHED_FEAT(name, enabled) (1UL << __SCHED_FEAT_##name) * (enabled) |
17643d0407baSopenharmony_cistatic const_debug __maybe_unused unsigned int sysctl_sched_features =
17653d0407baSopenharmony_ci#include "features.h"
17663d0407baSopenharmony_ci    0;
17673d0407baSopenharmony_ci#undef SCHED_FEAT
17683d0407baSopenharmony_ci
17693d0407baSopenharmony_ci#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
17703d0407baSopenharmony_ci
17713d0407baSopenharmony_ci#endif /* SCHED_DEBUG */
17723d0407baSopenharmony_ci
17733d0407baSopenharmony_ciextern struct static_key_false sched_numa_balancing;
17743d0407baSopenharmony_ciextern struct static_key_false sched_schedstats;
17753d0407baSopenharmony_ci
17763d0407baSopenharmony_cistatic inline u64 global_rt_period(void)
17773d0407baSopenharmony_ci{
17783d0407baSopenharmony_ci    return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
17793d0407baSopenharmony_ci}
17803d0407baSopenharmony_ci
17813d0407baSopenharmony_cistatic inline u64 global_rt_runtime(void)
17823d0407baSopenharmony_ci{
17833d0407baSopenharmony_ci    if (sysctl_sched_rt_runtime < 0) {
17843d0407baSopenharmony_ci        return RUNTIME_INF;
17853d0407baSopenharmony_ci    }
17863d0407baSopenharmony_ci
17873d0407baSopenharmony_ci    return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
17883d0407baSopenharmony_ci}
17893d0407baSopenharmony_ci
17903d0407baSopenharmony_cistatic inline int task_current(struct rq *rq, struct task_struct *p)
17913d0407baSopenharmony_ci{
17923d0407baSopenharmony_ci    return rq->curr == p;
17933d0407baSopenharmony_ci}
17943d0407baSopenharmony_ci
17953d0407baSopenharmony_cistatic inline int task_running(struct rq *rq, struct task_struct *p)
17963d0407baSopenharmony_ci{
17973d0407baSopenharmony_ci#ifdef CONFIG_SMP
17983d0407baSopenharmony_ci    return p->on_cpu;
17993d0407baSopenharmony_ci#else
18003d0407baSopenharmony_ci    return task_current(rq, p);
18013d0407baSopenharmony_ci#endif
18023d0407baSopenharmony_ci}
18033d0407baSopenharmony_ci
18043d0407baSopenharmony_cistatic inline int task_on_rq_queued(struct task_struct *p)
18053d0407baSopenharmony_ci{
18063d0407baSopenharmony_ci    return p->on_rq == TASK_ON_RQ_QUEUED;
18073d0407baSopenharmony_ci}
18083d0407baSopenharmony_ci
18093d0407baSopenharmony_cistatic inline int task_on_rq_migrating(struct task_struct *p)
18103d0407baSopenharmony_ci{
18113d0407baSopenharmony_ci    return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
18123d0407baSopenharmony_ci}
18133d0407baSopenharmony_ci
18143d0407baSopenharmony_ci/*
18153d0407baSopenharmony_ci * wake flags
18163d0407baSopenharmony_ci */
18173d0407baSopenharmony_ci#define WF_SYNC 0x01     /* Waker goes to sleep after wakeup */
18183d0407baSopenharmony_ci#define WF_FORK 0x02     /* Child wakeup after fork */
18193d0407baSopenharmony_ci#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
18203d0407baSopenharmony_ci#define WF_ON_CPU 0x08   /* Wakee is on_cpu */
18213d0407baSopenharmony_ci
18223d0407baSopenharmony_ci/*
18233d0407baSopenharmony_ci * To aid in avoiding the subversion of "niceness" due to uneven distribution
18243d0407baSopenharmony_ci * of tasks with abnormal "nice" values across CPUs the contribution that
18253d0407baSopenharmony_ci * each task makes to its run queue's load is weighted according to its
18263d0407baSopenharmony_ci * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
18273d0407baSopenharmony_ci * scaled version of the new time slice allocation that they receive on time
18283d0407baSopenharmony_ci * slice expiry etc.
18293d0407baSopenharmony_ci */
18303d0407baSopenharmony_ci
18313d0407baSopenharmony_ci#define WEIGHT_IDLEPRIO 3
18323d0407baSopenharmony_ci#define WMULT_IDLEPRIO 1431655765
18333d0407baSopenharmony_ci
18343d0407baSopenharmony_ciextern const int sched_prio_to_weight[40];
18353d0407baSopenharmony_ciextern const u32 sched_prio_to_wmult[40];
18363d0407baSopenharmony_ci#ifdef CONFIG_SCHED_LATENCY_NICE
18373d0407baSopenharmony_ciextern const int		sched_latency_to_weight[40];
18383d0407baSopenharmony_ci#endif
18393d0407baSopenharmony_ci
18403d0407baSopenharmony_ci/*
18413d0407baSopenharmony_ci * {de,en}queue flags:
18423d0407baSopenharmony_ci *
18433d0407baSopenharmony_ci * DEQUEUE_SLEEP  - task is no longer runnable
18443d0407baSopenharmony_ci * ENQUEUE_WAKEUP - task just became runnable
18453d0407baSopenharmony_ci *
18463d0407baSopenharmony_ci * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
18473d0407baSopenharmony_ci *                are in a known state which allows modification. Such pairs
18483d0407baSopenharmony_ci *                should preserve as much state as possible.
18493d0407baSopenharmony_ci *
18503d0407baSopenharmony_ci * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
18513d0407baSopenharmony_ci *        in the runqueue.
18523d0407baSopenharmony_ci *
18533d0407baSopenharmony_ci * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
18543d0407baSopenharmony_ci * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
18553d0407baSopenharmony_ci * ENQUEUE_MIGRATED  - the task was migrated during wakeup
18563d0407baSopenharmony_ci *
18573d0407baSopenharmony_ci */
18583d0407baSopenharmony_ci
18593d0407baSopenharmony_ci#define DEQUEUE_SLEEP 0x01
18603d0407baSopenharmony_ci#define DEQUEUE_SAVE 0x02    /* Matches ENQUEUE_RESTORE */
18613d0407baSopenharmony_ci#define DEQUEUE_MOVE 0x04    /* Matches ENQUEUE_MOVE */
18623d0407baSopenharmony_ci#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
18633d0407baSopenharmony_ci
18643d0407baSopenharmony_ci#define ENQUEUE_WAKEUP 0x01
18653d0407baSopenharmony_ci#define ENQUEUE_RESTORE 0x02
18663d0407baSopenharmony_ci#define ENQUEUE_MOVE 0x04
18673d0407baSopenharmony_ci#define ENQUEUE_NOCLOCK 0x08
18683d0407baSopenharmony_ci
18693d0407baSopenharmony_ci#define ENQUEUE_HEAD 0x10
18703d0407baSopenharmony_ci#define ENQUEUE_REPLENISH 0x20
18713d0407baSopenharmony_ci#ifdef CONFIG_SMP
18723d0407baSopenharmony_ci#define ENQUEUE_MIGRATED 0x40
18733d0407baSopenharmony_ci#else
18743d0407baSopenharmony_ci#define ENQUEUE_MIGRATED 0x00
18753d0407baSopenharmony_ci#endif
18763d0407baSopenharmony_ci
18773d0407baSopenharmony_ci#define ENQUEUE_WAKEUP_SYNC 0x80
18783d0407baSopenharmony_ci
18793d0407baSopenharmony_ci#define RETRY_TASK ((void *)-1UL)
18803d0407baSopenharmony_ci
18813d0407baSopenharmony_cistruct sched_class {
18823d0407baSopenharmony_ci#ifdef CONFIG_UCLAMP_TASK
18833d0407baSopenharmony_ci    int uclamp_enabled;
18843d0407baSopenharmony_ci#endif
18853d0407baSopenharmony_ci
18863d0407baSopenharmony_ci    void (*enqueue_task)(struct rq *rq, struct task_struct *p, int flags);
18873d0407baSopenharmony_ci    void (*dequeue_task)(struct rq *rq, struct task_struct *p, int flags);
18883d0407baSopenharmony_ci    void (*yield_task)(struct rq *rq);
18893d0407baSopenharmony_ci    bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
18903d0407baSopenharmony_ci
18913d0407baSopenharmony_ci    void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
18923d0407baSopenharmony_ci
18933d0407baSopenharmony_ci    struct task_struct *(*pick_next_task)(struct rq *rq);
18943d0407baSopenharmony_ci
18953d0407baSopenharmony_ci    void (*put_prev_task)(struct rq *rq, struct task_struct *p);
18963d0407baSopenharmony_ci    void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
18973d0407baSopenharmony_ci
18983d0407baSopenharmony_ci#ifdef CONFIG_SMP
18993d0407baSopenharmony_ci    int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
19003d0407baSopenharmony_ci    int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
19013d0407baSopenharmony_ci    void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
19023d0407baSopenharmony_ci
19033d0407baSopenharmony_ci    void (*task_woken)(struct rq *this_rq, struct task_struct *task);
19043d0407baSopenharmony_ci
19053d0407baSopenharmony_ci    void (*set_cpus_allowed)(struct task_struct *p, const struct cpumask *newmask);
19063d0407baSopenharmony_ci
19073d0407baSopenharmony_ci    void (*rq_online)(struct rq *rq);
19083d0407baSopenharmony_ci    void (*rq_offline)(struct rq *rq);
19093d0407baSopenharmony_ci#endif
19103d0407baSopenharmony_ci
19113d0407baSopenharmony_ci    void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
19123d0407baSopenharmony_ci    void (*task_fork)(struct task_struct *p);
19133d0407baSopenharmony_ci    void (*task_dead)(struct task_struct *p);
19143d0407baSopenharmony_ci
19153d0407baSopenharmony_ci    /*
19163d0407baSopenharmony_ci     * The switched_from() call is allowed to drop rq->lock, therefore we
19173d0407baSopenharmony_ci     * cannot assume the switched_from/switched_to pair is serliazed by
19183d0407baSopenharmony_ci     * rq->lock. They are however serialized by p->pi_lock.
