1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11#define pr_fmt(fmt) "PM: hibernation: " fmt 12 13#include <linux/version.h> 14#include <linux/module.h> 15#include <linux/mm.h> 16#include <linux/suspend.h> 17#include <linux/delay.h> 18#include <linux/bitops.h> 19#include <linux/spinlock.h> 20#include <linux/kernel.h> 21#include <linux/pm.h> 22#include <linux/device.h> 23#include <linux/init.h> 24#include <linux/memblock.h> 25#include <linux/nmi.h> 26#include <linux/syscalls.h> 27#include <linux/console.h> 28#include <linux/highmem.h> 29#include <linux/list.h> 30#include <linux/slab.h> 31#include <linux/compiler.h> 32#include <linux/ktime.h> 33#include <linux/set_memory.h> 34 35#include <linux/uaccess.h> 36#include <asm/mmu_context.h> 37#include <asm/tlbflush.h> 38#include <asm/io.h> 39 40#include "power.h" 41 42#define SNAPSHOT_TWO 2 43#define SNAPSHOT_FIVE 5 44 45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 46static bool hibernate_restore_protection; 47static bool hibernate_restore_protection_active; 48 49void enable_restore_image_protection(void) 50{ 51 hibernate_restore_protection = true; 52} 53 54static inline void hibernate_restore_protection_begin(void) 55{ 56 hibernate_restore_protection_active = hibernate_restore_protection; 57} 58 59static inline void hibernate_restore_protection_end(void) 60{ 61 hibernate_restore_protection_active = false; 62} 63 64static inline void hibernate_restore_protect_page(void *page_address) 65{ 66 if (hibernate_restore_protection_active) { 67 set_memory_ro((unsigned long)page_address, 1); 68 } 69} 70 71static inline void hibernate_restore_unprotect_page(void *page_address) 72{ 73 if (hibernate_restore_protection_active) { 74 set_memory_rw((unsigned long)page_address, 1); 75 } 76} 77#else 78static inline void hibernate_restore_protection_begin(void) 79{ 80} 81static inline void hibernate_restore_protection_end(void) 82{ 83} 84static inline void hibernate_restore_protect_page(void *page_address) 85{ 86} 87static inline void hibernate_restore_unprotect_page(void *page_address) 88{ 89} 90#endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 91 92static int swsusp_page_is_free(struct page *); 93static void swsusp_set_page_forbidden(struct page *); 94static void swsusp_unset_page_forbidden(struct page *); 95 96/* 97 * Number of bytes to reserve for memory allocations made by device drivers 98 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 99 * cause image creation to fail (tunable via /sys/power/reserved_size). 100 */ 101unsigned long reserved_size; 102 103void __init hibernate_reserved_size_init(void) 104{ 105 reserved_size = SPARE_PAGES * PAGE_SIZE; 106} 107 108/* 109 * Preferred image size in bytes (tunable via /sys/power/image_size). 110 * When it is set to N, swsusp will do its best to ensure the image 111 * size will not exceed N bytes, but if that is impossible, it will 112 * try to create the smallest image possible. 113 */ 114unsigned long image_size; 115 116void __init hibernate_image_size_init(void) 117{ 118 image_size = ((totalram_pages() * SNAPSHOT_TWO) / SNAPSHOT_FIVE) * PAGE_SIZE; 119} 120 121/* 122 * List of PBEs needed for restoring the pages that were allocated before 123 * the suspend and included in the suspend image, but have also been 124 * allocated by the "resume" kernel, so their contents cannot be written 125 * directly to their "original" page frames. 126 */ 127struct pbe *restore_pblist; 128 129/* struct linked_page is used to build chains of pages */ 130 131#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 132 133struct linked_page { 134 struct linked_page *next; 135 char data[LINKED_PAGE_DATA_SIZE]; 136} __packed; 137 138/* 139 * List of "safe" pages (ie. pages that were not used by the image kernel 140 * before hibernation) that may be used as temporary storage for image kernel 141 * memory contents. 142 */ 143static struct linked_page *safe_pages_list; 144 145/* Pointer to an auxiliary buffer (1 page) */ 146static void *buffer; 147 148#define PG_ANY 0 149#define PG_SAFE 1 150#define PG_UNSAFE_CLEAR 1 151#define PG_UNSAFE_KEEP 0 152 153static unsigned int allocated_unsafe_pages; 154 155/** 156 * get_image_page - Allocate a page for a hibernation image. 157 * @gfp_mask: GFP mask for the allocation. 158 * @safe_needed: Get pages that were not used before hibernation (restore only) 159 * 160 * During image restoration, for storing the PBE list and the image data, we can 161 * only use memory pages that do not conflict with the pages used before 162 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 163 * using allocated_unsafe_pages. 164 * 165 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 166 * swsusp_free() can release it. 167 */ 168static void *get_image_page(gfp_t gfp_mask, int safe_needed) 169{ 170 void *res; 171 172 res = (void *)get_zeroed_page(gfp_mask); 173 if (safe_needed) { 174 while (res && swsusp_page_is_free(virt_to_page(res))) { 175 /* The page is unsafe, mark it for swsusp_free() */ 176 swsusp_set_page_forbidden(virt_to_page(res)); 177 allocated_unsafe_pages++; 178 res = (void *)get_zeroed_page(gfp_mask); 179 } 180 } 181 if (res) { 182 swsusp_set_page_forbidden(virt_to_page(res)); 183 swsusp_set_page_free(virt_to_page(res)); 184 } 185 return res; 186} 187 188static void *_get_safe_page(gfp_t gfp_mask) 189{ 190 if (safe_pages_list) { 191 void *ret = safe_pages_list; 192 193 safe_pages_list = safe_pages_list->next; 194 memset(ret, 0, PAGE_SIZE); 195 return ret; 196 } 197 return get_image_page(gfp_mask, PG_SAFE); 198} 199 200unsigned long get_safe_page(gfp_t gfp_mask) 201{ 202 return (unsigned long)_get_safe_page(gfp_mask); 203} 204 205static struct page *alloc_image_page(gfp_t gfp_mask) 206{ 207 struct page *page; 208 209 page = alloc_page(gfp_mask); 210 if (page) { 211 swsusp_set_page_forbidden(page); 212 swsusp_set_page_free(page); 213 } 214 return page; 215} 216 217static void recycle_safe_page(void *page_address) 218{ 219 struct linked_page *lp = page_address; 220 221 lp->next = safe_pages_list; 222 safe_pages_list = lp; 223} 224 225/** 226 * free_image_page - Free a page allocated for hibernation image. 227 * @addr: Address of the page to free. 228 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 229 * 230 * The page to free should have been allocated by get_image_page() (page flags 231 * set by it are affected). 232 */ 233static inline void free_image_page(void *addr, int clear_nosave_free) 234{ 235 struct page *page; 236 237 BUG_ON(!virt_addr_valid(addr)); 238 239 page = virt_to_page(addr); 240 241 swsusp_unset_page_forbidden(page); 242 if (clear_nosave_free) { 243 swsusp_unset_page_free(page); 244 } 245 246 __free_page(page); 247} 248 249static inline void free_list_of_pages(struct linked_page *list, int clear_page_nosave) 250{ 251 while (list) { 252 struct linked_page *lp = list->next; 253 254 free_image_page(list, clear_page_nosave); 255 list = lp; 256 } 257} 258 259/* 260 * struct chain_allocator is used for allocating small objects out of 261 * a linked list of pages called 'the chain'. 262 * 263 * The chain grows each time when there is no room for a new object in 264 * the current page. The allocated objects cannot be freed individually. 265 * It is only possible to free them all at once, by freeing the entire 266 * chain. 267 * 268 * NOTE: The chain allocator may be inefficient if the allocated objects 269 * are not much smaller than PAGE_SIZE. 270 */ 271struct chain_allocator { 272 struct linked_page *chain; /* the chain */ 273 unsigned int used_space; /* total size of objects allocated out 274 of the current page */ 275 gfp_t gfp_mask; /* mask for allocating pages */ 276 int safe_needed; /* if set, only "safe" pages are allocated */ 277}; 278 279static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 280{ 281 ca->chain = NULL; 282 ca->used_space = LINKED_PAGE_DATA_SIZE; 283 ca->gfp_mask = gfp_mask; 284 ca->safe_needed = safe_needed; 285} 286 287static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 288{ 289 void *ret; 290 291 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 292 struct linked_page *lp; 293 294 lp = ca->safe_needed ? _get_safe_page(ca->gfp_mask) : get_image_page(ca->gfp_mask, PG_ANY); 295 if (!lp) { 296 return NULL; 297 } 298 299 lp->next = ca->chain; 300 ca->chain = lp; 301 ca->used_space = 0; 302 } 303 ret = ca->chain->data + ca->used_space; 304 ca->used_space += size; 305 return ret; 306} 307 308/** 309 * Data types related to memory bitmaps. 310 * 311 * Memory bitmap is a structure consiting of many linked lists of 312 * objects. The main list's elements are of type struct zone_bitmap 313 * and each of them corresonds to one zone. For each zone bitmap 314 * object there is a list of objects of type struct bm_block that 315 * represent each blocks of bitmap in which information is stored. 316 * 317 * struct memory_bitmap contains a pointer to the main list of zone 318 * bitmap objects, a struct bm_position used for browsing the bitmap, 319 * and a pointer to the list of pages used for allocating all of the 320 * zone bitmap objects and bitmap block objects. 321 * 322 * NOTE: It has to be possible to lay out the bitmap in memory 323 * using only allocations of order 0. Additionally, the bitmap is 324 * designed to work with arbitrary number of zones (this is over the 325 * top for now, but let's avoid making unnecessary assumptions ;-). 326 * 327 * struct zone_bitmap contains a pointer to a list of bitmap block 328 * objects and a pointer to the bitmap block object that has been 329 * most recently used for setting bits. Additionally, it contains the 330 * PFNs that correspond to the start and end of the represented zone. 331 * 332 * struct bm_block contains a pointer to the memory page in which 333 * information is stored (in the form of a block of bitmap) 334 * It also contains the pfns that correspond to the start and end of 335 * the represented memory area. 336 * 337 * The memory bitmap is organized as a radix tree to guarantee fast random 338 * access to the bits. There is one radix tree for each zone (as returned 339 * from create_mem_extents). 