1// SPDX-License-Identifier: GPL-2.0-only 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6#include <uapi/linux/btf.h> 7#include <linux/kernel.h> 8#include <linux/types.h> 9#include <linux/slab.h> 10#include <linux/bpf.h> 11#include <linux/btf.h> 12#include <linux/bpf_verifier.h> 13#include <linux/filter.h> 14#include <net/netlink.h> 15#include <linux/file.h> 16#include <linux/vmalloc.h> 17#include <linux/stringify.h> 18#include <linux/bsearch.h> 19#include <linux/sort.h> 20#include <linux/perf_event.h> 21#include <linux/ctype.h> 22#include <linux/error-injection.h> 23#include <linux/bpf_lsm.h> 24#include <linux/btf_ids.h> 25 26#include "disasm.h" 27 28static const struct bpf_verifier_ops *const bpf_verifier_ops[] = { 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) [_id] = &_name##_verifier_ops, 30#define BPF_MAP_TYPE(_id, _ops) 31#define BPF_LINK_TYPE(_id, _name) 32#include <linux/bpf_types.h> 33#undef BPF_PROG_TYPE 34#undef BPF_MAP_TYPE 35#undef BPF_LINK_TYPE 36}; 37 38/* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163/* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175}; 176 177#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178#define BPF_COMPLEXITY_LIMIT_STATES 64 179 180#define BPF_MAP_KEY_POISON (1ULL << 63) 181#define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183#define BPF_MAP_PTR_UNPRIV 1UL 184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + POISON_POINTER_DELTA)) 185#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 186 187#define VERIFIER_TWO 2 188#define VERIFIER_THREE 3 189#define VERIFIER_FOUR 4 190#define VERIFIER_EIGHT 8 191#define VERIFIER_SIXTEEN 16 192#define VERIFIER_THIRTYONE 31 193#define VERIFIER_THIRTYTWO 32 194#define VERIFIER_SIXTYTHREE 63 195#define VERIFIER_SIXTYFOUR 64 196#define VERIFIER_ONEHUNDREDTWENTYEIGHT 128 197#define VERIFIER_TWOHUNDREDFIFTYSIX 256 198#define VERIFIER_ONETHOUSAND 1000 199 200static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 201{ 202 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 203} 204 205static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 206{ 207 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 208} 209 210static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, const struct bpf_map *map, bool unpriv) 211{ 212 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 213 unpriv |= bpf_map_ptr_unpriv(aux); 214 aux->map_ptr_state = (unsigned long)map | (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 215} 216 217static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 218{ 219 return aux->map_key_state & BPF_MAP_KEY_POISON; 220} 221 222static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 223{ 224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 225} 226 227static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 228{ 229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 230} 231 232static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 233{ 234 bool poisoned = bpf_map_key_poisoned(aux); 235 236 aux->map_key_state = state | BPF_MAP_KEY_SEEN | (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 237} 238 239struct bpf_call_arg_meta { 240 struct bpf_map *map_ptr; 241 bool raw_mode; 242 bool pkt_access; 243 int regno; 244 int access_size; 245 int mem_size; 246 u64 msize_max_value; 247 int ref_obj_id; 248 int func_id; 249 u32 btf_id; 250 u32 ret_btf_id; 251}; 252 253struct btf *btf_vmlinux; 254 255static DEFINE_MUTEX(bpf_verifier_lock); 256 257static const struct bpf_line_info *find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 258{ 259 const struct bpf_line_info *linfo; 260 const struct bpf_prog *prog; 261 u32 i, nr_linfo; 262 263 prog = env->prog; 264 nr_linfo = prog->aux->nr_linfo; 265 266 if (!nr_linfo || insn_off >= prog->len) { 267 return NULL; 268 } 269 270 linfo = prog->aux->linfo; 271 for (i = 1; i < nr_linfo; i++) { 272 if (insn_off < linfo[i].insn_off) { 273 break; 274 } 275 } 276 277 return &linfo[i - 1]; 278} 279 280void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, va_list args) 281{ 282 unsigned int n; 283 284 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 285 286 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, "verifier log line truncated - local buffer too short\n"); 287 288 n = min(log->len_total - log->len_used - 1, n); 289 log->kbuf[n] = '\0'; 290 291 if (log->level == BPF_LOG_KERNEL) { 292 pr_err("BPF:%s\n", log->kbuf); 293 return; 294 } 295 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) { 296 log->len_used += n; 297 } else { 298 log->ubuf = NULL; 299 } 300} 301 302static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 303{ 304 char zero = 0; 305 306 if (!bpf_verifier_log_needed(log)) { 307 return; 308 } 309 310 log->len_used = new_pos; 311 if (put_user(zero, log->ubuf + new_pos)) { 312 log->ubuf = NULL; 313 } 314} 315 316/* log_level controls verbosity level of eBPF verifier. 317 * bpf_verifier_log_write() is used to dump the verification trace to the log, 318 * so the user can figure out what's wrong with the program 319 */ 320__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, const char *fmt, ...) 321{ 322 va_list args; 323 324 if (!bpf_verifier_log_needed(&env->log)) { 325 return; 326 } 327 328 va_start(args, fmt); 329 bpf_verifier_vlog(&env->log, fmt, args); 330 va_end(args); 331} 332EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 333 334__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 335{ 336 struct bpf_verifier_env *env = private_data; 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) { 340 return; 341 } 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346} 347 348__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, const char *fmt, ...) 349{ 350 va_list args; 351 352 if (!bpf_verifier_log_needed(log)) { 353 return; 354 } 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(log, fmt, args); 358 va_end(args); 359} 360 361static const char *ltrim(const char *s) 362{ 363 while (isspace(*s)) { 364 s++; 365 } 366 367 return s; 368} 369 370__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, u32 insn_off, const char *prefix_fmt, ...) 371{ 372 const struct bpf_line_info *linfo; 373 374 if (!bpf_verifier_log_needed(&env->log)) { 375 return; 376 } 377 378 linfo = find_linfo(env, insn_off); 379 if (!linfo || linfo == env->prev_linfo) { 380 return; 381 } 382 383 if (prefix_fmt) { 384 va_list args; 385 386 va_start(args, prefix_fmt); 387 bpf_verifier_vlog(&env->log, prefix_fmt, args); 388 va_end(args); 389 } 390 391 verbose(env, "%s\n", ltrim(btf_name_by_offset(env->prog->aux->btf, linfo->line_off))); 392 393 env->prev_linfo = linfo; 394} 395 396static bool type_is_pkt_pointer(enum bpf_reg_type type) 397{ 398 return type == PTR_TO_PACKET || type == PTR_TO_PACKET_META; 399} 400 401static bool type_is_sk_pointer(enum bpf_reg_type type) 402{ 403 return type == PTR_TO_SOCKET || type == PTR_TO_SOCK_COMMON || type == PTR_TO_TCP_SOCK || type == PTR_TO_XDP_SOCK; 404} 405 406static bool reg_type_not_null(enum bpf_reg_type type) 407{ 408 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || type == PTR_TO_MAP_VALUE || type == PTR_TO_SOCK_COMMON; 409} 410 411static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 412{ 413 return reg->type == PTR_TO_MAP_VALUE && map_value_has_spin_lock(reg->map_ptr); 414} 415 416static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 417{ 418 return base_type(type) == PTR_TO_SOCKET || base_type(type) == PTR_TO_TCP_SOCK || base_type(type) == PTR_TO_MEM; 419} 420 421static bool type_is_rdonly_mem(u32 type) 422{ 423 return type & MEM_RDONLY; 424} 425 426static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 427{ 428 return type == ARG_PTR_TO_SOCK_COMMON; 429} 430 431static bool type_may_be_null(u32 type) 432{ 433 return type & PTR_MAYBE_NULL; 434} 435 436/* Determine whether the function releases some resources allocated by another 437 * function call. The first reference type argument will be assumed to be 438 * released by release_reference(). 439 */ 440static bool is_release_function(enum bpf_func_id func_id) 441{ 442 return func_id == BPF_FUNC_sk_release || func_id == BPF_FUNC_ringbuf_submit || func_id == BPF_FUNC_ringbuf_discard; 443} 444 445static bool may_be_acquire_function(enum bpf_func_id func_id) 446{ 447 return func_id == BPF_FUNC_sk_lookup_tcp || func_id == BPF_FUNC_sk_lookup_udp || 448 func_id == BPF_FUNC_skc_lookup_tcp || func_id == BPF_FUNC_map_lookup_elem || 449 func_id == BPF_FUNC_ringbuf_reserve; 450} 451 452static bool is_acquire_function(enum bpf_func_id func_id, const struct bpf_map *map) 453{ 454 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 455 456 if (func_id == BPF_FUNC_sk_lookup_tcp || func_id == BPF_FUNC_sk_lookup_udp || func_id == BPF_FUNC_skc_lookup_tcp || 457 func_id == BPF_FUNC_ringbuf_reserve) { 458 return true; 459 } 460 461 if (func_id == BPF_FUNC_map_lookup_elem && 462 (map_type == BPF_MAP_TYPE_SOCKMAP || map_type == BPF_MAP_TYPE_SOCKHASH)) { 463 return true; 464 } 465 466 return false; 467} 468 469static bool is_ptr_cast_function(enum bpf_func_id func_id) 470{ 471 return func_id == BPF_FUNC_tcp_sock || func_id == BPF_FUNC_sk_fullsock || func_id == BPF_FUNC_skc_to_tcp_sock || 472 func_id == BPF_FUNC_skc_to_tcp6_sock || func_id == BPF_FUNC_skc_to_udp6_sock || 473 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || func_id == BPF_FUNC_skc_to_tcp_request_sock; 474} 475 476/* string representation of 'enum bpf_reg_type' 477 * 478 * Note that reg_type_str() can not appear more than once in a single verbose() 479 * statement. 480 */ 481static const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type) 482{ 483 char postfix[VERIFIER_SIXTEEN] = {0}, prefix[VERIFIER_SIXTEEN] = {0}; 484 static const char *const str[] = { 485 [NOT_INIT] = "?", 486 [SCALAR_VALUE] = "inv", 487 [PTR_TO_CTX] = "ctx", 488 [CONST_PTR_TO_MAP] = "map_ptr", 489 [PTR_TO_MAP_VALUE] = "map_value", 490 [PTR_TO_STACK] = "fp", 491 [PTR_TO_PACKET] = "pkt", 492 [PTR_TO_PACKET_META] = "pkt_meta", 493 [PTR_TO_PACKET_END] = "pkt_end", 494 [PTR_TO_FLOW_KEYS] = "flow_keys", 495 [PTR_TO_SOCKET] = "sock", 496 [PTR_TO_SOCK_COMMON] = "sock_common", 497 [PTR_TO_TCP_SOCK] = "tcp_sock", 498 [PTR_TO_TP_BUFFER] = "tp_buffer", 499 [PTR_TO_XDP_SOCK] = "xdp_sock", 500 [PTR_TO_BTF_ID] = "ptr_", 501 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 502 [PTR_TO_MEM] = "mem", 503 [PTR_TO_BUF] = "buf", 504 }; 505 506 if (type & PTR_MAYBE_NULL) { 507 if (base_type(type) == PTR_TO_BTF_ID || base_type(type) == PTR_TO_PERCPU_BTF_ID) { 508 strncpy(postfix, "or_null_", VERIFIER_SIXTEEN); 509 } else { 510 strncpy(postfix, "_or_null", VERIFIER_SIXTEEN); 511 } 512 } 513 514 if (type & MEM_RDONLY) { 515 strncpy(prefix, "rdonly_", VERIFIER_SIXTEEN); 516 } 517 if (type & MEM_ALLOC) { 518 strncpy(prefix, "alloc_", VERIFIER_SIXTEEN); 519 } 520 521 (void)snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", prefix, str[base_type(type)], postfix); 522 return env->type_str_buf; 523} 524 525static char slot_type_char[] = { 526 [STACK_INVALID] = '?', 527 [STACK_SPILL] = 'r', 528 [STACK_MISC] = 'm', 529 [STACK_ZERO] = '0', 530}; 531 532static void print_liveness(struct bpf_verifier_env *env, enum bpf_reg_liveness live) 533{ 534 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) { 535 verbose(env, "_"); 536 } 537 if (live & REG_LIVE_READ) { 538 verbose(env, "r"); 539 } 540 if (live & REG_LIVE_WRITTEN) { 541 verbose(env, "w"); 542 } 543 if (live & REG_LIVE_DONE) { 544 verbose(env, "D"); 545 } 546} 547 548static struct bpf_func_state *func(struct bpf_verifier_env *env, const struct bpf_reg_state *reg) 549{ 550 struct bpf_verifier_state *cur = env->cur_state; 551 552 return cur->frame[reg->frameno]; 553} 554 555const char *kernel_type_name(u32 id) 556{ 557 return btf_name_by_offset(btf_vmlinux, btf_type_by_id(btf_vmlinux, id)->name_off); 558} 559 560static void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state) 561{ 562 const struct bpf_reg_state *reg; 563 enum bpf_reg_type t; 564 int i; 565 566 if (state->frameno) { 567 verbose(env, " frame%d:", state->frameno); 568 } 569 for (i = 0; i < MAX_BPF_REG; i++) { 570 reg = &state->regs[i]; 571 t = reg->type; 572 if (t == NOT_INIT) { 573 continue; 574 } 575 verbose(env, " R%d", i); 576 print_liveness(env, reg->live); 577 verbose(env, "=%s", reg_type_str(env, t)); 578 if (t == SCALAR_VALUE && reg->precise) { 579 verbose(env, "P"); 580 } 581 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && tnum_is_const(reg->var_off)) { 582 /* reg->off should be 0 for SCALAR_VALUE */ 583 verbose(env, "%lld", reg->var_off.value + reg->off); 584 } else { 585 if (base_type(t) == PTR_TO_BTF_ID || base_type(t) == PTR_TO_PERCPU_BTF_ID) { 586 verbose(env, "%s", kernel_type_name(reg->btf_id)); 587 } 588 verbose(env, "(id=%d", reg->id); 589 if (reg_type_may_be_refcounted_or_null(t)) { 590 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 591 } 592 if (t != SCALAR_VALUE) { 593 verbose(env, ",off=%d", reg->off); 594 } 595 if (type_is_pkt_pointer(t)) { 596 verbose(env, ",r=%d", reg->range); 597 } else if (base_type(t) == CONST_PTR_TO_MAP || base_type(t) == PTR_TO_MAP_VALUE) { 598 verbose(env, ",ks=%d,vs=%d", reg->map_ptr->key_size, reg->map_ptr->value_size); 599 } 600 if (tnum_is_const(reg->var_off)) { 601 /* Typically an immediate SCALAR_VALUE, but 602 * could be a pointer whose offset is too big 603 * for reg->off 604 */ 605 verbose(env, ",imm=%llx", reg->var_off.value); 606 } else { 607 if (reg->smin_value != reg->umin_value && reg->smin_value != S64_MIN) { 608 verbose(env, ",smin_value=%lld", (long long)reg->smin_value); 609 } 610 if (reg->smax_value != reg->umax_value && reg->smax_value != S64_MAX) { 611 verbose(env, ",smax_value=%lld", (long long)reg->smax_value); 612 } 613 if (reg->umin_value != 0) { 614 verbose(env, ",umin_value=%llu", (unsigned long long)reg->umin_value); 615 } 616 if (reg->umax_value != U64_MAX) { 617 verbose(env, ",umax_value=%llu", (unsigned long long)reg->umax_value); 618 } 619 if (!tnum_is_unknown(reg->var_off)) { 620 char tn_buf[48]; 621 622 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 623 verbose(env, ",var_off=%s", tn_buf); 624 } 625 if (reg->s32_min_value != reg->smin_value && reg->s32_min_value != S32_MIN) { 626 verbose(env, ",s32_min_value=%d", (int)(reg->s32_min_value)); 627 } 628 if (reg->s32_max_value != reg->smax_value && reg->s32_max_value != S32_MAX) { 629 verbose(env, ",s32_max_value=%d", (int)(reg->s32_max_value)); 630 } 631 if (reg->u32_min_value != reg->umin_value && reg->u32_min_value != U32_MIN) { 632 verbose(env, ",u32_min_value=%d", (int)(reg->u32_min_value)); 633 } 634 if (reg->u32_max_value != reg->umax_value && reg->u32_max_value != U32_MAX) { 635 verbose(env, ",u32_max_value=%d", (int)(reg->u32_max_value)); 636 } 637 } 638 verbose(env, ")"); 639 } 640 } 641 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 642 char types_buf[BPF_REG_SIZE + 1]; 643 bool valid = false; 644 int j; 645 646 for (j = 0; j < BPF_REG_SIZE; j++) { 647 if (state->stack[i].slot_type[j] != STACK_INVALID) { 648 valid = true; 649 } 650 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 651 } 652 types_buf[BPF_REG_SIZE] = 0; 653 if (!valid) { 654 continue; 655 } 656 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 657 print_liveness(env, state->stack[i].spilled_ptr.live); 658 if (state->stack[i].slot_type[0] == STACK_SPILL) { 659 reg = &state->stack[i].spilled_ptr; 660 t = reg->type; 661 verbose(env, "=%s", reg_type_str(env, t)); 662 if (t == SCALAR_VALUE && reg->precise) { 663 verbose(env, "P"); 664 } 665 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) { 666 verbose(env, "%lld", reg->var_off.value + reg->off); 667 } 668 } else { 669 verbose(env, "=%s", types_buf); 670 } 671 } 672 if (state->acquired_refs && state->refs[0].id) { 673 verbose(env, " refs=%d", state->refs[0].id); 674 for (i = 1; i < state->acquired_refs; i++) { 675 if (state->refs[i].id) { 676 verbose(env, ",%d", state->refs[i].id); 677 } 678 } 679 } 680 verbose(env, "\n"); 681} 682 683#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 684 static int copy_##NAME##_state(struct bpf_func_state *dst, const struct bpf_func_state *src) \ 685 { \ 686 if (!src->FIELD) \ 687 return 0; \ 688 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 689 /* internal bug, make state invalid to reject the program */ \ 690 memset(dst, 0, sizeof(*dst)); \ 691 return -EFAULT; \ 692 } \ 693 memcpy(dst->FIELD, src->FIELD, sizeof(*src->FIELD) * (src->COUNT / (SIZE))); \ 694 return 0; \ 695 } 696/* copy_reference_state() */ 697COPY_STATE_FN(reference, acquired_refs, refs, 1) 698/* copy_stack_state() */ 699COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 700#undef COPY_STATE_FN 701 702#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 703 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, bool copy_old) \ 704 { \ 705 u32 old_size = state->COUNT; \ 706 struct bpf_##NAME##_state *new_##FIELD; \ 707 int slot = size / (SIZE); \ 708 \ 709 if (size <= old_size || !size) { \ 710 if (copy_old) \ 711 return 0; \ 712 state->COUNT = slot * (SIZE); \ 713 if (!size && old_size) { \ 714 kfree(state->FIELD); \ 715 state->FIELD = NULL; \ 716 } \ 717 return 0; \ 718 } \ 719 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), GFP_KERNEL); \ 720 if (!new_##FIELD) \ 721 return -ENOMEM; \ 722 if (copy_old) { \ 723 if (state->FIELD) \ 724 memcpy(new_##FIELD, state->FIELD, sizeof(*new_##FIELD) * (old_size / (SIZE))); \ 725 memset(new_##FIELD + old_size / (SIZE), 0, sizeof(*new_##FIELD) * (size - old_size) / (SIZE)); \ 726 } \ 727 state->COUNT = slot * (SIZE); \ 728 kfree(state->FIELD); \ 729 state->FIELD = new_##FIELD; \ 730 return 0; \ 731 } 732/* realloc_reference_state() */ 733REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 734/* realloc_stack_state() */ 735REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 736#undef REALLOC_STATE_FN 737 738/* do_check() starts with zero-sized stack in struct bpf_verifier_state to 739 * make it consume minimal amount of memory. check_stack_write() access from 740 * the program calls into realloc_func_state() to grow the stack size. 741 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 742 * which realloc_stack_state() copies over. It points to previous 743 * bpf_verifier_state which is never reallocated. 744 */ 745static int realloc_func_state(struct bpf_func_state *state, int stack_size, int refs_size, bool copy_old) 746{ 747 int err = realloc_reference_state(state, refs_size, copy_old); 748 if (err) { 749 return err; 750 } 751 return realloc_stack_state(state, stack_size, copy_old); 752} 753 754/* Acquire a pointer id from the env and update the state->refs to include 755 * this new pointer reference. 756 * On success, returns a valid pointer id to associate with the register 757 * On failure, returns a negative errno. 758 */ 759static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 760{ 761 struct bpf_func_state *state = cur_func(env); 762 int new_ofs = state->acquired_refs; 763 int id, err; 764 765 err = realloc_reference_state(state, state->acquired_refs + 1, true); 766 if (err) { 767 return err; 768 } 769 id = ++env->id_gen; 770 state->refs[new_ofs].id = id; 771 state->refs[new_ofs].insn_idx = insn_idx; 772 773 return id; 774} 775 776/* release function corresponding to acquire_reference_state(). Idempotent. */ 777static int release_reference_state(struct bpf_func_state *state, int ptr_id) 778{ 779 int i, last_idx; 780 781 last_idx = state->acquired_refs - 1; 782 for (i = 0; i < state->acquired_refs; i++) { 783 if (state->refs[i].id == ptr_id) { 784 if (last_idx && i != last_idx) { 785 memcpy(&state->refs[i], &state->refs[last_idx], sizeof(*state->refs)); 786 } 787 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 788 state->acquired_refs--; 789 return 0; 790 } 791 } 792 return -EINVAL; 793} 794 795static int transfer_reference_state(struct bpf_func_state *dst, struct bpf_func_state *src) 796{ 797 int err = realloc_reference_state(dst, src->acquired_refs, false); 798 if (err) { 799 return err; 800 } 801 err = copy_reference_state(dst, src); 802 if (err) { 803 return err; 804 } 805 return 0; 806} 807 808static void free_func_state(struct bpf_func_state *state) 809{ 810 if (!state) { 811 return; 812 } 813 kfree(state->refs); 814 kfree(state->stack); 815 kfree(state); 816} 817 818static void clear_jmp_history(struct bpf_verifier_state *state) 819{ 820 kfree(state->jmp_history); 821 state->jmp_history = NULL; 822 state->jmp_history_cnt = 0; 823} 824 825static void free_verifier_state(struct bpf_verifier_state *state, bool free_self) 826{ 827 int i; 828 829 for (i = 0; i <= state->curframe; i++) { 830 free_func_state(state->frame[i]); 831 state->frame[i] = NULL; 832 } 833 clear_jmp_history(state); 834 if (free_self) { 835 kfree(state); 836 } 837} 838 839/* copy verifier state from src to dst growing dst stack space 840 * when necessary to accommodate larger src stack 841 */ 842static int copy_func_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 843{ 844 int err; 845 846 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, false); 847 if (err) { 848 return err; 849 } 850 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 851 err = copy_reference_state(dst, src); 852 if (err) { 853 return err; 854 } 855 return copy_stack_state(dst, src); 856} 857 858static int copy_verifier_state(struct bpf_verifier_state *dst_state, const struct bpf_verifier_state *src) 859{ 860 struct bpf_func_state *dst; 861 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 862 int i, err; 863 864 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 865 kfree(dst_state->jmp_history); 866 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 867 if (!dst_state->jmp_history) { 868 return -ENOMEM; 869 } 870 } 871 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 872 dst_state->jmp_history_cnt = src->jmp_history_cnt; 873 874 /* if dst has more stack frames then src frame, free them */ 875 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 876 free_func_state(dst_state->frame[i]); 877 dst_state->frame[i] = NULL; 878 } 879 dst_state->speculative = src->speculative; 880 dst_state->curframe = src->curframe; 881 dst_state->active_spin_lock = src->active_spin_lock; 882 dst_state->branches = src->branches; 883 dst_state->parent = src->parent; 884 dst_state->first_insn_idx = src->first_insn_idx; 885 dst_state->last_insn_idx = src->last_insn_idx; 886 for (i = 0; i <= src->curframe; i++) { 887 dst = dst_state->frame[i]; 888 if (!dst) { 889 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 890 if (!dst) { 891 return -ENOMEM; 892 } 893 dst_state->frame[i] = dst; 894 } 895 err = copy_func_state(dst, src->frame[i]); 896 if (err) { 897 return err; 898 } 899 } 900 return 0; 901} 902 903static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 904{ 905 while (st) { 906 u32 br = --st->branches; 907 908 /* WARN_ON(br > 1) technically makes sense here, 909 * but see comment in push_stack(), hence: 910 */ 911 WARN_ONCE((int)br < 0, "BUG update_branch_counts:branches_to_explore=%d\n", br); 912 if (br) { 913 break; 914 } 915 st = st->parent; 916 } 917} 918 919static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, int *insn_idx, bool pop_log) 920{ 921 struct bpf_verifier_state *cur = env->cur_state; 922 struct bpf_verifier_stack_elem *elem, *head = env->head; 923 int err; 924 925 if (env->head == NULL) { 926 return -ENOENT; 927 } 928 929 if (cur) { 930 err = copy_verifier_state(cur, &head->st); 931 if (err) { 932 return err; 933 } 934 } 935 if (pop_log) { 936 bpf_vlog_reset(&env->log, head->log_pos); 937 } 938 if (insn_idx) { 939 *insn_idx = head->insn_idx; 940 } 941 if (prev_insn_idx) { 942 *prev_insn_idx = head->prev_insn_idx; 943 } 944 elem = head->next; 945 free_verifier_state(&head->st, false); 946 kfree(head); 947 env->head = elem; 948 env->stack_size--; 949 return 0; 950} 951 952static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx, 953 bool speculative) 954{ 955 struct bpf_verifier_state *cur = env->cur_state; 956 struct bpf_verifier_stack_elem *elem; 957 int err; 958 959 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 960 if (!elem) { 961 goto err; 962 } 963 964 elem->insn_idx = insn_idx; 965 elem->prev_insn_idx = prev_insn_idx; 966 elem->next = env->head; 967 elem->log_pos = env->log.len_used; 968 env->head = elem; 969 env->stack_size++; 970 err = copy_verifier_state(&elem->st, cur); 971 if (err) { 972 goto err; 973 } 974 elem->st.speculative |= speculative; 975 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 976 verbose(env, "The sequence of %d jumps is too complex.\n", env->stack_size); 977 goto err; 978 } 979 if (elem->st.parent) { 980 ++elem->st.parent->branches; 981 /* WARN_ON(branches > 2) technically makes sense here, 982 * but 983 * 1. speculative states will bump 'branches' for non-branch 984 * instructions 985 * 2. is_state_visited() heuristics may decide not to create 986 * a new state for a sequence of branches and all such current 987 * and cloned states will be pointing to a single parent state 988 * which might have large 'branches' count. 989 */ 990 } 991 return &elem->st; 992err: 993 free_verifier_state(env->cur_state, true); 994 env->cur_state = NULL; 995 /* pop all elements and return */ 996 while (!pop_stack(env, NULL, NULL, false)) { 997 ; 998 } 999 return NULL; 1000} 1001 1002#define CALLER_SAVED_REGS 6 1003static const int caller_saved[CALLER_SAVED_REGS] = {BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5}; 1004 1005static void verifier_mark_reg_not_init(const struct bpf_verifier_env *env, struct bpf_reg_state *reg); 1006 1007/* This helper doesn't clear reg->id */ 1008static void verifier2_mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1009{ 1010 reg->var_off = tnum_const(imm); 1011 reg->smin_value = (s64)imm; 1012 reg->smax_value = (s64)imm; 1013 reg->umin_value = imm; 1014 reg->umax_value = imm; 1015 1016 reg->s32_min_value = (s32)imm; 1017 reg->s32_max_value = (s32)imm; 1018 reg->u32_min_value = (u32)imm; 1019 reg->u32_max_value = (u32)imm; 1020} 1021 1022/* Mark the unknown part of a register (variable offset or scalar value) as 1023 * known to have the value @imm. 1024 */ 1025static void verifier_mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1026{ 1027 /* Clear id, off, and union(map_ptr, range) */ 1028 memset(((u8 *)reg) + sizeof(reg->type), 0, offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1029 verifier2_mark_reg_known(reg, imm); 1030} 1031 1032static void verifier_mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1033{ 1034 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1035 reg->s32_min_value = (s32)imm; 1036 reg->s32_max_value = (s32)imm; 1037 reg->u32_min_value = (u32)imm; 1038 reg->u32_max_value = (u32)imm; 1039} 1040 1041/* Mark the 'variable offset' part of a register as zero. This should be 1042 * used only on registers holding a pointer type. 1043 */ 1044static void verifier_mark_reg_known_zero(struct bpf_reg_state *reg) 1045{ 1046 verifier_mark_reg_known(reg, 0); 1047} 1048 1049static void verifier_mark_reg_const_zero(struct bpf_reg_state *reg) 1050{ 1051 verifier_mark_reg_known(reg, 0); 1052 reg->type = SCALAR_VALUE; 1053} 1054 1055static void mark_reg_known_zero(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno) 1056{ 1057 if (WARN_ON(regno >= MAX_BPF_REG)) { 1058 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1059 /* Something bad happened, let's kill all regs */ 1060 for (regno = 0; regno < MAX_BPF_REG; regno++) { 1061 verifier_mark_reg_not_init(env, regs + regno); 1062 } 1063 return; 1064 } 1065 verifier_mark_reg_known_zero(regs + regno); 1066} 1067 1068static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1069{ 1070 return type_is_pkt_pointer(reg->type); 1071} 1072 1073static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1074{ 1075 return reg_is_pkt_pointer(reg) || reg->type == PTR_TO_PACKET_END; 1076} 1077 1078/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1079static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, enum bpf_reg_type which) 1080{ 1081 /* The register can already have a range from prior markings. 1082 * This is fine as long as it hasn't been advanced from its 1083 * origin. 1084 */ 1085 return reg->type == which && reg->id == 0 && reg->off == 0 && tnum_equals_const(reg->var_off, 0); 1086} 1087 1088/* Reset the min/max bounds of a register */ 1089static void verifier_mark_reg_unbounded(struct bpf_reg_state *reg) 1090{ 1091 reg->smin_value = S64_MIN; 1092 reg->smax_value = S64_MAX; 1093 reg->umin_value = 0; 1094 reg->umax_value = U64_MAX; 1095 1096 reg->s32_min_value = S32_MIN; 1097 reg->s32_max_value = S32_MAX; 1098 reg->u32_min_value = 0; 1099 reg->u32_max_value = U32_MAX; 1100} 1101 1102static void verifier_mark_reg64_unbounded(struct bpf_reg_state *reg) 1103{ 1104 reg->smin_value = S64_MIN; 1105 reg->smax_value = S64_MAX; 1106 reg->umin_value = 0; 1107 reg->umax_value = U64_MAX; 1108} 1109 1110static void verifier_mark_reg32_unbounded(struct bpf_reg_state *reg) 1111{ 1112 reg->s32_min_value = S32_MIN; 1113 reg->s32_max_value = S32_MAX; 1114 reg->u32_min_value = 0; 1115 reg->u32_max_value = U32_MAX; 1116} 1117 1118static void verifier_update_reg32_bounds(struct bpf_reg_state *reg) 1119{ 1120 struct tnum var32_off = tnum_subreg(reg->var_off); 1121 1122 /* min signed is max(sign bit) | min(other bits) */ 1123 reg->s32_min_value = max_t(s32, reg->s32_min_value, var32_off.value | (var32_off.mask & S32_MIN)); 1124 /* max signed is min(sign bit) | max(other bits) */ 1125 reg->s32_max_value = min_t(s32, reg->s32_max_value, var32_off.value | (var32_off.mask & S32_MAX)); 1126 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1127 reg->u32_max_value = min(reg->u32_max_value, (u32)(var32_off.value | var32_off.mask)); 1128} 1129 1130static void verifier_update_reg64_bounds(struct bpf_reg_state *reg) 1131{ 1132 /* min signed is max(sign bit) | min(other bits) */ 1133 reg->smin_value = max_t(s64, reg->smin_value, reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1134 /* max signed is min(sign bit) | max(other bits) */ 1135 reg->smax_value = min_t(s64, reg->smax_value, reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1136 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1137 reg->umax_value = min(reg->umax_value, reg->var_off.value | reg->var_off.mask); 1138} 1139 1140static void verifier_update_reg_bounds(struct bpf_reg_state *reg) 1141{ 1142 verifier_update_reg32_bounds(reg); 1143 verifier_update_reg64_bounds(reg); 1144} 1145 1146/* Uses signed min/max values to inform unsigned, and vice-versa */ 1147static void verifier_reg32_deduce_bounds(struct bpf_reg_state *reg) 1148{ 1149 /* Learn sign from signed bounds. 1150 * If we cannot cross the sign boundary, then signed and unsigned bounds 1151 * are the same, so combine. This works even in the negative case, e.g. 1152 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1153 */ 1154 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1155 reg->s32_min_value = reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 1156 reg->s32_max_value = reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 1157 return; 1158 } 1159 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1160 * boundary, so we must be careful. 1161 */ 1162 if ((s32)reg->u32_max_value >= 0) { 1163 /* Positive. We can't learn anything from the smin, but smax 1164 * is positive, hence safe. 1165 */ 1166 reg->s32_min_value = reg->u32_min_value; 1167 reg->s32_max_value = reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 1168 } else if ((s32)reg->u32_min_value < 0) { 1169 /* Negative. We can't learn anything from the smax, but smin 1170 * is negative, hence safe. 1171 */ 1172 reg->s32_min_value = reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 1173 reg->s32_max_value = reg->u32_max_value; 1174 } 1175} 1176 1177static void verifier_reg64_deduce_bounds(struct bpf_reg_state *reg) 1178{ 1179 /* Learn sign from signed bounds. 1180 * If we cannot cross the sign boundary, then signed and unsigned bounds 1181 * are the same, so combine. This works even in the negative case, e.g. 1182 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1183 */ 1184 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1185 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 1186 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 1187 return; 1188 } 1189 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1190 * boundary, so we must be careful. 