19193d0407baSopenharmony_ci     */
19203d0407baSopenharmony_ci    void (*switched_from)(struct rq *this_rq, struct task_struct *task);
19213d0407baSopenharmony_ci    void (*switched_to)(struct rq *this_rq, struct task_struct *task);
19223d0407baSopenharmony_ci    void (*prio_changed)(struct rq *this_rq, struct task_struct *task, int oldprio);
19233d0407baSopenharmony_ci
19243d0407baSopenharmony_ci    unsigned int (*get_rr_interval)(struct rq *rq, struct task_struct *task);
19253d0407baSopenharmony_ci
19263d0407baSopenharmony_ci    void (*update_curr)(struct rq *rq);
19273d0407baSopenharmony_ci
19283d0407baSopenharmony_ci#define TASK_SET_GROUP 0
19293d0407baSopenharmony_ci#define TASK_MOVE_GROUP 1
19303d0407baSopenharmony_ci
19313d0407baSopenharmony_ci#ifdef CONFIG_FAIR_GROUP_SCHED
19323d0407baSopenharmony_ci    void (*task_change_group)(struct task_struct *p, int type);
19333d0407baSopenharmony_ci#endif
19343d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
19353d0407baSopenharmony_ci    void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p, u16 updated_demand_scaled);
19363d0407baSopenharmony_ci#endif
19373d0407baSopenharmony_ci#ifdef CONFIG_SCHED_EAS
19383d0407baSopenharmony_ci    void (*check_for_migration)(struct rq *rq, struct task_struct *p);
19393d0407baSopenharmony_ci#endif
19403d0407baSopenharmony_ci} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
19413d0407baSopenharmony_ci
19423d0407baSopenharmony_cistatic inline void put_prev_task(struct rq *rq, struct task_struct *prev)
19433d0407baSopenharmony_ci{
19443d0407baSopenharmony_ci    WARN_ON_ONCE(rq->curr != prev);
19453d0407baSopenharmony_ci    prev->sched_class->put_prev_task(rq, prev);
19463d0407baSopenharmony_ci}
19473d0407baSopenharmony_ci
19483d0407baSopenharmony_cistatic inline void set_next_task(struct rq *rq, struct task_struct *next)
19493d0407baSopenharmony_ci{
19503d0407baSopenharmony_ci    WARN_ON_ONCE(rq->curr != next);
19513d0407baSopenharmony_ci    next->sched_class->set_next_task(rq, next, false);
19523d0407baSopenharmony_ci}
19533d0407baSopenharmony_ci
19543d0407baSopenharmony_ci/* Defined in include/asm-generic/vmlinux.lds.h */
19553d0407baSopenharmony_ciextern struct sched_class __begin_sched_classes[];
19563d0407baSopenharmony_ciextern struct sched_class __end_sched_classes[];
19573d0407baSopenharmony_ci
19583d0407baSopenharmony_ci#define sched_class_highest (__end_sched_classes - 1)
19593d0407baSopenharmony_ci#define sched_class_lowest (__begin_sched_classes - 1)
19603d0407baSopenharmony_ci
19613d0407baSopenharmony_ci#define for_class_range(class, _from, _to) for (class = (_from); class != (_to); (class)--)
19623d0407baSopenharmony_ci
19633d0407baSopenharmony_ci#define for_each_class(class) for_class_range(class, sched_class_highest, sched_class_lowest)
19643d0407baSopenharmony_ci
19653d0407baSopenharmony_ciextern const struct sched_class stop_sched_class;
19663d0407baSopenharmony_ciextern const struct sched_class dl_sched_class;
19673d0407baSopenharmony_ciextern const struct sched_class rt_sched_class;
19683d0407baSopenharmony_ciextern const struct sched_class fair_sched_class;
19693d0407baSopenharmony_ciextern const struct sched_class idle_sched_class;
19703d0407baSopenharmony_ci
19713d0407baSopenharmony_cistatic inline bool sched_stop_runnable(struct rq *rq)
19723d0407baSopenharmony_ci{
19733d0407baSopenharmony_ci    return rq->stop && task_on_rq_queued(rq->stop);
19743d0407baSopenharmony_ci}
19753d0407baSopenharmony_ci
19763d0407baSopenharmony_cistatic inline bool sched_dl_runnable(struct rq *rq)
19773d0407baSopenharmony_ci{
19783d0407baSopenharmony_ci    return rq->dl.dl_nr_running > 0;
19793d0407baSopenharmony_ci}
19803d0407baSopenharmony_ci
19813d0407baSopenharmony_cistatic inline bool sched_rt_runnable(struct rq *rq)
19823d0407baSopenharmony_ci{
19833d0407baSopenharmony_ci    return rq->rt.rt_queued > 0;
19843d0407baSopenharmony_ci}
19853d0407baSopenharmony_ci
19863d0407baSopenharmony_cistatic inline bool sched_fair_runnable(struct rq *rq)
19873d0407baSopenharmony_ci{
19883d0407baSopenharmony_ci    return rq->cfs.nr_running > 0;
19893d0407baSopenharmony_ci}
19903d0407baSopenharmony_ci
19913d0407baSopenharmony_ciextern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
19923d0407baSopenharmony_ciextern struct task_struct *pick_next_task_idle(struct rq *rq);
19933d0407baSopenharmony_ci
19943d0407baSopenharmony_ci#ifdef CONFIG_SMP
19953d0407baSopenharmony_ci
19963d0407baSopenharmony_ciextern void update_group_capacity(struct sched_domain *sd, int cpu);
19973d0407baSopenharmony_ci
19983d0407baSopenharmony_ciextern void trigger_load_balance(struct rq *rq);
19993d0407baSopenharmony_ci
20003d0407baSopenharmony_ciextern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
20013d0407baSopenharmony_ci
20023d0407baSopenharmony_ci#endif
20033d0407baSopenharmony_ci
20043d0407baSopenharmony_ci#ifdef CONFIG_CPU_IDLE
20053d0407baSopenharmony_cistatic inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state)
20063d0407baSopenharmony_ci{
20073d0407baSopenharmony_ci    rq->idle_state = idle_state;
20083d0407baSopenharmony_ci}
20093d0407baSopenharmony_ci
20103d0407baSopenharmony_cistatic inline struct cpuidle_state *idle_get_state(struct rq *rq)
20113d0407baSopenharmony_ci{
20123d0407baSopenharmony_ci    SCHED_WARN_ON(!rcu_read_lock_held());
20133d0407baSopenharmony_ci
20143d0407baSopenharmony_ci    return rq->idle_state;
20153d0407baSopenharmony_ci}
20163d0407baSopenharmony_ci#else
20173d0407baSopenharmony_cistatic inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state)
20183d0407baSopenharmony_ci{
20193d0407baSopenharmony_ci}
20203d0407baSopenharmony_ci
20213d0407baSopenharmony_cistatic inline struct cpuidle_state *idle_get_state(struct rq *rq)
20223d0407baSopenharmony_ci{
20233d0407baSopenharmony_ci    return NULL;
20243d0407baSopenharmony_ci}
20253d0407baSopenharmony_ci#endif
20263d0407baSopenharmony_ci
20273d0407baSopenharmony_ciextern void schedule_idle(void);
20283d0407baSopenharmony_ci
20293d0407baSopenharmony_ciextern void sysrq_sched_debug_show(void);
20303d0407baSopenharmony_ciextern void sched_init_granularity(void);
20313d0407baSopenharmony_ciextern void update_max_interval(void);
20323d0407baSopenharmony_ci
20333d0407baSopenharmony_ciextern void init_sched_dl_class(void);
20343d0407baSopenharmony_ciextern void init_sched_rt_class(void);
20353d0407baSopenharmony_ciextern void init_sched_fair_class(void);
20363d0407baSopenharmony_ci
20373d0407baSopenharmony_ciextern void reweight_task(struct task_struct *p, int prio);
20383d0407baSopenharmony_ci
20393d0407baSopenharmony_ciextern void resched_curr(struct rq *rq);
20403d0407baSopenharmony_ciextern void resched_cpu(int cpu);
20413d0407baSopenharmony_ci
20423d0407baSopenharmony_ciextern struct rt_bandwidth def_rt_bandwidth;
20433d0407baSopenharmony_ciextern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
20443d0407baSopenharmony_ci
20453d0407baSopenharmony_ciextern struct dl_bandwidth def_dl_bandwidth;
20463d0407baSopenharmony_ciextern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
20473d0407baSopenharmony_ciextern void init_dl_task_timer(struct sched_dl_entity *dl_se);
20483d0407baSopenharmony_ciextern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
20493d0407baSopenharmony_ci
20503d0407baSopenharmony_ci#define BW_SHIFT 20
20513d0407baSopenharmony_ci#define BW_UNIT (1 << BW_SHIFT)
20523d0407baSopenharmony_ci#define RATIO_SHIFT 8
20533d0407baSopenharmony_ci#define MAX_BW_BITS (64 - BW_SHIFT)
20543d0407baSopenharmony_ci#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
20553d0407baSopenharmony_ciunsigned long to_ratio(u64 period, u64 runtime);
20563d0407baSopenharmony_ci
20573d0407baSopenharmony_ciextern void init_entity_runnable_average(struct sched_entity *se);
20583d0407baSopenharmony_ciextern void post_init_entity_util_avg(struct task_struct *p);
20593d0407baSopenharmony_ci
20603d0407baSopenharmony_ci#ifdef CONFIG_NO_HZ_FULL
20613d0407baSopenharmony_ciextern bool sched_can_stop_tick(struct rq *rq);
20623d0407baSopenharmony_ciextern int __init sched_tick_offload_init(void);
20633d0407baSopenharmony_ci
20643d0407baSopenharmony_ci/*
20653d0407baSopenharmony_ci * Tick may be needed by tasks in the runqueue depending on their policy and
20663d0407baSopenharmony_ci * requirements. If tick is needed, lets send the target an IPI to kick it out of
20673d0407baSopenharmony_ci * nohz mode if necessary.
