1// SPDX-License-Identifier: GPL-2.0-only 2#include "cgroup-internal.h" 3 4#include <linux/ctype.h> 5#include <linux/kmod.h> 6#include <linux/sort.h> 7#include <linux/delay.h> 8#include <linux/mm.h> 9#include <linux/sched/signal.h> 10#include <linux/sched/task.h> 11#include <linux/magic.h> 12#include <linux/slab.h> 13#include <linux/vmalloc.h> 14#include <linux/delayacct.h> 15#include <linux/pid_namespace.h> 16#include <linux/cgroupstats.h> 17#include <linux/fs_parser.h> 18 19#include <trace/events/cgroup.h> 20 21/* 22 * pidlists linger the following amount before being destroyed. The goal 23 * is avoiding frequent destruction in the middle of consecutive read calls 24 * Expiring in the middle is a performance problem not a correctness one. 25 * 1 sec should be enough. 26 */ 27#define CGROUP_PIDLIST_DESTROY_DELAY HZ 28 29#define CGROUP_ARRAY_INDEX_ZERO 0 30#define CGROUP_ARRAY_INDEX_ONE 1 31#define CGROUP_ARRAY_INDEX_TWO 2 32 33/* Controllers blocked by the commandline in v1 */ 34static u16 cgroup_no_v1_mask; 35 36/* disable named v1 mounts */ 37static bool cgroup_no_v1_named; 38 39/* 40 * pidlist destructions need to be flushed on cgroup destruction. Use a 41 * separate workqueue as flush domain. 42 */ 43static struct workqueue_struct *cgroup_pidlist_destroy_wq; 44 45/* protects cgroup_subsys->release_agent_path */ 46static DEFINE_SPINLOCK(release_agent_path_lock); 47 48bool cgroup1_ssid_disabled(int ssid) 49{ 50 return cgroup_no_v1_mask & (1 << ssid); 51} 52 53/** 54 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 55 * @from: attach to all cgroups of a given task 56 * @tsk: the task to be attached 57 */ 58int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 59{ 60 struct cgroup_root *root; 61 int retval = 0; 62 63 mutex_lock(&cgroup_mutex); 64 percpu_down_write(&cgroup_threadgroup_rwsem); 65 for_each_root(root) 66 { 67 struct cgroup *from_cgrp; 68 69 if (root == &cgrp_dfl_root) { 70 continue; 71 } 72 73 spin_lock_irq(&css_set_lock); 74 from_cgrp = task_cgroup_from_root(from, root); 75 spin_unlock_irq(&css_set_lock); 76 77 retval = cgroup_attach_task(from_cgrp, tsk, false); 78 if (retval) { 79 break; 80 } 81 } 82 percpu_up_write(&cgroup_threadgroup_rwsem); 83 mutex_unlock(&cgroup_mutex); 84 85 return retval; 86} 87EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 88 89/** 90 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 91 * @to: cgroup to which the tasks will be moved 92 * @from: cgroup in which the tasks currently reside 93 * 94 * Locking rules between cgroup_post_fork() and the migration path 95 * guarantee that, if a task is forking while being migrated, the new child 96 * is guaranteed to be either visible in the source cgroup after the 97 * parent's migration is complete or put into the target cgroup. No task 98 * can slip out of migration through forking. 99 */ 100int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 101{ 102 DEFINE_CGROUP_MGCTX(mgctx); 103 struct cgrp_cset_link *link; 104 struct css_task_iter it; 105 struct task_struct *task; 106 int ret; 107 108 if (cgroup_on_dfl(to)) { 109 return -EINVAL; 110 } 111 112 ret = cgroup_migrate_vet_dst(to); 113 if (ret) { 114 return ret; 115 } 116 117 mutex_lock(&cgroup_mutex); 118 119 percpu_down_write(&cgroup_threadgroup_rwsem); 120 121 /* all tasks in @from are being moved, all csets are source */ 122 spin_lock_irq(&css_set_lock); 123 list_for_each_entry(link, &from->cset_links, cset_link) cgroup_migrate_add_src(link->cset, to, &mgctx); 124 spin_unlock_irq(&css_set_lock); 125 126 ret = cgroup_migrate_prepare_dst(&mgctx); 127 if (ret) { 128 goto out_err; 129 } 130 131 /* 132 * Migrate tasks one-by-one until @from is empty. This fails iff 133 * ->can_attach() fails. 134 */ 135 do { 136 css_task_iter_start(&from->self, 0, &it); 137 138 do { 139 task = css_task_iter_next(&it); 140 } while (task && (task->flags & PF_EXITING)); 141 142 if (task) { 143 get_task_struct(task); 144 } 145 css_task_iter_end(&it); 146 147 if (task) { 148 ret = cgroup_migrate(task, false, &mgctx); 149 if (!ret) { 150 TRACE_CGROUP_PATH(transfer_tasks, to, task, false); 151 } 152 put_task_struct(task); 153 } 154 } while (task && !ret); 155out_err: 156 cgroup_migrate_finish(&mgctx); 157 percpu_up_write(&cgroup_threadgroup_rwsem); 158 mutex_unlock(&cgroup_mutex); 159 return ret; 160} 161 162/* 163 * Stuff for reading the 'tasks'/'procs' files. 164 * 165 * Reading this file can return large amounts of data if a cgroup has 166 * *lots* of attached tasks. So it may need several calls to read(), 167 * but we cannot guarantee that the information we produce is correct 168 * unless we produce it entirely atomically. 