1191 */ 1192 if ((s64)reg->umax_value >= 0) { 1193 /* Positive. We can't learn anything from the smin, but smax 1194 * is positive, hence safe. 1195 */ 1196 reg->smin_value = reg->umin_value; 1197 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 1198 } else if ((s64)reg->umin_value < 0) { 1199 /* Negative. We can't learn anything from the smax, but smin 1200 * is negative, hence safe. 1201 */ 1202 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 1203 reg->smax_value = reg->umax_value; 1204 } 1205} 1206 1207static void verifier_reg_deduce_bounds(struct bpf_reg_state *reg) 1208{ 1209 verifier_reg32_deduce_bounds(reg); 1210 verifier_reg64_deduce_bounds(reg); 1211} 1212 1213/* Attempts to improve var_off based on unsigned min/max information */ 1214static void verifier_reg_bound_offset(struct bpf_reg_state *reg) 1215{ 1216 struct tnum var64_off = tnum_intersect(reg->var_off, tnum_range(reg->umin_value, reg->umax_value)); 1217 struct tnum var32_off = 1218 tnum_intersect(tnum_subreg(reg->var_off), tnum_range(reg->u32_min_value, reg->u32_max_value)); 1219 1220 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1221} 1222 1223static void reg_bounds_sync(struct bpf_reg_state *reg) 1224{ 1225 /* We might have learned new bounds from the var_off. */ 1226 verifier_update_reg_bounds(reg); 1227 /* We might have learned something about the sign bit. */ 1228 verifier_reg_deduce_bounds(reg); 1229 /* We might have learned some bits from the bounds. */ 1230 verifier_reg_bound_offset(reg); 1231 /* Intersecting with the old var_off might have improved our bounds 1232 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1233 * then new var_off is (0; 0x7f...fc) which improves our umax. 1234 */ 1235 verifier_update_reg_bounds(reg); 1236} 1237static bool verifier_reg32_bound_s64(s32 a) 1238{ 1239 return a >= 0 && a <= S32_MAX; 1240} 1241 1242static void verifier_reg_assign_32_into_64(struct bpf_reg_state *reg) 1243{ 1244 reg->umin_value = reg->u32_min_value; 1245 reg->umax_value = reg->u32_max_value; 1246 1247 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1248 * be positive otherwise set to worse case bounds and refine later 1249 * from tnum. 1250 */ 1251 if (verifier_reg32_bound_s64(reg->s32_min_value) && verifier_reg32_bound_s64(reg->s32_max_value)) { 1252 reg->smin_value = reg->s32_min_value; 1253 reg->smax_value = reg->s32_max_value; 1254 } else { 1255 reg->smin_value = 0; 1256 reg->smax_value = U32_MAX; 1257 } 1258} 1259 1260static void verifier_reg_combine_32_into_64(struct bpf_reg_state *reg) 1261{ 1262 /* special case when 64-bit register has upper 32-bit register 1263 * zeroed. Typically happens after zext or <<32, >>32 sequence 1264 * allowing us to use 32-bit bounds directly, 1265 */ 1266 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1267 verifier_reg_assign_32_into_64(reg); 1268 } else { 1269 /* Otherwise the best we can do is push lower 32bit known and 1270 * unknown bits into register (var_off set from jmp logic) 1271 * then learn as much as possible from the 64-bit tnum 1272 * known and unknown bits. The previous smin/smax bounds are 1273 * invalid here because of jmp32 compare so mark them unknown 1274 * so they do not impact tnum bounds calculation. 1275 */ 1276 verifier_mark_reg64_unbounded(reg); 1277 verifier_update_reg_bounds(reg); 1278 } 1279 1280 /* Intersecting with the old var_off might have improved our bounds 1281 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1282 * then new var_off is (0; 0x7f...fc) which improves our umax. 1283 */ 1284 reg_bounds_sync(reg); 1285} 1286 1287static bool verifier_reg64_bound_s32(s64 a) 1288{ 1289 return a > S32_MIN && a < S32_MAX; 1290} 1291 1292static bool verifier_reg64_bound_u32(u64 a) 1293{ 1294 return a > U32_MIN && a < U32_MAX; 1295} 1296 1297static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1298{ 1299 verifier_mark_reg32_unbounded(reg); 1300 1301 if (verifier_reg64_bound_s32(reg->smin_value) && verifier_reg64_bound_s32(reg->smax_value)) { 1302 reg->s32_min_value = (s32)reg->smin_value; 1303 reg->s32_max_value = (s32)reg->smax_value; 1304 } 1305 if (verifier_reg64_bound_u32(reg->umin_value) && verifier_reg64_bound_u32(reg->umax_value)) { 1306 reg->u32_min_value = (u32)reg->umin_value; 1307 reg->u32_max_value = (u32)reg->umax_value; 1308 } 1309 1310 /* Intersecting with the old var_off might have improved our bounds 1311 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1312 * then new var_off is (0; 0x7f...fc) which improves our umax. 1313 */ 1314 reg_bounds_sync(reg); 1315} 1316 1317/* Mark a register as having a completely unknown (scalar) value. */ 1318static void __mark_reg_unknown(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1319{ 1320 /* 1321 * Clear type, id, off, and union(map_ptr, range) and 1322 * padding between 'type' and union 1323 */ 1324 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1325 reg->type = SCALAR_VALUE; 1326 reg->var_off = tnum_unknown; 1327 reg->frameno = 0; 1328 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1329 verifier_mark_reg_unbounded(reg); 1330} 1331 1332static void mark_reg_unknown(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno) 1333{ 1334 if (WARN_ON(regno >= MAX_BPF_REG)) { 1335 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1336 /* Something bad happened, let's kill all regs except FP */ 1337 for (regno = 0; regno < BPF_REG_FP; regno++) { 1338 verifier_mark_reg_not_init(env, regs + regno); 1339 } 1340 return; 1341 } 1342 __mark_reg_unknown(env, regs + regno); 1343} 1344 1345static void verifier_mark_reg_not_init(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1346{ 1347 __mark_reg_unknown(env, reg); 1348 reg->type = NOT_INIT; 1349} 1350 1351static void mark_reg_not_init(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno) 1352{ 1353 if (WARN_ON(regno >= MAX_BPF_REG)) { 1354 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1355 /* Something bad happened, let's kill all regs except FP */ 1356 for (regno = 0; regno < BPF_REG_FP; regno++) { 1357 verifier_mark_reg_not_init(env, regs + regno); 1358 } 1359 return; 1360 } 1361 verifier_mark_reg_not_init(env, regs + regno); 1362} 1363 1364static void mark_btf_ld_reg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 1365 enum bpf_reg_type reg_type, u32 btf_id) 1366{ 1367 if (reg_type == SCALAR_VALUE) { 1368 mark_reg_unknown(env, regs, regno); 1369 return; 1370 } 1371 mark_reg_known_zero(env, regs, regno); 1372 regs[regno].type = PTR_TO_BTF_ID; 1373 regs[regno].btf_id = btf_id; 1374} 1375 1376#define DEF_NOT_SUBREG (0) 1377static void init_reg_state(struct bpf_verifier_env *env, struct bpf_func_state *state) 1378{ 1379 struct bpf_reg_state *regs = state->regs; 1380 int i; 1381 1382 for (i = 0; i < MAX_BPF_REG; i++) { 1383 mark_reg_not_init(env, regs, i); 1384 regs[i].live = REG_LIVE_NONE; 1385 regs[i].parent = NULL; 1386 regs[i].subreg_def = DEF_NOT_SUBREG; 1387 } 1388 1389 /* frame pointer */ 1390 regs[BPF_REG_FP].type = PTR_TO_STACK; 1391 mark_reg_known_zero(env, regs, BPF_REG_FP); 1392 regs[BPF_REG_FP].frameno = state->frameno; 1393} 1394 1395#define BPF_MAIN_FUNC (-1) 1396static void init_func_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int callsite, int frameno, 1397 int subprogno) 1398{ 1399 state->callsite = callsite; 1400 state->frameno = frameno; 1401 state->subprogno = subprogno; 1402 init_reg_state(env, state); 1403} 1404 1405enum reg_arg_type { 1406 SRC_OP, /* register is used as source operand */ 1407 DST_OP, /* register is used as destination operand */ 1408 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1409}; 1410 1411static int cmp_subprogs(const void *a, const void *b) 1412{ 1413 return ((struct bpf_subprog_info *)a)->start - ((struct bpf_subprog_info *)b)->start; 1414} 1415 1416static int find_subprog(struct bpf_verifier_env *env, int off) 1417{ 1418 struct bpf_subprog_info *p; 1419 1420 p = bsearch(&off, env->subprog_info, env->subprog_cnt, sizeof(env->subprog_info[0]), cmp_subprogs); 1421 if (!p) { 1422 return -ENOENT; 1423 } 1424 return p - env->subprog_info; 1425} 1426 1427static int add_subprog(struct bpf_verifier_env *env, int off) 1428{ 1429 int insn_cnt = env->prog->len; 1430 int ret; 1431 1432 if (off >= insn_cnt || off < 0) { 1433 verbose(env, "call to invalid destination\n"); 1434 return -EINVAL; 1435 } 1436 ret = find_subprog(env, off); 1437 if (ret >= 0) { 1438 return 0; 1439 } 1440 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1441 verbose(env, "too many subprograms\n"); 1442 return -E2BIG; 1443 } 1444 env->subprog_info[env->subprog_cnt++].start = off; 1445 sort(env->subprog_info, env->subprog_cnt, sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1446 return 0; 1447} 1448 1449static int check_subprogs(struct bpf_verifier_env *env) 1450{ 1451 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1452 struct bpf_subprog_info *subprog = env->subprog_info; 1453 struct bpf_insn *insn = env->prog->insnsi; 1454 int insn_cnt = env->prog->len; 1455 1456 /* Add entry function. */ 1457 ret = add_subprog(env, 0); 1458 if (ret < 0) { 1459 return ret; 1460 } 1461 1462 /* determine subprog starts. The end is one before the next starts */ 1463 for (i = 0; i < insn_cnt; i++) { 1464 if (insn[i].code != (BPF_JMP | BPF_CALL)) { 1465 continue; 1466 } 1467 if (insn[i].src_reg != BPF_PSEUDO_CALL) { 1468 continue; 1469 } 1470 if (!env->bpf_capable) { 1471 verbose(env, "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1472 return -EPERM; 1473 } 1474 ret = add_subprog(env, i + insn[i].imm + 1); 1475 if (ret < 0) { 1476 return ret; 1477 } 1478 } 1479 1480 /* Add a fake 'exit' subprog which could simplify subprog iteration 1481 * logic. 'subprog_cnt' should not be increased. 1482 */ 1483 subprog[env->subprog_cnt].start = insn_cnt; 1484 1485 if (env->log.level & BPF_LOG_LEVEL2) { 1486 for (i = 0; i < env->subprog_cnt; i++) { 1487 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1488 } 1489 } 1490 1491 /* now check that all jumps are within the same subprog */ 1492 subprog_start = subprog[cur_subprog].start; 1493 subprog_end = subprog[cur_subprog + 1].start; 1494 for (i = 0; i < insn_cnt; i++) { 1495 u8 code = insn[i].code; 1496 1497 if (code == (BPF_JMP | BPF_CALL) && insn[i].imm == BPF_FUNC_tail_call && insn[i].src_reg != BPF_PSEUDO_CALL) { 1498 subprog[cur_subprog].has_tail_call = true; 1499 } 1500 if (BPF_CLASS(code) == BPF_LD && (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) { 1501 subprog[cur_subprog].has_ld_abs = true; 1502 } 1503 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) { 1504 goto next; 1505 } 1506 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) { 1507 goto next; 1508 } 1509 off = i + insn[i].off + 1; 1510 if (off < subprog_start || off >= subprog_end) { 1511 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1512 return -EINVAL; 1513 } 1514 next: 1515 if (i == subprog_end - 1) { 1516 /* to avoid fall-through from one subprog into another 1517 * the last insn of the subprog should be either exit 1518 * or unconditional jump back 1519 */ 1520 if (code != (BPF_JMP | BPF_EXIT) && code != (BPF_JMP | BPF_JA)) { 1521 verbose(env, "last insn is not an exit or jmp\n"); 1522 return -EINVAL; 1523 } 1524 subprog_start = subprog_end; 1525 cur_subprog++; 1526 if (cur_subprog < env->subprog_cnt) { 1527 subprog_end = subprog[cur_subprog + 1].start; 1528 } 1529 } 1530 } 1531 return 0; 1532} 1533 1534/* Parentage chain of this register (or stack slot) should take care of all 1535 * issues like callee-saved registers, stack slot allocation time, etc. 1536 */ 1537static int mark_reg_read(struct bpf_verifier_env *env, const struct bpf_reg_state *state, struct bpf_reg_state *parent, 1538 u8 flag) 1539{ 1540 bool writes = parent == state->parent; /* Observe write marks */ 1541 int cnt = 0; 1542 1543 while (parent) { 1544 /* if read wasn't screened by an earlier write ... */ 1545 if (writes && (state->live & REG_LIVE_WRITTEN)) { 1546 break; 1547 } 1548 if (parent->live & REG_LIVE_DONE) { 1549 verbose(env, "verifier BUG type %s var_off %lld off %d\n", reg_type_str(env, parent->type), 1550 parent->var_off.value, parent->off); 1551 return -EFAULT; 1552 } 1553 /* The first condition is more likely to be true than the 1554 * second, checked it first. 1555 */ 1556 if ((parent->live & REG_LIVE_READ) == flag || (parent->live & REG_LIVE_READ64)) { 1557 /* The parentage chain never changes and 1558 * this parent was already marked as LIVE_READ. 1559 * There is no need to keep walking the chain again and 1560 * keep re-marking all parents as LIVE_READ. 1561 * This case happens when the same register is read 1562 * multiple times without writes into it in-between. 1563 * Also, if parent has the stronger REG_LIVE_READ64 set, 1564 * then no need to set the weak REG_LIVE_READ32. 1565 */ 1566 break; 1567 } 1568 /* ... then we depend on parent's value */ 1569 parent->live |= flag; 1570 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1571 if (flag == REG_LIVE_READ64) { 1572 parent->live &= ~REG_LIVE_READ32; 1573 } 1574 state = parent; 1575 parent = state->parent; 1576 writes = true; 1577 cnt++; 1578 } 1579 1580 if (env->longest_mark_read_walk < cnt) { 1581 env->longest_mark_read_walk = cnt; 1582 } 1583 return 0; 1584} 1585 1586/* This function is supposed to be used by the following 32-bit optimization 1587 * code only. It returns TRUE if the source or destination register operates 1588 * on 64-bit, otherwise return FALSE. 1589 */ 1590static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, u32 regno, struct bpf_reg_state *reg, 1591 enum reg_arg_type t) 1592{ 1593 u8 code, class, op; 1594 1595 code = insn->code; 1596 class = BPF_CLASS(code); 1597 op = BPF_OP(code); 1598 if (class == BPF_JMP) { 1599 /* BPF_EXIT for "main" will reach here. Return TRUE 1600 * conservatively. 1601 */ 1602 if (op == BPF_EXIT) { 1603 return true; 1604 } 1605 if (op == BPF_CALL) { 1606 /* BPF to BPF call will reach here because of marking 1607 * caller saved clobber with DST_OP_NO_MARK for which we 1608 * don't care the register def because they are anyway 1609 * marked as NOT_INIT already. 1610 */ 1611 if (insn->src_reg == BPF_PSEUDO_CALL) { 1612 return false; 1613 } 1614 /* Helper call will reach here because of arg type 1615 * check, conservatively return TRUE. 1616 */ 1617 if (t == SRC_OP) { 1618 return true; 1619 } 1620 1621 return false; 1622 } 1623 } 1624 1625 if (class == BPF_ALU64 || class == BPF_JMP || 1626 /* BPF_END always use BPF_ALU class. */ 1627 (class == BPF_ALU && op == BPF_END && insn->imm == VERIFIER_SIXTYFOUR)) { 1628 return true; 1629 } 1630 1631 if (class == BPF_ALU || class == BPF_JMP32) { 1632 return false; 1633 } 1634 1635 if (class == BPF_LDX) { 1636 if (t != SRC_OP) { 1637 return BPF_SIZE(code) == BPF_DW; 1638 } 1639 /* LDX source must be ptr. */ 1640 return true; 1641 } 1642 1643 if (class == BPF_STX) { 1644 if (reg->type != SCALAR_VALUE) { 1645 return true; 1646 } 1647 return BPF_SIZE(code) == BPF_DW; 1648 } 1649 1650 if (class == BPF_LD) { 1651 u8 mode = BPF_MODE(code); 1652 /* LD_IMM64 */ 1653 if (mode == BPF_IMM) { 1654 return true; 1655 } 1656 1657 /* Both LD_IND and LD_ABS return 32-bit data. */ 1658 if (t != SRC_OP) { 1659 return false; 1660 } 1661 1662 /* Implicit ctx ptr. */ 1663 if (regno == BPF_REG_6) { 1664 return true; 1665 } 1666 1667 /* Explicit source could be any width. */ 1668 return true; 1669 } 1670 1671 if (class == BPF_ST) { 1672 /* The only source register for BPF_ST is a ptr. */ 1673 return true; 1674 } 1675 1676 /* Conservatively return true at default. */ 1677 return true; 1678} 1679 1680/* Return TRUE if INSN doesn't have explicit value define. */ 1681static bool insn_no_def(struct bpf_insn *insn) 1682{ 1683 u8 class = BPF_CLASS(insn->code); 1684 1685 return (class == BPF_JMP || class == BPF_JMP32 || class == BPF_STX || class == BPF_ST); 1686} 1687 1688/* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1689static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1690{ 1691 if (insn_no_def(insn)) { 1692 return false; 1693 } 1694 1695 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1696} 1697 1698static void mark_insn_zext(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1699{ 1700 s32 def_idx = reg->subreg_def; 1701 1702 if (def_idx == DEF_NOT_SUBREG) { 1703 return; 1704 } 1705 1706 env->insn_aux_data[def_idx - 1].zext_dst = true; 1707 /* The dst will be zero extended, so won't be sub-register anymore. */ 1708 reg->subreg_def = DEF_NOT_SUBREG; 1709} 1710 1711static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, enum reg_arg_type t) 1712{ 1713 struct bpf_verifier_state *vstate = env->cur_state; 1714 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1715 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1716 struct bpf_reg_state *reg, *regs = state->regs; 1717 bool rw64; 1718 1719 if (regno >= MAX_BPF_REG) { 1720 verbose(env, "R%d is invalid\n", regno); 1721 return -EINVAL; 1722 } 1723 1724 reg = ®s[regno]; 1725 rw64 = is_reg64(env, insn, regno, reg, t); 1726 if (t == SRC_OP) { 1727 /* check whether register used as source operand can be read */ 1728 if (reg->type == NOT_INIT) { 1729 verbose(env, "R%d !read_ok\n", regno); 1730 return -EACCES; 1731 } 1732 /* We don't need to worry about FP liveness because it's read-only */ 1733 if (regno == BPF_REG_FP) { 1734 return 0; 1735 } 1736 1737 if (rw64) { 1738 mark_insn_zext(env, reg); 1739 } 1740 1741 return mark_reg_read(env, reg, reg->parent, rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1742 } else { 1743 /* check whether register used as dest operand can be written to */ 1744 if (regno == BPF_REG_FP) { 1745 verbose(env, "frame pointer is read only\n"); 1746 return -EACCES; 1747 } 1748 reg->live |= REG_LIVE_WRITTEN; 1749 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1750 if (t == DST_OP) { 1751 mark_reg_unknown(env, regs, regno); 1752 } 1753 } 1754 return 0; 1755} 1756 1757/* for any branch, call, exit record the history of jmps in the given state */ 1758static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur) 1759{ 1760 u32 cnt = cur->jmp_history_cnt; 1761 struct bpf_idx_pair *p; 1762 1763 cnt++; 1764 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1765 if (!p) { 1766 return -ENOMEM; 1767 } 1768 p[cnt - 1].idx = env->insn_idx; 1769 p[cnt - 1].prev_idx = env->prev_insn_idx; 1770 cur->jmp_history = p; 1771 cur->jmp_history_cnt = cnt; 1772 return 0; 1773} 1774 1775/* Backtrack one insn at a time. If idx is not at the top of recorded 1776 * history then previous instruction came from straight line execution. 1777 */ 1778static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, u32 *history) 1779{ 1780 u32 cnt = *history; 1781 1782 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1783 i = st->jmp_history[cnt - 1].prev_idx; 1784 (*history)--; 1785 } else { 1786 i--; 1787 } 1788 return i; 1789} 1790 1791/* For given verifier state backtrack_insn() is called from the last insn to 1792 * the first insn. Its purpose is to compute a bitmask of registers and 1793 * stack slots that needs precision in the parent verifier state. 1794 */ 1795static int backtrack_insn(struct bpf_verifier_env *env, int idx, u32 *reg_mask, u64 *stack_mask) 1796{ 1797 const struct bpf_insn_cbs cbs = { 1798 .cb_print = verbose, 1799 .private_data = env, 1800 }; 1801 struct bpf_insn *insn = env->prog->insnsi + idx; 1802 u8 class = BPF_CLASS(insn->code); 1803 u8 opcode = BPF_OP(insn->code); 1804 u8 mode = BPF_MODE(insn->code); 1805 u32 dreg = 1u << insn->dst_reg; 1806 u32 sreg = 1u << insn->src_reg; 1807 u32 spi; 1808 1809 if (insn->code == 0) { 1810 return 0; 1811 } 1812 if (env->log.level & BPF_LOG_LEVEL) { 1813 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1814 verbose(env, "%d: ", idx); 1815 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1816 } 1817 1818 if (class == BPF_ALU || class == BPF_ALU64) { 1819 if (!(*reg_mask & dreg)) { 1820 return 0; 1821 } 1822 if (opcode == BPF_MOV) { 1823 if (BPF_SRC(insn->code) == BPF_X) { 1824 /* dreg = sreg 1825 * dreg needs precision after this insn 1826 * sreg needs precision before this insn 1827 */ 1828 *reg_mask &= ~dreg; 1829 *reg_mask |= sreg; 1830 } else { 1831 /* dreg = K 1832 * dreg needs precision after this insn. 1833 * Corresponding register is already marked 1834 * as precise=true in this verifier state. 1835 * No further markings in parent are necessary 1836 */ 1837 *reg_mask &= ~dreg; 1838 } 1839 } else { 1840 if (BPF_SRC(insn->code) == BPF_X) { 1841 /* dreg += sreg 1842 * both dreg and sreg need precision 1843 * before this insn 1844 */ 1845 *reg_mask |= sreg; 1846 } 1847 /* else dreg += K 1848 * dreg still needs precision before this insn 1849 */ 1850 } 1851 } else if (class == BPF_LDX) { 1852 if (!(*reg_mask & dreg)) { 1853 return 0; 1854 } 1855 *reg_mask &= ~dreg; 1856 1857 /* scalars can only be spilled into stack w/o losing precision. 1858 * Load from any other memory can be zero extended. 1859 * The desire to keep that precision is already indicated 1860 * by 'precise' mark in corresponding register of this state. 1861 * No further tracking necessary. 1862 */ 1863 if (insn->src_reg != BPF_REG_FP) { 1864 return 0; 1865 } 1866 if (BPF_SIZE(insn->code) != BPF_DW) { 1867 return 0; 1868 } 1869 1870 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1871 * that [fp - off] slot contains scalar that needs to be 1872 * tracked with precision 1873 */ 1874 spi = (-insn->off - 1) / BPF_REG_SIZE; 1875 if (spi >= VERIFIER_SIXTYFOUR) { 1876 verbose(env, "BUG spi %d\n", spi); 1877 WARN_ONCE(1, "verifier backtracking bug"); 1878 return -EFAULT; 1879 } 1880 *stack_mask |= 1ull << spi; 1881 } else if (class == BPF_STX || class == BPF_ST) { 1882 if (*reg_mask & dreg) { 1883 /* stx & st shouldn't be using _scalar_ dst_reg 1884 * to access memory. It means backtracking 1885 * encountered a case of pointer subtraction. 1886 */ 1887 return -ENOTSUPP; 1888 } 1889 /* scalars can only be spilled into stack */ 1890 if (insn->dst_reg != BPF_REG_FP) { 1891 return 0; 1892 } 1893 if (BPF_SIZE(insn->code) != BPF_DW) { 1894 return 0; 1895 } 1896 spi = (-insn->off - 1) / BPF_REG_SIZE; 1897 if (spi >= VERIFIER_SIXTYFOUR) { 1898 verbose(env, "BUG spi %d\n", spi); 1899 WARN_ONCE(1, "verifier backtracking bug"); 1900 return -EFAULT; 1901 } 1902 if (!(*stack_mask & (1ull << spi))) { 1903 return 0; 1904 } 1905 *stack_mask &= ~(1ull << spi); 1906 if (class == BPF_STX) { 1907 *reg_mask |= sreg; 1908 } 1909 } else if (class == BPF_JMP || class == BPF_JMP32) { 1910 if (opcode == BPF_CALL) { 1911 if (insn->src_reg == BPF_PSEUDO_CALL) { 1912 return -ENOTSUPP; 1913 } 1914 /* regular helper call sets R0 */ 1915 *reg_mask &= ~1; 1916 if (*reg_mask & 0x3f) { 1917 /* if backtracing was looking for registers R1-R5 1918 * they should have been found already. 1919 */ 1920 verbose(env, "BUG regs %x\n", *reg_mask); 1921 WARN_ONCE(1, "verifier backtracking bug"); 1922 return -EFAULT; 1923 } 1924 } else if (opcode == BPF_EXIT) { 1925 return -ENOTSUPP; 1926 } 1927 } else if (class == BPF_LD) { 1928 if (!(*reg_mask & dreg)) { 1929 return 0; 1930 } 1931 *reg_mask &= ~dreg; 1932 /* It's ld_imm64 or ld_abs or ld_ind. 1933 * For ld_imm64 no further tracking of precision 1934 * into parent is necessary 1935 */ 1936 if (mode == BPF_IND || mode == BPF_ABS) { 1937 /* to be analyzed */ 1938 return -ENOTSUPP; 1939 } 1940 } 1941 return 0; 1942} 1943 1944/* the scalar precision tracking algorithm: 1945 * . at the start all registers have precise=false. 1946 * . scalar ranges are tracked as normal through alu and jmp insns. 1947 * . once precise value of the scalar register is used in: 1948 * . ptr + scalar alu 1949 * . if (scalar cond K|scalar) 1950 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1951 * backtrack through the verifier states and mark all registers and 1952 * stack slots with spilled constants that these scalar regisers 1953 * should be precise. 1954 * . during state pruning two registers (or spilled stack slots) 1955 * are equivalent if both are not precise. 1956 * 1957 * Note the verifier cannot simply walk register parentage chain, 1958 * since many different registers and stack slots could have been 1959 * used to compute single precise scalar. 1960 * 1961 * The approach of starting with precise=true for all registers and then 1962 * backtrack to mark a register as not precise when the verifier detects 1963 * that program doesn't care about specific value (e.g., when helper 1964 * takes register as ARG_ANYTHING parameter) is not safe. 1965 * 1966 * It's ok to walk single parentage chain of the verifier states. 1967 * It's possible that this backtracking will go all the way till 1st insn. 1968 * All other branches will be explored for needing precision later. 1969 * 1970 * The backtracking needs to deal with cases like: 1971 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1972 * r9 -= r8 1973 * r5 = r9 1974 * if r5 > 0x79f goto pc+7 1975 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1976 * r5 += 1 1977 * ... 1978 * call bpf_perf_event_output#25 1979 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1980 * 1981 * and this case: 1982 * r6 = 1 1983 * call foo // uses callee's r6 inside to compute r0 1984 * r0 += r6 1985 * if r0 == 0 goto 1986 * 1987 * to track above reg_mask/stack_mask needs to be independent for each frame. 1988 * 1989 * Also if parent's curframe > frame where backtracking started, 1990 * the verifier need to mark registers in both frames, otherwise callees 1991 * may incorrectly prune callers. This is similar to 1992 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1993 * 1994 * For now backtracking falls back into conservative marking. 1995 */ 1996static void mark_all_scalars_precise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1997{ 1998 struct bpf_func_state *func; 1999 struct bpf_reg_state *reg; 2000 int i, j; 2001 2002 /* big hammer: mark all scalars precise in this path. 2003 * pop_stack may still get !precise scalars. 2004 */ 2005 for (; st; st = st->parent) { 2006 for (i = 0; i <= st->curframe; i++) { 2007 func = st->frame[i]; 2008 for (j = 0; j < BPF_REG_FP; j++) { 2009 reg = &func->regs[j]; 2010 if (reg->type != SCALAR_VALUE) { 2011 continue; 2012 } 2013 reg->precise = true; 2014 } 2015 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2016 if (func->stack[j].slot_type[0] != STACK_SPILL) { 2017 continue; 2018 } 2019 reg = &func->stack[j].spilled_ptr; 2020 if (reg->type != SCALAR_VALUE) { 2021 continue; 2022 } 2023 reg->precise = true; 2024 } 2025 } 2026 } 2027} 2028 2029static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, int spi) 2030{ 2031 struct bpf_verifier_state *st = env->cur_state; 2032 int first_idx = st->first_insn_idx; 2033 int last_idx = env->insn_idx; 2034 struct bpf_func_state *func; 2035 struct bpf_reg_state *reg; 2036 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2037 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2038 bool skip_first = true; 2039 bool new_marks = false; 2040 int i, err; 2041 2042 if (!env->bpf_capable) { 2043 return 0; 2044 } 2045 2046 func = st->frame[st->curframe]; 2047 if (regno >= 0) { 2048 reg = &func->regs[regno]; 2049 if (reg->type != SCALAR_VALUE) { 2050 WARN_ONCE(1, "backtracing misuse"); 2051 return -EFAULT; 2052 } 2053 if (!reg->precise) { 2054 new_marks = true; 2055 } else { 2056 reg_mask = 0; 2057 } 2058 reg->precise = true; 2059 } 2060 2061 while (spi >= 0) { 2062 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2063 stack_mask = 0; 2064 break; 2065 } 2066 reg = &func->stack[spi].spilled_ptr; 2067 if (reg->type != SCALAR_VALUE) { 2068 stack_mask = 0; 2069 break; 2070 } 2071 if (!reg->precise) { 2072 new_marks = true; 2073 } else { 2074 stack_mask = 0; 2075 } 2076 reg->precise = true; 2077 break; 2078 } 2079 2080 if (!new_marks) { 2081 return 0; 2082 } 2083 if (!reg_mask && !stack_mask) { 2084 return 0; 2085 } 2086 for (;;) { 2087 DECLARE_BITMAP(mask, VERIFIER_SIXTYFOUR); 2088 u32 history = st->jmp_history_cnt; 2089 2090 if (env->log.level & BPF_LOG_LEVEL) { 2091 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2092 } 2093 for (i = last_idx;;) { 2094 if (skip_first) { 2095 err = 0; 2096 skip_first = false; 2097 } else { 2098 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2099 } 2100 if (err == -ENOTSUPP) { 2101 mark_all_scalars_precise(env, st); 2102 return 0; 2103 } else if (err) { 2104 return err; 2105 } 2106 if (!reg_mask && !stack_mask) { 2107 /* Found assignment(s) into tracked register in this state. 2108 * Since this state is already marked, just return. 2109 * Nothing to be tracked further in the parent state. 2110 */ 2111 return 0; 2112 } 2113 if (i == first_idx) { 2114 break; 2115 } 2116 i = get_prev_insn_idx(st, i, &history); 2117 if (i >= env->prog->len) { 2118 /* This can happen if backtracking reached insn 0 2119 * and there are still reg_mask or stack_mask 2120 * to backtrack. 2121 * It means the backtracking missed the spot where 2122 * particular register was initialized with a constant. 2123 */ 2124 verbose(env, "BUG backtracking idx %d\n", i); 2125 WARN_ONCE(1, "verifier backtracking bug"); 2126 return -EFAULT; 2127 } 2128 } 2129 st = st->parent; 2130 if (!st) { 2131 break; 2132 } 2133 2134 new_marks = false; 2135 func = st->frame[st->curframe]; 2136 bitmap_from_u64(mask, reg_mask); 2137 for_each_set_bit(i, mask, 0x20) 2138 { 2139 reg = &func->regs[i]; 2140 if (reg->type != SCALAR_VALUE) { 2141 reg_mask &= ~(1u << i); 2142 continue; 2143 } 2144 if (!reg->precise) { 2145 new_marks = true; 2146 } 2147 reg->precise = true; 2148 } 2149 2150 bitmap_from_u64(mask, stack_mask); 2151 for_each_set_bit(i, mask, VERIFIER_SIXTYFOUR) 2152 { 2153 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2154 /* the sequence of instructions: 2155 * 2: (bf) r3 = r10 2156 * 3: (7b) *(u64 *)(r3 -8) = r0 2157 * 4: (79) r4 = *(u64 *)(r10 -8) 2158 * doesn't contain jmps. It's backtracked 2159 * as a single block. 2160 * During backtracking insn 3 is not recognized as 2161 * stack access, so at the end of backtracking 2162 * stack slot fp-8 is still marked in stack_mask. 2163 * However the parent state may not have accessed 2164 * fp-8 and it's "unallocated" stack space. 2165 * In such case fallback to conservative. 2166 */ 2167 mark_all_scalars_precise(env, st); 2168 return 0; 2169 } 2170 2171 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2172 stack_mask &= ~(1ull << i); 2173 continue; 2174 } 2175 reg = &func->stack[i].spilled_ptr; 2176 if (reg->type != SCALAR_VALUE) { 2177 stack_mask &= ~(1ull << i); 2178 continue; 2179 } 2180 if (!reg->precise) { 2181 new_marks = true; 2182 } 2183 reg->precise = true; 2184 } 2185 if (env->log.level & BPF_LOG_LEVEL) { 2186 print_verifier_state(env, func); 2187 verbose(env, "parent %s regs=%x stack=%llx marks\n", new_marks ? "didn't have" : "already had", reg_mask, 2188 stack_mask); 2189 } 2190 2191 if (!reg_mask && !stack_mask) { 2192 break; 2193 } 2194 if (!new_marks) { 2195 break; 2196 } 2197 2198 last_idx = st->last_insn_idx; 2199 first_idx = st->first_insn_idx; 2200 } 2201 return 0; 2202} 2203 2204static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2205{ 2206 return __mark_chain_precision(env, regno, -1); 2207} 2208 2209static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2210{ 2211 return __mark_chain_precision(env, -1, spi); 2212} 2213 2214static bool is_spillable_regtype(enum bpf_reg_type type) 2215{ 2216 switch (base_type(type)) { 2217 case PTR_TO_MAP_VALUE: 2218 case PTR_TO_STACK: 2219 case PTR_TO_CTX: 2220 case PTR_TO_PACKET: 2221 case PTR_TO_PACKET_META: 2222 case PTR_TO_PACKET_END: 2223 case PTR_TO_FLOW_KEYS: 2224 case CONST_PTR_TO_MAP: 2225 case PTR_TO_SOCKET: 2226 case PTR_TO_SOCK_COMMON: 2227 case PTR_TO_TCP_SOCK: 2228 case PTR_TO_XDP_SOCK: 2229 case PTR_TO_BTF_ID: 2230 case PTR_TO_BUF: 2231 case PTR_TO_PERCPU_BTF_ID: 2232 case PTR_TO_MEM: 2233 return true; 2234 default: 2235 return false; 2236 } 2237} 2238 2239/* Does this register contain a constant zero? */ 2240static bool register_is_null(struct bpf_reg_state *reg) 2241{ 2242 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2243} 2244 2245static bool register_is_const(struct bpf_reg_state *reg) 2246{ 2247 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2248} 2249 2250static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2251{ 2252 return tnum_is_unknown(reg->var_off) && reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2253 reg->umin_value == 0 && reg->umax_value == U64_MAX && reg->s32_min_value == S32_MIN && 2254 reg->s32_max_value == S32_MAX && reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2255} 2256 2257static bool register_is_bounded(struct bpf_reg_state *reg) 2258{ 2259 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2260} 2261 2262static bool __is_pointer_value(bool allow_ptr_leaks, const struct bpf_reg_state *reg) 2263{ 2264 if (allow_ptr_leaks) { 2265 return false; 2266 } 2267 2268 return reg->type != SCALAR_VALUE; 2269} 2270 2271static void save_register_state(struct bpf_func_state *state, int spi, struct bpf_reg_state *reg) 2272{ 2273 int i; 2274 2275 state->stack[spi].spilled_ptr = *reg; 2276 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2277 2278 for (i = 0; i < BPF_REG_SIZE; i++) { 2279 state->stack[spi].slot_type[i] = STACK_SPILL; 2280 } 2281} 2282 2283/* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2284 * stack boundary and alignment are checked in check_mem_access() 2285 */ 2286static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2287 /* stack frame we're writing to */ 2288 struct bpf_func_state *state, int off, int size, int value_regno, int insn_idx) 2289{ 2290 struct bpf_func_state *cur; /* state of the current function */ 2291 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2292 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2293 struct bpf_reg_state *reg = NULL; 2294 2295 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), state->acquired_refs, true); 2296 if (err) { 2297 return err; 2298 } 2299 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2300 * so it's aligned access and [off, off + size) are within stack limits 2301 */ 2302 if (!env->allow_ptr_leaks && state->stack[spi].slot_type[0] == STACK_SPILL && size != BPF_REG_SIZE) { 2303 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2304 return -EACCES; 2305 } 2306 2307 cur = env->cur_state->frame[env->cur_state->curframe]; 2308 if (value_regno >= 0) { 2309 reg = &cur->regs[value_regno]; 2310 } 2311 if (!env->bypass_spec_v4) { 2312 bool sanitize = reg && is_spillable_regtype(reg->type); 2313 2314 for (i = 0; i < size; i++) { 2315 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2316 sanitize = true; 2317 break; 2318 } 2319 } 2320 2321 if (sanitize) { 2322 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2323 } 2324 } 2325 2326 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && !register_is_null(reg) && env->bpf_capable) { 2327 if (dst_reg != BPF_REG_FP) { 2328 /* The backtracking logic can only recognize explicit 2329 * stack slot address like [fp - 8]. Other spill of 2330 * scalar via different register has to be conervative. 