340 * 341 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 342 * two linked lists for the nodes of the tree, one for the inner nodes and 343 * one for the leave nodes. The linked leave nodes are used for fast linear 344 * access of the memory bitmap. 345 * 346 * The struct rtree_node represents one node of the radix tree. 347 */ 348 349#define BM_END_OF_MAP (~0UL) 350 351#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 352#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 353#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 354 355/* 356 * struct rtree_node is a wrapper struct to link the nodes 357 * of the rtree together for easy linear iteration over 358 * bits and easy freeing 359 */ 360struct rtree_node { 361 struct list_head list; 362 unsigned long *data; 363}; 364 365/* 366 * struct mem_zone_bm_rtree represents a bitmap used for one 367 * populated memory zone. 368 */ 369struct mem_zone_bm_rtree { 370 struct list_head list; /* Link Zones together */ 371 struct list_head nodes; /* Radix Tree inner nodes */ 372 struct list_head leaves; /* Radix Tree leaves */ 373 unsigned long start_pfn; /* Zone start page frame */ 374 unsigned long end_pfn; /* Zone end page frame + 1 */ 375 struct rtree_node *rtree; /* Radix Tree Root */ 376 int levels; /* Number of Radix Tree Levels */ 377 unsigned int blocks; /* Number of Bitmap Blocks */ 378}; 379 380/* strcut bm_position is used for browsing memory bitmaps */ 381 382struct bm_position { 383 struct mem_zone_bm_rtree *zone; 384 struct rtree_node *node; 385 unsigned long node_pfn; 386 int node_bit; 387}; 388 389struct memory_bitmap { 390 struct list_head zones; 391 struct linked_page *p_list; /* list of pages used to store zone 392 bitmap objects and bitmap block 393 objects */ 394 struct bm_position cur; /* most recently used bit position */ 395}; 396 397/* Functions that operate on memory bitmaps */ 398 399#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 400#if BITS_PER_LONG == 32 401#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 402#else 403#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 404#endif 405#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 406 407/** 408 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 409 * 410 * This function is used to allocate inner nodes as well as the 411 * leave nodes of the radix tree. It also adds the node to the 412 * corresponding linked list passed in by the *list parameter. 413 */ 414static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca, 415 struct list_head *list) 416{ 417 struct rtree_node *node; 418 419 node = chain_alloc(ca, sizeof(struct rtree_node)); 420 if (!node) { 421 return NULL; 422 } 423 424 node->data = get_image_page(gfp_mask, safe_needed); 425 if (!node->data) { 426 return NULL; 427 } 428 429 list_add_tail(&node->list, list); 430 431 return node; 432} 433 434/** 435 * add_rtree_block - Add a new leave node to the radix tree. 436 * 437 * The leave nodes need to be allocated in order to keep the leaves 438 * linked list in order. This is guaranteed by the zone->blocks 439 * counter. 440 */ 441static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca) 442{ 443 struct rtree_node *node, *block, **dst; 444 unsigned int levels_needed, block_nr; 445 int i; 446 447 block_nr = zone->blocks; 448 levels_needed = 0; 449 450 /* How many levels do we need for this block nr? */ 451 while (block_nr) { 452 levels_needed += 1; 453 block_nr >>= BM_RTREE_LEVEL_SHIFT; 454 } 455 456 /* Make sure the rtree has enough levels */ 457 for (i = zone->levels; i < levels_needed; i++) { 458 node = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->nodes); 459 if (!node) { 460 return -ENOMEM; 461 } 462 463 node->data[0] = (unsigned long)zone->rtree; 464 zone->rtree = node; 465 zone->levels += 1; 466 } 467 468 /* Allocate new block */ 469 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 470 if (!block) { 471 return -ENOMEM; 472 } 473 474 /* Now walk the rtree to insert the block */ 475 node = zone->rtree; 476 dst = &zone->rtree; 477 block_nr = zone->blocks; 478 for (i = zone->levels; i > 0; i--) { 479 int index; 480 481 if (!node) { 482 node = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->nodes); 483 if (!node) { 484 return -ENOMEM; 485 } 486 *dst = node; 487 } 488 489 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 490 index &= BM_RTREE_LEVEL_MASK; 491 dst = (struct rtree_node **)&((*dst)->data[index]); 492 node = *dst; 493 } 494 495 zone->blocks += 1; 496 *dst = block; 497 498 return 0; 499} 500 501static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, int clear_nosave_free); 502 503/** 504 * create_zone_bm_rtree - Create a radix tree for one zone. 505 * 506 * Allocated the mem_zone_bm_rtree structure and initializes it. 507 * This function also allocated and builds the radix tree for the 508 * zone. 509 */ 510static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca, 511 unsigned long start, unsigned long end) 512{ 513 struct mem_zone_bm_rtree *zone; 514 unsigned int i, nr_blocks; 515 unsigned long pages; 516 517 pages = end - start; 518 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 519 if (!zone) { 520 return NULL; 521 } 522 523 INIT_LIST_HEAD(&zone->nodes); 524 INIT_LIST_HEAD(&zone->leaves); 525 zone->start_pfn = start; 526 zone->end_pfn = end; 527 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 528 529 for (i = 0; i < nr_blocks; i++) { 530 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 531 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 532 return NULL; 533 } 534 } 535 536 return zone; 537} 538 539/** 540 * free_zone_bm_rtree - Free the memory of the radix tree. 541 * 542 * Free all node pages of the radix tree. The mem_zone_bm_rtree 543 * structure itself is not freed here nor are the rtree_node 544 * structs. 545 */ 546static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, int clear_nosave_free) 547{ 548 struct rtree_node *node; 549 550 list_for_each_entry(node, &zone->nodes, list) free_image_page(node->data, clear_nosave_free); 551 552 list_for_each_entry(node, &zone->leaves, list) free_image_page(node->data, clear_nosave_free); 553} 554 555static void memory_bm_position_reset(struct memory_bitmap *bm) 556{ 557 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, list); 558 bm->cur.node = list_entry(bm->cur.zone->leaves.next, struct rtree_node, list); 559 bm->cur.node_pfn = 0; 560 bm->cur.node_bit = 0; 561} 562 563static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 564 565struct mem_extent { 566 struct list_head hook; 567 unsigned long start; 568 unsigned long end; 569}; 570 571/** 572 * free_mem_extents - Free a list of memory extents. 573 * @list: List of extents to free. 574 */ 575static void free_mem_extents(struct list_head *list) 576{ 577 struct mem_extent *ext, *aux; 578 579 list_for_each_entry_safe(ext, aux, list, hook) 580 { 581 list_del(&ext->hook); 582 kfree(ext); 583 } 584} 585 586/** 587 * create_mem_extents - Create a list of memory extents. 588 * @list: List to put the extents into. 589 * @gfp_mask: Mask to use for memory allocations. 590 * 591 * The extents represent contiguous ranges of PFNs. 592 */ 593static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 594{ 595 struct zone *zone; 596 597 INIT_LIST_HEAD(list); 598 599 for_each_populated_zone(zone) 600 { 601 unsigned long zone_start, zone_end; 602 struct mem_extent *ext, *cur, *aux; 603 604 zone_start = zone->zone_start_pfn; 605 zone_end = zone_end_pfn(zone); 606 607 list_for_each_entry(ext, list, hook) if (zone_start <= ext->end) break; 608 609 if (&ext->hook == list || zone_end < ext->start) { 610 /* New extent is necessary */ 611 struct mem_extent *new_ext; 612 613 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 614 if (!new_ext) { 615 free_mem_extents(list); 616 return -ENOMEM; 617 } 618 new_ext->start = zone_start; 619 new_ext->end = zone_end; 620 list_add_tail(&new_ext->hook, &ext->hook); 621 continue; 622 } 623 624 /* Merge this zone's range of PFNs with the existing one */ 625 if (zone_start < ext->start) { 626 ext->start = zone_start; 627 } 628 if (zone_end > ext->end) { 629 ext->end = zone_end; 630 } 631 632 /* More merging may be possible */ 633 cur = ext; 634 list_for_each_entry_safe_continue(cur, aux, list, hook) 635 { 636 if (zone_end < cur->start) { 637 break; 638 } 639 if (zone_end < cur->end) { 640 ext->end = cur->end; 641 } 642 list_del(&cur->hook); 643 kfree(cur); 644 } 645 } 646 647 return 0; 648} 649 650/** 651 * memory_bm_create - Allocate memory for a memory bitmap. 652 */ 653static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 654{ 655 struct chain_allocator ca; 656 struct list_head mem_extents; 657 struct mem_extent *ext; 658 int error; 659 660 chain_init(&ca, gfp_mask, safe_needed); 661 INIT_LIST_HEAD(&bm->zones); 662 663 error = create_mem_extents(&mem_extents, gfp_mask); 664 if (error) { 665 return error; 666 } 667 668 list_for_each_entry(ext, &mem_extents, hook) 669 { 670 struct mem_zone_bm_rtree *zone; 671 672 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, ext->start, ext->end); 673 if (!zone) { 674 error = -ENOMEM; 675 goto Error; 676 } 677 list_add_tail(&zone->list, &bm->zones); 678 } 679 680 bm->p_list = ca.chain; 681 memory_bm_position_reset(bm); 682 while (1) { 683 free_mem_extents(&mem_extents); 684 return error; 685 686 Error: 687 bm->p_list = ca.chain; 688 memory_bm_free(bm, PG_UNSAFE_CLEAR); 689 continue; 690 } 691} 692 693/** 694 * memory_bm_free - Free memory occupied by the memory bitmap. 695 * @bm: Memory bitmap. 