169 * 170 */ 171 172/* which pidlist file are we talking about? */ 173enum cgroup_filetype { 174 CGROUP_FILE_PROCS, 175 CGROUP_FILE_TASKS, 176}; 177 178/* 179 * A pidlist is a list of pids that virtually represents the contents of one 180 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 181 * a pair (one each for procs, tasks) for each pid namespace that's relevant 182 * to the cgroup. 183 */ 184struct cgroup_pidlist { 185 /* 186 * used to find which pidlist is wanted. doesn't change as long as 187 * this particular list stays in the list. 188 */ 189 struct { 190 enum cgroup_filetype type; 191 struct pid_namespace *ns; 192 } key; 193 /* array of xids */ 194 pid_t *list; 195 /* how many elements the above list has */ 196 int length; 197 /* each of these stored in a list by its cgroup */ 198 struct list_head links; 199 /* pointer to the cgroup we belong to, for list removal purposes */ 200 struct cgroup *owner; 201 /* for delayed destruction */ 202 struct delayed_work destroy_dwork; 203}; 204 205/* 206 * Used to destroy all pidlists lingering waiting for destroy timer. None 207 * should be left afterwards. 208 */ 209void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) 210{ 211 struct cgroup_pidlist *l, *tmp_l; 212 213 mutex_lock(&cgrp->pidlist_mutex); 214 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 215 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 216 mutex_unlock(&cgrp->pidlist_mutex); 217 218 flush_workqueue(cgroup_pidlist_destroy_wq); 219 BUG_ON(!list_empty(&cgrp->pidlists)); 220} 221 222static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 223{ 224 struct delayed_work *dwork = to_delayed_work(work); 225 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork); 226 struct cgroup_pidlist *tofree = NULL; 227 228 mutex_lock(&l->owner->pidlist_mutex); 229 230 /* 231 * Destroy iff we didn't get queued again. The state won't change 232 * as destroy_dwork can only be queued while locked. 233 */ 234 if (!delayed_work_pending(dwork)) { 235 list_del(&l->links); 236 kvfree(l->list); 237 put_pid_ns(l->key.ns); 238 tofree = l; 239 } 240 241 mutex_unlock(&l->owner->pidlist_mutex); 242 kfree(tofree); 243} 244 245/* 246 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 247 * Returns the number of unique elements. 248 */ 249static int pidlist_uniq(pid_t *list, int length) 250{ 251 int src, dest = 1; 252 253 /* 254 * we presume the 0th element is unique, so i starts at 1. trivial 255 * edge cases first; no work needs to be done for either 256 */ 257 if (length == 0 || length == 1) { 258 return length; 259 } 260 /* src and dest walk down the list; dest counts unique elements */ 261 for (src = 1; src < length; src++) { 262 /* find next unique element */ 263 while (list[src] == list[src - 1]) { 264 src++; 265 if (src == length) { 266 goto after; 267 } 268 } 269 /* dest always points to where the next unique element goes */ 270 list[dest] = list[src]; 271 dest++; 272 } 273after: 274 return dest; 275} 276 277/* 278 * The two pid files - task and cgroup.procs - guaranteed that the result 279 * is sorted, which forced this whole pidlist fiasco. As pid order is 280 * different per namespace, each namespace needs differently sorted list, 281 * making it impossible to use, for example, single rbtree of member tasks 282 * sorted by task pointer. As pidlists can be fairly large, allocating one 283 * per open file is dangerous, so cgroup had to implement shared pool of 284 * pidlists keyed by cgroup and namespace. 285 */ 286static int cmppid(const void *a, const void *b) 287{ 288 return *(pid_t *)a - *(pid_t *)b; 289} 290 291static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) 292{ 293 struct cgroup_pidlist *l; 294 /* don't need task_nsproxy() if we're looking at ourself */ 295 struct pid_namespace *ns = task_active_pid_ns(current); 296 297 lockdep_assert_held(&cgrp->pidlist_mutex); 298 299 list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l; 300 return NULL; 301} 302 303/* 304 * find the appropriate pidlist for our purpose (given procs vs tasks) 305 * returns with the lock on that pidlist already held, and takes care 306 * of the use count, or returns NULL with no locks held if we're out of 307 * memory. 