2331 * Backtrack from here and mark all registers as precise 2332 * that contributed into 'reg' being a constant. 2333 */ 2334 err = mark_chain_precision(env, value_regno); 2335 if (err) { 2336 return err; 2337 } 2338 } 2339 save_register_state(state, spi, reg); 2340 } else if (reg && is_spillable_regtype(reg->type)) { 2341 /* register containing pointer is being spilled into stack */ 2342 if (size != BPF_REG_SIZE) { 2343 verbose_linfo(env, insn_idx, "; "); 2344 verbose(env, "invalid size of register spill\n"); 2345 return -EACCES; 2346 } 2347 if (state != cur && reg->type == PTR_TO_STACK) { 2348 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2349 return -EINVAL; 2350 } 2351 save_register_state(state, spi, reg); 2352 } else { 2353 u8 type = STACK_MISC; 2354 2355 /* regular write of data into stack destroys any spilled ptr */ 2356 state->stack[spi].spilled_ptr.type = NOT_INIT; 2357 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2358 if (state->stack[spi].slot_type[0] == STACK_SPILL) { 2359 for (i = 0; i < BPF_REG_SIZE; i++) { 2360 state->stack[spi].slot_type[i] = STACK_MISC; 2361 } 2362 } 2363 2364 /* only mark the slot as written if all 8 bytes were written 2365 * otherwise read propagation may incorrectly stop too soon 2366 * when stack slots are partially written. 2367 * This heuristic means that read propagation will be 2368 * conservative, since it will add reg_live_read marks 2369 * to stack slots all the way to first state when programs 2370 * writes+reads less than 8 bytes 2371 */ 2372 if (size == BPF_REG_SIZE) { 2373 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2374 } 2375 2376 /* when we zero initialize stack slots mark them as such */ 2377 if (reg && register_is_null(reg)) { 2378 /* backtracking doesn't work for STACK_ZERO yet. */ 2379 err = mark_chain_precision(env, value_regno); 2380 if (err) { 2381 return err; 2382 } 2383 type = STACK_ZERO; 2384 } 2385 2386 /* Mark slots affected by this stack write. */ 2387 for (i = 0; i < size; i++) { 2388 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 2389 } 2390 } 2391 return 0; 2392} 2393 2394/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2395 * known to contain a variable offset. 2396 * This function checks whether the write is permitted and conservatively 2397 * tracks the effects of the write, considering that each stack slot in the 2398 * dynamic range is potentially written to. 2399 * 2400 * 'off' includes 'regno->off'. 2401 * 'value_regno' can be -1, meaning that an unknown value is being written to 2402 * the stack. 2403 * 2404 * Spilled pointers in range are not marked as written because we don't know 2405 * what's going to be actually written. This means that read propagation for 2406 * future reads cannot be terminated by this write. 2407 * 2408 * For privileged programs, uninitialized stack slots are considered 2409 * initialized by this write (even though we don't know exactly what offsets 2410 * are going to be written to). The idea is that we don't want the verifier to 2411 * reject future reads that access slots written to through variable offsets. 2412 */ 2413static int check_stack_write_var_off(struct bpf_verifier_env *env, 2414 /* func where register points to */ 2415 struct bpf_func_state *state, int ptr_regno, int off, int size, int value_regno, 2416 int insn_idx) 2417{ 2418 struct bpf_func_state *cur; /* state of the current function */ 2419 int min_off, max_off; 2420 int i, err; 2421 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2422 bool writing_zero = false; 2423 /* set if the fact that we're writing a zero is used to let any 2424 * stack slots remain STACK_ZERO 2425 */ 2426 bool zero_used = false; 2427 2428 cur = env->cur_state->frame[env->cur_state->curframe]; 2429 ptr_reg = &cur->regs[ptr_regno]; 2430 min_off = ptr_reg->smin_value + off; 2431 max_off = ptr_reg->smax_value + off + size; 2432 if (value_regno >= 0) { 2433 value_reg = &cur->regs[value_regno]; 2434 } 2435 if (value_reg && register_is_null(value_reg)) { 2436 writing_zero = true; 2437 } 2438 2439 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE), state->acquired_refs, true); 2440 if (err) { 2441 return err; 2442 } 2443 2444 /* Variable offset writes destroy any spilled pointers in range. */ 2445 for (i = min_off; i < max_off; i++) { 2446 u8 new_type, *stype; 2447 int slot, spi; 2448 2449 slot = -i - 1; 2450 spi = slot / BPF_REG_SIZE; 2451 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2452 2453 if (!env->allow_ptr_leaks && *stype != NOT_INIT && *stype != SCALAR_VALUE) { 2454 /* Reject the write if there's are spilled pointers in 2455 * range. If we didn't reject here, the ptr status 2456 * would be erased below (even though not all slots are 2457 * actually overwritten), possibly opening the door to 2458 * leaks. 2459 */ 2460 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", insn_idx, i); 2461 return -EINVAL; 2462 } 2463 2464 /* Erase all spilled pointers. */ 2465 state->stack[spi].spilled_ptr.type = NOT_INIT; 2466 2467 /* Update the slot type. */ 2468 new_type = STACK_MISC; 2469 if (writing_zero && *stype == STACK_ZERO) { 2470 new_type = STACK_ZERO; 2471 zero_used = true; 2472 } 2473 /* If the slot is STACK_INVALID, we check whether it's OK to 2474 * pretend that it will be initialized by this write. The slot 2475 * might not actually be written to, and so if we mark it as 2476 * initialized future reads might leak uninitialized memory. 2477 * For privileged programs, we will accept such reads to slots 2478 * that may or may not be written because, if we're reject 2479 * them, the error would be too confusing. 2480 */ 2481 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2482 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", insn_idx, 2483 i); 2484 return -EINVAL; 2485 } 2486 *stype = new_type; 2487 } 2488 if (zero_used) { 2489 /* backtracking doesn't work for STACK_ZERO yet. */ 2490 err = mark_chain_precision(env, value_regno); 2491 if (err) { 2492 return err; 2493 } 2494 } 2495 return 0; 2496} 2497 2498/* When register 'dst_regno' is assigned some values from stack[min_off, 2499 * max_off), we set the register's type according to the types of the 2500 * respective stack slots. If all the stack values are known to be zeros, then 2501 * so is the destination reg. Otherwise, the register is considered to be 2502 * SCALAR. This function does not deal with register filling; the caller must 2503 * ensure that all spilled registers in the stack range have been marked as 2504 * read. 2505 */ 2506static void mark_reg_stack_read(struct bpf_verifier_env *env, 2507 /* func where src register points to */ 2508 struct bpf_func_state *ptr_state, int min_off, int max_off, int dst_regno) 2509{ 2510 struct bpf_verifier_state *vstate = env->cur_state; 2511 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2512 int i, slot, spi; 2513 u8 *stype; 2514 int zeros = 0; 2515 2516 for (i = min_off; i < max_off; i++) { 2517 slot = -i - 1; 2518 spi = slot / BPF_REG_SIZE; 2519 stype = ptr_state->stack[spi].slot_type; 2520 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) { 2521 break; 2522 } 2523 zeros++; 2524 } 2525 if (zeros == max_off - min_off) { 2526 /* any access_size read into register is zero extended, 2527 * so the whole register == const_zero 2528 */ 2529 verifier_mark_reg_const_zero(&state->regs[dst_regno]); 2530 /* backtracking doesn't support STACK_ZERO yet, 2531 * so mark it precise here, so that later 2532 * backtracking can stop here. 2533 * Backtracking may not need this if this register 2534 * doesn't participate in pointer adjustment. 2535 * Forward propagation of precise flag is not 2536 * necessary either. This mark is only to stop 2537 * backtracking. Any register that contributed 2538 * to const 0 was marked precise before spill. 2539 */ 2540 state->regs[dst_regno].precise = true; 2541 } else { 2542 /* have read misc data from the stack */ 2543 mark_reg_unknown(env, state->regs, dst_regno); 2544 } 2545 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2546} 2547 2548/* Read the stack at 'off' and put the results into the register indicated by 2549 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2550 * spilled reg. 2551 * 2552 * 'dst_regno' can be -1, meaning that the read value is not going to a 2553 * register. 2554 * 2555 * The access is assumed to be within the current stack bounds. 2556 */ 2557static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2558 /* func where src register points to */ 2559 struct bpf_func_state *reg_state, int off, int size, int dst_regno) 2560{ 2561 struct bpf_verifier_state *vstate = env->cur_state; 2562 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2563 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2564 struct bpf_reg_state *reg; 2565 u8 *stype; 2566 2567 stype = reg_state->stack[spi].slot_type; 2568 reg = ®_state->stack[spi].spilled_ptr; 2569 2570 if (stype[0] == STACK_SPILL) { 2571 if (size != BPF_REG_SIZE) { 2572 if (reg->type != SCALAR_VALUE) { 2573 verbose_linfo(env, env->insn_idx, "; "); 2574 verbose(env, "invalid size of register fill\n"); 2575 return -EACCES; 2576 } 2577 if (dst_regno >= 0) { 2578 mark_reg_unknown(env, state->regs, dst_regno); 2579 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2580 } 2581 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2582 return 0; 2583 } 2584 for (i = 1; i < BPF_REG_SIZE; i++) { 2585 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2586 verbose(env, "corrupted spill memory\n"); 2587 return -EACCES; 2588 } 2589 } 2590 2591 if (dst_regno >= 0) { 2592 /* restore register state from stack */ 2593 state->regs[dst_regno] = *reg; 2594 /* mark reg as written since spilled pointer state likely 2595 * has its liveness marks cleared by is_state_visited() 2596 * which resets stack/reg liveness for state transitions 2597 */ 2598 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2599 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2600 /* If dst_regno==-1, the caller is asking us whether 2601 * it is acceptable to use this value as a SCALAR_VALUE 2602 * (e.g. for XADD). 2603 * We must not allow unprivileged callers to do that 2604 * with spilled pointers. 2605 */ 2606 verbose(env, "leaking pointer from stack off %d\n", off); 2607 return -EACCES; 2608 } 2609 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2610 } else { 2611 u8 type; 2612 2613 for (i = 0; i < size; i++) { 2614 type = stype[(slot - i) % BPF_REG_SIZE]; 2615 if (type == STACK_MISC) { 2616 continue; 2617 } 2618 if (type == STACK_ZERO) { 2619 continue; 2620 } 2621 verbose(env, "invalid read from stack off %d+%d size %d\n", off, i, size); 2622 return -EACCES; 2623 } 2624 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2625 if (dst_regno >= 0) { 2626 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 2627 } 2628 } 2629 return 0; 2630} 2631 2632enum stack_access_src { 2633 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 2634 ACCESS_HELPER = 2, /* the access is performed by a helper */ 2635}; 2636 2637static int check_stack_range_initialized(struct bpf_verifier_env *env, int regno, int off, int access_size, 2638 bool zero_size_allowed, enum stack_access_src type, 2639 struct bpf_call_arg_meta *meta); 2640 2641static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2642{ 2643 return cur_regs(env) + regno; 2644} 2645 2646/* Read the stack at 'ptr_regno + off' and put the result into the register 2647 * 'dst_regno'. 2648 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 2649 * but not its variable offset. 2650 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 2651 * 2652 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 2653 * filling registers (i.e. reads of spilled register cannot be detected when 2654 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 2655 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 2656 * offset; for a fixed offset check_stack_read_fixed_off should be used 2657 * instead. 2658 */ 2659static int check_stack_read_var_off(struct bpf_verifier_env *env, int ptr_regno, int off, int size, int dst_regno) 2660{ 2661 /* The state of the source register. */ 2662 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2663 struct bpf_func_state *ptr_state = func(env, reg); 2664 int err; 2665 int min_off, max_off; 2666 2667 /* Note that we pass a NULL meta, so raw access will not be permitted. 2668 */ 2669 err = check_stack_range_initialized(env, ptr_regno, off, size, false, ACCESS_DIRECT, NULL); 2670 if (err) { 2671 return err; 2672 } 2673 2674 min_off = reg->smin_value + off; 2675 max_off = reg->smax_value + off; 2676 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 2677 return 0; 2678} 2679 2680/* check_stack_read dispatches to check_stack_read_fixed_off or 2681 * check_stack_read_var_off. 2682 * 2683 * The caller must ensure that the offset falls within the allocated stack 2684 * bounds. 2685 * 2686 * 'dst_regno' is a register which will receive the value from the stack. It 2687 * can be -1, meaning that the read value is not going to a register. 2688 */ 2689static int check_stack_read(struct bpf_verifier_env *env, int ptr_regno, int off, int size, int dst_regno) 2690{ 2691 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2692 struct bpf_func_state *state = func(env, reg); 2693 int err; 2694 /* Some accesses are only permitted with a static offset. */ 2695 bool var_off = !tnum_is_const(reg->var_off); 2696 /* The offset is required to be static when reads don't go to a 2697 * register, in order to not leak pointers (see 2698 * check_stack_read_fixed_off). 2699 */ 2700 if (dst_regno < 0 && var_off) { 2701 char tn_buf[48]; 2702 2703 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2704 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 2705 tn_buf, off, size); 2706 return -EACCES; 2707 } 2708 /* Variable offset is prohibited for unprivileged mode for simplicity 2709 * since it requires corresponding support in Spectre masking for stack 2710 * ALU. See also retrieve_ptr_limit(). 2711 */ 2712 if (!env->bypass_spec_v1 && var_off) { 2713 char tn_buf[48]; 2714 2715 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2716 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", ptr_regno, tn_buf); 2717 return -EACCES; 2718 } 2719 2720 if (!var_off) { 2721 off += reg->var_off.value; 2722 err = check_stack_read_fixed_off(env, state, off, size, dst_regno); 2723 } else { 2724 /* Variable offset stack reads need more conservative handling 2725 * than fixed offset ones. Note that dst_regno >= 0 on this 2726 * branch. 2727 */ 2728 err = check_stack_read_var_off(env, ptr_regno, off, size, dst_regno); 2729 } 2730 return err; 2731} 2732 2733/* check_stack_write dispatches to check_stack_write_fixed_off or 2734 * check_stack_write_var_off. 2735 * 2736 * 'ptr_regno' is the register used as a pointer into the stack. 2737 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 2738 * 'value_regno' is the register whose value we're writing to the stack. It can 2739 * be -1, meaning that we're not writing from a register. 2740 * 2741 * The caller must ensure that the offset falls within the maximum stack size. 2742 */ 2743static int check_stack_write(struct bpf_verifier_env *env, int ptr_regno, int off, int size, int value_regno, 2744 int insn_idx) 2745{ 2746 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 2747 struct bpf_func_state *state = func(env, reg); 2748 int err; 2749 2750 if (tnum_is_const(reg->var_off)) { 2751 off += reg->var_off.value; 2752 err = check_stack_write_fixed_off(env, state, off, size, value_regno, insn_idx); 2753 } else { 2754 /* Variable offset stack reads need more conservative handling 2755 * than fixed offset ones. 2756 */ 2757 err = check_stack_write_var_off(env, state, ptr_regno, off, size, value_regno, insn_idx); 2758 } 2759 return err; 2760} 2761 2762static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, int off, int size, enum bpf_access_type type) 2763{ 2764 struct bpf_reg_state *regs = cur_regs(env); 2765 struct bpf_map *map = regs[regno].map_ptr; 2766 u32 cap = bpf_map_flags_to_cap(map); 2767 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2768 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", map->value_size, off, size); 2769 return -EACCES; 2770 } 2771 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2772 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", map->value_size, off, size); 2773 return -EACCES; 2774 } 2775 2776 return 0; 2777} 2778 2779/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2780static int __check_mem_access(struct bpf_verifier_env *env, int regno, int off, int size, u32 mem_size, 2781 bool zero_size_allowed) 2782{ 2783 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2784 struct bpf_reg_state *reg; 2785 2786 if (off >= 0 && size_ok && (u64)off + size <= mem_size) { 2787 return 0; 2788 } 2789 2790 reg = &cur_regs(env)[regno]; 2791 switch (reg->type) { 2792 case PTR_TO_MAP_VALUE: 2793 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", mem_size, off, size); 2794 break; 2795 case PTR_TO_PACKET: 2796 case PTR_TO_PACKET_META: 2797 case PTR_TO_PACKET_END: 2798 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", off, size, regno, 2799 reg->id, off, mem_size); 2800 break; 2801 case PTR_TO_MEM: 2802 default: 2803 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", mem_size, off, size); 2804 } 2805 2806 return -EACCES; 2807} 2808 2809/* check read/write into a memory region with possible variable offset */ 2810static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, int off, int size, u32 mem_size, 2811 bool zero_size_allowed) 2812{ 2813 struct bpf_verifier_state *vstate = env->cur_state; 2814 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2815 struct bpf_reg_state *reg = &state->regs[regno]; 2816 int err; 2817 2818 /* We may have adjusted the register pointing to memory region, so we 2819 * need to try adding each of min_value and max_value to off 2820 * to make sure our theoretical access will be safe. 2821 */ 2822 if (env->log.level & BPF_LOG_LEVEL) { 2823 print_verifier_state(env, state); 2824 } 2825 2826 /* The minimum value is only important with signed 2827 * comparisons where we can't assume the floor of a 2828 * value is 0. If we are using signed variables for our 2829 * index'es we need to make sure that whatever we use 2830 * will have a set floor within our range. 2831 */ 2832 if (reg->smin_value < 0 && 2833 (reg->smin_value == S64_MIN || (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2834 reg->smin_value + off < 0)) { 2835 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", regno); 2836 return -EACCES; 2837 } 2838 err = __check_mem_access(env, regno, reg->smin_value + off, size, mem_size, zero_size_allowed); 2839 if (err) { 2840 verbose(env, "R%d min value is outside of the allowed memory range\n", regno); 2841 return err; 2842 } 2843 2844 /* If we haven't set a max value then we need to bail since we can't be 2845 * sure we won't do bad things. 2846 * If reg->umax_value + off could overflow, treat that as unbounded too. 2847 */ 2848 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2849 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", regno); 2850 return -EACCES; 2851 } 2852 err = __check_mem_access(env, regno, reg->umax_value + off, size, mem_size, zero_size_allowed); 2853 if (err) { 2854 verbose(env, "R%d max value is outside of the allowed memory range\n", regno); 2855 return err; 2856 } 2857 2858 return 0; 2859} 2860 2861/* check read/write into a map element with possible variable offset */ 2862static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off, int size, bool zero_size_allowed) 2863{ 2864 struct bpf_verifier_state *vstate = env->cur_state; 2865 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2866 struct bpf_reg_state *reg = &state->regs[regno]; 2867 struct bpf_map *map = reg->map_ptr; 2868 int err; 2869 2870 err = check_mem_region_access(env, regno, off, size, map->value_size, zero_size_allowed); 2871 if (err) { 2872 return err; 2873 } 2874 2875 if (map_value_has_spin_lock(map)) { 2876 u32 lock = map->spin_lock_off; 2877 2878 /* if any part of struct bpf_spin_lock can be touched by 2879 * load/store reject this program. 2880 * To check that [x1, x2) overlaps with [y1, y2) 2881 * it is sufficient to check x1 < y2 && y1 < x2. 2882 */ 2883 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && lock < reg->umax_value + off + size) { 2884 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2885 return -EACCES; 2886 } 2887 } 2888 return err; 2889} 2890 2891#define MAX_PACKET_OFF 0xffff 2892 2893static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2894{ 2895 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2896} 2897 2898static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, const struct bpf_call_arg_meta *meta, 2899 enum bpf_access_type t) 2900{ 2901 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2902 2903 switch (prog_type) { 2904 /* Program types only with direct read access go here! */ 2905 case BPF_PROG_TYPE_LWT_IN: 2906 case BPF_PROG_TYPE_LWT_OUT: 2907 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2908 case BPF_PROG_TYPE_SK_REUSEPORT: 2909 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2910 case BPF_PROG_TYPE_CGROUP_SKB: 2911 if (t == BPF_WRITE) { 2912 return false; 2913 } 2914 fallthrough; 2915 2916 /* Program types with direct read + write access go here! */ 2917 case BPF_PROG_TYPE_SCHED_CLS: 2918 case BPF_PROG_TYPE_SCHED_ACT: 2919 case BPF_PROG_TYPE_XDP: 2920 case BPF_PROG_TYPE_LWT_XMIT: 2921 case BPF_PROG_TYPE_SK_SKB: 2922 case BPF_PROG_TYPE_SK_MSG: 2923 if (meta) { 2924 return meta->pkt_access; 2925 } 2926 2927 env->seen_direct_write = true; 2928 return true; 2929 2930 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2931 if (t == BPF_WRITE) { 2932 env->seen_direct_write = true; 2933 } 2934 2935 return true; 2936 2937 default: 2938 return false; 2939 } 2940} 2941 2942static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, int size, bool zero_size_allowed) 2943{ 2944 struct bpf_reg_state *regs = cur_regs(env); 2945 struct bpf_reg_state *reg = ®s[regno]; 2946 int err; 2947 2948 /* We may have added a variable offset to the packet pointer; but any 2949 * reg->range we have comes after that. We are only checking the fixed 2950 * offset. 2951 */ 2952 2953 /* We don't allow negative numbers, because we aren't tracking enough 2954 * detail to prove they're safe. 2955 */ 2956 if (reg->smin_value < 0) { 2957 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", regno); 2958 return -EACCES; 2959 } 2960 err = __check_mem_access(env, regno, off, size, reg->range, zero_size_allowed); 2961 if (err) { 2962 verbose(env, "R%d offset is outside of the packet\n", regno); 2963 return err; 2964 } 2965 2966 /* __check_mem_access has made sure "off + size - 1" is within u16. 2967 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2968 * otherwise find_good_pkt_pointers would have refused to set range info 2969 * that __check_mem_access would have rejected this pkt access. 2970 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2971 */ 2972 env->prog->aux->max_pkt_offset = max_t(u32, env->prog->aux->max_pkt_offset, off + reg->umax_value + size - 1); 2973 2974 return err; 2975} 2976 2977/* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2978static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, enum bpf_access_type t, 2979 enum bpf_reg_type *reg_type, u32 *btf_id) 2980{ 2981 struct bpf_insn_access_aux info = { 2982 .reg_type = *reg_type, 2983 .log = &env->log, 2984 }; 2985 2986 if (env->ops->is_valid_access && env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2987 /* A non zero info.ctx_field_size indicates that this field is a 2988 * candidate for later verifier transformation to load the whole 2989 * field and then apply a mask when accessed with a narrower 2990 * access than actual ctx access size. A zero info.ctx_field_size 2991 * will only allow for whole field access and rejects any other 2992 * type of narrower access. 2993 */ 2994 *reg_type = info.reg_type; 2995 2996 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 2997 *btf_id = info.btf_id; 2998 } else { 2999 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3000 } 3001 /* remember the offset of last byte accessed in ctx */ 3002 if (env->prog->aux->max_ctx_offset < off + size) { 3003 env->prog->aux->max_ctx_offset = off + size; 3004 } 3005 return 0; 3006 } 3007 3008 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3009 return -EACCES; 3010} 3011 3012static int check_flow_keys_access(struct bpf_verifier_env *env, int off, int size) 3013{ 3014 if (size < 0 || off < 0 || (u64)off + size > sizeof(struct bpf_flow_keys)) { 3015 verbose(env, "invalid access to flow keys off=%d size=%d\n", off, size); 3016 return -EACCES; 3017 } 3018 return 0; 3019} 3020 3021static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, int size, 3022 enum bpf_access_type t) 3023{ 3024 struct bpf_reg_state *regs = cur_regs(env); 3025 struct bpf_reg_state *reg = ®s[regno]; 3026 struct bpf_insn_access_aux info = {}; 3027 bool valid; 3028 3029 if (reg->smin_value < 0) { 3030 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", regno); 3031 return -EACCES; 3032 } 3033 3034 switch (reg->type) { 3035 case PTR_TO_SOCK_COMMON: 3036 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3037 break; 3038 case PTR_TO_SOCKET: 3039 valid = bpf_sock_is_valid_access(off, size, t, &info); 3040 break; 3041 case PTR_TO_TCP_SOCK: 3042 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3043 break; 3044 case PTR_TO_XDP_SOCK: 3045 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3046 break; 3047 default: 3048 valid = false; 3049 } 3050 3051 if (valid) { 3052 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3053 return 0; 3054 } 3055 3056 verbose(env, "R%d invalid %s access off=%d size=%d\n", regno, reg_type_str(env, reg->type), off, size); 3057 3058 return -EACCES; 3059} 3060 3061static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3062{ 3063 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3064} 3065 3066static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3067{ 3068 const struct bpf_reg_state *reg = reg_state(env, regno); 3069 3070 return reg->type == PTR_TO_CTX; 3071} 3072 3073static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3074{ 3075 const struct bpf_reg_state *reg = reg_state(env, regno); 3076 3077 return type_is_sk_pointer(reg->type); 3078} 3079 3080static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3081{ 3082 const struct bpf_reg_state *reg = reg_state(env, regno); 3083 3084 return type_is_pkt_pointer(reg->type); 3085} 3086 3087static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3088{ 3089 const struct bpf_reg_state *reg = reg_state(env, regno); 3090 3091 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3092 return reg->type == PTR_TO_FLOW_KEYS; 3093} 3094 3095static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int off, int size, 3096 bool strict) 3097{ 3098 struct tnum reg_off; 3099 int ip_align; 3100 3101 /* Byte size accesses are always allowed. */ 3102 if (!strict || size == 1) { 3103 return 0; 3104 } 3105 3106 /* For platforms that do not have a Kconfig enabling 3107 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3108 * NET_IP_ALIGN is universally set to '2'. And on platforms 3109 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3110 * to this code only in strict mode where we want to emulate 3111 * the NET_IP_ALIGN==2 checking. Therefore use an 3112 * unconditional IP align value of '2'. 3113 */ 3114 ip_align = 2; 3115 3116 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3117 if (!tnum_is_aligned(reg_off, size)) { 3118 char tn_buf[48]; 3119 3120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3121 verbose(env, "misaligned packet access off %d+%s+%d+%d size %d\n", ip_align, tn_buf, reg->off, off, size); 3122 return -EACCES; 3123 } 3124 3125 return 0; 3126} 3127 3128static int check_generic_ptr_alignment(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, 3129 const char *pointer_desc, int off, int size, bool strict) 3130{ 3131 struct tnum reg_off; 3132 3133 /* Byte size accesses are always allowed. */ 3134 if (!strict || size == 1) { 3135 return 0; 3136 } 3137 3138 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3139 if (!tnum_is_aligned(reg_off, size)) { 3140 char tn_buf[48]; 3141 3142 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3143 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", pointer_desc, tn_buf, reg->off, off, size); 3144 return -EACCES; 3145 } 3146 3147 return 0; 3148} 3149 3150static int check_ptr_alignment(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int off, int size, 3151 bool strict_alignment_once) 3152{ 3153 bool strict = env->strict_alignment || strict_alignment_once; 3154 const char *pointer_desc = ""; 3155 3156 switch (reg->type) { 3157 case PTR_TO_PACKET: 3158 case PTR_TO_PACKET_META: 3159 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3160 * right in front, treat it the very same way. 3161 */ 3162 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3163 case PTR_TO_FLOW_KEYS: 3164 pointer_desc = "flow keys "; 3165 break; 3166 case PTR_TO_MAP_VALUE: 3167 pointer_desc = "value "; 3168 break; 3169 case PTR_TO_CTX: 3170 pointer_desc = "context "; 3171 break; 3172 case PTR_TO_STACK: 3173 pointer_desc = "stack "; 3174 /* The stack spill tracking logic in check_stack_write_fixed_off() 3175 * and check_stack_read_fixed_off() relies on stack accesses being 3176 * aligned. 3177 */ 3178 strict = true; 3179 break; 3180 case PTR_TO_SOCKET: 3181 pointer_desc = "sock "; 3182 break; 3183 case PTR_TO_SOCK_COMMON: 3184 pointer_desc = "sock_common "; 3185 break; 3186 case PTR_TO_TCP_SOCK: 3187 pointer_desc = "tcp_sock "; 3188 break; 3189 case PTR_TO_XDP_SOCK: 3190 pointer_desc = "xdp_sock "; 3191 break; 3192 default: 3193 break; 3194 } 3195 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, strict); 3196} 3197 3198static int update_stack_depth(struct bpf_verifier_env *env, const struct bpf_func_state *func, int off) 3199{ 3200 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3201 3202 if (stack >= -off) { 3203 return 0; 3204 } 3205 3206 /* update known max for given subprogram */ 3207 env->subprog_info[func->subprogno].stack_depth = -off; 3208 return 0; 3209} 3210 3211/* starting from main bpf function walk all instructions of the function 3212 * and recursively walk all callees that given function can call. 3213 * Ignore jump and exit insns. 3214 * Since recursion is prevented by check_cfg() this algorithm 3215 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3216 */ 3217static int check_max_stack_depth(struct bpf_verifier_env *env) 3218{ 3219 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3220 struct bpf_subprog_info *subprog = env->subprog_info; 3221 struct bpf_insn *insn = env->prog->insnsi; 3222 bool tail_call_reachable = false; 3223 int ret_insn[MAX_CALL_FRAMES]; 3224 int ret_prog[MAX_CALL_FRAMES]; 3225 int j; 3226 int process_flag = 0; 3227 int continue_flag = 0; 3228 3229 while (1) { 3230 if (process_flag == 0 && continue_flag == 0) { 3231 /* protect against potential stack overflow that might happen when 3232 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3233 * depth for such case down to 256 so that the worst case scenario 3234 * would result in 8k stack size (32 which is tailcall limit * 256 = 3235 * 8k). 3236 * 3237 * To get the idea what might happen, see an example: 3238 * func1 -> sub rsp, 128 3239 * subfunc1 -> sub rsp, 256 3240 * tailcall1 -> add rsp, 256 3241 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3242 * subfunc2 -> sub rsp, 64 3243 * subfunc22 -> sub rsp, 128 3244 * tailcall2 -> add rsp, 128 3245 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3246 * 3247 * tailcall will unwind the current stack frame but it will not get rid 3248 * of caller's stack as shown on the example above. 