696 */ 697static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 698{ 699 struct mem_zone_bm_rtree *zone; 700 701 list_for_each_entry(zone, &bm->zones, list) free_zone_bm_rtree(zone, clear_nosave_free); 702 703 free_list_of_pages(bm->p_list, clear_nosave_free); 704 705 INIT_LIST_HEAD(&bm->zones); 706} 707 708/** 709 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 710 * 711 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 712 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 713 * 714 * Walk the radix tree to find the page containing the bit that represents @pfn 715 * and return the position of the bit in @addr and @bit_nr. 716 */ 717static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, void **addr, unsigned int *bit_nr) 718{ 719 struct mem_zone_bm_rtree *curr, *zone; 720 struct rtree_node *node; 721 int i, block_nr; 722 723 zone = bm->cur.zone; 724 725 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) { 726 goto zone_found; 727 } 728 729 zone = NULL; 730 731 /* Find the right zone */ 732 list_for_each_entry(curr, &bm->zones, list) 733 { 734 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 735 zone = curr; 736 break; 737 } 738 } 739 740 if (!zone) { 741 return -EFAULT; 742 } 743 744zone_found: 745 /* 746 * We have found the zone. Now walk the radix tree to find the leaf node 747 * for our PFN. 748 */ 749 750 /* 751 * If the zone we wish to scan is the current zone and the 752 * pfn falls into the current node then we do not need to walk 753 * the tree. 754 */ 755 node = bm->cur.node; 756 if (zone == bm->cur.zone && ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) { 757 goto node_found; 758 } 759 760 node = zone->rtree; 761 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 762 763 for (i = zone->levels; i > 0; i--) { 764 int index; 765 766 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 767 index &= BM_RTREE_LEVEL_MASK; 768 BUG_ON(node->data[index] == 0); 769 node = (struct rtree_node *)node->data[index]; 770 } 771 772node_found: 773 /* Update last position */ 774 bm->cur.zone = zone; 775 bm->cur.node = node; 776 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 777 778 /* Set return values */ 779 *addr = node->data; 780 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 781 782 return 0; 783} 784 785static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 786{ 787 void *addr; 788 unsigned int bit; 789 int error; 790 791 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 792 BUG_ON(error); 793 set_bit(bit, addr); 794} 795 796static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 797{ 798 void *addr; 799 unsigned int bit; 800 int error; 801 802 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 803 if (!error) { 804 set_bit(bit, addr); 805 } 806 807 return error; 808} 809 810static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 811{ 812 void *addr; 813 unsigned int bit; 814 int error; 815 816 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 817 BUG_ON(error); 818 clear_bit(bit, addr); 819} 820 821static void memory_bm_clear_current(struct memory_bitmap *bm) 822{ 823 int bit; 824 825 bit = max(bm->cur.node_bit - 1, 0); 826 clear_bit(bit, bm->cur.node->data); 827} 828 829static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 830{ 831 void *addr; 832 unsigned int bit; 833 int error; 834 835 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 836 BUG_ON(error); 837 return test_bit(bit, addr); 838} 839 840static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 841{ 842 void *addr; 843 unsigned int bit; 844 845 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 846} 847 848/* 849 * rtree_next_node - Jump to the next leaf node. 850 * 851 * Set the position to the beginning of the next node in the 852 * memory bitmap. This is either the next node in the current 853 * zone's radix tree or the first node in the radix tree of the 854 * next zone. 855 * 856 * Return true if there is a next node, false otherwise. 857 */ 858static bool rtree_next_node(struct memory_bitmap *bm) 859{ 860 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 861 bm->cur.node = list_entry(bm->cur.node->list.next, struct rtree_node, list); 862 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 863 bm->cur.node_bit = 0; 864 touch_softlockup_watchdog(); 865 return true; 866 } 867 868 /* No more nodes, goto next zone */ 869 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 870 bm->cur.zone = list_entry(bm->cur.zone->list.next, struct mem_zone_bm_rtree, list); 871 bm->cur.node = list_entry(bm->cur.zone->leaves.next, struct rtree_node, list); 872 bm->cur.node_pfn = 0; 873 bm->cur.node_bit = 0; 874 return true; 875 } 876 877 /* No more zones */ 878 return false; 879} 880 881/** 882 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 883 * @bm: Memory bitmap. 884 * 885 * Starting from the last returned position this function searches for the next 886 * set bit in @bm and returns the PFN represented by it. If no more bits are 887 * set, BM_END_OF_MAP is returned. 888 * 889 * It is required to run memory_bm_position_reset() before the first call to 890 * this function for the given memory bitmap. 891 */ 892static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 893{ 894 unsigned long bits, pfn, pages; 895 int bit; 896 897 do { 898 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 899 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 900 bit = find_next_bit(bm->cur.node->data, bits, bm->cur.node_bit); 901 if (bit < bits) { 902 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 903 bm->cur.node_bit = bit + 1; 904 return pfn; 905 } 906 } while (rtree_next_node(bm)); 907 908 return BM_END_OF_MAP; 909} 910 911/* 912 * This structure represents a range of page frames the contents of which 913 * should not be saved during hibernation. 914 */ 915struct nosave_region { 916 struct list_head list; 917 unsigned long start_pfn; 918 unsigned long end_pfn; 919}; 920 921static LIST_HEAD(nosave_regions); 922 923static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 924{ 925 struct rtree_node *node; 926 927 list_for_each_entry(node, &zone->nodes, list) recycle_safe_page(node->data); 928 929 list_for_each_entry(node, &zone->leaves, list) recycle_safe_page(node->data); 930} 931 932static void memory_bm_recycle(struct memory_bitmap *bm) 933{ 934 struct mem_zone_bm_rtree *zone; 935 struct linked_page *p_list; 936 937 list_for_each_entry(zone, &bm->zones, list) recycle_zone_bm_rtree(zone); 938 939 p_list = bm->p_list; 940 while (p_list) { 941 struct linked_page *lp = p_list; 942 943 p_list = lp->next; 944 recycle_safe_page(lp); 945 } 946} 947 948/** 949 * register_nosave_region - Register a region of unsaveable memory. 950 * 951 * Register a range of page frames the contents of which should not be saved 952 * during hibernation (to be used in the early initialization code). 953 */ 954void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 955{ 956 struct nosave_region *region; 957 958 if (start_pfn >= end_pfn) { 959 return; 960 } 961 962 if (!list_empty(&nosave_regions)) { 963 /* Try to extend the previous region (they should be sorted) */ 964 region = list_entry(nosave_regions.prev, 965 struct nosave_region, list); 966 if (region->end_pfn == start_pfn) { 967 region->end_pfn = end_pfn; 968 goto Report; 969 } 970 } 971 /* This allocation cannot fail */ 972 region = memblock_alloc(sizeof(struct nosave_region), 973 SMP_CACHE_BYTES); 974 if (!region) 975 panic("%s: Failed to allocate %zu bytes\n", __func__, 976 sizeof(struct nosave_region)); 977 region->start_pfn = start_pfn; 978 region->end_pfn = end_pfn; 979 list_add_tail(®ion->list, &nosave_regions); 980 Report: 981 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 982 (unsigned long long) start_pfn << PAGE_SHIFT, 983 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 984} 985 986/* 987 * Set bits in this map correspond to the page frames the contents of which 988 * should not be saved during the suspend. 989 */ 990static struct memory_bitmap *forbidden_pages_map; 991 992/* Set bits in this map correspond to free page frames. */ 993static struct memory_bitmap *free_pages_map; 994 995/* 996 * Each page frame allocated for creating the image is marked by setting the 997 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 998 */ 999 1000void swsusp_set_page_free(struct page *page) 1001{ 1002 if (free_pages_map) { 1003 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1004 } 1005} 1006 1007static int swsusp_page_is_free(struct page *page) 1008{ 1009 return free_pages_map ? memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1010} 1011 1012void swsusp_unset_page_free(struct page *page) 1013{ 1014 if (free_pages_map) { 1015 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1016 } 1017} 1018 1019static void swsusp_set_page_forbidden(struct page *page) 1020{ 1021 if (forbidden_pages_map) { 1022 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1023 } 1024} 1025 1026int swsusp_page_is_forbidden(struct page *page) 1027{ 1028 return forbidden_pages_map ? memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1029} 1030 1031static void swsusp_unset_page_forbidden(struct page *page) 1032{ 1033 if (forbidden_pages_map) { 1034 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1035 } 1036} 1037 1038/** 1039 * mark_nosave_pages - Mark pages that should not be saved. 1040 * @bm: Memory bitmap. 1041 * 1042 * Set the bits in @bm that correspond to the page frames the contents of which 1043 * should not be saved. 1044 */ 1045static void mark_nosave_pages(struct memory_bitmap *bm) 1046{ 1047 struct nosave_region *region; 1048 1049 if (list_empty(&nosave_regions)) { 1050 return; 1051 } 1052 1053 list_for_each_entry(region, &nosave_regions, list) 1054 { 1055 unsigned long pfn; 1056 1057 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", (unsigned long long)region->start_pfn << PAGE_SHIFT, 1058 ((unsigned long long)region->end_pfn << PAGE_SHIFT) - 1); 1059 1060 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) { 1061 if (pfn_valid(pfn)) { 1062 /* 1063 * It is safe to ignore the result of 1064 * mem_bm_set_bit_check() here, since we won't 1065 * touch the PFNs for which the error is 1066 * returned anyway. 