308 */ 309static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type) 310{ 311 struct cgroup_pidlist *l; 312 313 lockdep_assert_held(&cgrp->pidlist_mutex); 314 315 l = cgroup_pidlist_find(cgrp, type); 316 if (l) { 317 return l; 318 } 319 320 /* entry not found; create a new one */ 321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 322 if (!l) { 323 return l; 324 } 325 326 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 327 l->key.type = type; 328 /* don't need task_nsproxy() if we're looking at ourself */ 329 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 330 l->owner = cgrp; 331 list_add(&l->links, &cgrp->pidlists); 332 return l; 333} 334 335/* 336 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 337 */ 338static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) 339{ 340 pid_t *array; 341 int length; 342 int pid, n = 0; /* used for populating the array */ 343 struct css_task_iter it; 344 struct task_struct *tsk; 345 struct cgroup_pidlist *l; 346 347 lockdep_assert_held(&cgrp->pidlist_mutex); 348 349 /* 350 * If cgroup gets more users after we read count, we won't have 351 * enough space - tough. This race is indistinguishable to the 352 * caller from the case that the additional cgroup users didn't 353 * show up until sometime later on. 354 */ 355 length = cgroup_task_count(cgrp); 356 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); 357 if (!array) { 358 return -ENOMEM; 359 } 360 /* now, populate the array */ 361 css_task_iter_start(&cgrp->self, 0, &it); 362 while ((tsk = css_task_iter_next(&it))) { 363 if (unlikely(n == length)) { 364 break; 365 } 366 /* get tgid or pid for procs or tasks file respectively */ 367 if (type == CGROUP_FILE_PROCS) { 368 pid = task_tgid_vnr(tsk); 369 } else { 370 pid = task_pid_vnr(tsk); 371 } 372 if (pid > 0) { /* make sure to only use valid results */ 373 array[n++] = pid; 374 } 375 } 376 css_task_iter_end(&it); 377 length = n; 378 /* now sort & (if procs) strip out duplicates */ 379 sort(array, length, sizeof(pid_t), cmppid, NULL); 380 if (type == CGROUP_FILE_PROCS) { 381 length = pidlist_uniq(array, length); 382 } 383 384 l = cgroup_pidlist_find_create(cgrp, type); 385 if (!l) { 386 kvfree(array); 387 return -ENOMEM; 388 } 389 390 /* store array, freeing old if necessary */ 391 kvfree(l->list); 392 l->list = array; 393 l->length = length; 394 *lp = l; 395 return 0; 396} 397 398/* 399 * seq_file methods for the tasks/procs files. The seq_file position is the 400 * next pid to display; the seq_file iterator is a pointer to the pid 401 * in the cgroup->l->list array. 402 */ 403 404static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 405{ 406 /* 407 * Initially we receive a position value that corresponds to 408 * one more than the last pid shown (or 0 on the first call or 409 * after a seek to the start). Use a binary-search to find the 410 * next pid to display, if any 411 */ 412 struct kernfs_open_file *of = s->private; 413 struct cgroup_file_ctx *ctx = of->priv; 414 struct cgroup *cgrp = seq_css(s)->cgroup; 415 struct cgroup_pidlist *l; 416 enum cgroup_filetype type = seq_cft(s)->private; 417 int index = 0, pid = *pos; 418 int *iter, ret; 419 420 mutex_lock(&cgrp->pidlist_mutex); 421 422 /* 423 * !NULL @ctx->procs1.pidlist indicates that this isn't the first 424 * start() after open. If the matching pidlist is around, we can use 425 * that. Look for it. Note that @ctx->procs1.pidlist can't be used 426 * directly. It could already have been destroyed. 427 */ 428 if (ctx->procs1.pidlist) { 429 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); 430 } 431 432 /* 433 * Either this is the first start() after open or the matching 434 * pidlist has been destroyed inbetween. Create a new one. 435 */ 436 if (!ctx->procs1.pidlist) { 437 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); 438 if (ret) { 439 return ERR_PTR(ret); 440 } 441 } 442 l = ctx->procs1.pidlist; 443 444 if (pid) { 445 int end = l->length; 446 447 while (index < end) { 448 int mid = (index + end) / 2; 449 if (l->list[mid] == pid) { 450 index = mid; 451 break; 452 } else if (l->list[mid] <= pid) { 453 index = mid + 1; 454 } else { 455 end = mid; 456 } 457 } 458 } 459 /* If we're off the end of the array, we're done */ 460 if (index >= l->length) { 461 return NULL; 462 } 463 /* Update the abstract position to be the actual pid that we found */ 464 iter = l->list + index; 465 *pos = *iter; 466 return iter; 467} 468 469static void cgroup_pidlist_stop(struct seq_file *s, void *v) 470{ 471 struct kernfs_open_file *of = s->private; 472 struct cgroup_file_ctx *ctx = of->priv; 473 struct cgroup_pidlist *l = ctx->procs1.pidlist; 474 475 if (l) { 476 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY); 477 } 478 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 479} 480 481static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 482{ 483 struct kernfs_open_file *of = s->private; 484 struct cgroup_file_ctx *ctx = of->priv; 485 struct cgroup_pidlist *l = ctx->procs1.pidlist; 486 pid_t *p = v; 487 pid_t *end = l->list + l->length; 488 /* 489 * Advance to the next pid in the array. If this goes off the 490 * end, we're done 491 */ 492 p++; 493 if (p >= end) { 494 (*pos)++; 495 return NULL; 496 } else { 497 *pos = *p; 498 return p; 499 } 500} 501 502static int cgroup_pidlist_show(struct seq_file *s, void *v) 503{ 504 seq_printf(s, "%d\n", *(int *)v); 505 506 return 0; 507} 508 509static ssize_t cgroup1_procs_write_func(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off, 510 bool threadgroup) 511{ 512 struct cgroup *cgrp; 513 struct task_struct *task; 514 const struct cred *cred, *tcred; 515 ssize_t ret; 516 bool locked; 517 518 cgrp = cgroup_kn_lock_live(of->kn, false); 519 if (!cgrp) { 520 return -ENODEV; 521 } 522 523 task = cgroup_procs_write_start(buf, threadgroup, &locked); 524 ret = PTR_ERR_OR_ZERO(task); 525 if (ret) { 526 goto out_unlock; 527 } 528 529 /* 530 * Even if we're attaching all tasks in the thread group, we only need 531 * to check permissions on one of them. Check permissions using the 532 * credentials from file open to protect against inherited fd attacks. 