3249 */ 3250 if (idx && subprog[idx].has_tail_call && depth >= VERIFIER_TWOHUNDREDFIFTYSIX) { 3251 verbose(env, "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3252 depth); 3253 return -EACCES; 3254 } 3255 /* round up to 32-bytes, since this is granularity 3256 * of interpreter stack size 3257 */ 3258 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), VERIFIER_THIRTYTWO); 3259 if (depth > MAX_BPF_STACK) { 3260 verbose(env, "combined stack size of %d calls is %d. Too large\n", frame + 1, depth); 3261 return -EACCES; 3262 } 3263 } 3264 while (1) { 3265 continue_flag = 0; 3266 subprog_end = subprog[idx + 1].start; 3267 for (; i < subprog_end; i++) { 3268 if (insn[i].code != (BPF_JMP | BPF_CALL)) { 3269 continue; 3270 } 3271 if (insn[i].src_reg != BPF_PSEUDO_CALL) { 3272 continue; 3273 } 3274 /* remember insn and function to return to */ 3275 ret_insn[frame] = i + 1; 3276 ret_prog[frame] = idx; 3277 3278 /* find the callee */ 3279 i = i + insn[i].imm + 1; 3280 idx = find_subprog(env, i); 3281 if (idx < 0) { 3282 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", i); 3283 return -EFAULT; 3284 } 3285 3286 if (subprog[idx].has_tail_call) { 3287 tail_call_reachable = true; 3288 } 3289 3290 frame++; 3291 if (frame >= MAX_CALL_FRAMES) { 3292 verbose(env, "the call stack of %d frames is too deep !\n", frame); 3293 return -E2BIG; 3294 } 3295 process_flag = 1; 3296 break; 3297 } 3298 if (process_flag == 1) { 3299 break; 3300 } 3301 } 3302 if (process_flag == 1) { 3303 process_flag = 0; 3304 continue; 3305 } 3306 /* if tail call got detected across bpf2bpf calls then mark each of the 3307 * currently present subprog frames as tail call reachable subprogs; 3308 * this info will be utilized by JIT so that we will be preserving the 3309 * tail call counter throughout bpf2bpf calls combined with tailcalls 3310 */ 3311 if (tail_call_reachable) { 3312 for (j = 0; j < frame; j++) { 3313 subprog[ret_prog[j]].tail_call_reachable = true; 3314 } 3315 } 3316 if (subprog[0].tail_call_reachable) { 3317 env->prog->aux->tail_call_reachable = true; 3318 } 3319 3320 /* end of for() loop means the last insn of the 'subprog' 3321 * was reached. Doesn't matter whether it was JA or EXIT 3322 */ 3323 if (frame == 0) { 3324 return 0; 3325 } 3326 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), VERIFIER_THIRTYTWO); 3327 frame--; 3328 i = ret_insn[frame]; 3329 idx = ret_prog[frame]; 3330 continue_flag = 1; 3331 continue; 3332 } 3333} 3334 3335#ifndef CONFIG_BPF_JIT_ALWAYS_ON 3336static int get_callee_stack_depth(struct bpf_verifier_env *env, const struct bpf_insn *insn, int idx) 3337{ 3338 int start = idx + insn->imm + 1, subprog; 3339 3340 subprog = find_subprog(env, start); 3341 if (subprog < 0) { 3342 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", start); 3343 return -EFAULT; 3344 } 3345 return env->subprog_info[subprog].stack_depth; 3346} 3347#endif 3348 3349static int __check_ptr_off_reg(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno, 3350 bool fixed_off_ok) 3351{ 3352 /* Access to this pointer-typed register or passing it to a helper 3353 * is only allowed in its original, unmodified form. 3354 */ 3355 3356 if (!fixed_off_ok && reg->off) { 3357 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", reg_type_str(env, reg->type), regno, 3358 reg->off); 3359 return -EACCES; 3360 } 3361 3362 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3363 char tn_buf[48]; 3364 3365 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3366 verbose(env, "variable %s access var_off=%s disallowed\n", reg_type_str(env, reg->type), tn_buf); 3367 return -EACCES; 3368 } 3369 3370 return 0; 3371} 3372 3373int check_ptr_off_reg(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno) 3374{ 3375 return __check_ptr_off_reg(env, reg, regno, false); 3376} 3377 3378static int __check_buffer_access(struct bpf_verifier_env *env, const char *buf_info, const struct bpf_reg_state *reg, 3379 int regno, int off, int size) 3380{ 3381 if (off < 0) { 3382 verbose(env, "R%d invalid %s buffer access: off=%d, size=%d\n", regno, buf_info, off, size); 3383 return -EACCES; 3384 } 3385 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3386 char tn_buf[48]; 3387 3388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3389 verbose(env, "R%d invalid variable buffer offset: off=%d, var_off=%s\n", regno, off, tn_buf); 3390 return -EACCES; 3391 } 3392 3393 return 0; 3394} 3395 3396static int check_tp_buffer_access(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno, int off, 3397 int size) 3398{ 3399 int err; 3400 3401 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3402 if (err) { 3403 return err; 3404 } 3405 3406 if (off + size > env->prog->aux->max_tp_access) { 3407 env->prog->aux->max_tp_access = off + size; 3408 } 3409 3410 return 0; 3411} 3412 3413static int check_buffer_access(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno, int off, 3414 int size, bool zero_size_allowed, const char *buf_info, u32 *max_access) 3415{ 3416 int err; 3417 3418 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3419 if (err) { 3420 return err; 3421 } 3422 3423 if (off + size > *max_access) { 3424 *max_access = off + size; 3425 } 3426 3427 return 0; 3428} 3429 3430/* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3431static void zext_32_to_64(struct bpf_reg_state *reg) 3432{ 3433 reg->var_off = tnum_subreg(reg->var_off); 3434 verifier_reg_assign_32_into_64(reg); 3435} 3436 3437/* truncate register to smaller size (in bytes) 3438 * must be called with size < BPF_REG_SIZE 3439 */ 3440static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3441{ 3442 u64 mask; 3443 3444 /* clear high bits in bit representation */ 3445 reg->var_off = tnum_cast(reg->var_off, size); 3446 3447 /* fix arithmetic bounds */ 3448 mask = ((u64)1 << (size * VERIFIER_EIGHT)) - 1; 3449 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3450 reg->umin_value &= mask; 3451 reg->umax_value &= mask; 3452 } else { 3453 reg->umin_value = 0; 3454 reg->umax_value = mask; 3455 } 3456 reg->smin_value = reg->umin_value; 3457 reg->smax_value = reg->umax_value; 3458 3459 /* If size is smaller than 32bit register the 32bit register 3460 * values are also truncated so we push 64-bit bounds into 3461 * 32-bit bounds. Above were truncated < 32-bits already. 3462 */ 3463 if (size >= VERIFIER_FOUR) { 3464 return; 3465 } 3466 __reg_combine_64_into_32(reg); 3467} 3468 3469static bool bpf_map_is_rdonly(const struct bpf_map *map) 3470{ 3471 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3472} 3473 3474static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3475{ 3476 void *ptr; 3477 u64 addr; 3478 int err; 3479 3480 err = map->ops->map_direct_value_addr(map, &addr, off); 3481 if (err) { 3482 return err; 3483 } 3484 ptr = (void *)(long)addr + off; 3485 3486 switch (size) { 3487 case sizeof(u8): 3488 *val = (u64) * (u8 *)ptr; 3489 break; 3490 case sizeof(u16): 3491 *val = (u64) * (u16 *)ptr; 3492 break; 3493 case sizeof(u32): 3494 *val = (u64) * (u32 *)ptr; 3495 break; 3496 case sizeof(u64): 3497 *val = *(u64 *)ptr; 3498 break; 3499 default: 3500 return -EINVAL; 3501 } 3502 return 0; 3503} 3504 3505static int check_ptr_to_btf_access(struct bpf_verifier_env *env, struct bpf_reg_state *regs, int regno, int off, 3506 int size, enum bpf_access_type atype, int value_regno) 3507{ 3508 struct bpf_reg_state *reg = regs + regno; 3509 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3510 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3511 u32 btf_id; 3512 int ret; 3513 3514 if (off < 0) { 3515 verbose(env, "R%d is ptr_%s invalid negative access: off=%d\n", regno, tname, off); 3516 return -EACCES; 3517 } 3518 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3519 char tn_buf[48]; 3520 3521 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3522 verbose(env, "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", regno, tname, off, tn_buf); 3523 return -EACCES; 3524 } 3525 3526 if (env->ops->btf_struct_access) { 3527 ret = env->ops->btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3528 } else { 3529 if (atype != BPF_READ) { 3530 verbose(env, "only read is supported\n"); 3531 return -EACCES; 3532 } 3533 3534 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3535 } 3536 3537 if (ret < 0) { 3538 return ret; 3539 } 3540 3541 if (atype == BPF_READ && value_regno >= 0) { 3542 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3543 } 3544 3545 return 0; 3546} 3547 3548static int check_ptr_to_map_access(struct bpf_verifier_env *env, struct bpf_reg_state *regs, int regno, int off, 3549 int size, enum bpf_access_type atype, int value_regno) 3550{ 3551 struct bpf_reg_state *reg = regs + regno; 3552 struct bpf_map *map = reg->map_ptr; 3553 const struct btf_type *t; 3554 const char *tname; 3555 u32 btf_id; 3556 int ret; 3557 3558 if (!btf_vmlinux) { 3559 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3560 return -ENOTSUPP; 3561 } 3562 3563 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3564 verbose(env, "map_ptr access not supported for map type %d\n", map->map_type); 3565 return -ENOTSUPP; 3566 } 3567 3568 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3569 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3570 3571 if (!env->allow_ptr_to_map_access) { 3572 verbose(env, "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", tname); 3573 return -EPERM; 3574 } 3575 3576 if (off < 0) { 3577 verbose(env, "R%d is %s invalid negative access: off=%d\n", regno, tname, off); 3578 return -EACCES; 3579 } 3580 3581 if (atype != BPF_READ) { 3582 verbose(env, "only read from %s is supported\n", tname); 3583 return -EACCES; 3584 } 3585 3586 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3587 if (ret < 0) { 3588 return ret; 3589 } 3590 3591 if (value_regno >= 0) { 3592 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3593 } 3594 3595 return 0; 3596} 3597 3598/* Check that the stack access at the given offset is within bounds. The 3599 * maximum valid offset is -1. 3600 * 3601 * The minimum valid offset is -MAX_BPF_STACK for writes, and 3602 * -state->allocated_stack for reads. 3603 */ 3604static int check_stack_slot_within_bounds(int off, struct bpf_func_state *state, enum bpf_access_type t) 3605{ 3606 int min_valid_off; 3607 3608 if (t == BPF_WRITE) { 3609 min_valid_off = -MAX_BPF_STACK; 3610 } else { 3611 min_valid_off = -state->allocated_stack; 3612 } 3613 3614 if (off < min_valid_off || off > -1) { 3615 return -EACCES; 3616 } 3617 return 0; 3618} 3619 3620/* Check that the stack access at 'regno + off' falls within the maximum stack 3621 * bounds. 3622 * 3623 * 'off' includes `regno->offset`, but not its dynamic part (if any). 3624 */ 3625static int check_stack_access_within_bounds(struct bpf_verifier_env *env, int regno, int off, int access_size, 3626 enum stack_access_src src, enum bpf_access_type type) 3627{ 3628 struct bpf_reg_state *regs = cur_regs(env); 3629 struct bpf_reg_state *reg = regs + regno; 3630 struct bpf_func_state *state = func(env, reg); 3631 int min_off, max_off; 3632 int err; 3633 char *err_extra; 3634 3635 if (src == ACCESS_HELPER) { 3636 /* We don't know if helpers are reading or writing (or both). */ 3637 err_extra = " indirect access to"; 3638 } else if (type == BPF_READ) { 3639 err_extra = " read from"; 3640 } else { 3641 err_extra = " write to"; 3642 } 3643 3644 if (tnum_is_const(reg->var_off)) { 3645 min_off = reg->var_off.value + off; 3646 if (access_size > 0) { 3647 max_off = min_off + access_size - 1; 3648 } else { 3649 max_off = min_off; 3650 } 3651 } else { 3652 if (reg->smax_value >= BPF_MAX_VAR_OFF || reg->smin_value <= -BPF_MAX_VAR_OFF) { 3653 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", err_extra, regno); 3654 return -EACCES; 3655 } 3656 min_off = reg->smin_value + off; 3657 if (access_size > 0) { 3658 max_off = reg->smax_value + off + access_size - 1; 3659 } else { 3660 max_off = min_off; 3661 } 3662 } 3663 3664 err = check_stack_slot_within_bounds(min_off, state, type); 3665 if (!err) { 3666 err = check_stack_slot_within_bounds(max_off, state, type); 3667 } 3668 3669 if (err) { 3670 if (tnum_is_const(reg->var_off)) { 3671 verbose(env, "invalid%s stack R%d off=%d size=%d\n", err_extra, regno, off, access_size); 3672 } else { 3673 char tn_buf[48]; 3674 3675 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3676 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", err_extra, regno, tn_buf, 3677 access_size); 3678 } 3679 } 3680 return err; 3681} 3682 3683/* check whether memory at (regno + off) is accessible for t = (read | write) 3684 * if t==write, value_regno is a register which value is stored into memory 3685 * if t==read, value_regno is a register which will receive the value from memory 3686 * if t==write && value_regno==-1, some unknown value is stored into memory 3687 * if t==read && value_regno==-1, don't care what we read from memory 3688 */ 3689static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, int bpf_size, 3690 enum bpf_access_type t, int value_regno, bool strict_alignment_once) 3691{ 3692 struct bpf_reg_state *regs = cur_regs(env); 3693 struct bpf_reg_state *reg = regs + regno; 3694 struct bpf_func_state *state; 3695 int size, err = 0; 3696 3697 size = bpf_size_to_bytes(bpf_size); 3698 if (size < 0) { 3699 return size; 3700 } 3701 3702 /* alignment checks will add in reg->off themselves */ 3703 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3704 if (err) { 3705 return err; 3706 } 3707 3708 /* for access checks, reg->off is just part of off */ 3709 off += reg->off; 3710 3711 if (reg->type == PTR_TO_MAP_VALUE) { 3712 if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { 3713 verbose(env, "R%d leaks addr into map\n", value_regno); 3714 return -EACCES; 3715 } 3716 err = check_map_access_type(env, regno, off, size, t); 3717 if (err) { 3718 return err; 3719 } 3720 err = check_map_access(env, regno, off, size, false); 3721 if (!err && t == BPF_READ && value_regno >= 0) { 3722 struct bpf_map *map = reg->map_ptr; 3723 3724 /* if map is read-only, track its contents as scalars */ 3725 if (tnum_is_const(reg->var_off) && bpf_map_is_rdonly(map) && map->ops->map_direct_value_addr) { 3726 int map_off = off + reg->var_off.value; 3727 u64 val = 0; 3728 3729 err = bpf_map_direct_read(map, map_off, size, &val); 3730 if (err) { 3731 return err; 3732 } 3733 3734 regs[value_regno].type = SCALAR_VALUE; 3735 verifier_mark_reg_known(®s[value_regno], val); 3736 } else { 3737 mark_reg_unknown(env, regs, value_regno); 3738 } 3739 } 3740 } else if (base_type(reg->type) == PTR_TO_MEM) { 3741 bool rdonly_mem = type_is_rdonly_mem(reg->type); 3742 3743 if (type_may_be_null(reg->type)) { 3744 verbose(env, "R%d invalid mem access '%s'\n", regno, reg_type_str(env, reg->type)); 3745 return -EACCES; 3746 } 3747 3748 if (t == BPF_WRITE && rdonly_mem) { 3749 verbose(env, "R%d cannot write into %s\n", regno, reg_type_str(env, reg->type)); 3750 return -EACCES; 3751 } 3752 3753 if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { 3754 verbose(env, "R%d leaks addr into mem\n", value_regno); 3755 return -EACCES; 3756 } 3757 3758 err = check_mem_region_access(env, regno, off, size, reg->mem_size, false); 3759 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) { 3760 mark_reg_unknown(env, regs, value_regno); 3761 } 3762 } else if (reg->type == PTR_TO_CTX) { 3763 enum bpf_reg_type reg_type = SCALAR_VALUE; 3764 u32 btf_id = 0; 3765 3766 if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { 3767 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3768 return -EACCES; 3769 } 3770 3771 err = check_ptr_off_reg(env, reg, regno); 3772 if (err < 0) { 3773 return err; 3774 } 3775 3776 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3777 if (err) { 3778 verbose_linfo(env, insn_idx, "; "); 3779 } 3780 if (!err && t == BPF_READ && value_regno >= 0) { 3781 /* ctx access returns either a scalar, or a 3782 * PTR_TO_PACKET[_META,_END]. In the latter 3783 * case, we know the offset is zero. 3784 */ 3785 if (reg_type == SCALAR_VALUE) { 3786 mark_reg_unknown(env, regs, value_regno); 3787 } else { 3788 mark_reg_known_zero(env, regs, value_regno); 3789 if (type_may_be_null(reg_type)) { 3790 regs[value_regno].id = ++env->id_gen; 3791 } 3792 /* A load of ctx field could have different 3793 * actual load size with the one encoded in the 3794 * insn. When the dst is PTR, it is for sure not 3795 * a sub-register. 3796 */ 3797 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3798 if (base_type(reg_type) == PTR_TO_BTF_ID) { 3799 regs[value_regno].btf_id = btf_id; 3800 } 3801 } 3802 regs[value_regno].type = reg_type; 3803 } 3804 } else if (reg->type == PTR_TO_STACK) { 3805 /* Basic bounds checks. */ 3806 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 3807 if (err) { 3808 return err; 3809 } 3810 state = func(env, reg); 3811 err = update_stack_depth(env, state, off); 3812 if (err) { 3813 return err; 3814 } 3815 3816 if (t == BPF_READ) { 3817 err = check_stack_read(env, regno, off, size, value_regno); 3818 } else { 3819 err = check_stack_write(env, regno, off, size, value_regno, insn_idx); 3820 } 3821 } else if (reg_is_pkt_pointer(reg)) { 3822 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3823 verbose(env, "cannot write into packet\n"); 3824 return -EACCES; 3825 } 3826 if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { 3827 verbose(env, "R%d leaks addr into packet\n", value_regno); 3828 return -EACCES; 3829 } 3830 err = check_packet_access(env, regno, off, size, false); 3831 if (!err && t == BPF_READ && value_regno >= 0) { 3832 mark_reg_unknown(env, regs, value_regno); 3833 } 3834 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3835 if (t == BPF_WRITE && value_regno >= 0 && is_pointer_value(env, value_regno)) { 3836 verbose(env, "R%d leaks addr into flow keys\n", value_regno); 3837 return -EACCES; 3838 } 3839 3840 err = check_flow_keys_access(env, off, size); 3841 if (!err && t == BPF_READ && value_regno >= 0) { 3842 mark_reg_unknown(env, regs, value_regno); 3843 } 3844 } else if (type_is_sk_pointer(reg->type)) { 3845 if (t == BPF_WRITE) { 3846 verbose(env, "R%d cannot write into %s\n", regno, reg_type_str(env, reg->type)); 3847 return -EACCES; 3848 } 3849 err = check_sock_access(env, insn_idx, regno, off, size, t); 3850 if (!err && value_regno >= 0) { 3851 mark_reg_unknown(env, regs, value_regno); 3852 } 3853 } else if (reg->type == PTR_TO_TP_BUFFER) { 3854 err = check_tp_buffer_access(env, reg, regno, off, size); 3855 if (!err && t == BPF_READ && value_regno >= 0) { 3856 mark_reg_unknown(env, regs, value_regno); 3857 } 3858 } else if (reg->type == PTR_TO_BTF_ID) { 3859 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, value_regno); 3860 } else if (reg->type == CONST_PTR_TO_MAP) { 3861 err = check_ptr_to_map_access(env, regs, regno, off, size, t, value_regno); 3862 } else if (base_type(reg->type) == PTR_TO_BUF) { 3863 bool rdonly_mem = type_is_rdonly_mem(reg->type); 3864 const char *buf_info; 3865 u32 *max_access; 3866 3867 if (rdonly_mem) { 3868 if (t == BPF_WRITE) { 3869 verbose(env, "R%d cannot write into %s\n", regno, reg_type_str(env, reg->type)); 3870 return -EACCES; 3871 } 3872 buf_info = "rdonly"; 3873 max_access = &env->prog->aux->max_rdonly_access; 3874 } else { 3875 buf_info = "rdwr"; 3876 max_access = &env->prog->aux->max_rdwr_access; 3877 } 3878 3879 err = check_buffer_access(env, reg, regno, off, size, false, buf_info, max_access); 3880 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) { 3881 mark_reg_unknown(env, regs, value_regno); 3882 } 3883 } else { 3884 verbose(env, "R%d invalid mem access '%s'\n", regno, reg_type_str(env, reg->type)); 3885 return -EACCES; 3886 } 3887 3888 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && regs[value_regno].type == SCALAR_VALUE) { 3889 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3890 coerce_reg_to_size(®s[value_regno], size); 3891 } 3892 return err; 3893} 3894 3895static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3896{ 3897 int err; 3898 3899 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || insn->imm != 0) { 3900 verbose(env, "BPF_XADD uses reserved fields\n"); 3901 return -EINVAL; 3902 } 3903 3904 /* check src1 operand */ 3905 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3906 if (err) { 3907 return err; 3908 } 3909 3910 /* check src2 operand */ 3911 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3912 if (err) { 3913 return err; 3914 } 3915 3916 if (is_pointer_value(env, insn->src_reg)) { 3917 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3918 return -EACCES; 3919 } 3920 3921 if (is_ctx_reg(env, insn->dst_reg) || is_pkt_reg(env, insn->dst_reg) || is_flow_key_reg(env, insn->dst_reg) || 3922 is_sk_reg(env, insn->dst_reg)) { 3923 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", insn->dst_reg, 3924 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 3925 return -EACCES; 3926 } 3927 3928 /* check whether atomic_add can read the memory */ 3929 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_READ, -1, true); 3930 if (err) { 3931 return err; 3932 } 3933 3934 /* check whether atomic_add can write into the same memory */ 3935 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3936} 3937 3938/* When register 'regno' is used to read the stack (either directly or through 3939 * a helper function) make sure that it's within stack boundary and, depending 3940 * on the access type, that all elements of the stack are initialized. 3941 * 3942 * 'off' includes 'regno->off', but not its dynamic part (if any). 3943 * 3944 * All registers that have been spilled on the stack in the slots within the 3945 * read offsets are marked as read. 3946 */ 3947static int check_stack_range_initialized(struct bpf_verifier_env *env, int regno, int off, int access_size, 3948 bool zero_size_allowed, enum stack_access_src type, 3949 struct bpf_call_arg_meta *meta) 3950{ 3951 struct bpf_reg_state *reg = reg_state(env, regno); 3952 struct bpf_func_state *state = func(env, reg); 3953 int err, min_off, max_off, i, j, slot, spi; 3954 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 3955 enum bpf_access_type bounds_check_type; 3956 /* Some accesses can write anything into the stack, others are 3957 * read-only. 3958 */ 3959 bool clobber = false; 3960 3961 if (access_size == 0 && !zero_size_allowed) { 3962 verbose(env, "invalid zero-sized read\n"); 3963 return -EACCES; 3964 } 3965 3966 if (type == ACCESS_HELPER) { 3967 /* The bounds checks for writes are more permissive than for 3968 * reads. However, if raw_mode is not set, we'll do extra 3969 * checks below. 3970 */ 3971 bounds_check_type = BPF_WRITE; 3972 clobber = true; 3973 } else { 3974 bounds_check_type = BPF_READ; 3975 } 3976 err = check_stack_access_within_bounds(env, regno, off, access_size, type, bounds_check_type); 3977 if (err) { 3978 return err; 3979 } 3980 3981 if (tnum_is_const(reg->var_off)) { 3982 min_off = max_off = reg->var_off.value + off; 3983 } else { 3984 /* Variable offset is prohibited for unprivileged mode for 3985 * simplicity since it requires corresponding support in 3986 * Spectre masking for stack ALU. 3987 * See also retrieve_ptr_limit(). 3988 */ 3989 if (!env->bypass_spec_v1) { 3990 char tn_buf[48]; 3991 3992 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3993 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", regno, err_extra, 3994 tn_buf); 3995 return -EACCES; 3996 } 3997 /* Only initialized buffer on stack is allowed to be accessed 3998 * with variable offset. With uninitialized buffer it's hard to 3999 * guarantee that whole memory is marked as initialized on 4000 * helper return since specific bounds are unknown what may 4001 * cause uninitialized stack leaking. 4002 */ 4003 if (meta && meta->raw_mode) { 4004 meta = NULL; 4005 } 4006 4007 min_off = reg->smin_value + off; 4008 max_off = reg->smax_value + off; 4009 } 4010 4011 if (meta && meta->raw_mode) { 4012 meta->access_size = access_size; 4013 meta->regno = regno; 4014 return 0; 4015 } 4016 4017 for (i = min_off; i < max_off + access_size; i++) { 4018 u8 *stype; 4019 4020 slot = -i - 1; 4021 spi = slot / BPF_REG_SIZE; 4022 if (state->allocated_stack <= slot) { 4023 goto err; 4024 } 4025 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4026 if (*stype == STACK_MISC) { 4027 goto mark; 4028 } 4029 if (*stype == STACK_ZERO) { 4030 if (clobber) { 4031 /* helper can write anything into the stack */ 4032 *stype = STACK_MISC; 4033 } 4034 goto mark; 4035 } 4036 4037 if (state->stack[spi].slot_type[0] == STACK_SPILL && state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) { 4038 goto mark; 4039 } 4040 4041 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4042 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || env->allow_ptr_leaks)) { 4043 if (clobber) { 4044 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4045 for (j = 0; j < BPF_REG_SIZE; j++) { 4046 state->stack[spi].slot_type[j] = STACK_MISC; 4047 } 4048 } 4049 goto mark; 4050 } 4051 4052 err: 4053 if (tnum_is_const(reg->var_off)) { 4054 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", err_extra, regno, min_off, i - min_off, 4055 access_size); 4056 } else { 4057 char tn_buf[48]; 4058 4059 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4060 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", err_extra, regno, tn_buf, i - min_off, 4061 access_size); 4062 } 4063 return -EACCES; 4064 mark: 4065 /* reading any byte out of 8-byte 'spill_slot' will cause 4066 * the whole slot to be marked as 'read' 4067 */ 4068 mark_reg_read(env, &state->stack[spi].spilled_ptr, state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 4069 } 4070 return update_stack_depth(env, state, min_off); 4071} 4072 4073static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, int access_size, bool zero_size_allowed, 4074 struct bpf_call_arg_meta *meta) 4075{ 4076 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4077 const char *buf_info; 4078 u32 *max_access; 4079 4080 switch (base_type(reg->type)) { 4081 case PTR_TO_PACKET: 4082 case PTR_TO_PACKET_META: 4083 return check_packet_access(env, regno, reg->off, access_size, zero_size_allowed); 4084 case PTR_TO_MAP_VALUE: 4085 if (check_map_access_type(env, regno, reg->off, access_size, 4086 meta && meta->raw_mode ? BPF_WRITE : BPF_READ)) { 4087 return -EACCES; 4088 } 4089 return check_map_access(env, regno, reg->off, access_size, zero_size_allowed); 4090 case PTR_TO_MEM: 4091 return check_mem_region_access(env, regno, reg->off, access_size, reg->mem_size, zero_size_allowed); 4092 case PTR_TO_BUF: 4093 if (type_is_rdonly_mem(reg->type)) { 4094 if (meta && meta->raw_mode) { 4095 return -EACCES; 4096 } 4097 4098 buf_info = "rdonly"; 4099 max_access = &env->prog->aux->max_rdonly_access; 4100 } else { 4101 buf_info = "rdwr"; 4102 max_access = &env->prog->aux->max_rdwr_access; 4103 } 4104 return check_buffer_access(env, reg, regno, reg->off, access_size, zero_size_allowed, buf_info, max_access); 4105 case PTR_TO_STACK: 4106 return check_stack_range_initialized(env, regno, reg->off, access_size, zero_size_allowed, ACCESS_HELPER, 4107 meta); 4108 default: /* scalar_value or invalid ptr */ 4109 /* Allow zero-byte read from NULL, regardless of pointer type */ 4110 if (zero_size_allowed && access_size == 0 && register_is_null(reg)) { 4111 return 0; 4112 } 4113 4114 verbose(env, "R%d type=%s ", regno, reg_type_str(env, reg->type)); 4115 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 4116 return -EACCES; 4117 } 4118} 4119 4120/* Implementation details: 4121 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4122 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4123 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4124 * value_or_null->value transition, since the verifier only cares about 4125 * the range of access to valid map value pointer and doesn't care about actual 4126 * address of the map element. 4127 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4128 * reg->id > 0 after value_or_null->value transition. By doing so 4129 * two bpf_map_lookups will be considered two different pointers that 4130 * point to different bpf_spin_locks. 4131 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4132 * dead-locks. 4133 * Since only one bpf_spin_lock is allowed the checks are simpler than 4134 * reg_is_refcounted() logic. The verifier needs to remember only 4135 * one spin_lock instead of array of acquired_refs. 4136 * cur_state->active_spin_lock remembers which map value element got locked 4137 * and clears it after bpf_spin_unlock. 4138 */ 4139static int process_spin_lock(struct bpf_verifier_env *env, int regno, bool is_lock) 4140{ 4141 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4142 struct bpf_verifier_state *cur = env->cur_state; 4143 bool is_const = tnum_is_const(reg->var_off); 4144 struct bpf_map *map = reg->map_ptr; 4145 u64 val = reg->var_off.value; 4146 4147 if (!is_const) { 4148 verbose(env, "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", regno); 4149 return -EINVAL; 4150 } 4151 if (!map->btf) { 4152 verbose(env, "map '%s' has to have BTF in order to use bpf_spin_lock\n", map->name); 4153 return -EINVAL; 4154 } 4155 if (!map_value_has_spin_lock(map)) { 4156 if (map->spin_lock_off == -E2BIG) { 4157 verbose(env, "map '%s' has more than one 'struct bpf_spin_lock'\n", map->name); 4158 } else if (map->spin_lock_off == -ENOENT) { 4159 verbose(env, "map '%s' doesn't have 'struct bpf_spin_lock'\n", map->name); 4160 } else { 4161 verbose(env, "map '%s' is not a struct type or bpf_spin_lock is mangled\n", map->name); 4162 } 4163 return -EINVAL; 4164 } 4165 if (map->spin_lock_off != val + reg->off) { 4166 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", val + reg->off); 4167 return -EINVAL; 4168 } 4169 if (is_lock) { 4170 if (cur->active_spin_lock) { 4171 verbose(env, "Locking two bpf_spin_locks are not allowed\n"); 4172 return -EINVAL; 4173 } 4174 cur->active_spin_lock = reg->id; 4175 } else { 4176 if (!cur->active_spin_lock) { 4177 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4178 return -EINVAL; 4179 } 4180 if (cur->active_spin_lock != reg->id) { 4181 verbose(env, "bpf_spin_unlock of different lock\n"); 4182 return -EINVAL; 4183 } 4184 cur->active_spin_lock = 0; 4185 } 4186 return 0; 4187} 4188 4189static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4190{ 4191 return base_type(type) == ARG_PTR_TO_MEM || base_type(type) == ARG_PTR_TO_UNINIT_MEM; 4192} 4193 4194static bool arg_type_is_mem_size(enum bpf_arg_type type) 4195{ 4196 return type == ARG_CONST_SIZE || type == ARG_CONST_SIZE_OR_ZERO; 4197} 4198 4199static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4200{ 4201 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4202} 4203 4204static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4205{ 4206 return type == ARG_PTR_TO_INT || type == ARG_PTR_TO_LONG; 4207} 4208 4209static int int_ptr_type_to_size(enum bpf_arg_type type) 4210{ 4211 if (type == ARG_PTR_TO_INT) { 4212 return sizeof(u32); 4213 } else if (type == ARG_PTR_TO_LONG) { 4214 return sizeof(u64); 4215 } 4216 4217 return -EINVAL; 4218} 4219 4220static int resolve_map_arg_type(struct bpf_verifier_env *env, const struct bpf_call_arg_meta *meta, 4221 enum bpf_arg_type *arg_type) 4222{ 4223 if (!meta->map_ptr) { 4224 /* kernel subsystem misconfigured verifier */ 4225 verbose(env, "invalid map_ptr to access map->type\n"); 4226 return -EACCES; 4227 } 4228 4229 switch (meta->map_ptr->map_type) { 4230 case BPF_MAP_TYPE_SOCKMAP: 4231 case BPF_MAP_TYPE_SOCKHASH: 4232 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4233 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4234 } else { 4235 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4236 return -EINVAL; 4237 } 4238 break; 4239 4240 default: 4241 break; 4242 } 4243 return 0; 4244} 4245 4246struct bpf_reg_types { 4247 const enum bpf_reg_type types[10]; 4248 u32 *btf_id; 4249}; 4250 4251static const struct bpf_reg_types map_key_value_types = { 4252 .types = 4253 { 4254 PTR_TO_STACK, 4255 PTR_TO_PACKET, 4256 PTR_TO_PACKET_META, 4257 PTR_TO_MAP_VALUE, 4258 }, 4259}; 4260 4261static const struct bpf_reg_types sock_types = { 4262 .types = 4263 { 4264 PTR_TO_SOCK_COMMON, 4265 PTR_TO_SOCKET, 4266 PTR_TO_TCP_SOCK, 4267 PTR_TO_XDP_SOCK, 4268 }, 4269}; 4270 4271#ifdef CONFIG_NET 4272static const struct bpf_reg_types btf_id_sock_common_types = { 4273 .types = 4274 { 4275 PTR_TO_SOCK_COMMON, 4276 PTR_TO_SOCKET, 4277 PTR_TO_TCP_SOCK, 4278 PTR_TO_XDP_SOCK, 4279 PTR_TO_BTF_ID, 4280 }, 4281 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4282}; 4283#endif 4284 4285static const struct bpf_reg_types mem_types = { 4286 .types = 4287 { 4288 PTR_TO_STACK, 4289 PTR_TO_PACKET, 4290 PTR_TO_PACKET_META, 4291 PTR_TO_MAP_VALUE, 4292 PTR_TO_MEM, 4293 PTR_TO_MEM | MEM_ALLOC, 4294 PTR_TO_BUF, 4295 }, 4296}; 4297 4298static const struct bpf_reg_types int_ptr_types = { 4299 .types = 4300 { 4301 PTR_TO_STACK, 4302 PTR_TO_PACKET, 4303 PTR_TO_PACKET_META, 4304 PTR_TO_MAP_VALUE, 4305 }, 4306}; 4307 4308static const struct bpf_reg_types fullsock_types = {.types = {PTR_TO_SOCKET}}; 4309static const struct bpf_reg_types scalar_types = {.types = {SCALAR_VALUE}}; 4310static const struct bpf_reg_types context_types = {.types = {PTR_TO_CTX}}; 4311static const struct bpf_reg_types alloc_mem_types = {.types = {PTR_TO_MEM | MEM_ALLOC}}; 4312static const struct bpf_reg_types const_map_ptr_types = {.types = {CONST_PTR_TO_MAP}}; 4313static const struct bpf_reg_types btf_ptr_types = {.types = {PTR_TO_BTF_ID}}; 4314static const struct bpf_reg_types spin_lock_types = {.types = {PTR_TO_MAP_VALUE}}; 4315static const struct bpf_reg_types percpu_btf_ptr_types = {.types = {PTR_TO_PERCPU_BTF_ID}}; 4316 4317static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4318 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4319 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4320 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4321 [ARG_CONST_SIZE] = &scalar_types, 4322 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4323 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4324 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4325 [ARG_PTR_TO_CTX] = &context_types, 4326 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4327#ifdef CONFIG_NET 4328 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4329#endif 4330 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4331 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4332 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4333 [ARG_PTR_TO_MEM] = &mem_types, 4334 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4335 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4336 [ARG_PTR_TO_INT] = &int_ptr_types, 4337 [ARG_PTR_TO_LONG] = &int_ptr_types, 4338 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4339}; 4340 4341static int check_reg_type(struct bpf_verifier_env *env, u32 regno, enum bpf_arg_type arg_type, const u32 *arg_btf_id) 4342{ 4343 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4344 enum bpf_reg_type expected, type = reg->type; 4345 const struct bpf_reg_types *compatible; 4346 int i, j; 4347 4348 compatible = compatible_reg_types[base_type(arg_type)]; 4349 if (!compatible) { 4350 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4351 return -EFAULT; 4352 } 4353 4354 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 4355 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 4356 * 4357 * Same for MAYBE_NULL: 4358 * 4359 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 4360 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 4361 * 4362 * Therefore we fold these flags depending on the arg_type before comparison. 