20683d0407baSopenharmony_ci */
20693d0407baSopenharmony_cistatic inline void sched_update_tick_dependency(struct rq *rq)
20703d0407baSopenharmony_ci{
20713d0407baSopenharmony_ci    int cpu = cpu_of(rq);
20723d0407baSopenharmony_ci    if (!tick_nohz_full_cpu(cpu)) {
20733d0407baSopenharmony_ci        return;
20743d0407baSopenharmony_ci    }
20753d0407baSopenharmony_ci
20763d0407baSopenharmony_ci    if (sched_can_stop_tick(rq)) {
20773d0407baSopenharmony_ci        tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
20783d0407baSopenharmony_ci    } else {
20793d0407baSopenharmony_ci        tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
20803d0407baSopenharmony_ci    }
20813d0407baSopenharmony_ci}
20823d0407baSopenharmony_ci#else
20833d0407baSopenharmony_cistatic inline int sched_tick_offload_init(void)
20843d0407baSopenharmony_ci{
20853d0407baSopenharmony_ci    return 0;
20863d0407baSopenharmony_ci}
20873d0407baSopenharmony_cistatic inline void sched_update_tick_dependency(struct rq *rq)
20883d0407baSopenharmony_ci{
20893d0407baSopenharmony_ci}
20903d0407baSopenharmony_ci#endif
20913d0407baSopenharmony_ci
20923d0407baSopenharmony_cistatic inline void add_nr_running(struct rq *rq, unsigned count)
20933d0407baSopenharmony_ci{
20943d0407baSopenharmony_ci    unsigned prev_nr = rq->nr_running;
20953d0407baSopenharmony_ci
20963d0407baSopenharmony_ci    rq->nr_running = prev_nr + count;
20973d0407baSopenharmony_ci    if (trace_sched_update_nr_running_tp_enabled()) {
20983d0407baSopenharmony_ci        call_trace_sched_update_nr_running(rq, count);
20993d0407baSopenharmony_ci    }
21003d0407baSopenharmony_ci
21013d0407baSopenharmony_ci#ifdef CONFIG_SMP
21023d0407baSopenharmony_ci    if (prev_nr < TASK_ON_RQ_MIGRATING && rq->nr_running >= TASK_ON_RQ_MIGRATING) {
21033d0407baSopenharmony_ci        if (!READ_ONCE(rq->rd->overload)) {
21043d0407baSopenharmony_ci            WRITE_ONCE(rq->rd->overload, 1);
21053d0407baSopenharmony_ci        }
21063d0407baSopenharmony_ci    }
21073d0407baSopenharmony_ci#endif
21083d0407baSopenharmony_ci
21093d0407baSopenharmony_ci    sched_update_tick_dependency(rq);
21103d0407baSopenharmony_ci}
21113d0407baSopenharmony_ci
21123d0407baSopenharmony_cistatic inline void sub_nr_running(struct rq *rq, unsigned count)
21133d0407baSopenharmony_ci{
21143d0407baSopenharmony_ci    rq->nr_running -= count;
21153d0407baSopenharmony_ci    if (trace_sched_update_nr_running_tp_enabled()) {
21163d0407baSopenharmony_ci        call_trace_sched_update_nr_running(rq, -count);
21173d0407baSopenharmony_ci    }
21183d0407baSopenharmony_ci
21193d0407baSopenharmony_ci    /* Check if we still need preemption */
21203d0407baSopenharmony_ci    sched_update_tick_dependency(rq);
21213d0407baSopenharmony_ci}
21223d0407baSopenharmony_ci
21233d0407baSopenharmony_ciextern void activate_task(struct rq *rq, struct task_struct *p, int flags);
21243d0407baSopenharmony_ciextern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
21253d0407baSopenharmony_ci
21263d0407baSopenharmony_ciextern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
21273d0407baSopenharmony_ci
21283d0407baSopenharmony_ciextern const_debug unsigned int sysctl_sched_nr_migrate;
21293d0407baSopenharmony_ciextern const_debug unsigned int sysctl_sched_migration_cost;
21303d0407baSopenharmony_ci
21313d0407baSopenharmony_ci#ifdef CONFIG_SCHED_HRTICK
21323d0407baSopenharmony_ci
21333d0407baSopenharmony_ci/*
21343d0407baSopenharmony_ci * Use hrtick when:
21353d0407baSopenharmony_ci *  - enabled by features
21363d0407baSopenharmony_ci *  - hrtimer is actually high res
21373d0407baSopenharmony_ci */
21383d0407baSopenharmony_cistatic inline int hrtick_enabled(struct rq *rq)
21393d0407baSopenharmony_ci{
21403d0407baSopenharmony_ci    if (!sched_feat(HRTICK)) {
21413d0407baSopenharmony_ci        return 0;
21423d0407baSopenharmony_ci    }
21433d0407baSopenharmony_ci    if (!cpu_active(cpu_of(rq))) {
21443d0407baSopenharmony_ci        return 0;
21453d0407baSopenharmony_ci    }
21463d0407baSopenharmony_ci    return hrtimer_is_hres_active(&rq->hrtick_timer);
21473d0407baSopenharmony_ci}
21483d0407baSopenharmony_ci
21493d0407baSopenharmony_civoid hrtick_start(struct rq *rq, u64 delay);
21503d0407baSopenharmony_ci
21513d0407baSopenharmony_ci#else
21523d0407baSopenharmony_ci
21533d0407baSopenharmony_cistatic inline int hrtick_enabled(struct rq *rq)
21543d0407baSopenharmony_ci{
21553d0407baSopenharmony_ci    return 0;
21563d0407baSopenharmony_ci}
21573d0407baSopenharmony_ci
21583d0407baSopenharmony_ci#endif /* CONFIG_SCHED_HRTICK */
21593d0407baSopenharmony_ci
21603d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
21613d0407baSopenharmony_ciu64 sched_ktime_clock(void);
21623d0407baSopenharmony_ci#else
21633d0407baSopenharmony_cistatic inline u64 sched_ktime_clock(void)
21643d0407baSopenharmony_ci{
21653d0407baSopenharmony_ci    return sched_clock();
21663d0407baSopenharmony_ci}
21673d0407baSopenharmony_ci#endif
21683d0407baSopenharmony_ci
21693d0407baSopenharmony_ci#ifndef arch_scale_freq_tick
21703d0407baSopenharmony_cistatic __always_inline void arch_scale_freq_tick(void)
21713d0407baSopenharmony_ci{
21723d0407baSopenharmony_ci}
21733d0407baSopenharmony_ci#endif
21743d0407baSopenharmony_ci
21753d0407baSopenharmony_ci#ifndef arch_scale_freq_capacity
21763d0407baSopenharmony_ci/**
21773d0407baSopenharmony_ci * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
21783d0407baSopenharmony_ci * @cpu: the CPU in question.
21793d0407baSopenharmony_ci *
21803d0407baSopenharmony_ci * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
21813d0407baSopenharmony_ci *
21823d0407baSopenharmony_ci *     f_curr
21833d0407baSopenharmony_ci *     ------ * SCHED_CAPACITY_SCALE
21843d0407baSopenharmony_ci *     f_max
21853d0407baSopenharmony_ci */
21863d0407baSopenharmony_cistatic __always_inline unsigned long arch_scale_freq_capacity(int cpu)
21873d0407baSopenharmony_ci{
21883d0407baSopenharmony_ci    return SCHED_CAPACITY_SCALE;
21893d0407baSopenharmony_ci}
21903d0407baSopenharmony_ci#endif
21913d0407baSopenharmony_ci
21923d0407baSopenharmony_ciunsigned long capacity_curr_of(int cpu);
21933d0407baSopenharmony_ciunsigned long cpu_util(int cpu);
21943d0407baSopenharmony_ci
21953d0407baSopenharmony_ci#ifdef CONFIG_SMP
21963d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
21973d0407baSopenharmony_ciextern unsigned int sysctl_sched_use_walt_cpu_util;
21983d0407baSopenharmony_ciextern unsigned int walt_disabled;
21993d0407baSopenharmony_ci#endif
22003d0407baSopenharmony_ci#ifdef CONFIG_PREEMPTION
22013d0407baSopenharmony_ci
22023d0407baSopenharmony_cistatic inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
22033d0407baSopenharmony_ci
22043d0407baSopenharmony_ci/*
22053d0407baSopenharmony_ci * fair double_lock_balance: Safely acquires both rq->locks in a fair
22063d0407baSopenharmony_ci * way at the expense of forcing extra atomic operations in all
22073d0407baSopenharmony_ci * invocations.  This assures that the double_lock is acquired using the
22083d0407baSopenharmony_ci * same underlying policy as the spinlock_t on this architecture, which
22093d0407baSopenharmony_ci * reduces latency compared to the unfair variant below.  However, it
22103d0407baSopenharmony_ci * also adds more overhead and therefore may reduce throughput.
22113d0407baSopenharmony_ci */
22123d0407baSopenharmony_cistatic inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock)
22133d0407baSopenharmony_ci    __acquires(busiest->lock) __acquires(this_rq->lock)
22143d0407baSopenharmony_ci{
22153d0407baSopenharmony_ci    raw_spin_unlock(&this_rq->lock);
22163d0407baSopenharmony_ci    double_rq_lock(this_rq, busiest);
22173d0407baSopenharmony_ci
22183d0407baSopenharmony_ci    return 1;
22193d0407baSopenharmony_ci}
22203d0407baSopenharmony_ci
22213d0407baSopenharmony_ci#else
22223d0407baSopenharmony_ci/*
22233d0407baSopenharmony_ci * Unfair double_lock_balance: Optimizes throughput at the expense of
22243d0407baSopenharmony_ci * latency by eliminating extra atomic operations when the locks are
22253d0407baSopenharmony_ci * already in proper order on entry.  This favors lower CPU-ids and will
22263d0407baSopenharmony_ci * grant the double lock to lower CPUs over higher ids under contention,
22273d0407baSopenharmony_ci * regardless of entry order into the function.