533 */ 534 cred = of->file->f_cred; 535 tcred = get_task_cred(task); 536#ifdef CONFIG_HYPERHOLD 537 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) && !uid_eq(cred->euid, GLOBAL_ROOT_UID) && 538#else 539 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 540#endif 541 !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid) && 542 !ns_capable(tcred->user_ns, CAP_SYS_NICE)) 543 ret = -EACCES; 544 put_cred(tcred); 545 if (ret) { 546 goto out_finish; 547 } 548 549 ret = cgroup_attach_task(cgrp, task, threadgroup); 550 551out_finish: 552 cgroup_procs_write_finish(task, locked); 553out_unlock: 554 cgroup_kn_unlock(of->kn); 555 556 return ret ?: nbytes; 557} 558 559static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) 560{ 561 return cgroup1_procs_write_func(of, buf, nbytes, off, true); 562} 563 564static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) 565{ 566 return cgroup1_procs_write_func(of, buf, nbytes, off, false); 567} 568 569static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) 570{ 571 struct cgroup *cgrp; 572 struct cgroup_file_ctx *ctx; 573 574 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 575 576 /* 577 * Release agent gets called with all capabilities, 578 * require capabilities to set release agent. 579 */ 580 ctx = of->priv; 581 if ((ctx->ns->user_ns != &init_user_ns) || 582 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) 583 return -EPERM; 584 585 cgrp = cgroup_kn_lock_live(of->kn, false); 586 if (!cgrp) { 587 return -ENODEV; 588 } 589 spin_lock(&release_agent_path_lock); 590 strlcpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path)); 591 spin_unlock(&release_agent_path_lock); 592 cgroup_kn_unlock(of->kn); 593 return nbytes; 594} 595 596static int cgroup_release_agent_show(struct seq_file *seq, void *v) 597{ 598 struct cgroup *cgrp = seq_css(seq)->cgroup; 599 600 spin_lock(&release_agent_path_lock); 601 seq_puts(seq, cgrp->root->release_agent_path); 602 spin_unlock(&release_agent_path_lock); 603 seq_putc(seq, '\n'); 604 return 0; 605} 606 607static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 608{ 609 seq_puts(seq, "0\n"); 610 return 0; 611} 612 613static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft) 614{ 615 return notify_on_release(css->cgroup); 616} 617 618static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) 619{ 620 if (val) { 621 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 622 } else { 623 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 624 } 625 return 0; 626} 627 628static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft) 629{ 630 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 631} 632 633static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) 634{ 635 if (val) { 636 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 637 } else { 638 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 639 } 640 return 0; 641} 642 643/* cgroup core interface files for the legacy hierarchies */ 644struct cftype cgroup1_base_files[] = { 645 { 646 .name = "cgroup.procs", 647 .seq_start = cgroup_pidlist_start, 648 .seq_next = cgroup_pidlist_next, 649 .seq_stop = cgroup_pidlist_stop, 650 .seq_show = cgroup_pidlist_show, 651 .private = CGROUP_FILE_PROCS, 652 .write = cgroup1_procs_write, 653 }, 654 { 655 .name = "cgroup.clone_children", 656 .read_u64 = cgroup_clone_children_read, 657 .write_u64 = cgroup_clone_children_write, 658 }, 659 { 660 .name = "cgroup.sane_behavior", 661 .flags = CFTYPE_ONLY_ON_ROOT, 662 .seq_show = cgroup_sane_behavior_show, 663 }, 664 { 665 .name = "tasks", 666 .seq_start = cgroup_pidlist_start, 667 .seq_next = cgroup_pidlist_next, 668 .seq_stop = cgroup_pidlist_stop, 669 .seq_show = cgroup_pidlist_show, 670 .private = CGROUP_FILE_TASKS, 671 .write = cgroup1_tasks_write, 672 }, 673 { 674 .name = "notify_on_release", 675 .read_u64 = cgroup_read_notify_on_release, 676 .write_u64 = cgroup_write_notify_on_release, 677 }, 678 { 679 .name = "release_agent", 680 .flags = CFTYPE_ONLY_ON_ROOT, 681 .seq_show = cgroup_release_agent_show, 682 .write = cgroup_release_agent_write, 683 .max_write_len = PATH_MAX - 1, 684 }, 685 {} /* terminate */ 686}; 687 688/* Display information about each subsystem and each hierarchy */ 689int proc_cgroupstats_show(struct seq_file *m, void *v) 690{ 691 struct cgroup_subsys *ss; 692 int i; 693 bool dead; 694 695 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 696 /* 697 * ideally we don't want subsystems moving around while we do this. 698 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 699 * subsys/hierarchy state. 