4363 */ 4364 if (arg_type & MEM_RDONLY) { 4365 type &= ~MEM_RDONLY; 4366 } 4367 if (arg_type & PTR_MAYBE_NULL) { 4368 type &= ~PTR_MAYBE_NULL; 4369 } 4370 4371 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4372 expected = compatible->types[i]; 4373 if (expected == NOT_INIT) { 4374 break; 4375 } 4376 4377 if (type == expected) { 4378 goto found; 4379 } 4380 } 4381 4382 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 4383 for (j = 0; j + 1 < i; j++) { 4384 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 4385 } 4386 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 4387 return -EACCES; 4388 4389found: 4390 if (reg->type == PTR_TO_BTF_ID) { 4391 if (!arg_btf_id) { 4392 if (!compatible->btf_id) { 4393 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4394 return -EFAULT; 4395 } 4396 arg_btf_id = compatible->btf_id; 4397 } 4398 4399 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, *arg_btf_id)) { 4400 verbose(env, "R%d is of type %s but %s is expected\n", regno, kernel_type_name(reg->btf_id), 4401 kernel_type_name(*arg_btf_id)); 4402 return -EACCES; 4403 } 4404 } 4405 4406 return 0; 4407} 4408 4409static int check_func_arg(struct bpf_verifier_env *env, u32 arg, struct bpf_call_arg_meta *meta, 4410 const struct bpf_func_proto *fn) 4411{ 4412 u32 regno = BPF_REG_1 + arg; 4413 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4414 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4415 enum bpf_reg_type type = reg->type; 4416 int err = 0; 4417 4418 if (arg_type == ARG_DONTCARE) { 4419 return 0; 4420 } 4421 4422 err = check_reg_arg(env, regno, SRC_OP); 4423 if (err) { 4424 return err; 4425 } 4426 4427 if (arg_type == ARG_ANYTHING) { 4428 if (is_pointer_value(env, regno)) { 4429 verbose(env, "R%d leaks addr into helper function\n", regno); 4430 return -EACCES; 4431 } 4432 return 0; 4433 } 4434 4435 if (type_is_pkt_pointer(type) && !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4436 verbose(env, "helper access to the packet is not allowed\n"); 4437 return -EACCES; 4438 } 4439 4440 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4441 err = resolve_map_arg_type(env, meta, &arg_type); 4442 if (err) { 4443 return err; 4444 } 4445 } 4446 4447 if (register_is_null(reg) && type_may_be_null(arg_type)) { 4448 /* A NULL register has a SCALAR_VALUE type, so skip 4449 * type checking. 4450 */ 4451 goto skip_type_check; 4452 } 4453 4454 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4455 if (err) { 4456 return err; 4457 } 4458 4459 switch ((u32)type) { 4460 case SCALAR_VALUE: 4461 /* Pointer types where reg offset is explicitly allowed: */ 4462 case PTR_TO_PACKET: 4463 case PTR_TO_PACKET_META: 4464 case PTR_TO_MAP_VALUE: 4465 case PTR_TO_MEM: 4466 case PTR_TO_MEM | MEM_RDONLY: 4467 case PTR_TO_MEM | MEM_ALLOC: 4468 case PTR_TO_BUF: 4469 case PTR_TO_BUF | MEM_RDONLY: 4470 case PTR_TO_STACK: 4471 /* Some of the argument types nevertheless require a 4472 * zero register offset. 4473 */ 4474 if (arg_type == ARG_PTR_TO_ALLOC_MEM) { 4475 goto force_off_check; 4476 } 4477 break; 4478 /* All the rest must be rejected: */ 4479 default: 4480 force_off_check: 4481 err = __check_ptr_off_reg(env, reg, regno, type == PTR_TO_BTF_ID); 4482 if (err < 0) { 4483 return err; 4484 } 4485 break; 4486 } 4487 4488skip_type_check: 4489 if (reg->ref_obj_id) { 4490 if (meta->ref_obj_id) { 4491 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", regno, 4492 reg->ref_obj_id, meta->ref_obj_id); 4493 return -EFAULT; 4494 } 4495 meta->ref_obj_id = reg->ref_obj_id; 4496 } 4497 4498 if (arg_type == ARG_CONST_MAP_PTR) { 4499 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4500 meta->map_ptr = reg->map_ptr; 4501 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4502 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4503 * check that [key, key + map->key_size) are within 4504 * stack limits and initialized 4505 */ 4506 if (!meta->map_ptr) { 4507 /* in function declaration map_ptr must come before 4508 * map_key, so that it's verified and known before 4509 * we have to check map_key here. Otherwise it means 4510 * that kernel subsystem misconfigured verifier 4511 */ 4512 verbose(env, "invalid map_ptr to access map->key\n"); 4513 return -EACCES; 4514 } 4515 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size, false, NULL); 4516 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4517 if (type_may_be_null(arg_type) && register_is_null(reg)) { 4518 return 0; 4519 } 4520 4521 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4522 * check [value, value + map->value_size) validity 4523 */ 4524 if (!meta->map_ptr) { 4525 /* kernel subsystem misconfigured verifier */ 4526 verbose(env, "invalid map_ptr to access map->value\n"); 4527 return -EACCES; 4528 } 4529 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4530 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, false, meta); 4531 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4532 if (!reg->btf_id) { 4533 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4534 return -EACCES; 4535 } 4536 meta->ret_btf_id = reg->btf_id; 4537 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4538 if (meta->func_id == BPF_FUNC_spin_lock) { 4539 if (process_spin_lock(env, regno, true)) { 4540 return -EACCES; 4541 } 4542 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4543 if (process_spin_lock(env, regno, false)) { 4544 return -EACCES; 4545 } 4546 } else { 4547 verbose(env, "verifier internal error\n"); 4548 return -EFAULT; 4549 } 4550 } else if (arg_type_is_mem_ptr(arg_type)) { 4551 /* The access to this pointer is only checked when we hit the 4552 * next is_mem_size argument below. 4553 */ 4554 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4555 } else if (arg_type_is_mem_size(arg_type)) { 4556 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4557 4558 /* This is used to refine r0 return value bounds for helpers 4559 * that enforce this value as an upper bound on return values. 4560 * See do_refine_retval_range() for helpers that can refine 4561 * the return value. C type of helper is u32 so we pull register 4562 * bound from umax_value however, if negative verifier errors 4563 * out. Only upper bounds can be learned because retval is an 4564 * int type and negative retvals are allowed. 4565 */ 4566 meta->msize_max_value = reg->umax_value; 4567 4568 /* The register is SCALAR_VALUE; the access check 4569 * happens using its boundaries. 4570 */ 4571 if (!tnum_is_const(reg->var_off)) { 4572 /* For unprivileged variable accesses, disable raw 4573 * mode so that the program is required to 4574 * initialize all the memory that the helper could 4575 * just partially fill up. 4576 */ 4577 meta = NULL; 4578 } 4579 4580 if (reg->smin_value < 0) { 4581 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", regno); 4582 return -EACCES; 4583 } 4584 4585 if (reg->umin_value == 0) { 4586 err = check_helper_mem_access(env, regno - 1, 0, zero_size_allowed, meta); 4587 if (err) { 4588 return err; 4589 } 4590 } 4591 4592 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4593 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", regno); 4594 return -EACCES; 4595 } 4596 err = check_helper_mem_access(env, regno - 1, reg->umax_value, zero_size_allowed, meta); 4597 if (!err) { 4598 err = mark_chain_precision(env, regno); 4599 } 4600 } else if (arg_type_is_alloc_size(arg_type)) { 4601 if (!tnum_is_const(reg->var_off)) { 4602 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", regno); 4603 return -EACCES; 4604 } 4605 meta->mem_size = reg->var_off.value; 4606 } else if (arg_type_is_int_ptr(arg_type)) { 4607 int size = int_ptr_type_to_size(arg_type); 4608 4609 err = check_helper_mem_access(env, regno, size, false, meta); 4610 if (err) { 4611 return err; 4612 } 4613 err = check_ptr_alignment(env, reg, 0, size, true); 4614 } 4615 4616 return err; 4617} 4618 4619static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4620{ 4621 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4622 enum bpf_prog_type type = resolve_prog_type(env->prog); 4623 4624 if (func_id != BPF_FUNC_map_update_elem) { 4625 return false; 4626 } 4627 4628 /* It's not possible to get access to a locked struct sock in these 4629 * contexts, so updating is safe. 4630 */ 4631 switch (type) { 4632 case BPF_PROG_TYPE_TRACING: 4633 if (eatype == BPF_TRACE_ITER) { 4634 return true; 4635 } 4636 break; 4637 case BPF_PROG_TYPE_SOCKET_FILTER: 4638 case BPF_PROG_TYPE_SCHED_CLS: 4639 case BPF_PROG_TYPE_SCHED_ACT: 4640 case BPF_PROG_TYPE_XDP: 4641 case BPF_PROG_TYPE_SK_REUSEPORT: 4642 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4643 case BPF_PROG_TYPE_SK_LOOKUP: 4644 return true; 4645 default: 4646 break; 4647 } 4648 4649 verbose(env, "cannot update sockmap in this context\n"); 4650 return false; 4651} 4652 4653static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4654{ 4655 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4656} 4657 4658static int check_map_func_compatibility(struct bpf_verifier_env *env, struct bpf_map *map, int func_id) 4659{ 4660 if (!map) { 4661 return 0; 4662 } 4663 4664 /* We need a two way check, first is from map perspective ... */ 4665 switch (map->map_type) { 4666 case BPF_MAP_TYPE_PROG_ARRAY: 4667 if (func_id != BPF_FUNC_tail_call) { 4668 goto error; 4669 } 4670 break; 4671 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4672 if (func_id != BPF_FUNC_perf_event_read && func_id != BPF_FUNC_perf_event_output && 4673 func_id != BPF_FUNC_skb_output && func_id != BPF_FUNC_perf_event_read_value && 4674 func_id != BPF_FUNC_xdp_output) { 4675 goto error; 4676 } 4677 break; 4678 case BPF_MAP_TYPE_RINGBUF: 4679 if (func_id != BPF_FUNC_ringbuf_output && func_id != BPF_FUNC_ringbuf_reserve && 4680 func_id != BPF_FUNC_ringbuf_query) { 4681 goto error; 4682 } 4683 break; 4684 case BPF_MAP_TYPE_STACK_TRACE: 4685 if (func_id != BPF_FUNC_get_stackid) { 4686 goto error; 4687 } 4688 break; 4689 case BPF_MAP_TYPE_CGROUP_ARRAY: 4690 if (func_id != BPF_FUNC_skb_under_cgroup && func_id != BPF_FUNC_current_task_under_cgroup) { 4691 goto error; 4692 } 4693 break; 4694 case BPF_MAP_TYPE_CGROUP_STORAGE: 4695 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4696 if (func_id != BPF_FUNC_get_local_storage) { 4697 goto error; 4698 } 4699 break; 4700 case BPF_MAP_TYPE_DEVMAP: 4701 case BPF_MAP_TYPE_DEVMAP_HASH: 4702 if (func_id != BPF_FUNC_redirect_map && func_id != BPF_FUNC_map_lookup_elem) { 4703 goto error; 4704 } 4705 break; 4706 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4707 * appear. 4708 */ 4709 case BPF_MAP_TYPE_CPUMAP: 4710 if (func_id != BPF_FUNC_redirect_map) { 4711 goto error; 4712 } 4713 break; 4714 case BPF_MAP_TYPE_XSKMAP: 4715 if (func_id != BPF_FUNC_redirect_map && func_id != BPF_FUNC_map_lookup_elem) { 4716 goto error; 4717 } 4718 break; 4719 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4720 case BPF_MAP_TYPE_HASH_OF_MAPS: 4721 if (func_id != BPF_FUNC_map_lookup_elem) { 4722 goto error; 4723 } 4724 break; 4725 case BPF_MAP_TYPE_SOCKMAP: 4726 if (func_id != BPF_FUNC_sk_redirect_map && func_id != BPF_FUNC_sock_map_update && 4727 func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_msg_redirect_map && 4728 func_id != BPF_FUNC_sk_select_reuseport && func_id != BPF_FUNC_map_lookup_elem && 4729 !may_update_sockmap(env, func_id)) { 4730 goto error; 4731 } 4732 break; 4733 case BPF_MAP_TYPE_SOCKHASH: 4734 if (func_id != BPF_FUNC_sk_redirect_hash && func_id != BPF_FUNC_sock_hash_update && 4735 func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_msg_redirect_hash && 4736 func_id != BPF_FUNC_sk_select_reuseport && func_id != BPF_FUNC_map_lookup_elem && 4737 !may_update_sockmap(env, func_id)) { 4738 goto error; 4739 } 4740 break; 4741 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4742 if (func_id != BPF_FUNC_sk_select_reuseport) { 4743 goto error; 4744 } 4745 break; 4746 case BPF_MAP_TYPE_QUEUE: 4747 case BPF_MAP_TYPE_STACK: 4748 if (func_id != BPF_FUNC_map_peek_elem && func_id != BPF_FUNC_map_pop_elem && 4749 func_id != BPF_FUNC_map_push_elem) { 4750 goto error; 4751 } 4752 break; 4753 case BPF_MAP_TYPE_SK_STORAGE: 4754 if (func_id != BPF_FUNC_sk_storage_get && func_id != BPF_FUNC_sk_storage_delete) { 4755 goto error; 4756 } 4757 break; 4758 case BPF_MAP_TYPE_INODE_STORAGE: 4759 if (func_id != BPF_FUNC_inode_storage_get && func_id != BPF_FUNC_inode_storage_delete) { 4760 goto error; 4761 } 4762 break; 4763 default: 4764 break; 4765 } 4766 4767 /* ... and second from the function itself. */ 4768 switch (func_id) { 4769 case BPF_FUNC_tail_call: 4770 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4771 goto error; 4772 } 4773 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4774 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4775 return -EINVAL; 4776 } 4777 break; 4778 case BPF_FUNC_perf_event_read: 4779 case BPF_FUNC_perf_event_output: 4780 case BPF_FUNC_perf_event_read_value: 4781 case BPF_FUNC_skb_output: 4782 case BPF_FUNC_xdp_output: 4783 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 4784 goto error; 4785 } 4786 break; 4787 case BPF_FUNC_ringbuf_output: 4788 case BPF_FUNC_ringbuf_reserve: 4789 case BPF_FUNC_ringbuf_query: 4790 if (map->map_type != BPF_MAP_TYPE_RINGBUF) { 4791 goto error; 4792 } 4793 break; 4794 case BPF_FUNC_get_stackid: 4795 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) { 4796 goto error; 4797 } 4798 break; 4799 case BPF_FUNC_current_task_under_cgroup: 4800 case BPF_FUNC_skb_under_cgroup: 4801 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) { 4802 goto error; 4803 } 4804 break; 4805 case BPF_FUNC_redirect_map: 4806 if (map->map_type != BPF_MAP_TYPE_DEVMAP && map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4807 map->map_type != BPF_MAP_TYPE_CPUMAP && map->map_type != BPF_MAP_TYPE_XSKMAP) { 4808 goto error; 4809 } 4810 break; 4811 case BPF_FUNC_sk_redirect_map: 4812 case BPF_FUNC_msg_redirect_map: 4813 case BPF_FUNC_sock_map_update: 4814 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) { 4815 goto error; 4816 } 4817 break; 4818 case BPF_FUNC_sk_redirect_hash: 4819 case BPF_FUNC_msg_redirect_hash: 4820 case BPF_FUNC_sock_hash_update: 4821 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) { 4822 goto error; 4823 } 4824 break; 4825 case BPF_FUNC_get_local_storage: 4826 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) { 4827 goto error; 4828 } 4829 break; 4830 case BPF_FUNC_sk_select_reuseport: 4831 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && map->map_type != BPF_MAP_TYPE_SOCKMAP && 4832 map->map_type != BPF_MAP_TYPE_SOCKHASH) { 4833 goto error; 4834 } 4835 break; 4836 case BPF_FUNC_map_peek_elem: 4837 case BPF_FUNC_map_pop_elem: 4838 case BPF_FUNC_map_push_elem: 4839 if (map->map_type != BPF_MAP_TYPE_QUEUE && map->map_type != BPF_MAP_TYPE_STACK) { 4840 goto error; 4841 } 4842 break; 4843 case BPF_FUNC_sk_storage_get: 4844 case BPF_FUNC_sk_storage_delete: 4845 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) { 4846 goto error; 4847 } 4848 break; 4849 case BPF_FUNC_inode_storage_get: 4850 case BPF_FUNC_inode_storage_delete: 4851 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) { 4852 goto error; 4853 } 4854 break; 4855 default: 4856 break; 4857 } 4858 4859 return 0; 4860error: 4861 verbose(env, "cannot pass map_type %d into func %s#%d\n", map->map_type, func_id_name(func_id), func_id); 4862 return -EINVAL; 4863} 4864 4865static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4866{ 4867 int count = 0; 4868 4869 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) { 4870 count++; 4871 } 4872 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) { 4873 count++; 4874 } 4875 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) { 4876 count++; 4877 } 4878 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) { 4879 count++; 4880 } 4881 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) { 4882 count++; 4883 } 4884 4885 /* We only support one arg being in raw mode at the moment, 4886 * which is sufficient for the helper functions we have 4887 * right now. 4888 */ 4889 return count <= 1; 4890} 4891 4892static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, enum bpf_arg_type arg_next) 4893{ 4894 return (arg_type_is_mem_ptr(arg_curr) && !arg_type_is_mem_size(arg_next)) || 4895 (!arg_type_is_mem_ptr(arg_curr) && arg_type_is_mem_size(arg_next)); 4896} 4897 4898static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4899{ 4900 /* bpf_xxx(..., buf, len) call will access 'len' 4901 * bytes from memory 'buf'. Both arg types need 4902 * to be paired, so make sure there's no buggy 4903 * helper function specification. 4904 */ 4905 if (arg_type_is_mem_size(fn->arg1_type) || arg_type_is_mem_ptr(fn->arg5_type) || 4906 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4907 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4908 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4909 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) { 4910 return false; 4911 } 4912 4913 return true; 4914} 4915 4916static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4917{ 4918 int count = 0; 4919 4920 if (arg_type_may_be_refcounted(fn->arg1_type)) { 4921 count++; 4922 } 4923 if (arg_type_may_be_refcounted(fn->arg2_type)) { 4924 count++; 4925 } 4926 if (arg_type_may_be_refcounted(fn->arg3_type)) { 4927 count++; 4928 } 4929 if (arg_type_may_be_refcounted(fn->arg4_type)) { 4930 count++; 4931 } 4932 if (arg_type_may_be_refcounted(fn->arg5_type)) { 4933 count++; 4934 } 4935 4936 /* A reference acquiring function cannot acquire 4937 * another refcounted ptr. 4938 */ 4939 if (may_be_acquire_function(func_id) && count) { 4940 return false; 4941 } 4942 4943 /* We only support one arg being unreferenced at the moment, 4944 * which is sufficient for the helper functions we have right now. 4945 */ 4946 return count <= 1; 4947} 4948 4949static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4950{ 4951 int i; 4952 4953 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4954 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) { 4955 return false; 4956 } 4957 4958 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) { 4959 return false; 4960 } 4961 } 4962 4963 return true; 4964} 4965 4966static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4967{ 4968 return check_raw_mode_ok(fn) && check_arg_pair_ok(fn) && check_btf_id_ok(fn) && check_refcount_ok(fn, func_id) 4969 ? 0 4970 : -EINVAL; 4971} 4972 4973/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4974 * are now invalid, so turn them into unknown SCALAR_VALUE. 4975 */ 4976static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, struct bpf_func_state *state) 4977{ 4978 struct bpf_reg_state *regs = state->regs, *reg; 4979 int i; 4980 4981 for (i = 0; i < MAX_BPF_REG; i++) { 4982 if (reg_is_pkt_pointer_any(®s[i])) { 4983 mark_reg_unknown(env, regs, i); 4984 } 4985 } 4986 4987 bpf_for_each_spilled_reg(i, state, reg) 4988 { 4989 if (!reg) { 4990 continue; 4991 } 4992 if (reg_is_pkt_pointer_any(reg)) { 4993 __mark_reg_unknown(env, reg); 4994 } 4995 } 4996} 4997 4998static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4999{ 5000 struct bpf_verifier_state *vstate = env->cur_state; 5001 int i; 5002 5003 for (i = 0; i <= vstate->curframe; i++) { 5004 __clear_all_pkt_pointers(env, vstate->frame[i]); 5005 } 5006} 5007 5008static void release_reg_references(struct bpf_verifier_env *env, struct bpf_func_state *state, int ref_obj_id) 5009{ 5010 struct bpf_reg_state *regs = state->regs, *reg; 5011 int i; 5012 5013 for (i = 0; i < MAX_BPF_REG; i++) { 5014 if (regs[i].ref_obj_id == ref_obj_id) { 5015 mark_reg_unknown(env, regs, i); 5016 } 5017 } 5018 5019 bpf_for_each_spilled_reg(i, state, reg) 5020 { 5021 if (!reg) { 5022 continue; 5023 } 5024 if (reg->ref_obj_id == ref_obj_id) { 5025 __mark_reg_unknown(env, reg); 5026 } 5027 } 5028} 5029 5030/* The pointer with the specified id has released its reference to kernel 5031 * resources. Identify all copies of the same pointer and clear the reference. 5032 */ 5033static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 5034{ 5035 struct bpf_verifier_state *vstate = env->cur_state; 5036 int err; 5037 int i; 5038 5039 err = release_reference_state(cur_func(env), ref_obj_id); 5040 if (err) { 5041 return err; 5042 } 5043 5044 for (i = 0; i <= vstate->curframe; i++) { 5045 release_reg_references(env, vstate->frame[i], ref_obj_id); 5046 } 5047 5048 return 0; 5049} 5050 5051static void clear_caller_saved_regs(struct bpf_verifier_env *env, struct bpf_reg_state *regs) 5052{ 5053 int i; 5054 5055 /* after the call registers r0 - r5 were scratched */ 5056 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5057 mark_reg_not_init(env, regs, caller_saved[i]); 5058 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5059 } 5060} 5061 5062static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, int *insn_idx) 5063{ 5064 struct bpf_verifier_state *state = env->cur_state; 5065 struct bpf_func_info_aux *func_info_aux; 5066 struct bpf_func_state *caller, *callee; 5067 int i, err, subprog, target_insn; 5068 bool is_global = false; 5069 5070 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5071 verbose(env, "the call stack of %d frames is too deep\n", state->curframe + 2); 5072 return -E2BIG; 5073 } 5074 5075 target_insn = *insn_idx + insn->imm; 5076 subprog = find_subprog(env, target_insn + 1); 5077 if (subprog < 0) { 5078 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn + 1); 5079 return -EFAULT; 5080 } 5081 5082 caller = state->frame[state->curframe]; 5083 if (state->frame[state->curframe + 1]) { 5084 verbose(env, "verifier bug. Frame %d already allocated\n", state->curframe + 1); 5085 return -EFAULT; 5086 } 5087 5088 func_info_aux = env->prog->aux->func_info_aux; 5089 if (func_info_aux) { 5090 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5091 } 5092 err = btf_check_func_arg_match(env, subprog, caller->regs); 5093 if (err == -EFAULT) { 5094 return err; 5095 } 5096 if (is_global) { 5097 if (err) { 5098 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 5099 return err; 5100 } else { 5101 if (env->log.level & BPF_LOG_LEVEL) { 5102 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 5103 } 5104 clear_caller_saved_regs(env, caller->regs); 5105 5106 /* All global functions return a 64-bit SCALAR_VALUE */ 5107 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5108 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5109 5110 /* continue with next insn after call */ 5111 return 0; 5112 } 5113 } 5114 5115 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5116 if (!callee) { 5117 return -ENOMEM; 5118 } 5119 state->frame[state->curframe + 1] = callee; 5120 5121 /* callee cannot access r0, r6 - r9 for reading and has to write 5122 * into its own stack before reading from it. 5123 * callee can read/write into caller's stack 5124 */ 5125 init_func_state(env, callee, 5126 /* remember the callsite, it will be used by bpf_exit */ 5127 *insn_idx /* callsite */, state->curframe + 1 /* frameno within this callchain */, 5128 subprog /* subprog number within this prog */); 5129 5130 /* Transfer references to the callee */ 5131 err = transfer_reference_state(callee, caller); 5132 if (err) { 5133 return err; 5134 } 5135 5136 /* copy r1 - r5 args that callee can access. The copy includes parent 5137 * pointers, which connects us up to the liveness chain 5138 */ 5139 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 5140 callee->regs[i] = caller->regs[i]; 5141 } 5142 5143 clear_caller_saved_regs(env, caller->regs); 5144 5145 /* only increment it after check_reg_arg() finished */ 5146 state->curframe++; 5147 5148 /* and go analyze first insn of the callee */ 5149 *insn_idx = target_insn; 5150 5151 if (env->log.level & BPF_LOG_LEVEL) { 5152 verbose(env, "caller:\n"); 5153 print_verifier_state(env, caller); 5154 verbose(env, "callee:\n"); 5155 print_verifier_state(env, callee); 5156 } 5157 return 0; 5158} 5159 5160static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5161{ 5162 struct bpf_verifier_state *state = env->cur_state; 5163 struct bpf_func_state *caller, *callee; 5164 struct bpf_reg_state *r0; 5165 int err; 5166 5167 callee = state->frame[state->curframe]; 5168 r0 = &callee->regs[BPF_REG_0]; 5169 if (r0->type == PTR_TO_STACK) { 5170 /* technically it's ok to return caller's stack pointer 5171 * (or caller's caller's pointer) back to the caller, 5172 * since these pointers are valid. Only current stack 5173 * pointer will be invalid as soon as function exits, 5174 * but let's be conservative 5175 */ 5176 verbose(env, "cannot return stack pointer to the caller\n"); 5177 return -EINVAL; 5178 } 5179 5180 state->curframe--; 5181 caller = state->frame[state->curframe]; 5182 /* return to the caller whatever r0 had in the callee */ 5183 caller->regs[BPF_REG_0] = *r0; 5184 5185 /* Transfer references to the caller */ 5186 err = transfer_reference_state(caller, callee); 5187 if (err) { 5188 return err; 5189 } 5190 5191 *insn_idx = callee->callsite + 1; 5192 if (env->log.level & BPF_LOG_LEVEL) { 5193 verbose(env, "returning from callee:\n"); 5194 print_verifier_state(env, callee); 5195 verbose(env, "to caller at %d:\n", *insn_idx); 5196 print_verifier_state(env, caller); 5197 } 5198 /* clear everything in the callee */ 5199 free_func_state(callee); 5200 state->frame[state->curframe + 1] = NULL; 5201 return 0; 5202} 5203 5204static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, int func_id, 5205 struct bpf_call_arg_meta *meta) 5206{ 5207 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 5208 5209 if (ret_type != RET_INTEGER || 5210 (func_id != BPF_FUNC_get_stack && func_id != BPF_FUNC_probe_read_str && 5211 func_id != BPF_FUNC_probe_read_kernel_str && func_id != BPF_FUNC_probe_read_user_str)) { 5212 return; 5213 } 5214 5215 ret_reg->smax_value = meta->msize_max_value; 5216 ret_reg->s32_max_value = meta->msize_max_value; 5217 ret_reg->smin_value = -MAX_ERRNO; 5218 ret_reg->s32_min_value = -MAX_ERRNO; 5219 reg_bounds_sync(ret_reg); 5220} 5221 5222static int record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, int func_id, int insn_idx) 5223{ 5224 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5225 struct bpf_map *map = meta->map_ptr; 5226 5227 if (func_id != BPF_FUNC_tail_call && func_id != BPF_FUNC_map_lookup_elem && func_id != BPF_FUNC_map_update_elem && 5228 func_id != BPF_FUNC_map_delete_elem && func_id != BPF_FUNC_map_push_elem && func_id != BPF_FUNC_map_pop_elem && 5229 func_id != BPF_FUNC_map_peek_elem) { 5230 return 0; 5231 } 5232 5233 if (map == NULL) { 5234 verbose(env, "kernel subsystem misconfigured verifier\n"); 5235 return -EINVAL; 5236 } 5237 5238 /* In case of read-only, some additional restrictions 5239 * need to be applied in order to prevent altering the 5240 * state of the map from program side. 5241 */ 5242 if ((map->map_flags & BPF_F_RDONLY_PROG) && 5243 (func_id == BPF_FUNC_map_delete_elem || func_id == BPF_FUNC_map_update_elem || 5244 func_id == BPF_FUNC_map_push_elem || func_id == BPF_FUNC_map_pop_elem)) { 5245 verbose(env, "write into map forbidden\n"); 5246 return -EACCES; 5247 } 5248 5249 if (!BPF_MAP_PTR(aux->map_ptr_state)) { 5250 bpf_map_ptr_store(aux, meta->map_ptr, !meta->map_ptr->bypass_spec_v1); 5251 } else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) { 5252 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, !meta->map_ptr->bypass_spec_v1); 5253 } 5254 return 0; 5255} 5256 5257static int record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, int func_id, int insn_idx) 5258{ 5259 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 5260 struct bpf_reg_state *regs = cur_regs(env), *reg; 5261 struct bpf_map *map = meta->map_ptr; 5262 u64 val; 5263 int err; 5264 5265 if (func_id != BPF_FUNC_tail_call) { 5266 return 0; 5267 } 5268 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5269 verbose(env, "kernel subsystem misconfigured verifier\n"); 5270 return -EINVAL; 5271 } 5272 5273 reg = ®s[BPF_REG_3]; 5274 val = reg->var_off.value; 5275 max = map->max_entries; 5276 5277 if (!(register_is_const(reg) && val < max)) { 5278 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5279 return 0; 5280 } 5281 5282 err = mark_chain_precision(env, BPF_REG_3); 5283 if (err) { 5284 return err; 5285 } 5286 5287 if (bpf_map_key_unseen(aux)) { 5288 bpf_map_key_store(aux, val); 5289 } else if (!bpf_map_key_poisoned(aux) && bpf_map_key_immediate(aux) != val) { 5290 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5291 } 5292 return 0; 5293} 5294 5295static int check_reference_leak(struct bpf_verifier_env *env) 5296{ 5297 struct bpf_func_state *state = cur_func(env); 5298 int i; 5299 5300 for (i = 0; i < state->acquired_refs; i++) { 5301 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", state->refs[i].id, state->refs[i].insn_idx); 5302 } 5303 return state->acquired_refs ? -EINVAL : 0; 5304} 5305 5306static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5307{ 5308 const struct bpf_func_proto *fn = NULL; 5309 enum bpf_return_type ret_type; 5310 enum bpf_type_flag ret_flag; 5311 struct bpf_reg_state *regs; 5312 struct bpf_call_arg_meta meta; 5313 bool changes_data; 5314 int i, err; 5315 5316 /* find function prototype */ 5317 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5318 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 5319 return -EINVAL; 5320 } 5321 5322 if (env->ops->get_func_proto) { 5323 fn = env->ops->get_func_proto(func_id, env->prog); 5324 } 5325 if (!fn) { 5326 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), func_id); 5327 return -EINVAL; 5328 } 5329 5330 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5331 if (!env->prog->gpl_compatible && fn->gpl_only) { 5332 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5333 return -EINVAL; 5334 } 5335 5336 if (fn->allowed && !fn->allowed(env->prog)) { 5337 verbose(env, "helper call is not allowed in probe\n"); 5338 return -EINVAL; 5339 } 5340 5341 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5342 changes_data = bpf_helper_changes_pkt_data(fn->func); 5343 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5344 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", func_id_name(func_id), func_id); 5345 return -EINVAL; 5346 } 5347 5348 memset(&meta, 0, sizeof(meta)); 5349 meta.pkt_access = fn->pkt_access; 5350 5351 err = check_func_proto(fn, func_id); 5352 if (err) { 5353 verbose(env, "kernel subsystem misconfigured func %s#%d\n", func_id_name(func_id), func_id); 5354 return err; 5355 } 5356 5357 meta.func_id = func_id; 5358 /* check args */ 5359 for (i = 0; i < 5; i++) { 5360 err = check_func_arg(env, i, &meta, fn); 5361 if (err) { 5362 return err; 5363 } 5364 } 5365 5366 err = record_func_map(env, &meta, func_id, insn_idx); 5367 if (err) { 5368 return err; 5369 } 5370 5371 err = record_func_key(env, &meta, func_id, insn_idx); 5372 if (err) { 5373 return err; 5374 } 5375 5376 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5377 * is inferred from register state. 