1067 */ 1068 mem_bm_set_bit_check(bm, pfn); 1069 } 1070 } 1071 } 1072} 1073 1074/** 1075 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1076 * 1077 * Create bitmaps needed for marking page frames that should not be saved and 1078 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1079 * only modified if everything goes well, because we don't want the bits to be 1080 * touched before both bitmaps are set up. 1081 */ 1082int create_basic_memory_bitmaps(void) 1083{ 1084 struct memory_bitmap *bm1, *bm2; 1085 int error = 0; 1086 1087 if (forbidden_pages_map && free_pages_map) { 1088 return 0; 1089 } else { 1090 BUG_ON(forbidden_pages_map || free_pages_map); 1091 } 1092 1093 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1094 if (!bm1) { 1095 return -ENOMEM; 1096 } 1097 1098 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1099 if (error) { 1100 goto Free_first_object; 1101 } 1102 1103 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1104 if (!bm2) { 1105 goto Free_first_bitmap; 1106 } 1107 1108 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1109 if (error) { 1110 goto Free_second_object; 1111 } 1112 1113 forbidden_pages_map = bm1; 1114 free_pages_map = bm2; 1115 mark_nosave_pages(forbidden_pages_map); 1116 1117 pr_debug("Basic memory bitmaps created\n"); 1118 1119 return 0; 1120 1121Free_second_object: 1122 kfree(bm2); 1123Free_first_bitmap: 1124 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1125Free_first_object: 1126 kfree(bm1); 1127 return -ENOMEM; 1128} 1129 1130/** 1131 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1132 * 1133 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1134 * auxiliary pointers are necessary so that the bitmaps themselves are not 1135 * referred to while they are being freed. 1136 */ 1137void free_basic_memory_bitmaps(void) 1138{ 1139 struct memory_bitmap *bm1, *bm2; 1140 1141 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) { 1142 return; 1143 } 1144 1145 bm1 = forbidden_pages_map; 1146 bm2 = free_pages_map; 1147 forbidden_pages_map = NULL; 1148 free_pages_map = NULL; 1149 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1150 kfree(bm1); 1151 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1152 kfree(bm2); 1153 1154 pr_debug("Basic memory bitmaps freed\n"); 1155} 1156 1157static void clear_or_poison_free_page(struct page *page) 1158{ 1159 if (page_poisoning_enabled_static()) { 1160 _kernel_poison_pages(page, 1); 1161 } else if (want_init_on_free()) { 1162 clear_highpage(page); 1163 } 1164} 1165 1166void clear_or_poison_free_pages(void) 1167{ 1168 struct memory_bitmap *bm = free_pages_map; 1169 unsigned long pfn; 1170 1171 if (WARN_ON(!(free_pages_map))) { 1172 return; 1173 } 1174 1175 if (page_poisoning_enabled() || want_init_on_free()) { 1176 memory_bm_position_reset(bm); 1177 pfn = memory_bm_next_pfn(bm); 1178 while (pfn != BM_END_OF_MAP) { 1179 if (pfn_valid(pfn)) { 1180 clear_or_poison_free_page(pfn_to_page(pfn)); 1181 } 1182 1183 pfn = memory_bm_next_pfn(bm); 1184 } 1185 memory_bm_position_reset(bm); 1186 pr_info("free pages cleared after restore\n"); 1187 } 1188} 1189 1190/** 1191 * snapshot_additional_pages - Estimate the number of extra pages needed. 1192 * @zone: Memory zone to carry out the computation for. 1193 * 1194 * Estimate the number of additional pages needed for setting up a hibernation 1195 * image data structures for @zone (usually, the returned value is greater than 1196 * the exact number). 1197 */ 1198unsigned int snapshot_additional_pages(struct zone *zone) 1199{ 1200 unsigned int rtree, nodes; 1201 1202 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1203 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), LINKED_PAGE_DATA_SIZE); 1204 while (nodes > 1) { 1205 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1206 rtree += nodes; 1207 } 1208 1209 return 0x2 * rtree; 1210} 1211 1212#ifdef CONFIG_HIGHMEM 1213/** 1214 * count_free_highmem_pages - Compute the total number of free highmem pages. 1215 * 1216 * The returned number is system-wide. 1217 */ 1218static unsigned int count_free_highmem_pages(void) 1219{ 1220 struct zone *zone; 1221 unsigned int cnt = 0; 1222 1223 for_each_populated_zone(zone) if (is_highmem(zone)) cnt += zone_page_state(zone, NR_FREE_PAGES); 1224 1225 return cnt; 1226} 1227 1228/** 1229 * saveable_highmem_page - Check if a highmem page is saveable. 1230 * 1231 * Determine whether a highmem page should be included in a hibernation image. 1232 * 1233 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1234 * and it isn't part of a free chunk of pages. 1235 */ 1236static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1237{ 1238 struct page *page; 1239 1240 if (!pfn_valid(pfn)) { 1241 return NULL; 1242 } 1243 1244 page = pfn_to_online_page(pfn); 1245 if (!page || page_zone(page) != zone) { 1246 return NULL; 1247 } 1248 1249 BUG_ON(!PageHighMem(page)); 1250 1251 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) { 1252 return NULL; 1253 } 1254 1255 if (PageReserved(page) || PageOffline(page)) { 1256 return NULL; 1257 } 1258 1259 if (page_is_guard(page)) { 1260 return NULL; 1261 } 1262 1263 return page; 1264} 1265 1266/** 1267 * count_highmem_pages - Compute the total number of saveable highmem pages. 1268 */ 1269static unsigned int count_highmem_pages(void) 1270{ 1271 struct zone *zone; 1272 unsigned int n = 0; 1273 1274 for_each_populated_zone(zone) 1275 { 1276 unsigned long pfn, max_zone_pfn; 1277 1278 if (!is_highmem(zone)) { 1279 continue; 1280 } 1281 1282 mark_free_pages(zone); 1283 max_zone_pfn = zone_end_pfn(zone); 1284 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 1285 if (saveable_highmem_page(zone, pfn)) { 1286 n++; 1287 } 1288 } 1289 } 1290 return n; 1291} 1292#else 1293static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1294{ 1295 return NULL; 1296} 1297#endif /* CONFIG_HIGHMEM */ 1298 1299/** 1300 * saveable_page - Check if the given page is saveable. 1301 * 1302 * Determine whether a non-highmem page should be included in a hibernation 1303 * image. 1304 * 1305 * We should save the page if it isn't Nosave, and is not in the range 1306 * of pages statically defined as 'unsaveable', and it isn't part of 1307 * a free chunk of pages. 1308 */ 1309static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1310{ 1311 struct page *page; 1312 1313 if (!pfn_valid(pfn)) { 1314 return NULL; 1315 } 1316 1317 page = pfn_to_online_page(pfn); 1318 if (!page || page_zone(page) != zone) { 1319 return NULL; 1320 } 1321 1322 BUG_ON(PageHighMem(page)); 1323 1324 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) { 1325 return NULL; 1326 } 1327 1328 if (PageOffline(page)) { 1329 return NULL; 1330 } 1331 1332 if (PageReserved(page) && (!kernel_page_present(page) || pfn_is_nosave(pfn))) { 1333 return NULL; 1334 } 1335 1336 if (page_is_guard(page)) { 1337 return NULL; 1338 } 1339 1340 return page; 1341} 1342 1343/** 1344 * count_data_pages - Compute the total number of saveable non-highmem pages. 1345 */ 1346static unsigned int count_data_pages(void) 1347{ 1348 struct zone *zone; 1349 unsigned long pfn, max_zone_pfn; 1350 unsigned int n = 0; 1351 1352 for_each_populated_zone(zone) 1353 { 1354 if (is_highmem(zone)) { 1355 continue; 1356 } 1357 1358 mark_free_pages(zone); 1359 max_zone_pfn = zone_end_pfn(zone); 1360 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 1361 if (saveable_page(zone, pfn)) { 1362 n++; 1363 } 1364 } 1365 } 1366 return n; 1367} 1368 1369/* 1370 * This is needed, because copy_page and memcpy are not usable for copying 1371 * task structs. 1372 */ 1373static inline void do_copy_page(long *dst, long *src) 1374{ 1375 int n; 1376 1377 for (n = PAGE_SIZE / sizeof(long); n; n--) { 1378 *dst++ = *src++; 1379 } 1380} 1381 1382/** 1383 * safe_copy_page - Copy a page in a safe way. 1384 * 1385 * Check if the page we are going to copy is marked as present in the kernel 1386 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1387 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1388 * always returns 'true'. 1389 */ 1390static void safe_copy_page(void *dst, struct page *s_page) 1391{ 1392 if (kernel_page_present(s_page)) { 1393 do_copy_page(dst, page_address(s_page)); 1394 } else { 1395 kernel_map_pages(s_page, 1, 1); 1396 do_copy_page(dst, page_address(s_page)); 1397 kernel_map_pages(s_page, 1, 0); 1398 } 1399} 1400 1401#ifdef CONFIG_HIGHMEM 1402static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1403{ 1404 return is_highmem(zone) ? saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1405} 1406 1407static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1408{ 1409 struct page *s_page, *d_page; 1410 void *src, *dst; 1411 1412 s_page = pfn_to_page(src_pfn); 1413 d_page = pfn_to_page(dst_pfn); 1414 if (PageHighMem(s_page)) { 1415 src = kmap_atomic(s_page); 1416 dst = kmap_atomic(d_page); 1417 do_copy_page(dst, src); 1418 kunmap_atomic(dst); 1419 kunmap_atomic(src); 1420 } else { 1421 if (PageHighMem(d_page)) { 1422 /* 1423 * The page pointed to by src may contain some kernel 1424 * data modified by kmap_atomic() 1425 */ 1426 safe_copy_page(buffer, s_page); 1427 dst = kmap_atomic(d_page); 1428 copy_page(dst, buffer); 1429 kunmap_atomic(dst); 1430 } else { 1431 safe_copy_page(page_address(d_page), s_page); 1432 } 1433 } 1434} 1435#else 1436#define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1437 1438static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1439{ 1440 safe_copy_page(page_address(pfn_to_page(dst_pfn)), pfn_to_page(src_pfn)); 1441} 1442#endif /* CONFIG_HIGHMEM */ 1443 1444static void copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1445{ 1446 struct zone *zone; 1447 unsigned long pfn; 1448 1449 for_each_populated_zone(zone) 1450 { 1451 unsigned long max_zone_pfn; 1452 1453 mark_free_pages(zone); 1454 max_zone_pfn = zone_end_pfn(zone); 1455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 1456 if (page_is_saveable(zone, pfn)) { 1457 memory_bm_set_bit(orig_bm, pfn); 1458 } 1459 } 1460 } 1461 memory_bm_position_reset(orig_bm); 1462 memory_bm_position_reset(copy_bm); 1463 for (;;) { 1464 pfn = memory_bm_next_pfn(orig_bm); 1465 if (unlikely(pfn == BM_END_OF_MAP)) { 1466 break; 1467 } 1468 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1469 } 1470} 1471 1472/* Total number of image pages */ 1473static unsigned int nr_copy_pages; 1474/* Number of pages needed for saving the original pfns of the image pages */ 1475static unsigned int nr_meta_pages; 1476/* 1477 * Numbers of normal and highmem page frames allocated for hibernation image 1478 * before suspending devices. 