700 */ 701 mutex_lock(&cgroup_mutex); 702 703 for_each_subsys(ss, i) for_each_subsys(ss, i) 704 { 705 dead = percpu_ref_is_dying(&ss->root->cgrp.self.refcnt); 706 seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, dead ? 0 : ss->root->hierarchy_id, 707 dead ? 0 : atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i)); 708 } 709 710 mutex_unlock(&cgroup_mutex); 711 return 0; 712} 713 714/** 715 * cgroupstats_build - build and fill cgroupstats 716 * @stats: cgroupstats to fill information into 717 * @dentry: A dentry entry belonging to the cgroup for which stats have 718 * been requested. 719 * 720 * Build and fill cgroupstats so that taskstats can export it to user 721 * space. 722 */ 723int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 724{ 725 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 726 struct cgroup *cgrp; 727 struct css_task_iter it; 728 struct task_struct *tsk; 729 730 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 731 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || kernfs_type(kn) != KERNFS_DIR) { 732 return -EINVAL; 733 } 734 735 mutex_lock(&cgroup_mutex); 736 737 /* 738 * We aren't being called from kernfs and there's no guarantee on 739 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 740 * @kn->priv is RCU safe. Let's do the RCU dancing. 741 */ 742 rcu_read_lock(); 743 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 744 if (!cgrp || cgroup_is_dead(cgrp)) { 745 rcu_read_unlock(); 746 mutex_unlock(&cgroup_mutex); 747 return -ENOENT; 748 } 749 rcu_read_unlock(); 750 751 css_task_iter_start(&cgrp->self, 0, &it); 752 while ((tsk = css_task_iter_next(&it))) { 753 switch (tsk->state) { 754 case TASK_RUNNING: 755 stats->nr_running++; 756 break; 757 case TASK_INTERRUPTIBLE: 758 stats->nr_sleeping++; 759 break; 760 case TASK_UNINTERRUPTIBLE: 761 stats->nr_uninterruptible++; 762 break; 763 case TASK_STOPPED: 764 stats->nr_stopped++; 765 break; 766 default: 767 if (delayacct_is_task_waiting_on_io(tsk)) { 768 stats->nr_io_wait++; 769 } 770 break; 771 } 772 } 773 css_task_iter_end(&it); 774 775 mutex_unlock(&cgroup_mutex); 776 return 0; 777} 778 779void cgroup1_check_for_release(struct cgroup *cgrp) 780{ 781 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && !css_has_online_children(&cgrp->self) && 782 !cgroup_is_dead(cgrp)) { 783 schedule_work(&cgrp->release_agent_work); 784 } 785} 786 787/* 788 * Notify userspace when a cgroup is released, by running the 789 * configured release agent with the name of the cgroup (path 790 * relative to the root of cgroup file system) as the argument. 791 * 792 * Most likely, this user command will try to rmdir this cgroup. 793 * 794 * This races with the possibility that some other task will be 795 * attached to this cgroup before it is removed, or that some other 796 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 797 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 798 * unused, and this cgroup will be reprieved from its death sentence, 799 * to continue to serve a useful existence. Next time it's released, 800 * we will get notified again, if it still has 'notify_on_release' set. 801 * 802 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 803 * means only wait until the task is successfully execve()'d. The 804 * separate release agent task is forked by call_usermodehelper(), 805 * then control in this thread returns here, without waiting for the 806 * release agent task. We don't bother to wait because the caller of 807 * this routine has no use for the exit status of the release agent 808 * task, so no sense holding our caller up for that. 809 */ 810void cgroup1_release_agent(struct work_struct *work) 811{ 812 struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work); 813 char *pathbuf, *agentbuf; 814 char *argv[3], *envp[3]; 815 int ret; 816 817 /* snoop agent path and exit early if empty */ 818 if (!cgrp->root->release_agent_path[0]) { 819 return; 820 } 821 822 /* prepare argument buffers */ 823 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 824 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); 825 if (!pathbuf || !agentbuf) { 826 goto out_free; 827 } 828 829 spin_lock(&release_agent_path_lock); 830 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); 831 spin_unlock(&release_agent_path_lock); 