5378 */ 5379 for (i = 0; i < meta.access_size; i++) { 5380 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1, false); 5381 if (err) { 5382 return err; 5383 } 5384 } 5385 5386 if (func_id == BPF_FUNC_tail_call) { 5387 err = check_reference_leak(env); 5388 if (err) { 5389 verbose(env, "tail_call would lead to reference leak\n"); 5390 return err; 5391 } 5392 } else if (is_release_function(func_id)) { 5393 err = release_reference(env, meta.ref_obj_id); 5394 if (err) { 5395 verbose(env, "func %s#%d reference has not been acquired before\n", func_id_name(func_id), func_id); 5396 return err; 5397 } 5398 } 5399 5400 regs = cur_regs(env); 5401 /* check that flags argument in get_local_storage(map, flags) is 0, 5402 * this is required because get_local_storage() can't return an error. 5403 */ 5404 if (func_id == BPF_FUNC_get_local_storage && !register_is_null(®s[BPF_REG_2])) { 5405 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5406 return -EINVAL; 5407 } 5408 5409 /* reset caller saved regs */ 5410 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5411 mark_reg_not_init(env, regs, caller_saved[i]); 5412 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5413 } 5414 5415 /* helper call returns 64-bit value. */ 5416 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5417 5418 /* update return register (already marked as written above) */ 5419 ret_type = fn->ret_type; 5420 ret_flag = type_flag(fn->ret_type); 5421 if (ret_type == RET_INTEGER) { 5422 /* sets type to SCALAR_VALUE */ 5423 mark_reg_unknown(env, regs, BPF_REG_0); 5424 } else if (ret_type == RET_VOID) { 5425 regs[BPF_REG_0].type = NOT_INIT; 5426 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 5427 /* There is no offset yet applied, variable or fixed */ 5428 mark_reg_known_zero(env, regs, BPF_REG_0); 5429 /* remember map_ptr, so that check_map_access() 5430 * can check 'value_size' boundary of memory access 5431 * to map element returned from bpf_map_lookup_elem() 5432 */ 5433 if (meta.map_ptr == NULL) { 5434 verbose(env, "kernel subsystem misconfigured verifier\n"); 5435 return -EINVAL; 5436 } 5437 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5438 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 5439 if (!type_may_be_null(ret_type) && map_value_has_spin_lock(meta.map_ptr)) { 5440 regs[BPF_REG_0].id = ++env->id_gen; 5441 } 5442 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 5443 mark_reg_known_zero(env, regs, BPF_REG_0); 5444 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 5445 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 5446 mark_reg_known_zero(env, regs, BPF_REG_0); 5447 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 5448 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 5449 mark_reg_known_zero(env, regs, BPF_REG_0); 5450 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 5451 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 5452 mark_reg_known_zero(env, regs, BPF_REG_0); 5453 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 5454 regs[BPF_REG_0].mem_size = meta.mem_size; 5455 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 5456 const struct btf_type *t; 5457 5458 mark_reg_known_zero(env, regs, BPF_REG_0); 5459 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL); 5460 if (!btf_type_is_struct(t)) { 5461 u32 tsize; 5462 const struct btf_type *ret; 5463 const char *tname; 5464 5465 /* resolve the type size of ksym. */ 5466 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 5467 if (IS_ERR(ret)) { 5468 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5469 verbose(env, "unable to resolve the size of type '%s': %ld\n", tname, PTR_ERR(ret)); 5470 return -EINVAL; 5471 } 5472 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 5473 regs[BPF_REG_0].mem_size = tsize; 5474 } else { 5475 /* MEM_RDONLY may be carried from ret_flag, but it 5476 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 5477 * it will confuse the check of PTR_TO_BTF_ID in 5478 * check_mem_access(). 5479 */ 5480 ret_flag &= ~MEM_RDONLY; 5481 5482 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 5483 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5484 } 5485 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 5486 int ret_btf_id; 5487 5488 mark_reg_known_zero(env, regs, BPF_REG_0); 5489 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 5490 ret_btf_id = *fn->ret_btf_id; 5491 if (ret_btf_id == 0) { 5492 verbose(env, "invalid return type %u of func %s#%d\n", base_type(ret_type), func_id_name(func_id), func_id); 5493 return -EINVAL; 5494 } 5495 regs[BPF_REG_0].btf_id = ret_btf_id; 5496 } else { 5497 verbose(env, "unknown return type %u of func %s#%d\n", base_type(ret_type), func_id_name(func_id), func_id); 5498 return -EINVAL; 5499 } 5500 5501 if (type_may_be_null(regs[BPF_REG_0].type)) { 5502 regs[BPF_REG_0].id = ++env->id_gen; 5503 } 5504 5505 if (is_ptr_cast_function(func_id)) { 5506 /* For release_reference() */ 5507 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5508 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5509 int id = acquire_reference_state(env, insn_idx); 5510 if (id < 0) { 5511 return id; 5512 } 5513 /* For mark_ptr_or_null_reg() */ 5514 regs[BPF_REG_0].id = id; 5515 /* For release_reference() */ 5516 regs[BPF_REG_0].ref_obj_id = id; 5517 } 5518 5519 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5520 5521 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5522 if (err) { 5523 return err; 5524 } 5525 5526 if ((func_id == BPF_FUNC_get_stack || func_id == BPF_FUNC_get_task_stack) && !env->prog->has_callchain_buf) { 5527 const char *err_str; 5528 5529#ifdef CONFIG_PERF_EVENTS 5530 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5531 err_str = "cannot get callchain buffer for func %s#%d\n"; 5532#else 5533 err = -ENOTSUPP; 5534 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5535#endif 5536 if (err) { 5537 verbose(env, err_str, func_id_name(func_id), func_id); 5538 return err; 5539 } 5540 5541 env->prog->has_callchain_buf = true; 5542 } 5543 5544 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) { 5545 env->prog->call_get_stack = true; 5546 } 5547 5548 if (changes_data) { 5549 clear_all_pkt_pointers(env); 5550 } 5551 return 0; 5552} 5553 5554static bool signed_add_overflows(s64 a, s64 b) 5555{ 5556 /* Do the add in u64, where overflow is well-defined */ 5557 s64 res = (s64)((u64)a + (u64)b); 5558 5559 if (b < 0) { 5560 return res > a; 5561 } 5562 return res < a; 5563} 5564 5565static bool signed_add32_overflows(s32 a, s32 b) 5566{ 5567 /* Do the add in u32, where overflow is well-defined */ 5568 s32 res = (s32)((u32)a + (u32)b); 5569 5570 if (b < 0) { 5571 return res > a; 5572 } 5573 return res < a; 5574} 5575 5576static bool signed_sub_overflows(s64 a, s64 b) 5577{ 5578 /* Do the sub in u64, where overflow is well-defined */ 5579 s64 res = (s64)((u64)a - (u64)b); 5580 5581 if (b < 0) { 5582 return res < a; 5583 } 5584 return res > a; 5585} 5586 5587static bool signed_sub32_overflows(s32 a, s32 b) 5588{ 5589 /* Do the sub in u32, where overflow is well-defined */ 5590 s32 res = (s32)((u32)a - (u32)b); 5591 5592 if (b < 0) { 5593 return res < a; 5594 } 5595 return res > a; 5596} 5597 5598static bool check_reg_sane_offset(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, enum bpf_reg_type type) 5599{ 5600 bool known = tnum_is_const(reg->var_off); 5601 s64 val = reg->var_off.value; 5602 s64 smin = reg->smin_value; 5603 5604 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5605 verbose(env, "math between %s pointer and %lld is not allowed\n", reg_type_str(env, type), val); 5606 return false; 5607 } 5608 5609 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5610 verbose(env, "%s pointer offset %d is not allowed\n", reg_type_str(env, type), reg->off); 5611 return false; 5612 } 5613 5614 if (smin == S64_MIN) { 5615 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5616 reg_type_str(env, type)); 5617 return false; 5618 } 5619 5620 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5621 verbose(env, "value %lld makes %s pointer be out of bounds\n", smin, reg_type_str(env, type)); 5622 return false; 5623 } 5624 5625 return true; 5626} 5627 5628static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5629{ 5630 return &env->insn_aux_data[env->insn_idx]; 5631} 5632 5633enum { 5634 REASON_BOUNDS = -1, 5635 REASON_TYPE = -2, 5636 REASON_PATHS = -3, 5637 REASON_LIMIT = -4, 5638 REASON_STACK = -5, 5639}; 5640 5641static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, u32 *alu_limit, bool mask_to_left) 5642{ 5643 u32 max = 0, ptr_limit = 0; 5644 5645 switch (ptr_reg->type) { 5646 case PTR_TO_STACK: 5647 /* Offset 0 is out-of-bounds, but acceptable start for the 5648 * left direction, see BPF_REG_FP. Also, unknown scalar 5649 * offset where we would need to deal with min/max bounds is 5650 * currently prohibited for unprivileged. 5651 */ 5652 max = MAX_BPF_STACK + mask_to_left; 5653 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 5654 break; 5655 case PTR_TO_MAP_VALUE: 5656 max = ptr_reg->map_ptr->value_size; 5657 ptr_limit = (mask_to_left ? ptr_reg->smin_value : ptr_reg->umax_value) + ptr_reg->off; 5658 break; 5659 default: 5660 return REASON_TYPE; 5661 } 5662 5663 if (ptr_limit >= max) { 5664 return REASON_LIMIT; 5665 } 5666 *alu_limit = ptr_limit; 5667 return 0; 5668} 5669 5670static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, const struct bpf_insn *insn) 5671{ 5672 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5673} 5674 5675static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, u32 alu_state, u32 alu_limit) 5676{ 5677 /* If we arrived here from different branches with different 5678 * state or limits to sanitize, then this won't work. 5679 */ 5680 if (aux->alu_state && (aux->alu_state != alu_state || aux->alu_limit != alu_limit)) { 5681 return REASON_PATHS; 5682 } 5683 5684 /* Corresponding fixup done in fixup_bpf_calls(). */ 5685 aux->alu_state = alu_state; 5686 aux->alu_limit = alu_limit; 5687 return 0; 5688} 5689 5690static int sanitize_val_alu(struct bpf_verifier_env *env, struct bpf_insn *insn) 5691{ 5692 struct bpf_insn_aux_data *aux = cur_aux(env); 5693 5694 if (can_skip_alu_sanitation(env, insn)) { 5695 return 0; 5696 } 5697 5698 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5699} 5700 5701static bool sanitize_needed(u8 opcode) 5702{ 5703 return opcode == BPF_ADD || opcode == BPF_SUB; 5704} 5705 5706struct bpf_sanitize_info { 5707 struct bpf_insn_aux_data aux; 5708 bool mask_to_left; 5709}; 5710 5711static struct bpf_verifier_state *sanitize_speculative_path(struct bpf_verifier_env *env, const struct bpf_insn *insn, 5712 u32 next_idx, u32 curr_idx) 5713{ 5714 struct bpf_verifier_state *branch; 5715 struct bpf_reg_state *regs; 5716 5717 branch = push_stack(env, next_idx, curr_idx, true); 5718 if (branch && insn) { 5719 regs = branch->frame[branch->curframe]->regs; 5720 if (BPF_SRC(insn->code) == BPF_K) { 5721 mark_reg_unknown(env, regs, insn->dst_reg); 5722 } else if (BPF_SRC(insn->code) == BPF_X) { 5723 mark_reg_unknown(env, regs, insn->dst_reg); 5724 mark_reg_unknown(env, regs, insn->src_reg); 5725 } 5726 } 5727 return branch; 5728} 5729 5730static int sanitize_ptr_alu(struct bpf_verifier_env *env, struct bpf_insn *insn, const struct bpf_reg_state *ptr_reg, 5731 const struct bpf_reg_state *off_reg, struct bpf_reg_state *dst_reg, 5732 struct bpf_sanitize_info *info, const bool commit_window) 5733{ 5734 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 5735 struct bpf_verifier_state *vstate = env->cur_state; 5736 bool off_is_imm = tnum_is_const(off_reg->var_off); 5737 bool off_is_neg = off_reg->smin_value < 0; 5738 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5739 u8 opcode = BPF_OP(insn->code); 5740 u32 alu_state, alu_limit; 5741 struct bpf_reg_state tmp; 5742 bool ret; 5743 int err; 5744 5745 if (can_skip_alu_sanitation(env, insn)) { 5746 return 0; 5747 } 5748 5749 /* We already marked aux for masking from non-speculative 5750 * paths, thus we got here in the first place. We only care 5751 * to explore bad access from here. 5752 */ 5753 if (vstate->speculative) { 5754 goto do_sim; 5755 } 5756 5757 if (!commit_window) { 5758 if (!tnum_is_const(off_reg->var_off) && (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) { 5759 return REASON_BOUNDS; 5760 } 5761 5762 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || (opcode == BPF_SUB && !off_is_neg); 5763 } 5764 5765 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 5766 if (err < 0) { 5767 return err; 5768 } 5769 5770 if (commit_window) { 5771 /* In commit phase we narrow the masking window based on 5772 * the observed pointer move after the simulated operation. 5773 */ 5774 alu_state = info->aux.alu_state; 5775 alu_limit = abs(info->aux.alu_limit - alu_limit); 5776 } else { 5777 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5778 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 5779 alu_state |= ptr_is_dst_reg ? BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5780 5781 /* Limit pruning on unknown scalars to enable deep search for 5782 * potential masking differences from other program paths. 5783 */ 5784 if (!off_is_imm) { 5785 env->explore_alu_limits = true; 5786 } 5787 } 5788 5789 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 5790 if (err < 0) { 5791 return err; 5792 } 5793do_sim: 5794 /* If we're in commit phase, we're done here given we already 5795 * pushed the truncated dst_reg into the speculative verification 5796 * stack. 5797 * 5798 * Also, when register is a known constant, we rewrite register-based 5799 * operation to immediate-based, and thus do not need masking (and as 5800 * a consequence, do not need to simulate the zero-truncation either). 5801 */ 5802 if (commit_window || off_is_imm) { 5803 return 0; 5804 } 5805 5806 /* Simulate and find potential out-of-bounds access under 5807 * speculative execution from truncation as a result of 5808 * masking when off was not within expected range. If off 5809 * sits in dst, then we temporarily need to move ptr there 5810 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5811 * for cases where we use K-based arithmetic in one direction 5812 * and truncated reg-based in the other in order to explore 5813 * bad access. 5814 */ 5815 if (!ptr_is_dst_reg) { 5816 tmp = *dst_reg; 5817 *dst_reg = *ptr_reg; 5818 } 5819 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx); 5820 if (!ptr_is_dst_reg && ret) { 5821 *dst_reg = tmp; 5822 } 5823 return !ret ? REASON_STACK : 0; 5824} 5825 5826static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 5827{ 5828 struct bpf_verifier_state *vstate = env->cur_state; 5829 5830 /* If we simulate paths under speculation, we don't update the 5831 * insn as 'seen' such that when we verify unreachable paths in 5832 * the non-speculative domain, sanitize_dead_code() can still 5833 * rewrite/sanitize them. 5834 */ 5835 if (!vstate->speculative) { 5836 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 5837 } 5838} 5839 5840static int sanitize_err(struct bpf_verifier_env *env, const struct bpf_insn *insn, int reason, 5841 const struct bpf_reg_state *off_reg, const struct bpf_reg_state *dst_reg) 5842{ 5843 static const char *err = "pointer arithmetic with it prohibited for !root"; 5844 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 5845 u32 dst = insn->dst_reg, src = insn->src_reg; 5846 5847 switch (reason) { 5848 case REASON_BOUNDS: 5849 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", off_reg == dst_reg ? dst : src, err); 5850 break; 5851 case REASON_TYPE: 5852 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", off_reg == dst_reg ? src : dst, err); 5853 break; 5854 case REASON_PATHS: 5855 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", dst, op, err); 5856 break; 5857 case REASON_LIMIT: 5858 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", dst, op, err); 5859 break; 5860 case REASON_STACK: 5861 verbose(env, "R%d could not be pushed for speculative verification, %s\n", dst, err); 5862 break; 5863 default: 5864 verbose(env, "verifier internal error: unknown reason (%d)\n", reason); 5865 break; 5866 } 5867 5868 return -EACCES; 5869} 5870 5871/* check that stack access falls within stack limits and that 'reg' doesn't 5872 * have a variable offset. 5873 * 5874 * Variable offset is prohibited for unprivileged mode for simplicity since it 5875 * requires corresponding support in Spectre masking for stack ALU. See also 5876 * retrieve_ptr_limit(). 5877 * 5878 * 5879 * 'off' includes 'reg->off'. 5880 */ 5881static int check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env *env, int regno, 5882 const struct bpf_reg_state *reg, int off) 5883{ 5884 if (!tnum_is_const(reg->var_off)) { 5885 char tn_buf[48]; 5886 5887 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5888 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", regno, tn_buf, off); 5889 return -EACCES; 5890 } 5891 5892 if (off >= 0 || off < -MAX_BPF_STACK) { 5893 verbose(env, 5894 "R%d stack pointer arithmetic goes out of range, " 5895 "prohibited for !root; off=%d\n", 5896 regno, off); 5897 return -EACCES; 5898 } 5899 5900 return 0; 5901} 5902 5903static int sanitize_check_bounds(struct bpf_verifier_env *env, const struct bpf_insn *insn, 5904 const struct bpf_reg_state *dst_reg) 5905{ 5906 u32 dst = insn->dst_reg; 5907 5908 /* For unprivileged we require that resulting offset must be in bounds 5909 * in order to be able to sanitize access later on. 5910 */ 5911 if (env->bypass_spec_v1) { 5912 return 0; 5913 } 5914 5915 switch (dst_reg->type) { 5916 case PTR_TO_STACK: 5917 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, dst_reg->off + dst_reg->var_off.value)) { 5918 return -EACCES; 5919 } 5920 break; 5921 case PTR_TO_MAP_VALUE: 5922 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 5923 verbose(env, 5924 "R%d pointer arithmetic of map value goes out of range, " 5925 "prohibited for !root\n", 5926 dst); 5927 return -EACCES; 5928 } 5929 break; 5930 default: 5931 break; 5932 } 5933 5934 return 0; 5935} 5936 5937/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5938 * Caller should also handle BPF_MOV case separately. 5939 * If we return -EACCES, caller may want to try again treating pointer as a 5940 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5941 */ 5942static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn, 5943 const struct bpf_reg_state *ptr_reg, const struct bpf_reg_state *off_reg) 5944{ 5945 struct bpf_verifier_state *vstate = env->cur_state; 5946 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5947 struct bpf_reg_state *regs = state->regs, *dst_reg; 5948 bool known = tnum_is_const(off_reg->var_off); 5949 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, smin_ptr = ptr_reg->smin_value, 5950 smax_ptr = ptr_reg->smax_value; 5951 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, umin_ptr = ptr_reg->umin_value, 5952 umax_ptr = ptr_reg->umax_value; 5953 struct bpf_sanitize_info info = {}; 5954 u8 opcode = BPF_OP(insn->code); 5955 u32 dst = insn->dst_reg; 5956 int ret; 5957 5958 dst_reg = ®s[dst]; 5959 5960 if ((known && (smin_val != smax_val || umin_val != umax_val)) || smin_val > smax_val || umin_val > umax_val) { 5961 /* Taint dst register if offset had invalid bounds derived from 5962 * e.g. dead branches. 5963 */ 5964 __mark_reg_unknown(env, dst_reg); 5965 return 0; 5966 } 5967 5968 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5969 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5970 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5971 __mark_reg_unknown(env, dst_reg); 5972 return 0; 5973 } 5974 5975 verbose(env, "R%d 32-bit pointer arithmetic prohibited\n", dst); 5976 return -EACCES; 5977 } 5978 5979 if (ptr_reg->type & PTR_MAYBE_NULL) { 5980 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", dst, 5981 reg_type_str(env, ptr_reg->type)); 5982 return -EACCES; 5983 } 5984 5985 switch (base_type(ptr_reg->type)) { 5986 case CONST_PTR_TO_MAP: 5987 /* smin_val represents the known value */ 5988 if (known && smin_val == 0 && opcode == BPF_ADD) { 5989 break; 5990 } 5991 fallthrough; 5992 case PTR_TO_PACKET_END: 5993 case PTR_TO_SOCKET: 5994 case PTR_TO_SOCK_COMMON: 5995 case PTR_TO_TCP_SOCK: 5996 case PTR_TO_XDP_SOCK: 5997 reject: 5998 verbose(env, "R%d pointer arithmetic on %s prohibited\n", dst, reg_type_str(env, ptr_reg->type)); 5999 return -EACCES; 6000 default: 6001 if (type_may_be_null(ptr_reg->type)) { 6002 goto reject; 6003 } 6004 break; 6005 } 6006 6007 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 6008 * The id may be overwritten later if we create a new variable offset. 6009 */ 6010 dst_reg->type = ptr_reg->type; 6011 dst_reg->id = ptr_reg->id; 6012 6013 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) { 6014 return -EINVAL; 6015 } 6016 6017 /* pointer types do not carry 32-bit bounds at the moment. */ 6018 verifier_mark_reg32_unbounded(dst_reg); 6019 6020 if (sanitize_needed(opcode)) { 6021 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, &info, false); 6022 if (ret < 0) { 6023 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6024 } 6025 } 6026 6027 switch (opcode) { 6028 case BPF_ADD: 6029 /* We can take a fixed offset as long as it doesn't overflow 6030 * the s32 'off' field 6031 */ 6032 if (known && (ptr_reg->off + smin_val == (s64)(s32)(ptr_reg->off + smin_val))) { 6033 /* pointer += K. Accumulate it into fixed offset */ 6034 dst_reg->smin_value = smin_ptr; 6035 dst_reg->smax_value = smax_ptr; 6036 dst_reg->umin_value = umin_ptr; 6037 dst_reg->umax_value = umax_ptr; 6038 dst_reg->var_off = ptr_reg->var_off; 6039 dst_reg->off = ptr_reg->off + smin_val; 6040 dst_reg->raw = ptr_reg->raw; 6041 break; 6042 } 6043 /* A new variable offset is created. Note that off_reg->off 6044 * == 0, since it's a scalar. 6045 * dst_reg gets the pointer type and since some positive 6046 * integer value was added to the pointer, give it a new 'id' 6047 * if it's a PTR_TO_PACKET. 6048 * this creates a new 'base' pointer, off_reg (variable) gets 6049 * added into the variable offset, and we copy the fixed offset 6050 * from ptr_reg. 6051 */ 6052 if (signed_add_overflows(smin_ptr, smin_val) || signed_add_overflows(smax_ptr, smax_val)) { 6053 dst_reg->smin_value = S64_MIN; 6054 dst_reg->smax_value = S64_MAX; 6055 } else { 6056 dst_reg->smin_value = smin_ptr + smin_val; 6057 dst_reg->smax_value = smax_ptr + smax_val; 6058 } 6059 if (umin_ptr + umin_val < umin_ptr || umax_ptr + umax_val < umax_ptr) { 6060 dst_reg->umin_value = 0; 6061 dst_reg->umax_value = U64_MAX; 6062 } else { 6063 dst_reg->umin_value = umin_ptr + umin_val; 6064 dst_reg->umax_value = umax_ptr + umax_val; 6065 } 6066 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 6067 dst_reg->off = ptr_reg->off; 6068 dst_reg->raw = ptr_reg->raw; 6069 if (reg_is_pkt_pointer(ptr_reg)) { 6070 dst_reg->id = ++env->id_gen; 6071 /* something was added to pkt_ptr, set range to zero */ 6072 dst_reg->raw = 0; 6073 } 6074 break; 6075 case BPF_SUB: 6076 if (dst_reg == off_reg) { 6077 /* scalar -= pointer. Creates an unknown scalar */ 6078 verbose(env, "R%d tried to subtract pointer from scalar\n", dst); 6079 return -EACCES; 6080 } 6081 /* We don't allow subtraction from FP, because (according to 6082 * test_verifier.c test "invalid fp arithmetic", JITs might not 6083 * be able to deal with it. 6084 */ 6085 if (ptr_reg->type == PTR_TO_STACK) { 6086 verbose(env, "R%d subtraction from stack pointer prohibited\n", dst); 6087 return -EACCES; 6088 } 6089 if (known && (ptr_reg->off - smin_val == (s64)(s32)(ptr_reg->off - smin_val))) { 6090 /* pointer -= K. Subtract it from fixed offset */ 6091 dst_reg->smin_value = smin_ptr; 6092 dst_reg->smax_value = smax_ptr; 6093 dst_reg->umin_value = umin_ptr; 6094 dst_reg->umax_value = umax_ptr; 6095 dst_reg->var_off = ptr_reg->var_off; 6096 dst_reg->id = ptr_reg->id; 6097 dst_reg->off = ptr_reg->off - smin_val; 6098 dst_reg->raw = ptr_reg->raw; 6099 break; 6100 } 6101 /* A new variable offset is created. If the subtrahend is known 6102 * nonnegative, then any reg->range we had before is still good. 6103 */ 6104 if (signed_sub_overflows(smin_ptr, smax_val) || signed_sub_overflows(smax_ptr, smin_val)) { 6105 /* Overflow possible, we know nothing */ 6106 dst_reg->smin_value = S64_MIN; 6107 dst_reg->smax_value = S64_MAX; 6108 } else { 6109 dst_reg->smin_value = smin_ptr - smax_val; 6110 dst_reg->smax_value = smax_ptr - smin_val; 6111 } 6112 if (umin_ptr < umax_val) { 6113 /* Overflow possible, we know nothing */ 6114 dst_reg->umin_value = 0; 6115 dst_reg->umax_value = U64_MAX; 6116 } else { 6117 /* Cannot overflow (as long as bounds are consistent) */ 6118 dst_reg->umin_value = umin_ptr - umax_val; 6119 dst_reg->umax_value = umax_ptr - umin_val; 6120 } 6121 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 6122 dst_reg->off = ptr_reg->off; 6123 dst_reg->raw = ptr_reg->raw; 6124 if (reg_is_pkt_pointer(ptr_reg)) { 6125 dst_reg->id = ++env->id_gen; 6126 /* something was added to pkt_ptr, set range to zero */ 6127 if (smin_val < 0) { 6128 dst_reg->raw = 0; 6129 } 6130 } 6131 break; 6132 case BPF_AND: 6133 case BPF_OR: 6134 case BPF_XOR: 6135 /* bitwise ops on pointers are troublesome, prohibit. */ 6136 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", dst, bpf_alu_string[opcode >> 0x4]); 6137 return -EACCES; 6138 default: 6139 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 6140 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", dst, bpf_alu_string[opcode >> 0x4]); 6141 return -EACCES; 6142 } 6143 6144 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) { 6145 return -EINVAL; 6146 } 6147 6148 reg_bounds_sync(dst_reg); 6149 6150 if (sanitize_check_bounds(env, insn, dst_reg) < 0) { 6151 return -EACCES; 6152 } 6153 if (sanitize_needed(opcode)) { 6154 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, &info, true); 6155 if (ret < 0) { 6156 return sanitize_err(env, insn, ret, off_reg, dst_reg); 6157 } 6158 } 6159 6160 return 0; 6161} 6162 6163static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6164{ 6165 s32 smin_val = src_reg->s32_min_value; 6166 s32 smax_val = src_reg->s32_max_value; 6167 u32 umin_val = src_reg->u32_min_value; 6168 u32 umax_val = src_reg->u32_max_value; 6169 6170 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 6171 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 6172 dst_reg->s32_min_value = S32_MIN; 6173 dst_reg->s32_max_value = S32_MAX; 6174 } else { 6175 dst_reg->s32_min_value += smin_val; 6176 dst_reg->s32_max_value += smax_val; 6177 } 6178 if (dst_reg->u32_min_value + umin_val < umin_val || dst_reg->u32_max_value + umax_val < umax_val) { 6179 dst_reg->u32_min_value = 0; 6180 dst_reg->u32_max_value = U32_MAX; 6181 } else { 6182 dst_reg->u32_min_value += umin_val; 6183 dst_reg->u32_max_value += umax_val; 6184 } 6185} 6186 6187static void scalar_min_max_add(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6188{ 6189 s64 smin_val = src_reg->smin_value; 6190 s64 smax_val = src_reg->smax_value; 6191 u64 umin_val = src_reg->umin_value; 6192 u64 umax_val = src_reg->umax_value; 6193 6194 if (signed_add_overflows(dst_reg->smin_value, smin_val) || signed_add_overflows(dst_reg->smax_value, smax_val)) { 6195 dst_reg->smin_value = S64_MIN; 6196 dst_reg->smax_value = S64_MAX; 6197 } else { 6198 dst_reg->smin_value += smin_val; 6199 dst_reg->smax_value += smax_val; 6200 } 6201 if (dst_reg->umin_value + umin_val < umin_val || dst_reg->umax_value + umax_val < umax_val) { 6202 dst_reg->umin_value = 0; 6203 dst_reg->umax_value = U64_MAX; 6204 } else { 6205 dst_reg->umin_value += umin_val; 6206 dst_reg->umax_value += umax_val; 6207 } 6208} 6209 6210static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6211{ 6212 s32 smin_val = src_reg->s32_min_value; 6213 s32 smax_val = src_reg->s32_max_value; 6214 u32 umin_val = src_reg->u32_min_value; 6215 u32 umax_val = src_reg->u32_max_value; 6216 6217 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 6218 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 6219 /* Overflow possible, we know nothing */ 6220 dst_reg->s32_min_value = S32_MIN; 6221 dst_reg->s32_max_value = S32_MAX; 6222 } else { 6223 dst_reg->s32_min_value -= smax_val; 6224 dst_reg->s32_max_value -= smin_val; 6225 } 6226 if (dst_reg->u32_min_value < umax_val) { 6227 /* Overflow possible, we know nothing */ 6228 dst_reg->u32_min_value = 0; 6229 dst_reg->u32_max_value = U32_MAX; 6230 } else { 6231 /* Cannot overflow (as long as bounds are consistent) */ 6232 dst_reg->u32_min_value -= umax_val; 6233 dst_reg->u32_max_value -= umin_val; 6234 } 6235} 6236 6237static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6238{ 6239 s64 smin_val = src_reg->smin_value; 6240 s64 smax_val = src_reg->smax_value; 6241 u64 umin_val = src_reg->umin_value; 6242 u64 umax_val = src_reg->umax_value; 6243 6244 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || signed_sub_overflows(dst_reg->smax_value, smin_val)) { 6245 /* Overflow possible, we know nothing */ 6246 dst_reg->smin_value = S64_MIN; 6247 dst_reg->smax_value = S64_MAX; 6248 } else { 6249 dst_reg->smin_value -= smax_val; 6250 dst_reg->smax_value -= smin_val; 6251 } 6252 if (dst_reg->umin_value < umax_val) { 6253 /* Overflow possible, we know nothing */ 6254 dst_reg->umin_value = 0; 6255 dst_reg->umax_value = U64_MAX; 6256 } else { 6257 /* Cannot overflow (as long as bounds are consistent) */ 6258 dst_reg->umin_value -= umax_val; 6259 dst_reg->umax_value -= umin_val; 6260 } 6261} 6262 6263static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6264{ 6265 s32 smin_val = src_reg->s32_min_value; 6266 u32 umin_val = src_reg->u32_min_value; 6267 u32 umax_val = src_reg->u32_max_value; 6268 6269 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 6270 /* Ain't nobody got time to multiply that sign */ 6271 verifier_mark_reg32_unbounded(dst_reg); 6272 return; 6273 } 6274 /* Both values are positive, so we can work with unsigned and 6275 * copy the result to signed (unless it exceeds S32_MAX). 6276 */ 6277 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 6278 /* Potential overflow, we know nothing */ 6279 verifier_mark_reg32_unbounded(dst_reg); 6280 return; 6281 } 6282 dst_reg->u32_min_value *= umin_val; 6283 dst_reg->u32_max_value *= umax_val; 6284 if (dst_reg->u32_max_value > S32_MAX) { 6285 /* Overflow possible, we know nothing */ 6286 dst_reg->s32_min_value = S32_MIN; 6287 dst_reg->s32_max_value = S32_MAX; 6288 } else { 6289 dst_reg->s32_min_value = dst_reg->u32_min_value; 6290 dst_reg->s32_max_value = dst_reg->u32_max_value; 6291 } 6292} 6293 6294static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6295{ 6296 s64 smin_val = src_reg->smin_value; 6297 u64 umin_val = src_reg->umin_value; 6298 u64 umax_val = src_reg->umax_value; 6299 6300 if (smin_val < 0 || dst_reg->smin_value < 0) { 6301 /* Ain't nobody got time to multiply that sign */ 6302 verifier_mark_reg64_unbounded(dst_reg); 6303 return; 6304 } 6305 /* Both values are positive, so we can work with unsigned and 6306 * copy the result to signed (unless it exceeds S64_MAX). 6307 */ 6308 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 6309 /* Potential overflow, we know nothing */ 6310 verifier_mark_reg64_unbounded(dst_reg); 6311 return; 6312 } 6313 dst_reg->umin_value *= umin_val; 6314 dst_reg->umax_value *= umax_val; 6315 if (dst_reg->umax_value > S64_MAX) { 6316 /* Overflow possible, we know nothing */ 6317 dst_reg->smin_value = S64_MIN; 6318 dst_reg->smax_value = S64_MAX; 6319 } else { 6320 dst_reg->smin_value = dst_reg->umin_value; 6321 dst_reg->smax_value = dst_reg->umax_value; 6322 } 6323} 6324 6325static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6326{ 6327 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6328 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6329 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6330 s32 smin_val = src_reg->s32_min_value; 6331 u32 umax_val = src_reg->u32_max_value; 6332 6333 if (src_known && dst_known) { 6334 verifier_mark_reg32_known(dst_reg, var32_off.value); 6335 return; 6336 } 6337 6338 /* We get our minimum from the var_off, since that's inherently 6339 * bitwise. Our maximum is the minimum of the operands' maxima. 6340 */ 6341 dst_reg->u32_min_value = var32_off.value; 6342 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 6343 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6344 /* Lose signed bounds when ANDing negative numbers, 6345 * ain't nobody got time for that. 6346 */ 6347 dst_reg->s32_min_value = S32_MIN; 6348 dst_reg->s32_max_value = S32_MAX; 6349 } else { 6350 /* ANDing two positives gives a positive, so safe to 6351 * cast result into s64. 