22283d0407baSopenharmony_ci */
22293d0407baSopenharmony_cistatic inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock)
22303d0407baSopenharmony_ci    __acquires(busiest->lock) __acquires(this_rq->lock)
22313d0407baSopenharmony_ci{
22323d0407baSopenharmony_ci    int ret = 0;
22333d0407baSopenharmony_ci
22343d0407baSopenharmony_ci    if (unlikely(!raw_spin_trylock(&busiest->lock))) {
22353d0407baSopenharmony_ci        if (busiest < this_rq) {
22363d0407baSopenharmony_ci            raw_spin_unlock(&this_rq->lock);
22373d0407baSopenharmony_ci            raw_spin_lock(&busiest->lock);
22383d0407baSopenharmony_ci            raw_spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
22393d0407baSopenharmony_ci            ret = 1;
22403d0407baSopenharmony_ci        } else {
22413d0407baSopenharmony_ci            raw_spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
22423d0407baSopenharmony_ci        }
22433d0407baSopenharmony_ci    }
22443d0407baSopenharmony_ci    return ret;
22453d0407baSopenharmony_ci}
22463d0407baSopenharmony_ci
22473d0407baSopenharmony_ci#endif /* CONFIG_PREEMPTION */
22483d0407baSopenharmony_ci
22493d0407baSopenharmony_ci/*
22503d0407baSopenharmony_ci * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
22513d0407baSopenharmony_ci */
22523d0407baSopenharmony_cistatic inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
22533d0407baSopenharmony_ci{
22543d0407baSopenharmony_ci    if (unlikely(!irqs_disabled())) {
22553d0407baSopenharmony_ci        /* printk() doesn't work well under rq->lock */
22563d0407baSopenharmony_ci        raw_spin_unlock(&this_rq->lock);
22573d0407baSopenharmony_ci        BUG_ON(1);
22583d0407baSopenharmony_ci    }
22593d0407baSopenharmony_ci
22603d0407baSopenharmony_ci    return _double_lock_balance(this_rq, busiest);
22613d0407baSopenharmony_ci}
22623d0407baSopenharmony_ci
22633d0407baSopenharmony_cistatic inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock)
22643d0407baSopenharmony_ci{
22653d0407baSopenharmony_ci    raw_spin_unlock(&busiest->lock);
22663d0407baSopenharmony_ci    lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
22673d0407baSopenharmony_ci}
22683d0407baSopenharmony_ci
22693d0407baSopenharmony_cistatic inline void double_lock(spinlock_t *l1, spinlock_t *l2)
22703d0407baSopenharmony_ci{
22713d0407baSopenharmony_ci    if (l1 > l2) {
22723d0407baSopenharmony_ci        swap(l1, l2);
22733d0407baSopenharmony_ci    }
22743d0407baSopenharmony_ci
22753d0407baSopenharmony_ci    spin_lock(l1);
22763d0407baSopenharmony_ci    spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
22773d0407baSopenharmony_ci}
22783d0407baSopenharmony_ci
22793d0407baSopenharmony_cistatic inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
22803d0407baSopenharmony_ci{
22813d0407baSopenharmony_ci    if (l1 > l2) {
22823d0407baSopenharmony_ci        swap(l1, l2);
22833d0407baSopenharmony_ci    }
22843d0407baSopenharmony_ci
22853d0407baSopenharmony_ci    spin_lock_irq(l1);
22863d0407baSopenharmony_ci    spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
22873d0407baSopenharmony_ci}
22883d0407baSopenharmony_ci
22893d0407baSopenharmony_cistatic inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
22903d0407baSopenharmony_ci{
22913d0407baSopenharmony_ci    if (l1 > l2) {
22923d0407baSopenharmony_ci        swap(l1, l2);
22933d0407baSopenharmony_ci    }
22943d0407baSopenharmony_ci
22953d0407baSopenharmony_ci    raw_spin_lock(l1);
22963d0407baSopenharmony_ci    raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
22973d0407baSopenharmony_ci}
22983d0407baSopenharmony_ci
22993d0407baSopenharmony_ci/*
23003d0407baSopenharmony_ci * double_rq_lock - safely lock two runqueues
23013d0407baSopenharmony_ci *
23023d0407baSopenharmony_ci * Note this does not disable interrupts like task_rq_lock,
23033d0407baSopenharmony_ci * you need to do so manually before calling.
23043d0407baSopenharmony_ci */
23053d0407baSopenharmony_cistatic inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock)
23063d0407baSopenharmony_ci{
23073d0407baSopenharmony_ci    BUG_ON(!irqs_disabled());
23083d0407baSopenharmony_ci    if (rq1 == rq2) {
23093d0407baSopenharmony_ci        raw_spin_lock(&rq1->lock);
23103d0407baSopenharmony_ci        __acquire(rq2->lock); /* Fake it out ;) */
23113d0407baSopenharmony_ci    } else {
23123d0407baSopenharmony_ci        if (rq1 < rq2) {
23133d0407baSopenharmony_ci            raw_spin_lock(&rq1->lock);
23143d0407baSopenharmony_ci            raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
23153d0407baSopenharmony_ci        } else {
23163d0407baSopenharmony_ci            raw_spin_lock(&rq2->lock);
23173d0407baSopenharmony_ci            raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
23183d0407baSopenharmony_ci        }
23193d0407baSopenharmony_ci    }
23203d0407baSopenharmony_ci}
23213d0407baSopenharmony_ci
23223d0407baSopenharmony_ci/*
23233d0407baSopenharmony_ci * double_rq_unlock - safely unlock two runqueues
23243d0407baSopenharmony_ci *
23253d0407baSopenharmony_ci * Note this does not restore interrupts like task_rq_unlock,
23263d0407baSopenharmony_ci * you need to do so manually after calling.
23273d0407baSopenharmony_ci */
23283d0407baSopenharmony_cistatic inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock)
23293d0407baSopenharmony_ci{
23303d0407baSopenharmony_ci    raw_spin_unlock(&rq1->lock);
23313d0407baSopenharmony_ci    if (rq1 != rq2) {
23323d0407baSopenharmony_ci        raw_spin_unlock(&rq2->lock);
23333d0407baSopenharmony_ci    } else {
23343d0407baSopenharmony_ci        __release(rq2->lock);
23353d0407baSopenharmony_ci    }
23363d0407baSopenharmony_ci}
23373d0407baSopenharmony_ci
23383d0407baSopenharmony_ciextern void set_rq_online(struct rq *rq);
23393d0407baSopenharmony_ciextern void set_rq_offline(struct rq *rq);
23403d0407baSopenharmony_ciextern bool sched_smp_initialized;
23413d0407baSopenharmony_ci
23423d0407baSopenharmony_ci#else /* CONFIG_SMP */
23433d0407baSopenharmony_ci
23443d0407baSopenharmony_ci/*
23453d0407baSopenharmony_ci * double_rq_lock - safely lock two runqueues
23463d0407baSopenharmony_ci *
23473d0407baSopenharmony_ci * Note this does not disable interrupts like task_rq_lock,
23483d0407baSopenharmony_ci * you need to do so manually before calling.
23493d0407baSopenharmony_ci */
23503d0407baSopenharmony_cistatic inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock)
23513d0407baSopenharmony_ci{
23523d0407baSopenharmony_ci    BUG_ON(!irqs_disabled());
23533d0407baSopenharmony_ci    BUG_ON(rq1 != rq2);
23543d0407baSopenharmony_ci    raw_spin_lock(&rq1->lock);
23553d0407baSopenharmony_ci    __acquire(rq2->lock); /* Fake it out ;) */
23563d0407baSopenharmony_ci}
23573d0407baSopenharmony_ci
23583d0407baSopenharmony_ci/*
23593d0407baSopenharmony_ci * double_rq_unlock - safely unlock two runqueues
23603d0407baSopenharmony_ci *
23613d0407baSopenharmony_ci * Note this does not restore interrupts like task_rq_unlock,
23623d0407baSopenharmony_ci * you need to do so manually after calling.