1479 */ 1480static unsigned int alloc_normal, alloc_highmem; 1481/* 1482 * Memory bitmap used for marking saveable pages (during hibernation) or 1483 * hibernation image pages (during restore) 1484 */ 1485static struct memory_bitmap orig_bm; 1486/* 1487 * Memory bitmap used during hibernation for marking allocated page frames that 1488 * will contain copies of saveable pages. During restore it is initially used 1489 * for marking hibernation image pages, but then the set bits from it are 1490 * duplicated in @orig_bm and it is released. On highmem systems it is next 1491 * used for marking "safe" highmem pages, but it has to be reinitialized for 1492 * this purpose. 1493 */ 1494static struct memory_bitmap copy_bm; 1495 1496/** 1497 * swsusp_free - Free pages allocated for hibernation image. 1498 * 1499 * Image pages are alocated before snapshot creation, so they need to be 1500 * released after resume. 1501 */ 1502void swsusp_free(void) 1503{ 1504 unsigned long fb_pfn, fr_pfn; 1505 1506 if (!forbidden_pages_map || !free_pages_map) { 1507 goto out; 1508 } 1509 1510 memory_bm_position_reset(forbidden_pages_map); 1511 memory_bm_position_reset(free_pages_map); 1512 1513 while (1) { 1514 fr_pfn = memory_bm_next_pfn(free_pages_map); 1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1516 1517 /* 1518 * Find the next bit set in both bitmaps. This is guaranteed to 1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1520 */ 1521 do { 1522 if (fb_pfn < fr_pfn) { 1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1524 } 1525 if (fr_pfn < fb_pfn) { 1526 fr_pfn = memory_bm_next_pfn(free_pages_map); 1527 } 1528 } while (fb_pfn != fr_pfn); 1529 1530 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1531 struct page *page = pfn_to_page(fr_pfn); 1532 1533 memory_bm_clear_current(forbidden_pages_map); 1534 memory_bm_clear_current(free_pages_map); 1535 hibernate_restore_unprotect_page(page_address(page)); 1536 __free_page(page); 1537 continue; 1538 } 1539 break; 1540 } 1541 1542out: 1543 nr_copy_pages = 0; 1544 nr_meta_pages = 0; 1545 restore_pblist = NULL; 1546 buffer = NULL; 1547 alloc_normal = 0; 1548 alloc_highmem = 0; 1549 hibernate_restore_protection_end(); 1550} 1551 1552/* Helper functions used for the shrinking of memory. */ 1553 1554#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1555 1556/** 1557 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1558 * @nr_pages: Number of page frames to allocate. 1559 * @mask: GFP flags to use for the allocation. 1560 * 1561 * Return value: Number of page frames actually allocated 1562 */ 1563static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1564{ 1565 unsigned long nr_alloc = 0; 1566 1567 while (nr_pages > 0) { 1568 struct page *page; 1569 1570 page = alloc_image_page(mask); 1571 if (!page) { 1572 break; 1573 } 1574 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1575 if (PageHighMem(page)) { 1576 alloc_highmem++; 1577 } else { 1578 alloc_normal++; 1579 } 1580 nr_pages--; 1581 nr_alloc++; 1582 } 1583 1584 return nr_alloc; 1585} 1586 1587static unsigned long preallocate_image_memory(unsigned long nr_pages, unsigned long avail_normal) 1588{ 1589 unsigned long alloc; 1590 1591 if (avail_normal <= alloc_normal) { 1592 return 0; 1593 } 1594 1595 alloc = avail_normal - alloc_normal; 1596 if (nr_pages < alloc) { 1597 alloc = nr_pages; 1598 } 1599 1600 return preallocate_image_pages(alloc, GFP_IMAGE); 1601} 1602 1603#ifdef CONFIG_HIGHMEM 1604static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1605{ 1606 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1607} 1608 1609/** 1610 * _fraction - Compute (an approximation of) x * (multiplier / base). 1611 */ 1612static unsigned long _fraction(u64 x, u64 multiplier, u64 base) 1613{ 1614 return div64_u64(x * multiplier, base); 1615} 1616 1617static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, unsigned long highmem, unsigned long total) 1618{ 1619 unsigned long alloc = _fraction(nr_pages, highmem, total); 1620 1621 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1622} 1623#else /* CONFIG_HIGHMEM */ 1624static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1625{ 1626 return 0; 1627} 1628 1629static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, unsigned long highmem, 1630 unsigned long total) 1631{ 1632 return 0; 1633} 1634#endif /* CONFIG_HIGHMEM */ 1635 1636/** 1637 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1638 */ 1639static unsigned long free_unnecessary_pages(void) 1640{ 1641 unsigned long save, to_free_normal, to_free_highmem, free; 1642 1643 save = count_data_pages(); 1644 if (alloc_normal >= save) { 1645 to_free_normal = alloc_normal - save; 1646 save = 0; 1647 } else { 1648 to_free_normal = 0; 1649 save -= alloc_normal; 1650 } 1651 save += count_highmem_pages(); 1652 if (alloc_highmem >= save) { 1653 to_free_highmem = alloc_highmem - save; 1654 } else { 1655 to_free_highmem = 0; 1656 save -= alloc_highmem; 1657 if (to_free_normal > save) { 1658 to_free_normal -= save; 1659 } else { 1660 to_free_normal = 0; 1661 } 1662 } 1663 free = to_free_normal + to_free_highmem; 1664 1665 memory_bm_position_reset(©_bm); 1666 1667 while (to_free_normal > 0 || to_free_highmem > 0) { 1668 unsigned long pfn = memory_bm_next_pfn(©_bm); 1669 struct page *page = pfn_to_page(pfn); 1670 1671 if (PageHighMem(page)) { 1672 if (!to_free_highmem) { 1673 continue; 1674 } 1675 to_free_highmem--; 1676 alloc_highmem--; 1677 } else { 1678 if (!to_free_normal) { 1679 continue; 1680 } 1681 to_free_normal--; 1682 alloc_normal--; 1683 } 1684 memory_bm_clear_bit(©_bm, pfn); 1685 swsusp_unset_page_forbidden(page); 1686 swsusp_unset_page_free(page); 1687 __free_page(page); 1688 } 1689 1690 return free; 1691} 1692 1693/** 1694 * minimum_image_size - Estimate the minimum acceptable size of an image. 1695 * @saveable: Number of saveable pages in the system. 1696 * 1697 * We want to avoid attempting to free too much memory too hard, so estimate the 1698 * minimum acceptable size of a hibernation image to use as the lower limit for 1699 * preallocating memory. 1700 * 1701 * We assume that the minimum image size should be proportional to 1702 * 1703 * [number of saveable pages] - [number of pages that can be freed in theory] 1704 * 1705 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1706 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1707 */ 1708static unsigned long minimum_image_size(unsigned long saveable) 1709{ 1710 unsigned long size; 1711 1712 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + global_node_page_state(NR_ACTIVE_ANON) + 1713 global_node_page_state(NR_INACTIVE_ANON) + global_node_page_state(NR_ACTIVE_FILE) + 1714 global_node_page_state(NR_INACTIVE_FILE); 1715 1716 return saveable <= size ? 0 : saveable - size; 1717} 1718 1719/** 1720 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1721 * 1722 * To create a hibernation image it is necessary to make a copy of every page 1723 * frame in use. We also need a number of page frames to be free during 1724 * hibernation for allocations made while saving the image and for device 1725 * drivers, in case they need to allocate memory from their hibernation 1726 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1727 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1728 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1729 * total number of available page frames and allocate at least 1730 * 1731 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1732 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1733 * 1734 * of them, which corresponds to the maximum size of a hibernation image. 1735 * 1736 * If image_size is set below the number following from the above formula, 1737 * the preallocation of memory is continued until the total number of saveable 1738 * pages in the system is below the requested image size or the minimum 1739 * acceptable image size returned by minimum_image_size(), whichever is greater. 1740 */ 1741int hibernate_preallocate_memory(void) 1742{ 1743 struct zone *zone; 1744 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1745 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1746 ktime_t start, stop; 1747 int error; 1748 1749 pr_info("Preallocating image memory\n"); 1750 start = ktime_get(); 1751 1752 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1753 if (error) { 1754 pr_err("Cannot allocate original bitmap\n"); 1755 goto err_out; 1756 } 1757 1758 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1759 if (error) { 1760 pr_err("Cannot allocate copy bitmap\n"); 1761 goto err_out; 1762 } 1763 1764 alloc_normal = 0; 1765 alloc_highmem = 0; 1766 1767 /* Count the number of saveable data pages. */ 1768 save_highmem = count_highmem_pages(); 1769 saveable = count_data_pages(); 1770 1771 /* 1772 * Compute the total number of page frames we can use (count) and the 1773 * number of pages needed for image metadata (size). 1774 */ 1775 count = saveable; 1776 saveable += save_highmem; 1777 highmem = save_highmem; 1778 size = 0; 1779 for_each_populated_zone(zone) 1780 { 1781 size += snapshot_additional_pages(zone); 1782 if (is_highmem(zone)) { 1783 highmem += zone_page_state(zone, NR_FREE_PAGES); 1784 } else { 1785 count += zone_page_state(zone, NR_FREE_PAGES); 1786 } 1787 } 1788 avail_normal = count; 1789 count += highmem; 1790 count -= totalreserve_pages; 1791 1792 /* Compute the maximum number of saveable pages to leave in memory. */ 1793 max_size = (count - (size + PAGES_FOR_IO)) / SNAPSHOT_TWO - SNAPSHOT_TWO * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1794 /* Compute the desired number of image pages specified by image_size. */ 1795 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1796 if (size > max_size) { 1797 size = max_size; 1798 } 1799 /* 1800 * If the desired number of image pages is at least as large as the 1801 * current number of saveable pages in memory, allocate page frames for 1802 * the image and we're done. 1803 */ 1804 if (size >= saveable) { 1805 pages = preallocate_image_highmem(save_highmem); 1806 pages += preallocate_image_memory(saveable - pages, avail_normal); 1807 goto out; 1808 } 1809 1810 /* Estimate the minimum size of the image. */ 1811 pages = minimum_image_size(saveable); 1812 /* 1813 * To avoid excessive pressure on the normal zone, leave room in it to 1814 * accommodate an image of the minimum size (unless it's already too 1815 * small, in which case don't preallocate pages from it at all). 