832 if (!agentbuf[0]) { 833 goto out_free; 834 } 835 836 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); 837 if (ret < 0 || ret >= PATH_MAX) { 838 goto out_free; 839 } 840 841 argv[CGROUP_ARRAY_INDEX_ZERO] = agentbuf; 842 argv[CGROUP_ARRAY_INDEX_ONE] = pathbuf; 843 argv[CGROUP_ARRAY_INDEX_TWO] = NULL; 844 845 /* minimal command environment */ 846 envp[CGROUP_ARRAY_INDEX_ZERO] = "HOME=/"; 847 envp[CGROUP_ARRAY_INDEX_ONE] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 848 envp[CGROUP_ARRAY_INDEX_TWO] = NULL; 849 850 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 851out_free: 852 kfree(agentbuf); 853 kfree(pathbuf); 854} 855 856/* 857 * cgroup_rename - Only allow simple rename of directories in place. 858 */ 859static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name_str) 860{ 861 struct cgroup *cgrp = kn->priv; 862 int ret; 863 864 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 865 if (strchr(new_name_str, '\n')) { 866 return -EINVAL; 867 } 868 869 if (kernfs_type(kn) != KERNFS_DIR) { 870 return -ENOTDIR; 871 } 872 if (kn->parent != new_parent) { 873 return -EIO; 874 } 875 876 /* 877 * We're gonna grab cgroup_mutex which nests outside kernfs 878 * active_ref. kernfs_rename() doesn't require active_ref 879 * protection. Break them before grabbing cgroup_mutex. 880 */ 881 kernfs_break_active_protection(new_parent); 882 kernfs_break_active_protection(kn); 883 884 mutex_lock(&cgroup_mutex); 885 886 ret = kernfs_rename(kn, new_parent, new_name_str); 887 if (!ret) { 888 TRACE_CGROUP_PATH(rename, cgrp); 889 } 890 891 mutex_unlock(&cgroup_mutex); 892 893 kernfs_unbreak_active_protection(kn); 894 kernfs_unbreak_active_protection(new_parent); 895 return ret; 896} 897 898static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 899{ 900 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 901 struct cgroup_subsys *ss; 902 int ssid; 903 904 for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_show_option(seq, ss->legacy_name, NULL); 905 if (root->flags & CGRP_ROOT_NOPREFIX) { 906 seq_puts(seq, ",noprefix"); 907 } 908 if (root->flags & CGRP_ROOT_XATTR) { 909 seq_puts(seq, ",xattr"); 910 } 911 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) { 912 seq_puts(seq, ",cpuset_v2_mode"); 913 } 914 915 spin_lock(&release_agent_path_lock); 916 if (strlen(root->release_agent_path)) { 917 seq_show_option(seq, "release_agent", root->release_agent_path); 918 } 919 spin_unlock(&release_agent_path_lock); 920 921 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) { 922 seq_puts(seq, ",clone_children"); 923 } 924 if (strlen(root->name)) { 925 seq_show_option(seq, "name", root->name); 926 } 927 return 0; 928} 929 930enum cgroup1_param { 931 Opt_all, 932 Opt_clone_children, 933 Opt_cpuset_v2_mode, 934 Opt_name, 935 Opt_none, 936 Opt_noprefix, 937 Opt_release_agent, 938 Opt_xattr, 939}; 940 941const struct fs_parameter_spec cgroup1_fs_parameters[] = {fsparam_flag("all", Opt_all), 942 fsparam_flag("clone_children", Opt_clone_children), 943 fsparam_flag("cpuset_v2_mode", Opt_cpuset_v2_mode), 944 fsparam_string("name", Opt_name), 945 fsparam_flag("none", Opt_none), 946 fsparam_flag("noprefix", Opt_noprefix), 947 fsparam_string("release_agent", Opt_release_agent), 948 fsparam_flag("xattr", Opt_xattr), 949 {}}; 950 951int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) 952{ 953 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 954 struct cgroup_subsys *ss; 955 struct fs_parse_result result; 956 int opt, i; 957 958 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); 959 if (opt == -ENOPARAM) { 960 int ret; 961 962 ret = vfs_parse_fs_param_source(fc, param); 963 if (ret != -ENOPARAM) { 964 return ret; 965 } 966 for_each_subsys(ss, i) 967 { 968 if (strcmp(param->key, ss->legacy_name)) { 969 continue; 970 } 971 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) { 972 return invalfc(fc, "Disabled controller '%s'", param->key); 973 } 974 ctx->subsys_mask |= (1 << i); 975 return 0; 976 } 977 return invalfc(fc, "Unknown subsys name '%s'", param->key); 978 } 979 if (opt < 0) { 980 return opt; 981 } 982 983 switch (opt) { 984 case Opt_none: 985 /* Explicitly have no subsystems */ 986 ctx->none = true; 987 break; 988 case Opt_all: 989 ctx->all_ss = true; 990 break; 991 case Opt_noprefix: 992 ctx->flags |= CGRP_ROOT_NOPREFIX; 993 break; 994 case Opt_clone_children: 995 ctx->cpuset_clone_children = true; 996 break; 997 case Opt_cpuset_v2_mode: 998 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 999 break; 1000 case Opt_xattr: 1001 ctx->flags |= CGRP_ROOT_XATTR; 1002 break; 1003 case Opt_release_agent: 1004 /* Specifying two release agents is forbidden */ 1005 if (ctx->release_agent) { 1006 return invalfc(fc, "release_agent respecified"); 1007 } 1008 /* 1009 * Release agent gets called with all capabilities, 1010 * require capabilities to set release agent. 