23633d0407baSopenharmony_ci */
23643d0407baSopenharmony_cistatic inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock)
23653d0407baSopenharmony_ci{
23663d0407baSopenharmony_ci    BUG_ON(rq1 != rq2);
23673d0407baSopenharmony_ci    raw_spin_unlock(&rq1->lock);
23683d0407baSopenharmony_ci    __release(rq2->lock);
23693d0407baSopenharmony_ci}
23703d0407baSopenharmony_ci
23713d0407baSopenharmony_ci#endif
23723d0407baSopenharmony_ci
23733d0407baSopenharmony_ciextern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
23743d0407baSopenharmony_ciextern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
23753d0407baSopenharmony_ci
23763d0407baSopenharmony_ci#ifdef CONFIG_SCHED_DEBUG
23773d0407baSopenharmony_ciextern bool sched_debug_enabled;
23783d0407baSopenharmony_ci
23793d0407baSopenharmony_ciextern void print_cfs_stats(struct seq_file *m, int cpu);
23803d0407baSopenharmony_ciextern void print_rt_stats(struct seq_file *m, int cpu);
23813d0407baSopenharmony_ciextern void print_dl_stats(struct seq_file *m, int cpu);
23823d0407baSopenharmony_ciextern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
23833d0407baSopenharmony_ciextern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
23843d0407baSopenharmony_ciextern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
23853d0407baSopenharmony_ci#ifdef CONFIG_NUMA_BALANCING
23863d0407baSopenharmony_ciextern void show_numa_stats(struct task_struct *p, struct seq_file *m);
23873d0407baSopenharmony_ciextern void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, unsigned long tpf, unsigned long gsf,
23883d0407baSopenharmony_ci                             unsigned long gpf);
23893d0407baSopenharmony_ci#endif /* CONFIG_NUMA_BALANCING */
23903d0407baSopenharmony_ci#endif /* CONFIG_SCHED_DEBUG */
23913d0407baSopenharmony_ci
23923d0407baSopenharmony_ciextern void init_cfs_rq(struct cfs_rq *cfs_rq);
23933d0407baSopenharmony_ciextern void init_rt_rq(struct rt_rq *rt_rq);
23943d0407baSopenharmony_ciextern void init_dl_rq(struct dl_rq *dl_rq);
23953d0407baSopenharmony_ci
23963d0407baSopenharmony_ciextern void cfs_bandwidth_usage_inc(void);
23973d0407baSopenharmony_ciextern void cfs_bandwidth_usage_dec(void);
23983d0407baSopenharmony_ci
23993d0407baSopenharmony_ci#ifdef CONFIG_NO_HZ_COMMON
24003d0407baSopenharmony_ci#define NOHZ_BALANCE_KICK_BIT 0
24013d0407baSopenharmony_ci#define NOHZ_STATS_KICK_BIT 1
24023d0407baSopenharmony_ci
24033d0407baSopenharmony_ci#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
24043d0407baSopenharmony_ci#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
24053d0407baSopenharmony_ci
24063d0407baSopenharmony_ci#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
24073d0407baSopenharmony_ci
24083d0407baSopenharmony_ci#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
24093d0407baSopenharmony_ci
24103d0407baSopenharmony_ciextern void nohz_balance_exit_idle(struct rq *rq);
24113d0407baSopenharmony_ci#else
24123d0407baSopenharmony_cistatic inline void nohz_balance_exit_idle(struct rq *rq)
24133d0407baSopenharmony_ci{
24143d0407baSopenharmony_ci}
24153d0407baSopenharmony_ci#endif
24163d0407baSopenharmony_ci
24173d0407baSopenharmony_ci#ifdef CONFIG_SMP
24183d0407baSopenharmony_cistatic inline void __dl_update(struct dl_bw *dl_b, s64 bw)
24193d0407baSopenharmony_ci{
24203d0407baSopenharmony_ci    struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
24213d0407baSopenharmony_ci    int i;
24223d0407baSopenharmony_ci
24233d0407baSopenharmony_ci    RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), "sched RCU must be held");
24243d0407baSopenharmony_ci    for_each_cpu_and(i, rd->span, cpu_active_mask)
24253d0407baSopenharmony_ci    {
24263d0407baSopenharmony_ci        struct rq *rq = cpu_rq(i);
24273d0407baSopenharmony_ci
24283d0407baSopenharmony_ci        rq->dl.extra_bw += bw;
24293d0407baSopenharmony_ci    }
24303d0407baSopenharmony_ci}
24313d0407baSopenharmony_ci#else
24323d0407baSopenharmony_cistatic inline void __dl_update(struct dl_bw *dl_b, s64 bw)
24333d0407baSopenharmony_ci{
24343d0407baSopenharmony_ci    struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
24353d0407baSopenharmony_ci
24363d0407baSopenharmony_ci    dl->extra_bw += bw;
24373d0407baSopenharmony_ci}
24383d0407baSopenharmony_ci#endif
24393d0407baSopenharmony_ci
24403d0407baSopenharmony_ci#ifdef CONFIG_IRQ_TIME_ACCOUNTING
24413d0407baSopenharmony_cistruct irqtime {
24423d0407baSopenharmony_ci    u64 total;
24433d0407baSopenharmony_ci    u64 tick_delta;
24443d0407baSopenharmony_ci    u64 irq_start_time;
24453d0407baSopenharmony_ci    struct u64_stats_sync sync;
24463d0407baSopenharmony_ci};
24473d0407baSopenharmony_ci
24483d0407baSopenharmony_ciDECLARE_PER_CPU(struct irqtime, cpu_irqtime);
24493d0407baSopenharmony_ci
24503d0407baSopenharmony_ci/*
24513d0407baSopenharmony_ci * Returns the irqtime minus the softirq time computed by ksoftirqd.
24523d0407baSopenharmony_ci * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
24533d0407baSopenharmony_ci * and never move forward.
24543d0407baSopenharmony_ci */
24553d0407baSopenharmony_cistatic inline u64 irq_time_read(int cpu)
24563d0407baSopenharmony_ci{
24573d0407baSopenharmony_ci    struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
24583d0407baSopenharmony_ci    unsigned int seq;
24593d0407baSopenharmony_ci    u64 total;
24603d0407baSopenharmony_ci
24613d0407baSopenharmony_ci    do {
24623d0407baSopenharmony_ci        seq = __u64_stats_fetch_begin(&irqtime->sync);
24633d0407baSopenharmony_ci        total = irqtime->total;
24643d0407baSopenharmony_ci    } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
24653d0407baSopenharmony_ci
24663d0407baSopenharmony_ci    return total;
24673d0407baSopenharmony_ci}
24683d0407baSopenharmony_ci#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
24693d0407baSopenharmony_ci
24703d0407baSopenharmony_ci#ifdef CONFIG_CPU_FREQ
24713d0407baSopenharmony_ciDECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
24723d0407baSopenharmony_ci
24733d0407baSopenharmony_ci/**
24743d0407baSopenharmony_ci * cpufreq_update_util - Take a note about CPU utilization changes.
24753d0407baSopenharmony_ci * @rq: Runqueue to carry out the update for.
24763d0407baSopenharmony_ci * @flags: Update reason flags.
24773d0407baSopenharmony_ci *
24783d0407baSopenharmony_ci * This function is called by the scheduler on the CPU whose utilization is
24793d0407baSopenharmony_ci * being updated.
24803d0407baSopenharmony_ci *
24813d0407baSopenharmony_ci * It can only be called from RCU-sched read-side critical sections.
24823d0407baSopenharmony_ci *
24833d0407baSopenharmony_ci * The way cpufreq is currently arranged requires it to evaluate the CPU
24843d0407baSopenharmony_ci * performance state (frequency/voltage) on a regular basis to prevent it from
24853d0407baSopenharmony_ci * being stuck in a completely inadequate performance level for too long.
24863d0407baSopenharmony_ci * That is not guaranteed to happen if the updates are only triggered from CFS
24873d0407baSopenharmony_ci * and DL, though, because they may not be coming in if only RT tasks are
24883d0407baSopenharmony_ci * active all the time (or there are RT tasks only).
24893d0407baSopenharmony_ci *
24903d0407baSopenharmony_ci * As a workaround for that issue, this function is called periodically by the
24913d0407baSopenharmony_ci * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
24923d0407baSopenharmony_ci * but that really is a band-aid.  Going forward it should be replaced with
24933d0407baSopenharmony_ci * solutions targeted more specifically at RT tasks.
24943d0407baSopenharmony_ci */
24953d0407baSopenharmony_cistatic inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
24963d0407baSopenharmony_ci{
24973d0407baSopenharmony_ci    struct update_util_data *data;
24983d0407baSopenharmony_ci    u64 clock;
24993d0407baSopenharmony_ci
25003d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
25013d0407baSopenharmony_ci    if (!(flags & SCHED_CPUFREQ_WALT)) {
25023d0407baSopenharmony_ci        return;
25033d0407baSopenharmony_ci    }
25043d0407baSopenharmony_ci
25053d0407baSopenharmony_ci    clock = sched_ktime_clock();
25063d0407baSopenharmony_ci#else
25073d0407baSopenharmony_ci    clock = rq_clock(rq);
25083d0407baSopenharmony_ci#endif
25093d0407baSopenharmony_ci    data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, cpu_of(rq)));
25103d0407baSopenharmony_ci    if (data) {
25113d0407baSopenharmony_ci        data->func(data, clock, flags);
25123d0407baSopenharmony_ci    }
25133d0407baSopenharmony_ci}
25143d0407baSopenharmony_ci#else
25153d0407baSopenharmony_cistatic inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
25163d0407baSopenharmony_ci{
25173d0407baSopenharmony_ci}
25183d0407baSopenharmony_ci#endif /* CONFIG_CPU_FREQ */
25193d0407baSopenharmony_ci
25203d0407baSopenharmony_ci#ifdef CONFIG_UCLAMP_TASK
25213d0407baSopenharmony_ciunsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
25223d0407baSopenharmony_ci
25233d0407baSopenharmony_ci/**
25243d0407baSopenharmony_ci * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
25253d0407baSopenharmony_ci * @rq:        The rq to clamp against. Must not be NULL.
25263d0407baSopenharmony_ci * @util:    The util value to clamp.
25273d0407baSopenharmony_ci * @p:        The task to clamp against. Can be NULL if you want to clamp
25283d0407baSopenharmony_ci *        against @rq only.
25293d0407baSopenharmony_ci *
25303d0407baSopenharmony_ci * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
25313d0407baSopenharmony_ci *
25323d0407baSopenharmony_ci * If sched_uclamp_used static key is disabled, then just return the util
25333d0407baSopenharmony_ci * without any clamping since uclamp aggregation at the rq level in the fast
25343d0407baSopenharmony_ci * path is disabled, rendering this operation a NOP.
25353d0407baSopenharmony_ci *
25363d0407baSopenharmony_ci * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
25373d0407baSopenharmony_ci * will return the correct effective uclamp value of the task even if the
25383d0407baSopenharmony_ci * static key is disabled.
25393d0407baSopenharmony_ci */
25403d0407baSopenharmony_cistatic __always_inline unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, struct task_struct *p)
25413d0407baSopenharmony_ci{
25423d0407baSopenharmony_ci    unsigned long min_util = 0;
25433d0407baSopenharmony_ci    unsigned long max_util = 0;
25443d0407baSopenharmony_ci
25453d0407baSopenharmony_ci    if (!static_branch_likely(&sched_uclamp_used)) {
25463d0407baSopenharmony_ci        return util;
25473d0407baSopenharmony_ci    }
25483d0407baSopenharmony_ci
25493d0407baSopenharmony_ci    if (p) {
25503d0407baSopenharmony_ci        min_util = uclamp_eff_value(p, UCLAMP_MIN);
25513d0407baSopenharmony_ci        max_util = uclamp_eff_value(p, UCLAMP_MAX);
25523d0407baSopenharmony_ci
25533d0407baSopenharmony_ci        /*
25543d0407baSopenharmony_ci         * Ignore last runnable task's max clamp, as this task will
25553d0407baSopenharmony_ci         * reset it. Similarly, no need to read the rq's min clamp.
25563d0407baSopenharmony_ci         */
25573d0407baSopenharmony_ci        if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) {
25583d0407baSopenharmony_ci            goto out;
25593d0407baSopenharmony_ci        }
25603d0407baSopenharmony_ci    }
25613d0407baSopenharmony_ci
25623d0407baSopenharmony_ci    min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
25633d0407baSopenharmony_ci    max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
25643d0407baSopenharmony_ciout:
25653d0407baSopenharmony_ci    /*
25663d0407baSopenharmony_ci     * Since CPU's {min,max}_util clamps are MAX aggregated considering
25673d0407baSopenharmony_ci     * RUNNABLE tasks with _different_ clamps, we can end up with an
25683d0407baSopenharmony_ci     * inversion. Fix it now when the clamps are applied.