6352 */ 6353 dst_reg->s32_min_value = dst_reg->u32_min_value; 6354 dst_reg->s32_max_value = dst_reg->u32_max_value; 6355 } 6356} 6357 6358static void scalar_min_max_and(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6359{ 6360 bool src_known = tnum_is_const(src_reg->var_off); 6361 bool dst_known = tnum_is_const(dst_reg->var_off); 6362 s64 smin_val = src_reg->smin_value; 6363 u64 umax_val = src_reg->umax_value; 6364 6365 if (src_known && dst_known) { 6366 verifier_mark_reg_known(dst_reg, dst_reg->var_off.value); 6367 return; 6368 } 6369 6370 /* We get our minimum from the var_off, since that's inherently 6371 * bitwise. Our maximum is the minimum of the operands' maxima. 6372 */ 6373 dst_reg->umin_value = dst_reg->var_off.value; 6374 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 6375 if (dst_reg->smin_value < 0 || smin_val < 0) { 6376 /* Lose signed bounds when ANDing negative numbers, 6377 * ain't nobody got time for that. 6378 */ 6379 dst_reg->smin_value = S64_MIN; 6380 dst_reg->smax_value = S64_MAX; 6381 } else { 6382 /* ANDing two positives gives a positive, so safe to 6383 * cast result into s64. 6384 */ 6385 dst_reg->smin_value = dst_reg->umin_value; 6386 dst_reg->smax_value = dst_reg->umax_value; 6387 } 6388 /* We may learn something more from the var_off */ 6389 verifier_update_reg_bounds(dst_reg); 6390} 6391 6392static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6393{ 6394 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6395 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6396 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6397 s32 smin_val = src_reg->s32_min_value; 6398 u32 umin_val = src_reg->u32_min_value; 6399 6400 if (src_known && dst_known) { 6401 verifier_mark_reg32_known(dst_reg, var32_off.value); 6402 return; 6403 } 6404 6405 /* We get our maximum from the var_off, and our minimum is the 6406 * maximum of the operands' minima 6407 */ 6408 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 6409 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6410 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6411 /* Lose signed bounds when ORing negative numbers, 6412 * ain't nobody got time for that. 6413 */ 6414 dst_reg->s32_min_value = S32_MIN; 6415 dst_reg->s32_max_value = S32_MAX; 6416 } else { 6417 /* ORing two positives gives a positive, so safe to 6418 * cast result into s64. 6419 */ 6420 dst_reg->s32_min_value = dst_reg->u32_min_value; 6421 dst_reg->s32_max_value = dst_reg->u32_max_value; 6422 } 6423} 6424 6425static void scalar_min_max_or(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6426{ 6427 bool src_known = tnum_is_const(src_reg->var_off); 6428 bool dst_known = tnum_is_const(dst_reg->var_off); 6429 s64 smin_val = src_reg->smin_value; 6430 u64 umin_val = src_reg->umin_value; 6431 6432 if (src_known && dst_known) { 6433 verifier_mark_reg_known(dst_reg, dst_reg->var_off.value); 6434 return; 6435 } 6436 6437 /* We get our maximum from the var_off, and our minimum is the 6438 * maximum of the operands' minima 6439 */ 6440 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6441 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6442 if (dst_reg->smin_value < 0 || smin_val < 0) { 6443 /* Lose signed bounds when ORing negative numbers, 6444 * ain't nobody got time for that. 6445 */ 6446 dst_reg->smin_value = S64_MIN; 6447 dst_reg->smax_value = S64_MAX; 6448 } else { 6449 /* ORing two positives gives a positive, so safe to 6450 * cast result into s64. 6451 */ 6452 dst_reg->smin_value = dst_reg->umin_value; 6453 dst_reg->smax_value = dst_reg->umax_value; 6454 } 6455 /* We may learn something more from the var_off */ 6456 verifier_update_reg_bounds(dst_reg); 6457} 6458 6459static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6460{ 6461 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6462 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6463 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6464 s32 smin_val = src_reg->s32_min_value; 6465 6466 if (src_known && dst_known) { 6467 verifier_mark_reg32_known(dst_reg, var32_off.value); 6468 return; 6469 } 6470 6471 /* We get both minimum and maximum from the var32_off. */ 6472 dst_reg->u32_min_value = var32_off.value; 6473 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6474 6475 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6476 /* XORing two positive sign numbers gives a positive, 6477 * so safe to cast u32 result into s32. 6478 */ 6479 dst_reg->s32_min_value = dst_reg->u32_min_value; 6480 dst_reg->s32_max_value = dst_reg->u32_max_value; 6481 } else { 6482 dst_reg->s32_min_value = S32_MIN; 6483 dst_reg->s32_max_value = S32_MAX; 6484 } 6485} 6486 6487static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6488{ 6489 bool src_known = tnum_is_const(src_reg->var_off); 6490 bool dst_known = tnum_is_const(dst_reg->var_off); 6491 s64 smin_val = src_reg->smin_value; 6492 6493 if (src_known && dst_known) { 6494 /* dst_reg->var_off.value has been updated earlier */ 6495 verifier_mark_reg_known(dst_reg, dst_reg->var_off.value); 6496 return; 6497 } 6498 6499 /* We get both minimum and maximum from the var_off. */ 6500 dst_reg->umin_value = dst_reg->var_off.value; 6501 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6502 6503 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6504 /* XORing two positive sign numbers gives a positive, 6505 * so safe to cast u64 result into s64. 6506 */ 6507 dst_reg->smin_value = dst_reg->umin_value; 6508 dst_reg->smax_value = dst_reg->umax_value; 6509 } else { 6510 dst_reg->smin_value = S64_MIN; 6511 dst_reg->smax_value = S64_MAX; 6512 } 6513 6514 verifier_update_reg_bounds(dst_reg); 6515} 6516 6517static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, u64 umin_val, u64 umax_val) 6518{ 6519 /* We lose all sign bit information (except what we can pick 6520 * up from var_off) 6521 */ 6522 dst_reg->s32_min_value = S32_MIN; 6523 dst_reg->s32_max_value = S32_MAX; 6524 /* If we might shift our top bit out, then we know nothing */ 6525 if (umax_val > VERIFIER_THIRTYONE || dst_reg->u32_max_value > 1ULL << (VERIFIER_THIRTYONE - umax_val)) { 6526 dst_reg->u32_min_value = 0; 6527 dst_reg->u32_max_value = U32_MAX; 6528 } else { 6529 dst_reg->u32_min_value <<= umin_val; 6530 dst_reg->u32_max_value <<= umax_val; 6531 } 6532} 6533 6534static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6535{ 6536 u32 umax_val = src_reg->u32_max_value; 6537 u32 umin_val = src_reg->u32_min_value; 6538 /* u32 alu operation will zext upper bits */ 6539 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6540 6541 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6542 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6543 /* Not required but being careful mark reg64 bounds as unknown so 6544 * that we are forced to pick them up from tnum and zext later and 6545 * if some path skips this step we are still safe. 6546 */ 6547 verifier_mark_reg64_unbounded(dst_reg); 6548 verifier_update_reg32_bounds(dst_reg); 6549} 6550 6551static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, u64 umin_val, u64 umax_val) 6552{ 6553 /* Special case <<32 because it is a common compiler pattern to sign 6554 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6555 * positive we know this shift will also be positive so we can track 6556 * bounds correctly. Otherwise we lose all sign bit information except 6557 * what we can pick up from var_off. Perhaps we can generalize this 6558 * later to shifts of any length. 6559 */ 6560 if (umin_val == 0x20 && umax_val == 0x20 && dst_reg->s32_max_value >= 0) { 6561 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 0x20; 6562 } else { 6563 dst_reg->smax_value = S64_MAX; 6564 } 6565 6566 if (umin_val == 0x20 && umax_val == 0x20 && dst_reg->s32_min_value >= 0) { 6567 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 0x20; 6568 } else { 6569 dst_reg->smin_value = S64_MIN; 6570 } 6571 6572 /* If we might shift our top bit out, then we know nothing */ 6573 if (dst_reg->umax_value > 1ULL << (0x3f - umax_val)) { 6574 dst_reg->umin_value = 0; 6575 dst_reg->umax_value = U64_MAX; 6576 } else { 6577 dst_reg->umin_value <<= umin_val; 6578 dst_reg->umax_value <<= umax_val; 6579 } 6580} 6581 6582static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6583{ 6584 u64 umax_val = src_reg->umax_value; 6585 u64 umin_val = src_reg->umin_value; 6586 6587 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6588 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6589 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6590 6591 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6592 /* We may learn something more from the var_off */ 6593 verifier_update_reg_bounds(dst_reg); 6594} 6595 6596static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6597{ 6598 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6599 u32 umax_val = src_reg->u32_max_value; 6600 u32 umin_val = src_reg->u32_min_value; 6601 6602 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6603 * be negative, then either: 6604 * 1) src_reg might be zero, so the sign bit of the result is 6605 * unknown, so we lose our signed bounds 6606 * 2) it's known negative, thus the unsigned bounds capture the 6607 * signed bounds 6608 * 3) the signed bounds cross zero, so they tell us nothing 6609 * about the result 6610 * If the value in dst_reg is known nonnegative, then again the 6611 * unsigned bounts capture the signed bounds. 6612 * Thus, in all cases it suffices to blow away our signed bounds 6613 * and rely on inferring new ones from the unsigned bounds and 6614 * var_off of the result. 6615 */ 6616 dst_reg->s32_min_value = S32_MIN; 6617 dst_reg->s32_max_value = S32_MAX; 6618 6619 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6620 dst_reg->u32_min_value >>= umax_val; 6621 dst_reg->u32_max_value >>= umin_val; 6622 6623 verifier_mark_reg64_unbounded(dst_reg); 6624 verifier_update_reg32_bounds(dst_reg); 6625} 6626 6627static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6628{ 6629 u64 umax_val = src_reg->umax_value; 6630 u64 umin_val = src_reg->umin_value; 6631 6632 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6633 * be negative, then either: 6634 * 1) src_reg might be zero, so the sign bit of the result is 6635 * unknown, so we lose our signed bounds 6636 * 2) it's known negative, thus the unsigned bounds capture the 6637 * signed bounds 6638 * 3) the signed bounds cross zero, so they tell us nothing 6639 * about the result 6640 * If the value in dst_reg is known nonnegative, then again the 6641 * unsigned bounts capture the signed bounds. 6642 * Thus, in all cases it suffices to blow away our signed bounds 6643 * and rely on inferring new ones from the unsigned bounds and 6644 * var_off of the result. 6645 */ 6646 dst_reg->smin_value = S64_MIN; 6647 dst_reg->smax_value = S64_MAX; 6648 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6649 dst_reg->umin_value >>= umax_val; 6650 dst_reg->umax_value >>= umin_val; 6651 6652 /* Its not easy to operate on alu32 bounds here because it depends 6653 * on bits being shifted in. Take easy way out and mark unbounded 6654 * so we can recalculate later from tnum. 6655 */ 6656 verifier_mark_reg32_unbounded(dst_reg); 6657 verifier_update_reg_bounds(dst_reg); 6658} 6659 6660static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6661{ 6662 u64 umin_val = src_reg->u32_min_value; 6663 6664 /* Upon reaching here, src_known is true and 6665 * umax_val is equal to umin_val. 6666 */ 6667 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6668 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6669 6670 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 0x20); 6671 6672 /* blow away the dst_reg umin_value/umax_value and rely on 6673 * dst_reg var_off to refine the result. 6674 */ 6675 dst_reg->u32_min_value = 0; 6676 dst_reg->u32_max_value = U32_MAX; 6677 6678 verifier_mark_reg64_unbounded(dst_reg); 6679 verifier_update_reg32_bounds(dst_reg); 6680} 6681 6682static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, struct bpf_reg_state *src_reg) 6683{ 6684 u64 umin_val = src_reg->umin_value; 6685 6686 /* Upon reaching here, src_known is true and umax_val is equal 6687 * to umin_val. 6688 */ 6689 dst_reg->smin_value >>= umin_val; 6690 dst_reg->smax_value >>= umin_val; 6691 6692 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 0x40); 6693 6694 /* blow away the dst_reg umin_value/umax_value and rely on 6695 * dst_reg var_off to refine the result. 6696 */ 6697 dst_reg->umin_value = 0; 6698 dst_reg->umax_value = U64_MAX; 6699 6700 /* Its not easy to operate on alu32 bounds here because it depends 6701 * on bits being shifted in from upper 32-bits. Take easy way out 6702 * and mark unbounded so we can recalculate later from tnum. 6703 */ 6704 verifier_mark_reg32_unbounded(dst_reg); 6705 verifier_update_reg_bounds(dst_reg); 6706} 6707 6708/* WARNING: This function does calculations on 64-bit values, but the actual 6709 * execution may occur on 32-bit values. Therefore, things like bitshifts 6710 * need extra checks in the 32-bit case. 6711 */ 6712static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn, 6713 struct bpf_reg_state *dst_reg, struct bpf_reg_state src_reg) 6714{ 6715 struct bpf_reg_state *regs = cur_regs(env); 6716 u8 opcode = BPF_OP(insn->code); 6717 bool src_known; 6718 s64 smin_val, smax_val; 6719 u64 umin_val, umax_val; 6720 s32 s32_min_val, s32_max_val; 6721 u32 u32_min_val, u32_max_val; 6722 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? VERIFIER_SIXTYFOUR : VERIFIER_THIRTYTWO; 6723 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6724 int ret; 6725 6726 smin_val = src_reg.smin_value; 6727 smax_val = src_reg.smax_value; 6728 umin_val = src_reg.umin_value; 6729 umax_val = src_reg.umax_value; 6730 6731 s32_min_val = src_reg.s32_min_value; 6732 s32_max_val = src_reg.s32_max_value; 6733 u32_min_val = src_reg.u32_min_value; 6734 u32_max_val = src_reg.u32_max_value; 6735 6736 if (alu32) { 6737 src_known = tnum_subreg_is_const(src_reg.var_off); 6738 if ((src_known && (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || s32_min_val > s32_max_val || 6739 u32_min_val > u32_max_val) { 6740 /* Taint dst register if offset had invalid bounds 6741 * derived from e.g. dead branches. 6742 */ 6743 __mark_reg_unknown(env, dst_reg); 6744 return 0; 6745 } 6746 } else { 6747 src_known = tnum_is_const(src_reg.var_off); 6748 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || smin_val > smax_val || 6749 umin_val > umax_val) { 6750 /* Taint dst register if offset had invalid bounds 6751 * derived from e.g. dead branches. 6752 */ 6753 __mark_reg_unknown(env, dst_reg); 6754 return 0; 6755 } 6756 } 6757 6758 if (!src_known && opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6759 __mark_reg_unknown(env, dst_reg); 6760 return 0; 6761 } 6762 6763 if (sanitize_needed(opcode)) { 6764 ret = sanitize_val_alu(env, insn); 6765 if (ret < 0) { 6766 return sanitize_err(env, insn, ret, NULL, NULL); 6767 } 6768 } 6769 6770 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6771 * There are two classes of instructions: The first class we track both 6772 * alu32 and alu64 sign/unsigned bounds independently this provides the 6773 * greatest amount of precision when alu operations are mixed with jmp32 6774 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6775 * and BPF_OR. This is possible because these ops have fairly easy to 6776 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6777 * See alu32 verifier tests for examples. The second class of 6778 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6779 * with regards to tracking sign/unsigned bounds because the bits may 6780 * cross subreg boundaries in the alu64 case. When this happens we mark 6781 * the reg unbounded in the subreg bound space and use the resulting 6782 * tnum to calculate an approximation of the sign/unsigned bounds. 6783 */ 6784 switch (opcode) { 6785 case BPF_ADD: 6786 scalar32_min_max_add(dst_reg, &src_reg); 6787 scalar_min_max_add(dst_reg, &src_reg); 6788 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6789 break; 6790 case BPF_SUB: 6791 scalar32_min_max_sub(dst_reg, &src_reg); 6792 scalar_min_max_sub(dst_reg, &src_reg); 6793 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6794 break; 6795 case BPF_MUL: 6796 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6797 scalar32_min_max_mul(dst_reg, &src_reg); 6798 scalar_min_max_mul(dst_reg, &src_reg); 6799 break; 6800 case BPF_AND: 6801 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6802 scalar32_min_max_and(dst_reg, &src_reg); 6803 scalar_min_max_and(dst_reg, &src_reg); 6804 break; 6805 case BPF_OR: 6806 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6807 scalar32_min_max_or(dst_reg, &src_reg); 6808 scalar_min_max_or(dst_reg, &src_reg); 6809 break; 6810 case BPF_XOR: 6811 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6812 scalar32_min_max_xor(dst_reg, &src_reg); 6813 scalar_min_max_xor(dst_reg, &src_reg); 6814 break; 6815 case BPF_LSH: 6816 if (umax_val >= insn_bitness) { 6817 /* Shifts greater than 31 or 63 are undefined. 6818 * This includes shifts by a negative number. 6819 */ 6820 mark_reg_unknown(env, regs, insn->dst_reg); 6821 break; 6822 } 6823 if (alu32) { 6824 scalar32_min_max_lsh(dst_reg, &src_reg); 6825 } else { 6826 scalar_min_max_lsh(dst_reg, &src_reg); 6827 } 6828 break; 6829 case BPF_RSH: 6830 if (umax_val >= insn_bitness) { 6831 /* Shifts greater than 31 or 63 are undefined. 6832 * This includes shifts by a negative number. 6833 */ 6834 mark_reg_unknown(env, regs, insn->dst_reg); 6835 break; 6836 } 6837 if (alu32) { 6838 scalar32_min_max_rsh(dst_reg, &src_reg); 6839 } else { 6840 scalar_min_max_rsh(dst_reg, &src_reg); 6841 } 6842 break; 6843 case BPF_ARSH: 6844 if (umax_val >= insn_bitness) { 6845 /* Shifts greater than 31 or 63 are undefined. 6846 * This includes shifts by a negative number. 6847 */ 6848 mark_reg_unknown(env, regs, insn->dst_reg); 6849 break; 6850 } 6851 if (alu32) { 6852 scalar32_min_max_arsh(dst_reg, &src_reg); 6853 } else { 6854 scalar_min_max_arsh(dst_reg, &src_reg); 6855 } 6856 break; 6857 default: 6858 mark_reg_unknown(env, regs, insn->dst_reg); 6859 break; 6860 } 6861 6862 /* ALU32 ops are zero extended into 64bit register */ 6863 if (alu32) { 6864 zext_32_to_64(dst_reg); 6865 } 6866 6867 reg_bounds_sync(dst_reg); 6868 return 0; 6869} 6870 6871/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6872 * and var_off. 6873 */ 6874static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn) 6875{ 6876 struct bpf_verifier_state *vstate = env->cur_state; 6877 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6878 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6879 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6880 u8 opcode = BPF_OP(insn->code); 6881 int err; 6882 6883 dst_reg = ®s[insn->dst_reg]; 6884 src_reg = NULL; 6885 if (dst_reg->type != SCALAR_VALUE) { 6886 ptr_reg = dst_reg; 6887 } else { 6888 /* Make sure ID is cleared otherwise dst_reg min/max could be 6889 * incorrectly propagated into other registers by find_equal_scalars() 6890 */ 6891 dst_reg->id = 0; 6892 } 6893 if (BPF_SRC(insn->code) == BPF_X) { 6894 src_reg = ®s[insn->src_reg]; 6895 if (src_reg->type != SCALAR_VALUE) { 6896 if (dst_reg->type != SCALAR_VALUE) { 6897 /* Combining two pointers by any ALU op yields 6898 * an arbitrary scalar. Disallow all math except 6899 * pointer subtraction 6900 */ 6901 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6902 mark_reg_unknown(env, regs, insn->dst_reg); 6903 return 0; 6904 } 6905 verbose(env, "R%d pointer %s pointer prohibited\n", insn->dst_reg, 6906 bpf_alu_string[opcode >> VERIFIER_FOUR]); 6907 return -EACCES; 6908 } else { 6909 /* scalar += pointer 6910 * This is legal, but we have to reverse our 6911 * src/dest handling in computing the range 6912 */ 6913 err = mark_chain_precision(env, insn->dst_reg); 6914 if (err) { 6915 return err; 6916 } 6917 return adjust_ptr_min_max_vals(env, insn, src_reg, dst_reg); 6918 } 6919 } else if (ptr_reg) { 6920 /* pointer += scalar */ 6921 err = mark_chain_precision(env, insn->src_reg); 6922 if (err) { 6923 return err; 6924 } 6925 return adjust_ptr_min_max_vals(env, insn, dst_reg, src_reg); 6926 } 6927 } else { 6928 /* Pretend the src is a reg with a known value, since we only 6929 * need to be able to read from this state. 6930 */ 6931 off_reg.type = SCALAR_VALUE; 6932 verifier_mark_reg_known(&off_reg, insn->imm); 6933 src_reg = &off_reg; 6934 if (ptr_reg) { /* pointer += K */ 6935 return adjust_ptr_min_max_vals(env, insn, ptr_reg, src_reg); 6936 } 6937 } 6938 6939 /* Got here implies adding two SCALAR_VALUEs */ 6940 if (WARN_ON_ONCE(ptr_reg)) { 6941 print_verifier_state(env, state); 6942 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6943 return -EINVAL; 6944 } 6945 if (WARN_ON(!src_reg)) { 6946 print_verifier_state(env, state); 6947 verbose(env, "verifier internal error: no src_reg\n"); 6948 return -EINVAL; 6949 } 6950 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6951} 6952 6953/* check validity of 32-bit and 64-bit arithmetic operations */ 6954static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6955{ 6956 struct bpf_reg_state *regs = cur_regs(env); 6957 u8 opcode = BPF_OP(insn->code); 6958 int err; 6959 6960 if (opcode == BPF_END || opcode == BPF_NEG) { 6961 if (opcode == BPF_NEG) { 6962 if (BPF_SRC(insn->code) != 0 || insn->src_reg != BPF_REG_0 || insn->off != 0 || insn->imm != 0) { 6963 verbose(env, "BPF_NEG uses reserved fields\n"); 6964 return -EINVAL; 6965 } 6966 } else { 6967 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6968 (insn->imm != 0x10 && insn->imm != VERIFIER_THIRTYTWO && insn->imm != VERIFIER_SIXTYFOUR) || 6969 BPF_CLASS(insn->code) == BPF_ALU64) { 6970 verbose(env, "BPF_END uses reserved fields\n"); 6971 return -EINVAL; 6972 } 6973 } 6974 6975 /* check src operand */ 6976 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6977 if (err) { 6978 return err; 6979 } 6980 6981 if (is_pointer_value(env, insn->dst_reg)) { 6982 verbose(env, "R%d pointer arithmetic prohibited\n", insn->dst_reg); 6983 return -EACCES; 6984 } 6985 6986 /* check dest operand */ 6987 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6988 if (err) { 6989 return err; 6990 } 6991 } else if (opcode == BPF_MOV) { 6992 if (BPF_SRC(insn->code) == BPF_X) { 6993 if (insn->imm != 0 || insn->off != 0) { 6994 verbose(env, "BPF_MOV uses reserved fields\n"); 6995 return -EINVAL; 6996 } 6997 /* check src operand */ 6998 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6999 if (err) { 7000 return err; 7001 } 7002 } else { 7003 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7004 verbose(env, "BPF_MOV uses reserved fields\n"); 7005 return -EINVAL; 7006 } 7007 } 7008 7009 /* check dest operand, mark as required later */ 7010 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7011 if (err) { 7012 return err; 7013 } 7014 7015 if (BPF_SRC(insn->code) == BPF_X) { 7016 struct bpf_reg_state *src_reg = regs + insn->src_reg; 7017 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 7018 7019 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7020 /* case: R1 = R2 7021 * copy register state to dest reg 7022 */ 7023 if (src_reg->type == SCALAR_VALUE && !src_reg->id) { 7024 /* Assign src and dst registers the same ID 7025 * that will be used by find_equal_scalars() 7026 * to propagate min/max range. 7027 */ 7028 src_reg->id = ++env->id_gen; 7029 } 7030 *dst_reg = *src_reg; 7031 dst_reg->live |= REG_LIVE_WRITTEN; 7032 dst_reg->subreg_def = DEF_NOT_SUBREG; 7033 } else { 7034 /* R1 = (u32) R2 */ 7035 if (is_pointer_value(env, insn->src_reg)) { 7036 verbose(env, "R%d partial copy of pointer\n", insn->src_reg); 7037 return -EACCES; 7038 } else if (src_reg->type == SCALAR_VALUE) { 7039 *dst_reg = *src_reg; 7040 /* Make sure ID is cleared otherwise 7041 * dst_reg min/max could be incorrectly 7042 * propagated into src_reg by find_equal_scalars() 7043 */ 7044 dst_reg->id = 0; 7045 dst_reg->live |= REG_LIVE_WRITTEN; 7046 dst_reg->subreg_def = env->insn_idx + 1; 7047 } else { 7048 mark_reg_unknown(env, regs, insn->dst_reg); 7049 } 7050 zext_32_to_64(dst_reg); 7051 7052 reg_bounds_sync(dst_reg); 7053 } 7054 } else { 7055 /* case: R = imm 7056 * remember the value we stored into this reg 7057 */ 7058 /* clear any state __mark_reg_known doesn't set */ 7059 mark_reg_unknown(env, regs, insn->dst_reg); 7060 regs[insn->dst_reg].type = SCALAR_VALUE; 7061 if (BPF_CLASS(insn->code) == BPF_ALU64) { 7062 verifier_mark_reg_known(regs + insn->dst_reg, insn->imm); 7063 } else { 7064 verifier_mark_reg_known(regs + insn->dst_reg, (u32)insn->imm); 7065 } 7066 } 7067 } else if (opcode > BPF_END) { 7068 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 7069 return -EINVAL; 7070 } else { /* all other ALU ops: and, sub, xor, add, ... */ 7071 if (BPF_SRC(insn->code) == BPF_X) { 7072 if (insn->imm != 0 || insn->off != 0) { 7073 verbose(env, "BPF_ALU uses reserved fields\n"); 7074 return -EINVAL; 7075 } 7076 /* check src1 operand */ 7077 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7078 if (err) { 7079 return err; 7080 } 7081 } else { 7082 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 7083 verbose(env, "BPF_ALU uses reserved fields\n"); 7084 return -EINVAL; 7085 } 7086 } 7087 7088 /* check src2 operand */ 7089 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7090 if (err) { 7091 return err; 7092 } 7093 7094 if ((opcode == BPF_MOD || opcode == BPF_DIV) && BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 7095 verbose(env, "div by zero\n"); 7096 return -EINVAL; 7097 } 7098 7099 if ((opcode == BPF_LSH || opcode == BPF_RSH || opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 7100 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? VERIFIER_SIXTYFOUR : 32; 7101 if (insn->imm < 0 || insn->imm >= size) { 7102 verbose(env, "invalid shift %d\n", insn->imm); 7103 return -EINVAL; 7104 } 7105 } 7106 /* check dest operand */ 7107 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7108 if (err) { 7109 return err; 7110 } 7111 return adjust_reg_min_max_vals(env, insn); 7112 } 7113 7114 return 0; 7115} 7116 7117static void __find_good_pkt_pointers(struct bpf_func_state *state, struct bpf_reg_state *dst_reg, 7118 enum bpf_reg_type type, u16 new_range) 7119{ 7120 struct bpf_reg_state *reg; 7121 int i; 7122 7123 for (i = 0; i < MAX_BPF_REG; i++) { 7124 reg = &state->regs[i]; 7125 if (reg->type == type && reg->id == dst_reg->id) { 7126 /* keep the maximum range already checked */ 7127 reg->range = max(reg->range, new_range); 7128 } 7129 } 7130 7131 bpf_for_each_spilled_reg(i, state, reg) 7132 { 7133 if (!reg) { 7134 continue; 7135 } 7136 if (reg->type == type && reg->id == dst_reg->id) { 7137 reg->range = max(reg->range, new_range); 7138 } 7139 } 7140} 7141 7142static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, struct bpf_reg_state *dst_reg, 7143 enum bpf_reg_type type, bool range_right_open) 7144{ 7145 u16 new_range; 7146 int i; 7147 7148 if (dst_reg->off < 0 || (dst_reg->off == 0 && range_right_open)) { 7149 /* This doesn't give us any range */ 7150 return; 7151 } 7152 7153 if (dst_reg->umax_value > MAX_PACKET_OFF || dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) { 7154 /* Risk of overflow. For instance, ptr + (1<<63) may be less 7155 * than pkt_end, but that's because it's also less than pkt. 7156 */ 7157 return; 7158 } 7159 7160 new_range = dst_reg->off; 7161 if (range_right_open) { 7162 new_range--; 7163 } 7164 7165 /* Examples for register markings: 7166 * 7167 * pkt_data in dst register: 7168 * 7169 * r2 = r3; 7170 * r2 += 8; 7171 * if (r2 > pkt_end) goto <handle exception> 7172 * <access okay> 7173 * 7174 * r2 = r3; 7175 * r2 += 8; 7176 * if (r2 < pkt_end) goto <access okay> 7177 * <handle exception> 7178 * 7179 * Where: 7180 * r2 == dst_reg, pkt_end == src_reg 7181 * r2=pkt(id=n,off=8,r=0) 7182 * r3=pkt(id=n,off=0,r=0) 7183 * 7184 * pkt_data in src register: 7185 * 7186 * r2 = r3; 7187 * r2 += 8; 7188 * if (pkt_end >= r2) goto <access okay> 7189 * <handle exception> 7190 * 7191 * r2 = r3; 7192 * r2 += 8; 7193 * if (pkt_end <= r2) goto <handle exception> 7194 * <access okay> 7195 * 7196 * Where: 7197 * pkt_end == dst_reg, r2 == src_reg 7198 * r2=pkt(id=n,off=8,r=0) 7199 * r3=pkt(id=n,off=0,r=0) 7200 * 7201 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 7202 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 7203 * and [r3, r3 + 8-1) respectively is safe to access depending on 7204 * the check. 7205 */ 7206 7207 /* If our ids match, then we must have the same max_value. And we 7208 * don't care about the other reg's fixed offset, since if it's too big 7209 * the range won't allow anything. 7210 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 7211 */ 7212 for (i = 0; i <= vstate->curframe; i++) { 7213 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, new_range); 7214 } 7215} 7216 7217static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 7218{ 7219 struct tnum subreg = tnum_subreg(reg->var_off); 7220 s32 sval = (s32)val; 7221 7222 switch (opcode) { 7223 case BPF_JEQ: 7224 if (tnum_is_const(subreg)) { 7225 return !!tnum_equals_const(subreg, val); 7226 } 7227 break; 7228 case BPF_JNE: 7229 if (tnum_is_const(subreg)) { 7230 return !tnum_equals_const(subreg, val); 7231 } 7232 break; 7233 case BPF_JSET: 7234 if ((~subreg.mask & subreg.value) & val) { 7235 return 1; 7236 } 7237 if (!((subreg.mask | subreg.value) & val)) { 7238 return 0; 7239 } 7240 break; 7241 case BPF_JGT: 7242 if (reg->u32_min_value > val) { 7243 return 1; 7244 } else if (reg->u32_max_value <= val) { 7245 return 0; 7246 } 7247 break; 7248 case BPF_JSGT: 7249 if (reg->s32_min_value > sval) { 7250 return 1; 7251 } else if (reg->s32_max_value <= sval) { 7252 return 0; 7253 } 7254 break; 7255 case BPF_JLT: 7256 if (reg->u32_max_value < val) { 7257 return 1; 7258 } else if (reg->u32_min_value >= val) { 7259 return 0; 7260 } 7261 break; 7262 case BPF_JSLT: 7263 if (reg->s32_max_value < sval) { 7264 return 1; 7265 } else if (reg->s32_min_value >= sval) { 7266 return 0; 7267 } 7268 break; 7269 case BPF_JGE: 7270 if (reg->u32_min_value >= val) { 7271 return 1; 7272 } else if (reg->u32_max_value < val) { 7273 return 0; 7274 } 7275 break; 7276 case BPF_JSGE: 7277 if (reg->s32_min_value >= sval) { 7278 return 1; 7279 } else if (reg->s32_max_value < sval) { 7280 return 0; 7281 } 7282 break; 7283 case BPF_JLE: 7284 if (reg->u32_max_value <= val) { 7285 return 1; 7286 } else if (reg->u32_min_value > val) { 7287 return 0; 7288 } 7289 break; 7290 case BPF_JSLE: 7291 if (reg->s32_max_value <= sval) { 7292 return 1; 7293 } else if (reg->s32_min_value > sval) { 7294 return 0; 7295 } 7296 break; 7297 } 7298 7299 return -1; 7300} 7301 7302static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 7303{ 7304 s64 sval = (s64)val; 7305 7306 switch (opcode) { 7307 case BPF_JEQ: 7308 if (tnum_is_const(reg->var_off)) { 7309 return !!tnum_equals_const(reg->var_off, val); 7310 } 7311 break; 7312 case BPF_JNE: 7313 if (tnum_is_const(reg->var_off)) { 7314 return !tnum_equals_const(reg->var_off, val); 7315 } 7316 break; 7317 case BPF_JSET: 7318 if ((~reg->var_off.mask & reg->var_off.value) & val) { 7319 return 1; 7320 } 7321 if (!((reg->var_off.mask | reg->var_off.value) & val)) { 7322 return 0; 7323 } 7324 break; 7325 case BPF_JGT: 7326 if (reg->umin_value > val) { 7327 return 1; 7328 } else if (reg->umax_value <= val) { 7329 return 0; 7330 } 7331 break; 7332 case BPF_JSGT: 7333 if (reg->smin_value > sval) { 7334 return 1; 7335 } else if (reg->smax_value <= sval) { 7336 return 0; 7337 } 7338 break; 7339 case BPF_JLT: 7340 if (reg->umax_value < val) { 7341 return 1; 7342 } else if (reg->umin_value >= val) { 7343 return 0; 7344 } 7345 break; 7346 case BPF_JSLT: 7347 if (reg->smax_value < sval) { 7348 return 1; 7349 } else if (reg->smin_value >= sval) { 7350 return 0; 7351 } 7352 break; 7353 case BPF_JGE: 7354 if (reg->umin_value >= val) { 7355 return 1; 7356 } else if (reg->umax_value < val) { 7357 return 0; 7358 } 7359 break; 7360 case BPF_JSGE: 7361 if (reg->smin_value >= sval) { 7362 return 1; 7363 } else if (reg->smax_value < sval) { 7364 return 0; 7365 } 7366 break; 7367 case BPF_JLE: 7368 if (reg->umax_value <= val) { 7369 return 1; 7370 } else if (reg->umin_value > val) { 7371 return 0; 7372 } 7373 break; 7374 case BPF_JSLE: 7375 if (reg->smax_value <= sval) { 7376 return 1; 7377 } else if (reg->smin_value > sval) { 7378 return 0; 7379 } 7380 break; 7381 } 7382 7383 return -1; 7384} 7385 7386/* compute branch direction of the expression "if (reg opcode val) goto target;" 7387 * and return: 7388 * 1 - branch will be taken and "goto target" will be executed 7389 * 0 - branch will not be taken and fall-through to next insn 7390 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 7391 * range [0,10] 7392 */ 7393static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, bool is_jmp32) 7394{ 7395 if (__is_pointer_value(false, reg)) { 7396 if (!reg_type_not_null(reg->type)) { 7397 return -1; 7398 } 7399 7400 /* If pointer is valid tests against zero will fail so we can 7401 * use this to direct branch taken. 