1816 */ 1817 if (avail_normal > pages) { 1818 avail_normal -= pages; 1819 } else { 1820 avail_normal = 0; 1821 } 1822 if (size < pages) { 1823 size = min_t(unsigned long, pages, max_size); 1824 } 1825 1826 /* 1827 * Let the memory management subsystem know that we're going to need a 1828 * large number of page frames to allocate and make it free some memory. 1829 * NOTE: If this is not done, performance will be hurt badly in some 1830 * test cases. 1831 */ 1832 shrink_all_memory(saveable - size); 1833 1834 /* 1835 * The number of saveable pages in memory was too high, so apply some 1836 * pressure to decrease it. First, make room for the largest possible 1837 * image and fail if that doesn't work. Next, try to decrease the size 1838 * of the image as much as indicated by 'size' using allocations from 1839 * highmem and non-highmem zones separately. 1840 */ 1841 pages_highmem = preallocate_image_highmem(highmem / SNAPSHOT_TWO); 1842 alloc = count - max_size; 1843 if (alloc > pages_highmem) { 1844 alloc -= pages_highmem; 1845 } else { 1846 alloc = 0; 1847 } 1848 pages = preallocate_image_memory(alloc, avail_normal); 1849 if (pages < alloc) { 1850 /* We have exhausted non-highmem pages, try highmem. */ 1851 alloc -= pages; 1852 pages += pages_highmem; 1853 pages_highmem = preallocate_image_highmem(alloc); 1854 if (pages_highmem < alloc) { 1855 pr_err("Image allocation is %lu pages short\n", alloc - pages_highmem); 1856 goto err_out; 1857 } 1858 pages += pages_highmem; 1859 /* 1860 * size is the desired number of saveable pages to leave in 1861 * memory, so try to preallocate (all memory - size) pages. 1862 */ 1863 alloc = (count - pages) - size; 1864 pages += preallocate_image_highmem(alloc); 1865 } else { 1866 /* 1867 * There are approximately max_size saveable pages at this point 1868 * and we want to reduce this number down to size. 1869 */ 1870 alloc = max_size - size; 1871 size = preallocate_highmem_fraction(alloc, highmem, count); 1872 pages_highmem += size; 1873 alloc -= size; 1874 size = preallocate_image_memory(alloc, avail_normal); 1875 pages_highmem += preallocate_image_highmem(alloc - size); 1876 pages += pages_highmem + size; 1877 } 1878 1879 /* 1880 * We only need as many page frames for the image as there are saveable 1881 * pages in memory, but we have allocated more. Release the excessive 1882 * ones now. 1883 */ 1884 pages -= free_unnecessary_pages(); 1885 1886out: 1887 stop = ktime_get(); 1888 pr_info("Allocated %lu pages for snapshot\n", pages); 1889 swsusp_show_speed(start, stop, pages, "Allocated"); 1890 1891 return 0; 1892 1893err_out: 1894 swsusp_free(); 1895 return -ENOMEM; 1896} 1897 1898#ifdef CONFIG_HIGHMEM 1899/** 1900 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1901 * 1902 * Compute the number of non-highmem pages that will be necessary for creating 1903 * copies of highmem pages. 1904 */ 1905static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1906{ 1907 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1908 if (free_highmem >= nr_highmem) { 1909 nr_highmem = 0; 1910 } else { 1911 nr_highmem -= free_highmem; 1912 } 1913 1914 return nr_highmem; 1915} 1916#else 1917static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1918{ 1919 return 0; 1920} 1921#endif /* CONFIG_HIGHMEM */ 1922 1923/** 1924 * enough_free_mem - Check if there is enough free memory for the image. 1925 */ 1926static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1927{ 1928 struct zone *zone; 1929 unsigned int free = alloc_normal; 1930 1931 for_each_populated_zone(zone) if (!is_highmem(zone)) free += zone_page_state(zone, NR_FREE_PAGES); 1932 1933 nr_pages += count_pages_for_highmem(nr_highmem); 1934 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", nr_pages, PAGES_FOR_IO, free); 1935 1936 return free > nr_pages + PAGES_FOR_IO; 1937} 1938 1939#ifdef CONFIG_HIGHMEM 1940/** 1941 * get_highmem_buffer - Allocate a buffer for highmem pages. 1942 * 1943 * If there are some highmem pages in the hibernation image, we may need a 1944 * buffer to copy them and/or load their data. 1945 */ 1946static inline int get_highmem_buffer(int safe_needed) 1947{ 1948 buffer = get_image_page(GFP_ATOMIC, safe_needed); 1949 return buffer ? 0 : -ENOMEM; 1950} 1951 1952/** 1953 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1954 * 1955 * Try to allocate as many pages as needed, but if the number of free highmem 1956 * pages is less than that, allocate them all. 1957 */ 1958static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1959{ 1960 unsigned int to_alloc = count_free_highmem_pages(); 1961 if (to_alloc > nr_highmem) { 1962 to_alloc = nr_highmem; 1963 } 1964 1965 nr_highmem -= to_alloc; 1966 while (to_alloc-- > 0) { 1967 struct page *page; 1968 1969 page = alloc_image_page(__GFP_HIGHMEM | __GFP_KSWAPD_RECLAIM); 1970 memory_bm_set_bit(bm, page_to_pfn(page)); 1971 } 1972 return nr_highmem; 1973} 1974#else 1975static inline int get_highmem_buffer(int safe_needed) 1976{ 1977 return 0; 1978} 1979 1980static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) 1981{ 1982 return 0; 1983} 1984#endif /* CONFIG_HIGHMEM */ 1985 1986/** 1987 * swsusp_alloc - Allocate memory for hibernation image. 1988 * 1989 * We first try to allocate as many highmem pages as there are 1990 * saveable highmem pages in the system. If that fails, we allocate 1991 * non-highmem pages for the copies of the remaining highmem ones. 1992 * 1993 * In this approach it is likely that the copies of highmem pages will 1994 * also be located in the high memory, because of the way in which 1995 * copy_data_pages() works. 1996 */ 1997static int swsusp_alloc(struct memory_bitmap *copy_bm_ex, unsigned int nr_pages, unsigned int nr_highmem) 1998{ 1999 if (nr_highmem > 0) { 2000 if (get_highmem_buffer(PG_ANY)) { 2001 goto err_out; 2002 } 2003 if (nr_highmem > alloc_highmem) { 2004 nr_highmem -= alloc_highmem; 2005 nr_pages += alloc_highmem_pages(copy_bm_ex, nr_highmem); 2006 } 2007 } 2008 if (nr_pages > alloc_normal) { 2009 nr_pages -= alloc_normal; 2010 while (nr_pages-- > 0) { 2011 struct page *page; 2012 2013 page = alloc_image_page(GFP_ATOMIC); 2014 if (!page) { 2015 goto err_out; 2016 } 2017 memory_bm_set_bit(copy_bm_ex, page_to_pfn(page)); 2018 } 2019 } 2020 2021 return 0; 2022 2023err_out: 2024 swsusp_free(); 2025 return -ENOMEM; 2026} 2027 2028asmlinkage __visible int swsusp_save(void) 2029{ 2030 unsigned int nr_pages, nr_highmem; 2031 2032 pr_info("Creating image:\n"); 2033 2034 drain_local_pages(NULL); 2035 nr_pages = count_data_pages(); 2036 nr_highmem = count_highmem_pages(); 2037 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2038 2039 if (!enough_free_mem(nr_pages, nr_highmem)) { 2040 pr_err("Not enough free memory\n"); 2041 return -ENOMEM; 2042 } 2043 2044 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2045 pr_err("Memory allocation failed\n"); 2046 return -ENOMEM; 2047 } 2048 2049 /* 2050 * During allocating of suspend pagedir, new cold pages may appear. 2051 * Kill them. 2052 */ 2053 drain_local_pages(NULL); 2054 copy_data_pages(©_bm, &orig_bm); 2055 2056 /* 2057 * End of critical section. From now on, we can write to memory, 2058 * but we should not touch disk. This specially means we must _not_ 2059 * touch swap space! Except we must write out our image of course. 2060 */ 2061 2062 nr_pages += nr_highmem; 2063 nr_copy_pages = nr_pages; 2064 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2065 2066 pr_info("Image created (%d pages copied)\n", nr_pages); 2067 2068 return 0; 2069} 2070 2071#ifndef CONFIG_ARCH_HIBERNATION_HEADER 2072static int init_header_complete(struct swsusp_info *info) 2073{ 2074 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2075 info->version_code = LINUX_VERSION_CODE; 2076 return 0; 2077} 2078 2079static const char *check_image_kernel(struct swsusp_info *info) 2080{ 2081 if (info->version_code != LINUX_VERSION_CODE) { 2082 return "kernel version"; 2083 } 2084 if (strcmp(info->uts.sysname, init_utsname()->sysname)) { 2085 return "system type"; 2086 } 2087 if (strcmp(info->uts.release, init_utsname()->release)) { 2088 return "kernel release"; 2089 } 2090 if (strcmp(info->uts.version, init_utsname()->version)) { 2091 return "version"; 2092 } 2093 if (strcmp(info->uts.machine, init_utsname()->machine)) { 2094 return "machine"; 2095 } 2096 return NULL; 2097} 2098#endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2099 2100unsigned long snapshot_get_image_size(void) 2101{ 2102 return nr_copy_pages + nr_meta_pages + 1; 2103} 2104 2105static int init_header(struct swsusp_info *info) 2106{ 2107 memset(info, 0, sizeof(struct swsusp_info)); 2108 info->num_physpages = get_num_physpages(); 2109 info->image_pages = nr_copy_pages; 2110 info->pages = snapshot_get_image_size(); 2111 info->size = info->pages; 2112 info->size <<= PAGE_SHIFT; 2113 return init_header_complete(info); 2114} 2115 2116/** 2117 * pack_pfns - Prepare PFNs for saving. 2118 * @bm: Memory bitmap. 2119 * @buf: Memory buffer to store the PFNs in. 2120 * 2121 * PFNs corresponding to set bits in @bm are stored in the area of memory 2122 * pointed to by @buf (1 page at a time). 2123 */ 2124static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2125{ 2126 int j; 2127 2128 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2129 buf[j] = memory_bm_next_pfn(bm); 2130 if (unlikely(buf[j] == BM_END_OF_MAP)) { 2131 break; 2132 } 2133 } 2134} 2135 2136/** 2137 * snapshot_read_next - Get the address to read the next image page from. 2138 * @handle: Snapshot handle to be used for the reading. 