25693d0407baSopenharmony_ci     */
25703d0407baSopenharmony_ci    if (unlikely(min_util >= max_util)) {
25713d0407baSopenharmony_ci        return min_util;
25723d0407baSopenharmony_ci    }
25733d0407baSopenharmony_ci
25743d0407baSopenharmony_ci    return clamp(util, min_util, max_util);
25753d0407baSopenharmony_ci}
25763d0407baSopenharmony_ci
25773d0407baSopenharmony_cistatic inline bool uclamp_boosted(struct task_struct *p)
25783d0407baSopenharmony_ci{
25793d0407baSopenharmony_ci    return uclamp_eff_value(p, UCLAMP_MIN) > 0;
25803d0407baSopenharmony_ci}
25813d0407baSopenharmony_ci
25823d0407baSopenharmony_ci/*
25833d0407baSopenharmony_ci * When uclamp is compiled in, the aggregation at rq level is 'turned off'
25843d0407baSopenharmony_ci * by default in the fast path and only gets turned on once userspace performs
25853d0407baSopenharmony_ci * an operation that requires it.
25863d0407baSopenharmony_ci *
25873d0407baSopenharmony_ci * Returns true if userspace opted-in to use uclamp and aggregation at rq level
25883d0407baSopenharmony_ci * hence is active.
25893d0407baSopenharmony_ci */
25903d0407baSopenharmony_cistatic inline bool uclamp_is_used(void)
25913d0407baSopenharmony_ci{
25923d0407baSopenharmony_ci    return static_branch_likely(&sched_uclamp_used);
25933d0407baSopenharmony_ci}
25943d0407baSopenharmony_ci#else  /* CONFIG_UCLAMP_TASK */
25953d0407baSopenharmony_cistatic inline unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, struct task_struct *p)
25963d0407baSopenharmony_ci{
25973d0407baSopenharmony_ci    return util;
25983d0407baSopenharmony_ci}
25993d0407baSopenharmony_ci
26003d0407baSopenharmony_cistatic inline bool uclamp_boosted(struct task_struct *p)
26013d0407baSopenharmony_ci{
26023d0407baSopenharmony_ci    return false;
26033d0407baSopenharmony_ci}
26043d0407baSopenharmony_ci
26053d0407baSopenharmony_cistatic inline bool uclamp_is_used(void)
26063d0407baSopenharmony_ci{
26073d0407baSopenharmony_ci    return false;
26083d0407baSopenharmony_ci}
26093d0407baSopenharmony_ci#endif /* CONFIG_UCLAMP_TASK */
26103d0407baSopenharmony_ci
26113d0407baSopenharmony_ci#ifdef arch_scale_freq_capacity
26123d0407baSopenharmony_ci#ifndef arch_scale_freq_invariant
26133d0407baSopenharmony_ci#define arch_scale_freq_invariant() true
26143d0407baSopenharmony_ci#endif
26153d0407baSopenharmony_ci#else
26163d0407baSopenharmony_ci#define arch_scale_freq_invariant() false
26173d0407baSopenharmony_ci#endif
26183d0407baSopenharmony_ci
26193d0407baSopenharmony_ci#ifdef CONFIG_SMP
26203d0407baSopenharmony_cistatic inline unsigned long capacity_of(int cpu)
26213d0407baSopenharmony_ci{
26223d0407baSopenharmony_ci    return cpu_rq(cpu)->cpu_capacity;
26233d0407baSopenharmony_ci}
26243d0407baSopenharmony_ci
26253d0407baSopenharmony_cistatic inline unsigned long capacity_orig_of(int cpu)
26263d0407baSopenharmony_ci{
26273d0407baSopenharmony_ci    return cpu_rq(cpu)->cpu_capacity_orig;
26283d0407baSopenharmony_ci}
26293d0407baSopenharmony_ci#endif
26303d0407baSopenharmony_ci
26313d0407baSopenharmony_ci/**
26323d0407baSopenharmony_ci * enum schedutil_type - CPU utilization type
26333d0407baSopenharmony_ci * @FREQUENCY_UTIL:    Utilization used to select frequency
26343d0407baSopenharmony_ci * @ENERGY_UTIL:    Utilization used during energy calculation
26353d0407baSopenharmony_ci *
26363d0407baSopenharmony_ci * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
26373d0407baSopenharmony_ci * need to be aggregated differently depending on the usage made of them. This
26383d0407baSopenharmony_ci * enum is used within schedutil_freq_util() to differentiate the types of
26393d0407baSopenharmony_ci * utilization expected by the callers, and adjust the aggregation accordingly.
26403d0407baSopenharmony_ci */
26413d0407baSopenharmony_cienum schedutil_type {
26423d0407baSopenharmony_ci    FREQUENCY_UTIL,
26433d0407baSopenharmony_ci    ENERGY_UTIL,
26443d0407baSopenharmony_ci};
26453d0407baSopenharmony_ci
26463d0407baSopenharmony_ci#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
26473d0407baSopenharmony_ci
26483d0407baSopenharmony_ciunsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, unsigned long max, enum schedutil_type type,
26493d0407baSopenharmony_ci                                 struct task_struct *p);
26503d0407baSopenharmony_ci
26513d0407baSopenharmony_cistatic inline unsigned long cpu_bw_dl(struct rq *rq)
26523d0407baSopenharmony_ci{
26533d0407baSopenharmony_ci    return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
26543d0407baSopenharmony_ci}
26553d0407baSopenharmony_ci
26563d0407baSopenharmony_cistatic inline unsigned long cpu_util_dl(struct rq *rq)
26573d0407baSopenharmony_ci{
26583d0407baSopenharmony_ci    return READ_ONCE(rq->avg_dl.util_avg);
26593d0407baSopenharmony_ci}
26603d0407baSopenharmony_ci
26613d0407baSopenharmony_cistatic inline unsigned long cpu_util_cfs(struct rq *rq)
26623d0407baSopenharmony_ci{
26633d0407baSopenharmony_ci    unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
26643d0407baSopenharmony_ci
26653d0407baSopenharmony_ci    if (sched_feat(UTIL_EST)) {
26663d0407baSopenharmony_ci        util = max_t(unsigned long, util, READ_ONCE(rq->cfs.avg.util_est.enqueued));
26673d0407baSopenharmony_ci    }
26683d0407baSopenharmony_ci
26693d0407baSopenharmony_ci    return util;
26703d0407baSopenharmony_ci}
26713d0407baSopenharmony_ci
26723d0407baSopenharmony_cistatic inline unsigned long cpu_util_rt(struct rq *rq)
26733d0407baSopenharmony_ci{
26743d0407baSopenharmony_ci    return READ_ONCE(rq->avg_rt.util_avg);
26753d0407baSopenharmony_ci}
26763d0407baSopenharmony_ci#else  /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
26773d0407baSopenharmony_cistatic inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, unsigned long max,
26783d0407baSopenharmony_ci                                               enum schedutil_type type, struct task_struct *p)
26793d0407baSopenharmony_ci{
26803d0407baSopenharmony_ci    return 0;
26813d0407baSopenharmony_ci}
26823d0407baSopenharmony_ci#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
26833d0407baSopenharmony_ci
26843d0407baSopenharmony_ci#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
26853d0407baSopenharmony_cistatic inline unsigned long cpu_util_irq(struct rq *rq)
26863d0407baSopenharmony_ci{
26873d0407baSopenharmony_ci    return rq->avg_irq.util_avg;
26883d0407baSopenharmony_ci}
26893d0407baSopenharmony_ci
26903d0407baSopenharmony_cistatic inline unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
26913d0407baSopenharmony_ci{
26923d0407baSopenharmony_ci    util *= (max - irq);
26933d0407baSopenharmony_ci    util /= max;
26943d0407baSopenharmony_ci
26953d0407baSopenharmony_ci    return util;
26963d0407baSopenharmony_ci}
26973d0407baSopenharmony_ci#else
26983d0407baSopenharmony_cistatic inline unsigned long cpu_util_irq(struct rq *rq)
26993d0407baSopenharmony_ci{
27003d0407baSopenharmony_ci    return 0;
27013d0407baSopenharmony_ci}
27023d0407baSopenharmony_ci
27033d0407baSopenharmony_cistatic inline unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
27043d0407baSopenharmony_ci{
27053d0407baSopenharmony_ci    return util;
27063d0407baSopenharmony_ci}
27073d0407baSopenharmony_ci#endif
27083d0407baSopenharmony_ci
27093d0407baSopenharmony_ci#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
27103d0407baSopenharmony_ci
27113d0407baSopenharmony_ci#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
27123d0407baSopenharmony_ci
27133d0407baSopenharmony_ciDECLARE_STATIC_KEY_FALSE(sched_energy_present);
27143d0407baSopenharmony_ci
27153d0407baSopenharmony_cistatic inline bool sched_energy_enabled(void)
27163d0407baSopenharmony_ci{
27173d0407baSopenharmony_ci    return static_branch_unlikely(&sched_energy_present);
27183d0407baSopenharmony_ci}
27193d0407baSopenharmony_ci
27203d0407baSopenharmony_ci#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
27213d0407baSopenharmony_ci
27223d0407baSopenharmony_ci#define perf_domain_span(pd) NULL
27233d0407baSopenharmony_cistatic inline bool sched_energy_enabled(void)
27243d0407baSopenharmony_ci{
27253d0407baSopenharmony_ci    return false;
27263d0407baSopenharmony_ci}
27273d0407baSopenharmony_ci
27283d0407baSopenharmony_ci#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
27293d0407baSopenharmony_ci
27303d0407baSopenharmony_ci#ifdef CONFIG_MEMBARRIER
27313d0407baSopenharmony_ci/*
27323d0407baSopenharmony_ci * The scheduler provides memory barriers required by membarrier between:
27333d0407baSopenharmony_ci * - prior user-space memory accesses and store to rq->membarrier_state,
27343d0407baSopenharmony_ci * - store to rq->membarrier_state and following user-space memory accesses.