1011 */ 1012 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 1013 return invalfc(fc, "Setting release_agent not allowed"); 1014 } 1015 ctx->release_agent = param->string; 1016 param->string = NULL; 1017 break; 1018 case Opt_name: 1019 /* blocked by boot param? */ 1020 if (cgroup_no_v1_named) { 1021 return -ENOENT; 1022 } 1023 /* Can't specify an empty name */ 1024 if (!param->size) { 1025 return invalfc(fc, "Empty name"); 1026 } 1027 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) { 1028 return invalfc(fc, "Name too long"); 1029 } 1030 /* Must match [\w.-]+ */ 1031 for (i = 0; i < param->size; i++) { 1032 char c = param->string[i]; 1033 if (isalnum(c)) { 1034 continue; 1035 } 1036 if ((c == '.') || (c == '-') || (c == '_')) { 1037 continue; 1038 } 1039 return invalfc(fc, "Invalid name"); 1040 } 1041 /* Specifying two names is forbidden */ 1042 if (ctx->name) { 1043 return invalfc(fc, "name respecified"); 1044 } 1045 ctx->name = param->string; 1046 param->string = NULL; 1047 break; 1048 default: 1049 break; 1050 } 1051 return 0; 1052} 1053 1054static int check_cgroupfs_options(struct fs_context *fc) 1055{ 1056 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1057 u16 mask = U16_MAX; 1058 u16 enabled = 0; 1059 struct cgroup_subsys *ss; 1060 int i; 1061 1062#ifdef CONFIG_CPUSETS 1063 mask = ~((u16)1 << cpuset_cgrp_id); 1064#endif 1065 for_each_subsys(ss, i) if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) enabled |= 1 << i; 1066 1067 ctx->subsys_mask &= enabled; 1068 1069 /* 1070 * In absense of 'none', 'name=' or subsystem name options, 1071 * let's default to 'all'. 1072 */ 1073 if (!ctx->subsys_mask && !ctx->none && !ctx->name) { 1074 ctx->all_ss = true; 1075 } 1076 1077 if (ctx->all_ss) { 1078 /* Mutually exclusive option 'all' + subsystem name */ 1079 if (ctx->subsys_mask) { 1080 return invalfc(fc, "subsys name conflicts with all"); 1081 } 1082 /* 'all' => select all the subsystems */ 1083 ctx->subsys_mask = enabled; 1084 } 1085 1086 /* 1087 * We either have to specify by name or by subsystems. (So all 1088 * empty hierarchies must have a name). 1089 */ 1090 if (!ctx->subsys_mask && !ctx->name) { 1091 return invalfc(fc, "Need name or subsystem set"); 1092 } 1093 1094 /* 1095 * Option noprefix was introduced just for backward compatibility 1096 * with the old cpuset, so we allow noprefix only if mounting just 1097 * the cpuset subsystem. 1098 */ 1099 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) { 1100 return invalfc(fc, "noprefix used incorrectly"); 1101 } 1102 1103 /* Can't specify "none" and some subsystems */ 1104 if (ctx->subsys_mask && ctx->none) { 1105 return invalfc(fc, "none used incorrectly"); 1106 } 1107 1108 return 0; 1109} 1110 1111int cgroup1_reconfigure(struct fs_context *fc) 1112{ 1113 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1114 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); 1115 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1116 int ret = 0; 1117 u16 added_mask, removed_mask; 1118 1119 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1120 1121 /* See what subsystems are wanted */ 1122 ret = check_cgroupfs_options(fc); 1123 if (ret) { 1124 goto out_unlock; 1125 } 1126 1127 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) { 1128 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); 1129 } 1130 1131 added_mask = ctx->subsys_mask & ~root->subsys_mask; 1132 removed_mask = root->subsys_mask & ~ctx->subsys_mask; 1133 1134 /* Don't allow flags or name to change at remount */ 1135 if ((ctx->flags ^ root->flags) || (ctx->name && strcmp(ctx->name, root->name))) { 1136 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", ctx->flags, ctx->name ?: "", 1137 root->flags, root->name); 1138 ret = -EINVAL; 1139 goto out_unlock; 1140 } 1141 1142 /* remounting is not allowed for populated hierarchies */ 1143 if (!list_empty(&root->cgrp.self.children)) { 1144 ret = -EBUSY; 1145 goto out_unlock; 1146 } 1147 1148 ret = rebind_subsystems(root, added_mask); 1149 if (ret) { 1150 goto out_unlock; 1151 } 1152 1153 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); 1154 1155 if (ctx->release_agent) { 1156 spin_lock(&release_agent_path_lock); 1157 strcpy(root->release_agent_path, ctx->release_agent); 1158 spin_unlock(&release_agent_path_lock); 1159 } 1160 1161 trace_cgroup_remount(root); 1162 1163out_unlock: 1164 mutex_unlock(&cgroup_mutex); 1165 return ret; 1166} 1167 1168struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { 1169 .rename = cgroup1_rename, 1170 .show_options = cgroup1_show_options, 1171 .mkdir = cgroup_mkdir, 1172 .rmdir = cgroup_rmdir, 1173 .show_path = cgroup_show_path, 1174}; 1175 1176/* 1177 * The guts of cgroup1 mount - find or create cgroup_root to use. 1178 * Called with cgroup_mutex held; returns 0 on success, -E... on 1179 * error and positive - in case when the candidate is busy dying. 