2139 * 2140 * On the first call, @handle should point to a zeroed snapshot_handle 2141 * structure. The structure gets populated then and a pointer to it should be 2142 * passed to this function every next time. 2143 * 2144 * On success, the function returns a positive number. Then, the caller 2145 * is allowed to read up to the returned number of bytes from the memory 2146 * location computed by the data_of() macro. 2147 * 2148 * The function returns 0 to indicate the end of the data stream condition, 2149 * and negative numbers are returned on errors. If that happens, the structure 2150 * pointed to by @handle is not updated and should not be used any more. 2151 */ 2152int snapshot_read_next(struct snapshot_handle *handle) 2153{ 2154 if (handle->cur > nr_meta_pages + nr_copy_pages) { 2155 return 0; 2156 } 2157 2158 if (!buffer) { 2159 /* This makes the buffer be freed by swsusp_free() */ 2160 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2161 if (!buffer) { 2162 return -ENOMEM; 2163 } 2164 } 2165 if (!handle->cur) { 2166 int error; 2167 2168 error = init_header((struct swsusp_info *)buffer); 2169 if (error) { 2170 return error; 2171 } 2172 handle->buffer = buffer; 2173 memory_bm_position_reset(&orig_bm); 2174 memory_bm_position_reset(©_bm); 2175 } else if (handle->cur <= nr_meta_pages) { 2176 clear_page(buffer); 2177 pack_pfns(buffer, &orig_bm); 2178 } else { 2179 struct page *page; 2180 2181 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2182 if (PageHighMem(page)) { 2183 /* 2184 * Highmem pages are copied to the buffer, 2185 * because we can't return with a kmapped 2186 * highmem page (we may not be called again). 2187 */ 2188 void *kaddr; 2189 2190 kaddr = kmap_atomic(page); 2191 copy_page(buffer, kaddr); 2192 kunmap_atomic(kaddr); 2193 handle->buffer = buffer; 2194 } else { 2195 handle->buffer = page_address(page); 2196 } 2197 } 2198 handle->cur++; 2199 return PAGE_SIZE; 2200} 2201 2202static void duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 2203{ 2204 unsigned long pfn; 2205 2206 memory_bm_position_reset(src); 2207 pfn = memory_bm_next_pfn(src); 2208 while (pfn != BM_END_OF_MAP) { 2209 memory_bm_set_bit(dst, pfn); 2210 pfn = memory_bm_next_pfn(src); 2211 } 2212} 2213 2214/** 2215 * mark_unsafe_pages - Mark pages that were used before hibernation. 2216 * 2217 * Mark the pages that cannot be used for storing the image during restoration, 2218 * because they conflict with the pages that had been used before hibernation. 2219 */ 2220static void mark_unsafe_pages(struct memory_bitmap *bm) 2221{ 2222 unsigned long pfn; 2223 2224 /* Clear the "free"/"unsafe" bit for all PFNs */ 2225 memory_bm_position_reset(free_pages_map); 2226 pfn = memory_bm_next_pfn(free_pages_map); 2227 while (pfn != BM_END_OF_MAP) { 2228 memory_bm_clear_current(free_pages_map); 2229 pfn = memory_bm_next_pfn(free_pages_map); 2230 } 2231 2232 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2233 duplicate_memory_bitmap(free_pages_map, bm); 2234 2235 allocated_unsafe_pages = 0; 2236} 2237 2238static int check_header(struct swsusp_info *info) 2239{ 2240 const char *reason; 2241 2242 reason = check_image_kernel(info); 2243 if (!reason && info->num_physpages != get_num_physpages()) { 2244 reason = "memory size"; 2245 } 2246 if (reason) { 2247 pr_err("Image mismatch: %s\n", reason); 2248 return -EPERM; 2249 } 2250 return 0; 2251} 2252 2253/** 2254 * load header - Check the image header and copy the data from it. 2255 */ 2256static int load_header(struct swsusp_info *info) 2257{ 2258 int error; 2259 2260 restore_pblist = NULL; 2261 error = check_header(info); 2262 if (!error) { 2263 nr_copy_pages = info->image_pages; 2264 nr_meta_pages = info->pages - info->image_pages - 1; 2265 } 2266 return error; 2267} 2268 2269/** 2270 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2271 * @bm: Memory bitmap. 2272 * @buf: Area of memory containing the PFNs. 2273 * 2274 * For each element of the array pointed to by @buf (1 page at a time), set the 2275 * corresponding bit in @bm. 2276 */ 2277static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2278{ 2279 int j; 2280 2281 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2282 if (unlikely(buf[j] == BM_END_OF_MAP)) { 2283 break; 2284 } 2285 2286 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) { 2287 memory_bm_set_bit(bm, buf[j]); 2288 } else { 2289 return -EFAULT; 2290 } 2291 } 2292 2293 return 0; 2294} 2295 2296#ifdef CONFIG_HIGHMEM 2297/* 2298 * struct highmem_pbe is used for creating the list of highmem pages that 2299 * should be restored atomically during the resume from disk, because the page 2300 * frames they have occupied before the suspend are in use. 2301 */ 2302struct highmem_pbe { 2303 struct page *copy_page; /* data is here now */ 2304 struct page *orig_page; /* data was here before the suspend */ 2305 struct highmem_pbe *next; 2306}; 2307 2308/* 2309 * List of highmem PBEs needed for restoring the highmem pages that were 2310 * allocated before the suspend and included in the suspend image, but have 2311 * also been allocated by the "resume" kernel, so their contents cannot be 2312 * written directly to their "original" page frames. 2313 */ 2314static struct highmem_pbe *highmem_pblist; 2315 2316/** 2317 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2318 * @bm: Memory bitmap. 2319 * 2320 * The bits in @bm that correspond to image pages are assumed to be set. 2321 */ 2322static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2323{ 2324 unsigned long pfn; 2325 unsigned int cnt = 0; 2326 2327 memory_bm_position_reset(bm); 2328 pfn = memory_bm_next_pfn(bm); 2329 while (pfn != BM_END_OF_MAP) { 2330 if (PageHighMem(pfn_to_page(pfn))) { 2331 cnt++; 2332 } 2333 2334 pfn = memory_bm_next_pfn(bm); 2335 } 2336 return cnt; 2337} 2338 2339static unsigned int safe_highmem_pages; 2340 2341static struct memory_bitmap *safe_highmem_bm; 2342 2343/** 2344 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2345 * @bm: Pointer to an uninitialized memory bitmap structure. 2346 * @nr_highmem_p: Pointer to the number of highmem image pages. 2347 * 2348 * Try to allocate as many highmem pages as there are highmem image pages 2349 * (@nr_highmem_p points to the variable containing the number of highmem image 2350 * pages). The pages that are "safe" (ie. will not be overwritten when the 2351 * hibernation image is restored entirely) have the corresponding bits set in 2352 * @bm (it must be unitialized). 2353 * 2354 * NOTE: This function should not be called if there are no highmem image pages. 2355 */ 2356static int prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2357{ 2358 unsigned int to_alloc; 2359 2360 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) { 2361 return -ENOMEM; 2362 } 2363 2364 if (get_highmem_buffer(PG_SAFE)) { 2365 return -ENOMEM; 2366 } 2367 2368 to_alloc = count_free_highmem_pages(); 2369 if (to_alloc > *nr_highmem_p) { 2370 to_alloc = *nr_highmem_p; 2371 } else { 2372 *nr_highmem_p = to_alloc; 2373 } 2374 2375 safe_highmem_pages = 0; 2376 while (to_alloc-- > 0) { 2377 struct page *page; 2378 2379 page = alloc_page(__GFP_HIGHMEM); 2380 if (!swsusp_page_is_free(page)) { 2381 /* The page is "safe", set its bit the bitmap */ 2382 memory_bm_set_bit(bm, page_to_pfn(page)); 2383 safe_highmem_pages++; 2384 } 2385 /* Mark the page as allocated */ 2386 swsusp_set_page_forbidden(page); 2387 swsusp_set_page_free(page); 2388 } 2389 memory_bm_position_reset(bm); 2390 safe_highmem_bm = bm; 2391 return 0; 2392} 2393 2394static struct page *last_highmem_page; 2395 2396/** 2397 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2398 * 2399 * For a given highmem image page get a buffer that suspend_write_next() should 2400 * return to its caller to write to. 2401 * 2402 * If the page is to be saved to its "original" page frame or a copy of 2403 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2404 * the copy of the page is to be made in normal memory, so the address of 2405 * the copy is returned. 2406 * 2407 * If @buffer is returned, the caller of suspend_write_next() will write 2408 * the page's contents to @buffer, so they will have to be copied to the 2409 * right location on the next call to suspend_write_next() and it is done 2410 * with the help of copy_last_highmem_page(). For this purpose, if 2411 * @buffer is returned, @last_highmem_page is set to the page to which 2412 * the data will have to be copied from @buffer. 2413 */ 2414static void *get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2415{ 2416 struct highmem_pbe *pbe; 2417 void *kaddr; 2418 2419 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2420 /* 2421 * We have allocated the "original" page frame and we can 2422 * use it directly to store the loaded page. 2423 */ 2424 last_highmem_page = page; 2425 return buffer; 2426 } 2427 /* 2428 * The "original" page frame has not been allocated and we have to 2429 * use a "safe" page frame to store the loaded page. 2430 */ 2431 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2432 if (!pbe) { 2433 swsusp_free(); 2434 return ERR_PTR(-ENOMEM); 2435 } 2436 pbe->orig_page = page; 2437 if (safe_highmem_pages > 0) { 2438 struct page *tmp; 2439 2440 /* Copy of the page will be stored in high memory */ 2441 kaddr = buffer; 2442 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2443 safe_highmem_pages--; 2444 last_highmem_page = tmp; 2445 pbe->copy_page = tmp; 2446 } else { 2447 /* Copy of the page will be stored in normal memory */ 2448 kaddr = safe_pages_list; 2449 safe_pages_list = safe_pages_list->next; 2450 pbe->copy_page = virt_to_page(kaddr); 2451 } 2452 pbe->next = highmem_pblist; 2453 highmem_pblist = pbe; 2454 return kaddr; 2455} 2456 2457/** 2458 * copy_last_highmem_page - Copy most the most recent highmem image page. 2459 * 2460 * Copy the contents of a highmem image from @buffer, where the caller of 2461 * snapshot_write_next() has stored them, to the right location represented by 2462 * @last_highmem_page . 