27353d0407baSopenharmony_ci * In the same way it provides those guarantees around store to rq->curr.
27363d0407baSopenharmony_ci */
27373d0407baSopenharmony_cistatic inline void membarrier_switch_mm(struct rq *rq, struct mm_struct *prev_mm, struct mm_struct *next_mm)
27383d0407baSopenharmony_ci{
27393d0407baSopenharmony_ci    int membarrier_state;
27403d0407baSopenharmony_ci
27413d0407baSopenharmony_ci    if (prev_mm == next_mm) {
27423d0407baSopenharmony_ci        return;
27433d0407baSopenharmony_ci    }
27443d0407baSopenharmony_ci
27453d0407baSopenharmony_ci    membarrier_state = atomic_read(&next_mm->membarrier_state);
27463d0407baSopenharmony_ci    if (READ_ONCE(rq->membarrier_state) == membarrier_state) {
27473d0407baSopenharmony_ci        return;
27483d0407baSopenharmony_ci    }
27493d0407baSopenharmony_ci
27503d0407baSopenharmony_ci    WRITE_ONCE(rq->membarrier_state, membarrier_state);
27513d0407baSopenharmony_ci}
27523d0407baSopenharmony_ci#else
27533d0407baSopenharmony_cistatic inline void membarrier_switch_mm(struct rq *rq, struct mm_struct *prev_mm, struct mm_struct *next_mm)
27543d0407baSopenharmony_ci{
27553d0407baSopenharmony_ci}
27563d0407baSopenharmony_ci#endif
27573d0407baSopenharmony_ci
27583d0407baSopenharmony_ci#ifdef CONFIG_SMP
27593d0407baSopenharmony_cistatic inline bool is_per_cpu_kthread(struct task_struct *p)
27603d0407baSopenharmony_ci{
27613d0407baSopenharmony_ci    if (!(p->flags & PF_KTHREAD)) {
27623d0407baSopenharmony_ci        return false;
27633d0407baSopenharmony_ci    }
27643d0407baSopenharmony_ci
27653d0407baSopenharmony_ci    if (p->nr_cpus_allowed != 1) {
27663d0407baSopenharmony_ci        return false;
27673d0407baSopenharmony_ci    }
27683d0407baSopenharmony_ci
27693d0407baSopenharmony_ci    return true;
27703d0407baSopenharmony_ci}
27713d0407baSopenharmony_ci#endif
27723d0407baSopenharmony_ci
27733d0407baSopenharmony_civoid swake_up_all_locked(struct swait_queue_head *q);
27743d0407baSopenharmony_civoid __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
27753d0407baSopenharmony_ci
27763d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RTG
27773d0407baSopenharmony_ciextern bool task_fits_max(struct task_struct *p, int cpu);
27783d0407baSopenharmony_ciextern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
27793d0407baSopenharmony_ciextern int update_preferred_cluster(struct related_thread_group *grp, struct task_struct *p, u32 old_load,
27803d0407baSopenharmony_ci                                    bool from_tick);
27813d0407baSopenharmony_ciextern struct cpumask *find_rtg_target(struct task_struct *p);
27823d0407baSopenharmony_ci#endif
27833d0407baSopenharmony_ci
27843d0407baSopenharmony_ci#ifdef CONFIG_SCHED_WALT
27853d0407baSopenharmony_cistatic inline int cluster_first_cpu(struct sched_cluster *cluster)
27863d0407baSopenharmony_ci{
27873d0407baSopenharmony_ci    return cpumask_first(&cluster->cpus);
27883d0407baSopenharmony_ci}
27893d0407baSopenharmony_ci
27903d0407baSopenharmony_ciextern struct list_head cluster_head;
27913d0407baSopenharmony_ciextern struct sched_cluster *sched_cluster[NR_CPUS];
27923d0407baSopenharmony_ci
27933d0407baSopenharmony_ci#define for_each_sched_cluster(cluster) list_for_each_entry_rcu(cluster, &cluster_head, list)
27943d0407baSopenharmony_ci
27953d0407baSopenharmony_ciextern struct mutex policy_mutex;
27963d0407baSopenharmony_ciextern unsigned int sched_disable_window_stats;
27973d0407baSopenharmony_ciextern unsigned int max_possible_freq;
27983d0407baSopenharmony_ciextern unsigned int min_max_freq;
27993d0407baSopenharmony_ciextern unsigned int max_possible_efficiency;
28003d0407baSopenharmony_ciextern unsigned int min_possible_efficiency;
28013d0407baSopenharmony_ciextern unsigned int max_capacity;
28023d0407baSopenharmony_ciextern unsigned int min_capacity;
28033d0407baSopenharmony_ciextern unsigned int max_load_scale_factor;
28043d0407baSopenharmony_ciextern unsigned int max_possible_capacity;
28053d0407baSopenharmony_ciextern unsigned int min_max_possible_capacity;
28063d0407baSopenharmony_ciextern unsigned int max_power_cost;
28073d0407baSopenharmony_ciextern unsigned int __read_mostly sched_init_task_load_windows;
28083d0407baSopenharmony_ciextern unsigned int sysctl_sched_restrict_cluster_spill;
28093d0407baSopenharmony_ciextern unsigned int sched_pred_alert_load;
28103d0407baSopenharmony_ciextern struct sched_cluster init_cluster;
28113d0407baSopenharmony_ci
28123d0407baSopenharmony_cistatic inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
28133d0407baSopenharmony_ci{
28143d0407baSopenharmony_ci    rq->cum_window_demand_scaled += scaled_delta;
28153d0407baSopenharmony_ci    if (unlikely((s64)rq->cum_window_demand_scaled < 0)) {
28163d0407baSopenharmony_ci        rq->cum_window_demand_scaled = 0;
28173d0407baSopenharmony_ci    }
28183d0407baSopenharmony_ci}
28193d0407baSopenharmony_ci
28203d0407baSopenharmony_ci/* Is frequency of two cpus synchronized with each other? */
28213d0407baSopenharmony_cistatic inline int same_freq_domain(int src_cpu, int dst_cpu)
28223d0407baSopenharmony_ci{
28233d0407baSopenharmony_ci    struct rq *rq = cpu_rq(src_cpu);
28243d0407baSopenharmony_ci
28253d0407baSopenharmony_ci    if (src_cpu == dst_cpu) {
28263d0407baSopenharmony_ci        return 1;
28273d0407baSopenharmony_ci    }
28283d0407baSopenharmony_ci
28293d0407baSopenharmony_ci    return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
28303d0407baSopenharmony_ci}
28313d0407baSopenharmony_ci
28323d0407baSopenharmony_ciextern void reset_task_stats(struct task_struct *p);
28333d0407baSopenharmony_ci
28343d0407baSopenharmony_ci#define CPU_RESERVED 1
28353d0407baSopenharmony_cistatic inline int is_reserved(int cpu)
28363d0407baSopenharmony_ci{
28373d0407baSopenharmony_ci    struct rq *rq = cpu_rq(cpu);
28383d0407baSopenharmony_ci
28393d0407baSopenharmony_ci    return test_bit(CPU_RESERVED, &rq->walt_flags);
28403d0407baSopenharmony_ci}
28413d0407baSopenharmony_ci
28423d0407baSopenharmony_cistatic inline int mark_reserved(int cpu)
28433d0407baSopenharmony_ci{
28443d0407baSopenharmony_ci    struct rq *rq = cpu_rq(cpu);
28453d0407baSopenharmony_ci
28463d0407baSopenharmony_ci    return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
28473d0407baSopenharmony_ci}
28483d0407baSopenharmony_ci
28493d0407baSopenharmony_cistatic inline void clear_reserved(int cpu)
28503d0407baSopenharmony_ci{
28513d0407baSopenharmony_ci    struct rq *rq = cpu_rq(cpu);
28523d0407baSopenharmony_ci
28533d0407baSopenharmony_ci    clear_bit(CPU_RESERVED, &rq->walt_flags);
28543d0407baSopenharmony_ci}
28553d0407baSopenharmony_ci
28563d0407baSopenharmony_cistatic inline int cpu_capacity(int cpu)
28573d0407baSopenharmony_ci{
28583d0407baSopenharmony_ci    return cpu_rq(cpu)->cluster->capacity;
28593d0407baSopenharmony_ci}
28603d0407baSopenharmony_ci
28613d0407baSopenharmony_cistatic inline int cpu_max_possible_capacity(int cpu)
28623d0407baSopenharmony_ci{
28633d0407baSopenharmony_ci    return cpu_rq(cpu)->cluster->max_possible_capacity;
28643d0407baSopenharmony_ci}
28653d0407baSopenharmony_ci
28663d0407baSopenharmony_cistatic inline int cpu_load_scale_factor(int cpu)
28673d0407baSopenharmony_ci{
28683d0407baSopenharmony_ci    return cpu_rq(cpu)->cluster->load_scale_factor;
28693d0407baSopenharmony_ci}
28703d0407baSopenharmony_ci
28713d0407baSopenharmony_cistatic inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
28723d0407baSopenharmony_ci{
28733d0407baSopenharmony_ci    /*
28743d0407baSopenharmony_ci     * Governor and thermal driver don't know the other party's mitigation
28753d0407baSopenharmony_ci     * voting. So struct cluster saves both and return min() for current
28763d0407baSopenharmony_ci     * cluster fmax.