1180 * On success it stashes a reference to cgroup_root into given 1181 * cgroup_fs_context; that reference is *NOT* counting towards the 1182 * cgroup_root refcount. 1183 */ 1184static int cgroup1_root_to_use(struct fs_context *fc) 1185{ 1186 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1187 struct cgroup_root *root; 1188 struct cgroup_subsys *ss; 1189 int i, ret; 1190 1191 /* First find the desired set of subsystems */ 1192 ret = check_cgroupfs_options(fc); 1193 if (ret) { 1194 return ret; 1195 } 1196 1197 /* 1198 * Destruction of cgroup root is asynchronous, so subsystems may 1199 * still be dying after the previous unmount. Let's drain the 1200 * dying subsystems. We just need to ensure that the ones 1201 * unmounted previously finish dying and don't care about new ones 1202 * starting. Testing ref liveliness is good enough. 1203 */ 1204 for_each_subsys(ss, i) 1205 { 1206 if (!(ctx->subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) { 1207 continue; 1208 } 1209 1210 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 1211 return 1; /* restart */ 1212 } 1213 cgroup_put(&ss->root->cgrp); 1214 } 1215 1216 for_each_root(root) 1217 { 1218 bool name_match = false; 1219 1220 if (root == &cgrp_dfl_root) { 1221 continue; 1222 } 1223 1224 /* 1225 * If we asked for a name then it must match. Also, if 1226 * name matches but sybsys_mask doesn't, we should fail. 1227 * Remember whether name matched. 1228 */ 1229 if (ctx->name) { 1230 if (strcmp(ctx->name, root->name)) { 1231 continue; 1232 } 1233 name_match = true; 1234 } 1235 1236 /* 1237 * If we asked for subsystems (or explicitly for no 1238 * subsystems) then they must match. 1239 */ 1240 if ((ctx->subsys_mask || ctx->none) && (ctx->subsys_mask != root->subsys_mask)) { 1241 if (!name_match) { 1242 continue; 1243 } 1244 return -EBUSY; 1245 } 1246 1247 if (root->flags ^ ctx->flags) { 1248 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 1249 } 1250 1251 ctx->root = root; 1252 return 0; 1253 } 1254 1255 /* 1256 * No such thing, create a new one. name= matching without subsys 1257 * specification is allowed for already existing hierarchies but we 1258 * can't create new one without subsys specification. 1259 */ 1260 if (!ctx->subsys_mask && !ctx->none) { 1261 return invalfc(fc, "No subsys list or none specified"); 1262 } 1263 1264 /* Hierarchies may only be created in the initial cgroup namespace. */ 1265 if (ctx->ns != &init_cgroup_ns) { 1266 return -EPERM; 1267 } 1268 1269 root = kzalloc(sizeof(*root), GFP_KERNEL); 1270 if (!root) { 1271 return -ENOMEM; 1272 } 1273 1274 ctx->root = root; 1275 init_cgroup_root(ctx); 1276 1277 ret = cgroup_setup_root(root, ctx->subsys_mask); 1278 if (ret) { 1279 cgroup_free_root(root); 1280 } 1281 return ret; 1282} 1283 1284int cgroup1_get_tree(struct fs_context *fc) 1285{ 1286 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1287 int ret; 1288 1289 /* Check if the caller has permission to mount. */ 1290 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) { 1291 return -EPERM; 1292 } 1293 1294 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1295 1296 ret = cgroup1_root_to_use(fc); 1297 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) { 1298 ret = 1; /* restart */ 1299 } 1300 1301 mutex_unlock(&cgroup_mutex); 1302 1303 if (!ret) { 1304 ret = cgroup_do_get_tree(fc); 1305 } 1306 1307 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { 1308 fc_drop_locked(fc); 1309 ret = 1; 1310 } 1311 1312 if (unlikely(ret > 0)) { 1313 msleep(0xa); 1314 return restart_syscall(); 1315 } 1316 return ret; 1317} 1318 1319static int __init cgroup1_wq_init(void) 1320{ 1321 /* 1322 * Used to destroy pidlists and separate to serve as flush domain. 1323 * Cap @max_active to 1 too. 1324 */ 1325 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1); 1326 BUG_ON(!cgroup_pidlist_destroy_wq); 1327 return 0; 1328} 1329core_initcall(cgroup1_wq_init); 1330 1331static int __init cgroup_no_v1(char *str) 1332{ 1333 struct cgroup_subsys *ss; 1334 char *token; 1335 int i; 1336 1337 while ((token = strsep(&str, ",")) != NULL) { 1338 if (!*token) { 1339 continue; 1340 } 1341 1342 if (!strcmp(token, "all")) { 1343 cgroup_no_v1_mask = U16_MAX; 1344 continue; 1345 } 1346 1347 if (!strcmp(token, "named")) { 1348 cgroup_no_v1_named = true; 1349 continue; 1350 } 1351 1352 for_each_subsys(ss, i) 1353 { 1354 if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) { 1355 continue; 1356 } 1357 1358 cgroup_no_v1_mask |= 1 << i; 1359 } 1360 } 1361 return 1; 1362} 1363__setup("cgroup_no_v1=", cgroup_no_v1); 1364