2463 */ 2464static void copy_last_highmem_page(void) 2465{ 2466 if (last_highmem_page) { 2467 void *dst; 2468 2469 dst = kmap_atomic(last_highmem_page); 2470 copy_page(dst, buffer); 2471 kunmap_atomic(dst); 2472 last_highmem_page = NULL; 2473 } 2474} 2475 2476static inline int last_highmem_page_copied(void) 2477{ 2478 return !last_highmem_page; 2479} 2480 2481static inline void free_highmem_data(void) 2482{ 2483 if (safe_highmem_bm) { 2484 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2485 } 2486 2487 if (buffer) { 2488 free_image_page(buffer, PG_UNSAFE_CLEAR); 2489 } 2490} 2491#else 2492static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2493{ 2494 return 0; 2495} 2496 2497static inline int prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2498{ 2499 return 0; 2500} 2501 2502static inline void *get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2503{ 2504 return ERR_PTR(-EINVAL); 2505} 2506 2507static inline void copy_last_highmem_page(void) 2508{ 2509} 2510static inline int last_highmem_page_copied(void) 2511{ 2512 return 1; 2513} 2514static inline void free_highmem_data(void) 2515{ 2516} 2517#endif /* CONFIG_HIGHMEM */ 2518 2519#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2520 2521/** 2522 * prepare_image - Make room for loading hibernation image. 2523 * @new_bm: Unitialized memory bitmap structure. 2524 * @bm: Memory bitmap with unsafe pages marked. 2525 * 2526 * Use @bm to mark the pages that will be overwritten in the process of 2527 * restoring the system memory state from the suspend image ("unsafe" pages) 2528 * and allocate memory for the image. 2529 * 2530 * The idea is to allocate a new memory bitmap first and then allocate 2531 * as many pages as needed for image data, but without specifying what those 2532 * pages will be used for just yet. Instead, we mark them all as allocated and 2533 * create a lists of "safe" pages to be used later. On systems with high 2534 * memory a list of "safe" highmem pages is created too. 2535 */ 2536static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2537{ 2538 unsigned int nr_pages, nr_highmem; 2539 struct linked_page *lp; 2540 int error; 2541 2542 /* If there is no highmem, the buffer will not be necessary */ 2543 free_image_page(buffer, PG_UNSAFE_CLEAR); 2544 buffer = NULL; 2545 2546 nr_highmem = count_highmem_image_pages(bm); 2547 mark_unsafe_pages(bm); 2548 2549 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2550 if (error) { 2551 goto Free; 2552 } 2553 2554 duplicate_memory_bitmap(new_bm, bm); 2555 memory_bm_free(bm, PG_UNSAFE_KEEP); 2556 if (nr_highmem > 0) { 2557 error = prepare_highmem_image(bm, &nr_highmem); 2558 if (error) { 2559 goto Free; 2560 } 2561 } 2562 /* 2563 * Reserve some safe pages for potential later use. 2564 * 2565 * NOTE: This way we make sure there will be enough safe pages for the 2566 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2567 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2568 * 2569 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2570 */ 2571 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2572 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2573 while (nr_pages > 0) { 2574 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2575 if (!lp) { 2576 error = -ENOMEM; 2577 goto Free; 2578 } 2579 lp->next = safe_pages_list; 2580 safe_pages_list = lp; 2581 nr_pages--; 2582 } 2583 /* Preallocate memory for the image */ 2584 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2585 while (nr_pages > 0) { 2586 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2587 if (!lp) { 2588 error = -ENOMEM; 2589 goto Free; 2590 } 2591 if (!swsusp_page_is_free(virt_to_page(lp))) { 2592 /* The page is "safe", add it to the list */ 2593 lp->next = safe_pages_list; 2594 safe_pages_list = lp; 2595 } 2596 /* Mark the page as allocated */ 2597 swsusp_set_page_forbidden(virt_to_page(lp)); 2598 swsusp_set_page_free(virt_to_page(lp)); 2599 nr_pages--; 2600 } 2601 return 0; 2602 2603Free: 2604 swsusp_free(); 2605 return error; 2606} 2607 2608/** 2609 * get_buffer - Get the address to store the next image data page. 2610 * 2611 * Get the address that snapshot_write_next() should return to its caller to 2612 * write to. 2613 */ 2614static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2615{ 2616 struct pbe *pbe; 2617 struct page *page; 2618 unsigned long pfn = memory_bm_next_pfn(bm); 2619 if (pfn == BM_END_OF_MAP) { 2620 return ERR_PTR(-EFAULT); 2621 } 2622 2623 page = pfn_to_page(pfn); 2624 if (PageHighMem(page)) { 2625 return get_highmem_page_buffer(page, ca); 2626 } 2627 2628 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2629 /* 2630 * We have allocated the "original" page frame and we can 2631 * use it directly to store the loaded page. 2632 */ 2633 return page_address(page); 2634 } 2635 2636 /* 2637 * The "original" page frame has not been allocated and we have to 2638 * use a "safe" page frame to store the loaded page. 2639 */ 2640 pbe = chain_alloc(ca, sizeof(struct pbe)); 2641 if (!pbe) { 2642 swsusp_free(); 2643 return ERR_PTR(-ENOMEM); 2644 } 2645 pbe->orig_address = page_address(page); 2646 pbe->address = safe_pages_list; 2647 safe_pages_list = safe_pages_list->next; 2648 pbe->next = restore_pblist; 2649 restore_pblist = pbe; 2650 return pbe->address; 2651} 2652 2653/** 2654 * snapshot_write_next - Get the address to store the next image page. 2655 * @handle: Snapshot handle structure to guide the writing. 2656 * 2657 * On the first call, @handle should point to a zeroed snapshot_handle 2658 * structure. The structure gets populated then and a pointer to it should be 2659 * passed to this function every next time. 2660 * 2661 * On success, the function returns a positive number. Then, the caller 2662 * is allowed to write up to the returned number of bytes to the memory 2663 * location computed by the data_of() macro. 2664 * 2665 * The function returns 0 to indicate the "end of file" condition. Negative 2666 * numbers are returned on errors, in which cases the structure pointed to by 2667 * @handle is not updated and should not be used any more. 2668 */ 2669int snapshot_write_next(struct snapshot_handle *handle) 2670{ 2671 static struct chain_allocator ca; 2672 int error = 0; 2673 2674 /* Check if we have already loaded the entire image */ 2675 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2676 return 0; 2677 } 2678 2679 handle->sync_read = 1; 2680 2681 if (!handle->cur) { 2682 if (!buffer) { 2683 /* This makes the buffer be freed by swsusp_free() */ 2684 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2685 } 2686 2687 if (!buffer) { 2688 return -ENOMEM; 2689 } 2690 2691 handle->buffer = buffer; 2692 } else if (handle->cur == 1) { 2693 error = load_header(buffer); 2694 if (error) { 2695 return error; 2696 } 2697 2698 safe_pages_list = NULL; 2699 2700 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2701 if (error) { 2702 return error; 2703 } 2704 2705 hibernate_restore_protection_begin(); 2706 } else if (handle->cur <= nr_meta_pages + 1) { 2707 error = unpack_orig_pfns(buffer, ©_bm); 2708 if (error) { 2709 return error; 2710 } 2711 2712 if (handle->cur == nr_meta_pages + 1) { 2713 error = prepare_image(&orig_bm, ©_bm); 2714 if (error) { 2715 return error; 2716 } 2717 2718 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2719 memory_bm_position_reset(&orig_bm); 2720 restore_pblist = NULL; 2721 handle->buffer = get_buffer(&orig_bm, &ca); 2722 handle->sync_read = 0; 2723 if (IS_ERR(handle->buffer)) { 2724 return PTR_ERR(handle->buffer); 2725 } 2726 } 2727 } else { 2728 copy_last_highmem_page(); 2729 hibernate_restore_protect_page(handle->buffer); 2730 handle->buffer = get_buffer(&orig_bm, &ca); 2731 if (IS_ERR(handle->buffer)) { 2732 return PTR_ERR(handle->buffer); 2733 } 2734 if (handle->buffer != buffer) { 2735 handle->sync_read = 0; 2736 } 2737 } 2738 handle->cur++; 2739 return PAGE_SIZE; 2740} 2741 2742/** 2743 * snapshot_write_finalize - Complete the loading of a hibernation image. 2744 * 2745 * Must be called after the last call to snapshot_write_next() in case the last 2746 * page in the image happens to be a highmem page and its contents should be 2747 * stored in highmem. Additionally, it recycles bitmap memory that's not 2748 * necessary any more. 2749 */ 2750void snapshot_write_finalize(struct snapshot_handle *handle) 2751{ 2752 copy_last_highmem_page(); 2753 hibernate_restore_protect_page(handle->buffer); 2754 /* Do that only if we have loaded the image entirely */ 2755 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2756 memory_bm_recycle(&orig_bm); 2757 free_highmem_data(); 2758 } 2759} 2760 2761int snapshot_image_loaded(struct snapshot_handle *handle) 2762{ 2763 return !(!nr_copy_pages || !last_highmem_page_copied() || handle->cur <= nr_meta_pages + nr_copy_pages); 2764} 2765 2766#ifdef CONFIG_HIGHMEM 2767/* Assumes that @buf is ready and points to a "safe" page */ 2768static inline void swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2769{ 2770 void *kaddr1, *kaddr2; 2771 2772 kaddr1 = kmap_atomic(p1); 2773 kaddr2 = kmap_atomic(p2); 2774 copy_page(buf, kaddr1); 2775 copy_page(kaddr1, kaddr2); 2776 copy_page(kaddr2, buf); 2777 kunmap_atomic(kaddr2); 2778 kunmap_atomic(kaddr1); 2779} 2780 2781/** 2782 * restore_highmem - Put highmem image pages into their original locations. 2783 * 2784 * For each highmem page that was in use before hibernation and is included in 2785 * the image, and also has been allocated by the "restore" kernel, swap its 2786 * current contents with the previous (ie. "before hibernation") ones. 2787 * 2788 * If the restore eventually fails, we can call this function once again and 2789 * restore the highmem state as seen by the restore kernel. 2790 */ 2791int restore_highmem(void) 2792{ 2793 struct highmem_pbe *pbe = highmem_pblist; 2794 void *buf; 2795 2796 if (!pbe) { 2797 return 0; 2798 } 2799 2800 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2801 if (!buf) { 2802 return -ENOMEM; 2803 } 2804 2805 while (pbe) { 2806 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2807 pbe = pbe->next; 2808 } 2809 free_image_page(buf, PG_UNSAFE_CLEAR); 2810 return 0; 2811} 2812#endif /* CONFIG_HIGHMEM */ 2813