28773d0407baSopenharmony_ci     */
28783d0407baSopenharmony_ci    return cluster->max_freq;
28793d0407baSopenharmony_ci}
28803d0407baSopenharmony_ci
28813d0407baSopenharmony_ci/* Keep track of max/min capacity possible across CPUs "currently" */
28823d0407baSopenharmony_cistatic inline void __update_min_max_capacity(void)
28833d0407baSopenharmony_ci{
28843d0407baSopenharmony_ci    int i;
28853d0407baSopenharmony_ci    int max_cap = 0, min_cap = INT_MAX;
28863d0407baSopenharmony_ci
28873d0407baSopenharmony_ci    for_each_possible_cpu(i)
28883d0407baSopenharmony_ci    {
28893d0407baSopenharmony_ci        if (!cpu_active(i)) {
28903d0407baSopenharmony_ci            continue;
28913d0407baSopenharmony_ci        }
28923d0407baSopenharmony_ci
28933d0407baSopenharmony_ci        max_cap = max(max_cap, cpu_capacity(i));
28943d0407baSopenharmony_ci        min_cap = min(min_cap, cpu_capacity(i));
28953d0407baSopenharmony_ci    }
28963d0407baSopenharmony_ci
28973d0407baSopenharmony_ci    max_capacity = max_cap;
28983d0407baSopenharmony_ci    min_capacity = min_cap;
28993d0407baSopenharmony_ci}
29003d0407baSopenharmony_ci
29013d0407baSopenharmony_ci/*
29023d0407baSopenharmony_ci * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
29033d0407baSopenharmony_ci * that "most" efficient cpu gets a load_scale_factor of 1
29043d0407baSopenharmony_ci */
29053d0407baSopenharmony_cistatic inline unsigned long load_scale_cpu_efficiency(struct sched_cluster *cluster)
29063d0407baSopenharmony_ci{
29073d0407baSopenharmony_ci    return DIV_ROUND_UP(CPU_FREQ_1K * max_possible_efficiency, cluster->efficiency);
29083d0407baSopenharmony_ci}
29093d0407baSopenharmony_ci
29103d0407baSopenharmony_ci/*
29113d0407baSopenharmony_ci * Return load_scale_factor of a cpu in reference to cpu with best max_freq
29123d0407baSopenharmony_ci * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
29133d0407baSopenharmony_ci * of 1.
29143d0407baSopenharmony_ci */
29153d0407baSopenharmony_cistatic inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
29163d0407baSopenharmony_ci{
29173d0407baSopenharmony_ci    return DIV_ROUND_UP(CPU_FREQ_1K * max_possible_freq, cluster_max_freq(cluster));
29183d0407baSopenharmony_ci}
29193d0407baSopenharmony_ci
29203d0407baSopenharmony_cistatic inline int compute_load_scale_factor(struct sched_cluster *cluster)
29213d0407baSopenharmony_ci{
29223d0407baSopenharmony_ci    int load_scale = CPU_FREQ_1K;
29233d0407baSopenharmony_ci
29243d0407baSopenharmony_ci    /*
29253d0407baSopenharmony_ci     * load_scale_factor accounts for the fact that task load
29263d0407baSopenharmony_ci     * is in reference to "best" performing cpu. Task's load will need to be
29273d0407baSopenharmony_ci     * scaled (up) by a factor to determine suitability to be placed on a
29283d0407baSopenharmony_ci     * (little) cpu.
29293d0407baSopenharmony_ci     */
29303d0407baSopenharmony_ci    load_scale *= load_scale_cpu_efficiency(cluster);
29313d0407baSopenharmony_ci    load_scale >>= 0xa;
29323d0407baSopenharmony_ci
29333d0407baSopenharmony_ci    load_scale *= load_scale_cpu_freq(cluster);
29343d0407baSopenharmony_ci    load_scale >>= 0xa;
29353d0407baSopenharmony_ci
29363d0407baSopenharmony_ci    return load_scale;
29373d0407baSopenharmony_ci}
29383d0407baSopenharmony_ci
29393d0407baSopenharmony_cistatic inline bool is_max_capacity_cpu(int cpu)
29403d0407baSopenharmony_ci{
29413d0407baSopenharmony_ci    return cpu_max_possible_capacity(cpu) == max_possible_capacity;
29423d0407baSopenharmony_ci}
29433d0407baSopenharmony_ci
29443d0407baSopenharmony_cistatic inline bool is_min_capacity_cpu(int cpu)
29453d0407baSopenharmony_ci{
29463d0407baSopenharmony_ci    return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
29473d0407baSopenharmony_ci}
29483d0407baSopenharmony_ci
29493d0407baSopenharmony_ci/*
29503d0407baSopenharmony_ci * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
29513d0407baSopenharmony_ci * least efficient cpu gets capacity of 1024
29523d0407baSopenharmony_ci */
29533d0407baSopenharmony_cistatic unsigned long capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
29543d0407baSopenharmony_ci{
29553d0407baSopenharmony_ci    return (0x400 * cluster->efficiency) / min_possible_efficiency;
29563d0407baSopenharmony_ci}
29573d0407baSopenharmony_ci
29583d0407baSopenharmony_ci/*
29593d0407baSopenharmony_ci * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
29603d0407baSopenharmony_ci * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
29613d0407baSopenharmony_ci */
29623d0407baSopenharmony_cistatic unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
29633d0407baSopenharmony_ci{
29643d0407baSopenharmony_ci    return (0x400 * cluster_max_freq(cluster)) / min_max_freq;
29653d0407baSopenharmony_ci}
29663d0407baSopenharmony_ci
29673d0407baSopenharmony_cistatic inline int compute_capacity(struct sched_cluster *cluster)
29683d0407baSopenharmony_ci{
29693d0407baSopenharmony_ci    int capacity = 0x400;
29703d0407baSopenharmony_ci
29713d0407baSopenharmony_ci    capacity *= capacity_scale_cpu_efficiency(cluster);
29723d0407baSopenharmony_ci    capacity >>= 0xa;
29733d0407baSopenharmony_ci
29743d0407baSopenharmony_ci    capacity *= capacity_scale_cpu_freq(cluster);
29753d0407baSopenharmony_ci    capacity >>= 0xa;
29763d0407baSopenharmony_ci
29773d0407baSopenharmony_ci    return capacity;
29783d0407baSopenharmony_ci}
29793d0407baSopenharmony_ci
29803d0407baSopenharmony_cistatic inline unsigned int power_cost(int cpu, u64 demand)
29813d0407baSopenharmony_ci{
29823d0407baSopenharmony_ci    return cpu_max_possible_capacity(cpu);
29833d0407baSopenharmony_ci}
29843d0407baSopenharmony_ci
29853d0407baSopenharmony_cistatic inline unsigned long cpu_util_freq_walt(int cpu)
29863d0407baSopenharmony_ci{
29873d0407baSopenharmony_ci    u64 util;
29883d0407baSopenharmony_ci    struct rq *rq = cpu_rq(cpu);
29893d0407baSopenharmony_ci    unsigned long capacity = capacity_orig_of(cpu);
29903d0407baSopenharmony_ci
29913d0407baSopenharmony_ci    if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util)) {
29923d0407baSopenharmony_ci        return cpu_util(cpu);
29933d0407baSopenharmony_ci    }
29943d0407baSopenharmony_ci
29953d0407baSopenharmony_ci    util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
29963d0407baSopenharmony_ci    util = div_u64(util, sched_ravg_window);
29973d0407baSopenharmony_ci
29983d0407baSopenharmony_ci    return (util >= capacity) ? capacity : util;
29993d0407baSopenharmony_ci}
30003d0407baSopenharmony_ci
30013d0407baSopenharmony_cistatic inline bool hmp_capable(void)
30023d0407baSopenharmony_ci{
30033d0407baSopenharmony_ci    return max_possible_capacity != min_max_possible_capacity;
30043d0407baSopenharmony_ci}
30053d0407baSopenharmony_ci#else  /* CONFIG_SCHED_WALT */
30063d0407baSopenharmony_cistatic inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
30073d0407baSopenharmony_ci{
30083d0407baSopenharmony_ci}
30093d0407baSopenharmony_ci
30103d0407baSopenharmony_cistatic inline int same_freq_domain(int src_cpu, int dst_cpu)
30113d0407baSopenharmony_ci{
30123d0407baSopenharmony_ci    return 1;
30133d0407baSopenharmony_ci}
30143d0407baSopenharmony_ci
30153d0407baSopenharmony_cistatic inline int is_reserved(int cpu)
30163d0407baSopenharmony_ci{
30173d0407baSopenharmony_ci    return 0;
30183d0407baSopenharmony_ci}
30193d0407baSopenharmony_ci
30203d0407baSopenharmony_cistatic inline void clear_reserved(int cpu)
30213d0407baSopenharmony_ci{
30223d0407baSopenharmony_ci}
30233d0407baSopenharmony_ci
30243d0407baSopenharmony_cistatic inline bool hmp_capable(void)
30253d0407baSopenharmony_ci{
30263d0407baSopenharmony_ci    return false;
30273d0407baSopenharmony_ci}
30283d0407baSopenharmony_ci#endif /* CONFIG_SCHED_WALT */
30293d0407baSopenharmony_ci
30303d0407baSopenharmony_cistruct sched_avg_stats {
30313d0407baSopenharmony_ci    int nr;
30323d0407baSopenharmony_ci    int nr_misfit;
30333d0407baSopenharmony_ci    int nr_max;
30343d0407baSopenharmony_ci    int nr_scaled;
30353d0407baSopenharmony_ci};
30363d0407baSopenharmony_ci#ifdef CONFIG_SCHED_RUNNING_AVG
30373d0407baSopenharmony_ciextern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
30383d0407baSopenharmony_ci#else
30393d0407baSopenharmony_cistatic inline void sched_get_nr_running_avg(struct sched_avg_stats *stats)
30403d0407baSopenharmony_ci{
30413d0407baSopenharmony_ci}
30423d0407baSopenharmony_ci#endif
30433d0407baSopenharmony_ci
30443d0407baSopenharmony_ci#ifdef CONFIG_CPU_ISOLATION_OPT
30453d0407baSopenharmony_ciextern int group_balance_cpu_not_isolated(struct sched_group *sg);
30463d0407baSopenharmony_ci#else
30473d0407baSopenharmony_cistatic inline int group_balance_cpu_not_isolated(struct sched_group *sg)
30483d0407baSopenharmony_ci{
30493d0407baSopenharmony_ci    return group_balance_cpu(sg);
30503d0407baSopenharmony_ci}
30513d0407baSopenharmony_ci#endif /* CONFIG_CPU_ISOLATION_OPT */
30523d0407baSopenharmony_ci
30533d0407baSopenharmony_ci#ifdef CONFIG_HOTPLUG_CPU
30543d0407baSopenharmony_ciextern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf, bool migrate_pinned_tasks);
30553d0407baSopenharmony_ci#endif
30563d0407baSopenharmony_ci#endif