7402 */ 7403 if (val != 0) { 7404 return -1; 7405 } 7406 7407 switch (opcode) { 7408 case BPF_JEQ: 7409 return 0; 7410 case BPF_JNE: 7411 return 1; 7412 default: 7413 return -1; 7414 } 7415 } 7416 7417 if (is_jmp32) { 7418 return is_branch32_taken(reg, val, opcode); 7419 } 7420 return is_branch64_taken(reg, val, opcode); 7421} 7422 7423/* Adjusts the register min/max values in the case that the dst_reg is the 7424 * variable register that we are working on, and src_reg is a constant or we're 7425 * simply doing a BPF_K check. 7426 * In JEQ/JNE cases we also adjust the var_off values. 7427 */ 7428static void reg_set_min_max(struct bpf_reg_state *true_reg, struct bpf_reg_state *false_reg, u64 val, u32 val32, 7429 u8 opcode, bool is_jmp32) 7430{ 7431 struct tnum false_32off = tnum_subreg(false_reg->var_off); 7432 struct tnum false_64off = false_reg->var_off; 7433 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7434 struct tnum true_64off = true_reg->var_off; 7435 s64 sval = (s64)val; 7436 s32 sval32 = (s32)val32; 7437 7438 /* If the dst_reg is a pointer, we can't learn anything about its 7439 * variable offset from the compare (unless src_reg were a pointer into 7440 * the same object, but we don't bother with that. 7441 * Since false_reg and true_reg have the same type by construction, we 7442 * only need to check one of them for pointerness. 7443 */ 7444 if (__is_pointer_value(false, false_reg)) { 7445 return; 7446 } 7447 7448 switch (opcode) { 7449 /* JEQ/JNE comparison doesn't change the register equivalence. 7450 * 7451 * r1 = r2; 7452 * if (r1 == 42) goto label; 7453 * ... 7454 * label: // here both r1 and r2 are known to be 42. 7455 * 7456 * Hence when marking register as known preserve it's ID. 7457 */ 7458 case BPF_JEQ: 7459 if (is_jmp32) { 7460 __mark_reg32_known(true_reg, val32); 7461 true_32off = tnum_subreg(true_reg->var_off); 7462 } else { 7463 ___mark_reg_known(true_reg, val); 7464 true_64off = true_reg->var_off; 7465 } 7466 break; 7467 case BPF_JNE: 7468 if (is_jmp32) { 7469 __mark_reg32_known(false_reg, val32); 7470 false_32off = tnum_subreg(false_reg->var_off); 7471 } else { 7472 ___mark_reg_known(false_reg, val); 7473 false_64off = false_reg->var_off; 7474 } 7475 break; 7476 case BPF_JSET: 7477 if (is_jmp32) { 7478 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7479 if (is_power_of_2(val32)) { 7480 true_32off = tnum_or(true_32off, tnum_const(val32)); 7481 } 7482 } else { 7483 false_64off = tnum_and(false_64off, tnum_const(~val)); 7484 if (is_power_of_2(val)) { 7485 true_64off = tnum_or(true_64off, tnum_const(val)); 7486 } 7487 } 7488 break; 7489 case BPF_JGE: 7490 case BPF_JGT: { 7491 if (is_jmp32) { 7492 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7493 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7494 7495 false_reg->u32_max_value = min(false_reg->u32_max_value, false_umax); 7496 true_reg->u32_min_value = max(true_reg->u32_min_value, true_umin); 7497 } else { 7498 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7499 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7500 7501 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7502 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7503 } 7504 break; 7505 } 7506 case BPF_JSGE: 7507 case BPF_JSGT: { 7508 if (is_jmp32) { 7509 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7510 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7511 7512 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7513 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7514 } else { 7515 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7516 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7517 7518 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7519 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7520 } 7521 break; 7522 } 7523 case BPF_JLE: 7524 case BPF_JLT: { 7525 if (is_jmp32) { 7526 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7527 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7528 7529 false_reg->u32_min_value = max(false_reg->u32_min_value, false_umin); 7530 true_reg->u32_max_value = min(true_reg->u32_max_value, true_umax); 7531 } else { 7532 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7533 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7534 7535 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7536 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7537 } 7538 break; 7539 } 7540 case BPF_JSLE: 7541 case BPF_JSLT: { 7542 if (is_jmp32) { 7543 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7544 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7545 7546 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7547 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7548 } else { 7549 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7550 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7551 7552 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7553 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7554 } 7555 break; 7556 } 7557 default: 7558 return; 7559 } 7560 7561 if (is_jmp32) { 7562 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), tnum_subreg(false_32off)); 7563 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), tnum_subreg(true_32off)); 7564 verifier_reg_combine_32_into_64(false_reg); 7565 verifier_reg_combine_32_into_64(true_reg); 7566 } else { 7567 false_reg->var_off = false_64off; 7568 true_reg->var_off = true_64off; 7569 __reg_combine_64_into_32(false_reg); 7570 __reg_combine_64_into_32(true_reg); 7571 } 7572} 7573 7574/* Same as above, but for the case that dst_reg holds a constant and src_reg is 7575 * the variable reg. 7576 */ 7577static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, struct bpf_reg_state *false_reg, u64 val, u32 val32, 7578 u8 opcode, bool is_jmp32) 7579{ 7580 /* How can we transform "a <op> b" into "b <op> a"? */ 7581 static const u8 opcode_flip[VERIFIER_SIXTEEN] = { 7582 [BPF_JEQ >> VERIFIER_FOUR] = BPF_JEQ, 7583 [BPF_JNE >> VERIFIER_FOUR] = BPF_JNE, 7584 [BPF_JSET >> VERIFIER_FOUR] = BPF_JSET, 7585 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7586 [BPF_JGE >> VERIFIER_FOUR] = BPF_JLE, 7587 [BPF_JGT >> VERIFIER_FOUR] = BPF_JLT, 7588 [BPF_JLE >> VERIFIER_FOUR] = BPF_JGE, 7589 [BPF_JLT >> VERIFIER_FOUR] = BPF_JGT, 7590 [BPF_JSGE >> VERIFIER_FOUR] = BPF_JSLE, 7591 [BPF_JSGT >> VERIFIER_FOUR] = BPF_JSLT, 7592 [BPF_JSLE >> VERIFIER_FOUR] = BPF_JSGE, 7593 [BPF_JSLT >> VERIFIER_FOUR] = BPF_JSGT}; 7594 opcode = opcode_flip[opcode >> VERIFIER_FOUR]; 7595 /* This uses zero as "not present in table"; luckily the zero opcode, 7596 * BPF_JA, can't get here. 7597 */ 7598 if (opcode) { 7599 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7600 } 7601} 7602 7603/* Regs are known to be equal, so intersect their min/max/var_off */ 7604static void __reg_combine_min_max(struct bpf_reg_state *src_reg, struct bpf_reg_state *dst_reg) 7605{ 7606 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, dst_reg->umin_value); 7607 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, dst_reg->umax_value); 7608 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, dst_reg->smin_value); 7609 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, dst_reg->smax_value); 7610 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, dst_reg->var_off); 7611 /* We might have learned new bounds from the var_off. */ 7612 reg_bounds_sync(src_reg); 7613 reg_bounds_sync(dst_reg); 7614} 7615 7616static void reg_combine_min_max(struct bpf_reg_state *true_src, struct bpf_reg_state *true_dst, 7617 struct bpf_reg_state *false_src, struct bpf_reg_state *false_dst, u8 opcode) 7618{ 7619 switch (opcode) { 7620 case BPF_JEQ: 7621 __reg_combine_min_max(true_src, true_dst); 7622 break; 7623 case BPF_JNE: 7624 __reg_combine_min_max(false_src, false_dst); 7625 break; 7626 } 7627} 7628 7629static void mark_ptr_or_null_reg(struct bpf_func_state *state, struct bpf_reg_state *reg, u32 id, bool is_null) 7630{ 7631 if (type_may_be_null(reg->type) && reg->id == id && 7632 !WARN_ON_ONCE(!reg->id)) { 7633 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7634 !tnum_equals_const(reg->var_off, 0) || reg->off)) { 7635 /* Old offset (both fixed and variable parts) should 7636 * have been known-zero, because we don't allow pointer 7637 * arithmetic on pointers that might be NULL. If we 7638 * see this happening, don't convert the register. 7639 */ 7640 return; 7641 } 7642 if (is_null) { 7643 reg->type = SCALAR_VALUE; 7644 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 7645 const struct bpf_map *map = reg->map_ptr; 7646 7647 if (map->inner_map_meta) { 7648 reg->type = CONST_PTR_TO_MAP; 7649 reg->map_ptr = map->inner_map_meta; 7650 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7651 reg->type = PTR_TO_XDP_SOCK; 7652 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7653 reg->type = PTR_TO_SOCKET; 7654 } else { 7655 reg->type = PTR_TO_MAP_VALUE; 7656 } 7657 } else { 7658 reg->type &= ~PTR_MAYBE_NULL; 7659 } 7660 7661 if (is_null) { 7662 /* We don't need id and ref_obj_id from this point 7663 * onwards anymore, thus we should better reset it, 7664 * so that state pruning has chances to take effect. 7665 */ 7666 reg->id = 0; 7667 reg->ref_obj_id = 0; 7668 } else if (!reg_may_point_to_spin_lock(reg)) { 7669 /* For not-NULL ptr, reg->ref_obj_id will be reset 7670 * in release_reg_references(). 7671 * 7672 * reg->id is still used by spin_lock ptr. Other 7673 * than spin_lock ptr type, reg->id can be reset. 7674 */ 7675 reg->id = 0; 7676 } 7677 } 7678} 7679 7680static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, bool is_null) 7681{ 7682 struct bpf_reg_state *reg; 7683 int i; 7684 7685 for (i = 0; i < MAX_BPF_REG; i++) { 7686 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7687 } 7688 7689 bpf_for_each_spilled_reg(i, state, reg) 7690 { 7691 if (!reg) { 7692 continue; 7693 } 7694 mark_ptr_or_null_reg(state, reg, id, is_null); 7695 } 7696} 7697 7698/* The logic is similar to find_good_pkt_pointers(), both could eventually 7699 * be folded together at some point. 7700 */ 7701static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, bool is_null) 7702{ 7703 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7704 struct bpf_reg_state *regs = state->regs; 7705 u32 ref_obj_id = regs[regno].ref_obj_id; 7706 u32 id = regs[regno].id; 7707 int i; 7708 7709 if (ref_obj_id && ref_obj_id == id && is_null) { 7710 /* regs[regno] is in the " == NULL" branch. 7711 * No one could have freed the reference state before 7712 * doing the NULL check. 7713 */ 7714 WARN_ON_ONCE(release_reference_state(state, id)); 7715 } 7716 7717 for (i = 0; i <= vstate->curframe; i++) { 7718 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7719 } 7720} 7721 7722static bool try_match_pkt_pointers(const struct bpf_insn *insn, struct bpf_reg_state *dst_reg, 7723 struct bpf_reg_state *src_reg, struct bpf_verifier_state *this_branch, 7724 struct bpf_verifier_state *other_branch) 7725{ 7726 if (BPF_SRC(insn->code) != BPF_X) { 7727 return false; 7728 } 7729 7730 /* Pointers are always 64-bit. */ 7731 if (BPF_CLASS(insn->code) == BPF_JMP32) { 7732 return false; 7733 } 7734 7735 switch (BPF_OP(insn->code)) { 7736 case BPF_JGT: 7737 if ((dst_reg->type == PTR_TO_PACKET && src_reg->type == PTR_TO_PACKET_END) || 7738 (dst_reg->type == PTR_TO_PACKET_META && reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7739 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7740 find_good_pkt_pointers(this_branch, dst_reg, dst_reg->type, false); 7741 } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || 7742 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && src_reg->type == PTR_TO_PACKET_META)) { 7743 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7744 find_good_pkt_pointers(other_branch, src_reg, src_reg->type, true); 7745 } else { 7746 return false; 7747 } 7748 break; 7749 case BPF_JLT: 7750 if ((dst_reg->type == PTR_TO_PACKET && src_reg->type == PTR_TO_PACKET_END) || 7751 (dst_reg->type == PTR_TO_PACKET_META && reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7752 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7753 find_good_pkt_pointers(other_branch, dst_reg, dst_reg->type, true); 7754 } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || 7755 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && src_reg->type == PTR_TO_PACKET_META)) { 7756 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7757 find_good_pkt_pointers(this_branch, src_reg, src_reg->type, false); 7758 } else { 7759 return false; 7760 } 7761 break; 7762 case BPF_JGE: 7763 if ((dst_reg->type == PTR_TO_PACKET && src_reg->type == PTR_TO_PACKET_END) || 7764 (dst_reg->type == PTR_TO_PACKET_META && reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7765 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7766 find_good_pkt_pointers(this_branch, dst_reg, dst_reg->type, true); 7767 } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || 7768 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && src_reg->type == PTR_TO_PACKET_META)) { 7769 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7770 find_good_pkt_pointers(other_branch, src_reg, src_reg->type, false); 7771 } else { 7772 return false; 7773 } 7774 break; 7775 case BPF_JLE: 7776 if ((dst_reg->type == PTR_TO_PACKET && src_reg->type == PTR_TO_PACKET_END) || 7777 (dst_reg->type == PTR_TO_PACKET_META && reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7778 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7779 find_good_pkt_pointers(other_branch, dst_reg, dst_reg->type, false); 7780 } else if ((dst_reg->type == PTR_TO_PACKET_END && src_reg->type == PTR_TO_PACKET) || 7781 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && src_reg->type == PTR_TO_PACKET_META)) { 7782 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7783 find_good_pkt_pointers(this_branch, src_reg, src_reg->type, true); 7784 } else { 7785 return false; 7786 } 7787 break; 7788 default: 7789 return false; 7790 } 7791 7792 return true; 7793} 7794 7795static void find_equal_scalars(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg) 7796{ 7797 struct bpf_func_state *state; 7798 struct bpf_reg_state *reg; 7799 int i, j; 7800 7801 for (i = 0; i <= vstate->curframe; i++) { 7802 state = vstate->frame[i]; 7803 for (j = 0; j < MAX_BPF_REG; j++) { 7804 reg = &state->regs[j]; 7805 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) { 7806 *reg = *known_reg; 7807 } 7808 } 7809 7810 bpf_for_each_spilled_reg(j, state, reg) 7811 { 7812 if (!reg) { 7813 continue; 7814 } 7815 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) { 7816 *reg = *known_reg; 7817 } 7818 } 7819 } 7820} 7821 7822static int check_cond_jmp_op(struct bpf_verifier_env *env, struct bpf_insn *insn, int *insn_idx) 7823{ 7824 struct bpf_verifier_state *this_branch = env->cur_state; 7825 struct bpf_verifier_state *other_branch; 7826 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7827 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7828 u8 opcode = BPF_OP(insn->code); 7829 bool is_jmp32; 7830 int pred = -1; 7831 int err; 7832 7833 /* Only conditional jumps are expected to reach here. */ 7834 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7835 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7836 return -EINVAL; 7837 } 7838 7839 if (BPF_SRC(insn->code) == BPF_X) { 7840 if (insn->imm != 0) { 7841 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7842 return -EINVAL; 7843 } 7844 7845 /* check src1 operand */ 7846 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7847 if (err) { 7848 return err; 7849 } 7850 7851 if (is_pointer_value(env, insn->src_reg)) { 7852 verbose(env, "R%d pointer comparison prohibited\n", insn->src_reg); 7853 return -EACCES; 7854 } 7855 src_reg = ®s[insn->src_reg]; 7856 } else { 7857 if (insn->src_reg != BPF_REG_0) { 7858 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7859 return -EINVAL; 7860 } 7861 } 7862 7863 /* check src2 operand */ 7864 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7865 if (err) { 7866 return err; 7867 } 7868 7869 dst_reg = ®s[insn->dst_reg]; 7870 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7871 7872 if (BPF_SRC(insn->code) == BPF_K) { 7873 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7874 } else if (src_reg->type == SCALAR_VALUE && is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7875 pred = is_branch_taken(dst_reg, tnum_subreg(src_reg->var_off).value, opcode, is_jmp32); 7876 } else if (src_reg->type == SCALAR_VALUE && !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7877 pred = is_branch_taken(dst_reg, src_reg->var_off.value, opcode, is_jmp32); 7878 } 7879 7880 if (pred >= 0) { 7881 /* If we get here with a dst_reg pointer type it is because 7882 * above is_branch_taken() special cased the 0 comparison. 7883 */ 7884 if (!__is_pointer_value(false, dst_reg)) { 7885 err = mark_chain_precision(env, insn->dst_reg); 7886 } 7887 if (BPF_SRC(insn->code) == BPF_X && !err) { 7888 err = mark_chain_precision(env, insn->src_reg); 7889 } 7890 if (err) { 7891 return err; 7892 } 7893 } 7894 7895 if (pred == 1) { 7896 /* Only follow the goto, ignore fall-through. If needed, push 7897 * the fall-through branch for simulation under speculative 7898 * execution. 7899 */ 7900 if (!env->bypass_spec_v1 && !sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx)) { 7901 return -EFAULT; 7902 } 7903 *insn_idx += insn->off; 7904 return 0; 7905 } else if (pred == 0) { 7906 /* Only follow the fall-through branch, since that's where the 7907 * program will go. If needed, push the goto branch for 7908 * simulation under speculative execution. 7909 */ 7910 if (!env->bypass_spec_v1 && !sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1, *insn_idx)) { 7911 return -EFAULT; 7912 } 7913 return 0; 7914 } 7915 7916 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false); 7917 if (!other_branch) { 7918 return -EFAULT; 7919 } 7920 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7921 7922 /* detect if we are comparing against a constant value so we can adjust 7923 * our min/max values for our dst register. 7924 * this is only legit if both are scalars (or pointers to the same 7925 * object, I suppose, but we don't support that right now), because 7926 * otherwise the different base pointers mean the offsets aren't 7927 * comparable. 7928 */ 7929 if (BPF_SRC(insn->code) == BPF_X) { 7930 struct bpf_reg_state *src_reg_in = ®s[insn->src_reg]; 7931 7932 if (dst_reg->type == SCALAR_VALUE && src_reg_in->type == SCALAR_VALUE) { 7933 if (tnum_is_const(src_reg_in->var_off) || (is_jmp32 && tnum_is_const(tnum_subreg(src_reg_in->var_off)))) { 7934 reg_set_min_max(&other_branch_regs[insn->dst_reg], dst_reg, src_reg_in->var_off.value, 7935 tnum_subreg(src_reg_in->var_off).value, opcode, is_jmp32); 7936 } else if (tnum_is_const(dst_reg->var_off) || (is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off)))) { 7937 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], src_reg_in, dst_reg->var_off.value, 7938 tnum_subreg(dst_reg->var_off).value, opcode, is_jmp32); 7939 } else if (!is_jmp32 && (opcode == BPF_JEQ || opcode == BPF_JNE)) { 7940 /* Comparing for equality, we can combine knowledge */ 7941 reg_combine_min_max(&other_branch_regs[insn->src_reg], &other_branch_regs[insn->dst_reg], src_reg_in, 7942 dst_reg, opcode); 7943 } 7944 if (src_reg_in->id && !WARN_ON_ONCE(src_reg_in->id != other_branch_regs[insn->src_reg].id)) { 7945 find_equal_scalars(this_branch, src_reg_in); 7946 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7947 } 7948 } 7949 } else if (dst_reg->type == SCALAR_VALUE) { 7950 reg_set_min_max(&other_branch_regs[insn->dst_reg], dst_reg, insn->imm, (u32)insn->imm, opcode, is_jmp32); 7951 } 7952 7953 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7954 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7955 find_equal_scalars(this_branch, dst_reg); 7956 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7957 } 7958 7959 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7960 * NOTE: these optimizations below are related with pointer comparison 7961 * which will never be JMP32. 7962 */ 7963 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7964 type_may_be_null(dst_reg->type)) { 7965 /* Mark all identical registers in each branch as either 7966 * safe or unknown depending R == 0 or R != 0 conditional. 7967 */ 7968 mark_ptr_or_null_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 7969 mark_ptr_or_null_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 7970 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], this_branch, other_branch) && 7971 is_pointer_value(env, insn->dst_reg)) { 7972 verbose(env, "R%d pointer comparison prohibited\n", insn->dst_reg); 7973 return -EACCES; 7974 } 7975 if (env->log.level & BPF_LOG_LEVEL) { 7976 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7977 } 7978 return 0; 7979} 7980 7981/* verify BPF_LD_IMM64 instruction */ 7982static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7983{ 7984 struct bpf_insn_aux_data *aux = cur_aux(env); 7985 struct bpf_reg_state *regs = cur_regs(env); 7986 struct bpf_reg_state *dst_reg; 7987 struct bpf_map *map; 7988 int err; 7989 7990 if (BPF_SIZE(insn->code) != BPF_DW) { 7991 verbose(env, "invalid BPF_LD_IMM insn\n"); 7992 return -EINVAL; 7993 } 7994 if (insn->off != 0) { 7995 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7996 return -EINVAL; 7997 } 7998 7999 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8000 if (err) { 8001 return err; 8002 } 8003 8004 dst_reg = ®s[insn->dst_reg]; 8005 if (insn->src_reg == 0) { 8006 u64 imm = ((u64)(insn + 1)->imm << VERIFIER_THIRTYTWO) | (u32)insn->imm; 8007 8008 dst_reg->type = SCALAR_VALUE; 8009 verifier_mark_reg_known(®s[insn->dst_reg], imm); 8010 return 0; 8011 } 8012 8013 /* All special src_reg cases are listed below. From this point onwards 8014 * we either succeed and assign a corresponding dst_reg->type after 8015 * zeroing the offset, or fail and reject the program. 8016 */ 8017 mark_reg_known_zero(env, regs, insn->dst_reg); 8018 8019 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 8020 dst_reg->type = aux->btf_var.reg_type; 8021 switch (base_type(dst_reg->type)) { 8022 case PTR_TO_MEM: 8023 dst_reg->mem_size = aux->btf_var.mem_size; 8024 break; 8025 case PTR_TO_BTF_ID: 8026 case PTR_TO_PERCPU_BTF_ID: 8027 dst_reg->btf_id = aux->btf_var.btf_id; 8028 break; 8029 default: 8030 verbose(env, "bpf verifier is misconfigured\n"); 8031 return -EFAULT; 8032 } 8033 return 0; 8034 } 8035 8036 map = env->used_maps[aux->map_index]; 8037 dst_reg->map_ptr = map; 8038 8039 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 8040 dst_reg->type = PTR_TO_MAP_VALUE; 8041 dst_reg->off = aux->map_off; 8042 if (map_value_has_spin_lock(map)) { 8043 dst_reg->id = ++env->id_gen; 8044 } 8045 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8046 dst_reg->type = CONST_PTR_TO_MAP; 8047 } else { 8048 verbose(env, "bpf verifier is misconfigured\n"); 8049 return -EINVAL; 8050 } 8051 8052 return 0; 8053} 8054 8055static bool may_access_skb(enum bpf_prog_type type) 8056{ 8057 switch (type) { 8058 case BPF_PROG_TYPE_SOCKET_FILTER: 8059 case BPF_PROG_TYPE_SCHED_CLS: 8060 case BPF_PROG_TYPE_SCHED_ACT: 8061 return true; 8062 default: 8063 return false; 8064 } 8065} 8066 8067/* verify safety of LD_ABS|LD_IND instructions: 8068 * - they can only appear in the programs where ctx == skb 8069 * - since they are wrappers of function calls, they scratch R1-R5 registers, 8070 * preserve R6-R9, and store return value into R0 8071 * 8072 * Implicit input: 8073 * ctx == skb == R6 == CTX 8074 * 8075 * Explicit input: 8076 * SRC == any register 8077 * IMM == 32-bit immediate 8078 * 8079 * Output: 8080 * R0 - 8/16/32-bit skb data converted to cpu endianness 8081 */ 8082static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 8083{ 8084 struct bpf_reg_state *regs = cur_regs(env); 8085 static const int ctx_reg = BPF_REG_6; 8086 u8 mode = BPF_MODE(insn->code); 8087 int i, err; 8088 8089 if (!may_access_skb(resolve_prog_type(env->prog))) { 8090 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 8091 return -EINVAL; 8092 } 8093 8094 if (!env->ops->gen_ld_abs) { 8095 verbose(env, "bpf verifier is misconfigured\n"); 8096 return -EINVAL; 8097 } 8098 8099 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || BPF_SIZE(insn->code) == BPF_DW || 8100 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 8101 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 8102 return -EINVAL; 8103 } 8104 8105 /* check whether implicit source operand (register R6) is readable */ 8106 err = check_reg_arg(env, ctx_reg, SRC_OP); 8107 if (err) { 8108 return err; 8109 } 8110 8111 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 8112 * gen_ld_abs() may terminate the program at runtime, leading to 8113 * reference leak. 8114 */ 8115 err = check_reference_leak(env); 8116 if (err) { 8117 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 8118 return err; 8119 } 8120 8121 if (env->cur_state->active_spin_lock) { 8122 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 8123 return -EINVAL; 8124 } 8125 8126 if (regs[ctx_reg].type != PTR_TO_CTX) { 8127 verbose(env, "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 8128 return -EINVAL; 8129 } 8130 8131 if (mode == BPF_IND) { 8132 /* check explicit source operand */ 8133 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8134 if (err) { 8135 return err; 8136 } 8137 } 8138 8139 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 8140 if (err < 0) { 8141 return err; 8142 } 8143 8144 /* reset caller saved regs to unreadable */ 8145 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8146 mark_reg_not_init(env, regs, caller_saved[i]); 8147 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8148 } 8149 8150 /* mark destination R0 register as readable, since it contains 8151 * the value fetched from the packet. 8152 * Already marked as written above. 8153 */ 8154 mark_reg_unknown(env, regs, BPF_REG_0); 8155 /* ld_abs load up to 32-bit skb data. */ 8156 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 8157 return 0; 8158} 8159 8160static int check_return_code(struct bpf_verifier_env *env) 8161{ 8162 struct tnum enforce_attach_type_range = tnum_unknown; 8163 const struct bpf_prog *prog = env->prog; 8164 struct bpf_reg_state *reg; 8165 struct tnum range = tnum_range(0, 1); 8166 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8167 int err; 8168 const bool is_subprog = env->cur_state->frame[0]->subprogno; 8169 8170 /* LSM and struct_ops func-ptr's return type could be "void" */ 8171 if (!is_subprog && (prog_type == BPF_PROG_TYPE_STRUCT_OPS || prog_type == BPF_PROG_TYPE_LSM) && 8172 !prog->aux->attach_func_proto->type) { 8173 return 0; 8174 } 8175 8176 /* eBPF calling convetion is such that R0 is used 8177 * to return the value from eBPF program. 8178 * Make sure that it's readable at this time 8179 * of bpf_exit, which means that program wrote 8180 * something into it earlier 8181 */ 8182 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8183 if (err) { 8184 return err; 8185 } 8186 8187 if (is_pointer_value(env, BPF_REG_0)) { 8188 verbose(env, "R0 leaks addr as return value\n"); 8189 return -EACCES; 8190 } 8191 8192 reg = cur_regs(env) + BPF_REG_0; 8193 if (is_subprog) { 8194 if (reg->type != SCALAR_VALUE) { 8195 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 8196 reg_type_str(env, reg->type)); 8197 return -EINVAL; 8198 } 8199 return 0; 8200 } 8201 8202 switch (prog_type) { 8203 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8204 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 8205 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 8206 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 8207 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 8208 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 8209 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) { 8210 range = tnum_range(1, 1); 8211 } 8212 break; 8213 case BPF_PROG_TYPE_CGROUP_SKB: 8214 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 8215 range = tnum_range(0, 3); 8216 enforce_attach_type_range = tnum_range(2, 3); 8217 } 8218 break; 8219 case BPF_PROG_TYPE_CGROUP_SOCK: 8220 case BPF_PROG_TYPE_SOCK_OPS: 8221 case BPF_PROG_TYPE_CGROUP_DEVICE: 8222 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8223 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8224 break; 8225 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8226 if (!env->prog->aux->attach_btf_id) { 8227 return 0; 8228 } 8229 range = tnum_const(0); 8230 break; 8231 case BPF_PROG_TYPE_TRACING: 8232 switch (env->prog->expected_attach_type) { 8233 case BPF_TRACE_FENTRY: 8234 case BPF_TRACE_FEXIT: 8235 range = tnum_const(0); 8236 break; 8237 case BPF_TRACE_RAW_TP: 8238 case BPF_MODIFY_RETURN: 8239 return 0; 8240 case BPF_TRACE_ITER: 8241 break; 8242 default: 8243 return -ENOTSUPP; 8244 } 8245 break; 8246 case BPF_PROG_TYPE_SK_LOOKUP: 8247 range = tnum_range(SK_DROP, SK_PASS); 8248 break; 8249 case BPF_PROG_TYPE_EXT: 8250 /* freplace program can return anything as its return value 8251 * depends on the to-be-replaced kernel func or bpf program. 8252 */ 8253 default: 8254 return 0; 8255 } 8256 8257 if (reg->type != SCALAR_VALUE) { 8258 verbose(env, "At program exit the register R0 is not a known value (%s)\n", reg_type_str(env, reg->type)); 8259 return -EINVAL; 8260 } 8261 8262 if (!tnum_in(range, reg->var_off)) { 8263 char tn_buf[48]; 8264 8265 verbose(env, "At program exit the register R0 "); 8266 if (!tnum_is_unknown(reg->var_off)) { 8267 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8268 verbose(env, "has value %s", tn_buf); 8269 } else { 8270 verbose(env, "has unknown scalar value"); 8271 } 8272 tnum_strn(tn_buf, sizeof(tn_buf), range); 8273 verbose(env, " should have been in %s\n", tn_buf); 8274 return -EINVAL; 8275 } 8276 8277 if (!tnum_is_unknown(enforce_attach_type_range) && tnum_in(enforce_attach_type_range, reg->var_off)) { 8278 env->prog->enforce_expected_attach_type = 1; 8279 } 8280 return 0; 8281} 8282 8283/* non-recursive DFS pseudo code 8284 * 1 procedure DFS-iterative(G,v): 8285 * 2 label v as discovered 8286 * 3 let S be a stack 8287 * 4 S.push(v) 8288 * 5 while S is not empty 8289 * 6 t <- S.pop() 8290 * 7 if t is what we're looking for: 8291 * 8 return t 8292 * 9 for all edges e in G.adjacentEdges(t) do 8293 * 10 if edge e is already labelled 8294 * 11 continue with the next edge 8295 * 12 w <- G.adjacentVertex(t,e) 8296 * 13 if vertex w is not discovered and not explored 8297 * 14 label e as tree-edge 8298 * 15 label w as discovered 8299 * 16 S.push(w) 8300 * 17 continue at 5 8301 * 18 else if vertex w is discovered 8302 * 19 label e as back-edge 8303 * 20 else 8304 * 21 // vertex w is explored 8305 * 22 label e as forward- or cross-edge 8306 * 23 label t as explored 8307 * 24 S.pop() 8308 * 8309 * convention: 8310 * 0x10 - discovered 8311 * 0x11 - discovered and fall-through edge labelled 8312 * 0x12 - discovered and fall-through and branch edges labelled 8313 * 0x20 - explored 8314 */ 8315 8316enum { 8317 DISCOVERED = 0x10, 8318 EXPLORED = 0x20, 8319 FALLTHROUGH = 1, 8320 BRANCH = 2, 8321}; 8322 8323static u32 state_htab_size(struct bpf_verifier_env *env) 8324{ 8325 return env->prog->len; 8326} 8327 8328static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 8329{ 8330 struct bpf_verifier_state *cur = env->cur_state; 8331 struct bpf_func_state *state = cur->frame[cur->curframe]; 8332 8333 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 8334} 8335 8336static void init_explored_state(struct bpf_verifier_env *env, int idx) 8337{ 8338 env->insn_aux_data[idx].prune_point = true; 8339} 8340 8341/* t, w, e - match pseudo-code above: 8342 * t - index of current instruction 8343 * w - next instruction 8344 * e - edge 8345 */ 8346static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, bool loop_ok) 8347{ 8348 int *insn_stack = env->cfg.insn_stack; 8349 int *insn_state = env->cfg.insn_state; 8350 8351 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) { 8352 return 0; 8353 } 8354 8355 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) { 8356 return 0; 8357 } 8358 8359 if (w < 0 || w >= env->prog->len) { 8360 verbose_linfo(env, t, "%d: ", t); 8361 verbose(env, "jump out of range from insn %d to %d\n", t, w); 8362 return -EINVAL; 8363 } 8364 8365 if (e == BRANCH) { 8366 /* mark branch target for state pruning */ 8367 init_explored_state(env, w); 8368 } 8369 8370 if (insn_state[w] == 0) { 8371 /* tree-edge */ 8372 insn_state[t] = DISCOVERED | e; 8373 insn_state[w] = DISCOVERED; 8374 if (env->cfg.cur_stack >= env->prog->len) { 8375 return -E2BIG; 8376 } 8377 insn_stack[env->cfg.cur_stack++] = w; 8378 return 1; 8379 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8380 if (loop_ok && env->bpf_capable) { 8381 return 0; 8382 } 8383 verbose_linfo(env, t, "%d: ", t); 8384 verbose_linfo(env, w, "%d: ", w); 8385 verbose(env, "back-edge from insn %d to %d\n", t, w); 8386 return -EINVAL; 8387 } else if (insn_state[w] == EXPLORED) { 8388 /* forward- or cross-edge */ 8389 insn_state[t] = DISCOVERED | e; 8390 } else { 8391 verbose(env, "insn state internal bug\n"); 8392 return -EFAULT; 8393 } 8394 return 0; 8395} 8396 8397/* non-recursive depth-first-search to detect loops in BPF program 8398 * loop == back-edge in directed graph 8399 */ 8400static int check_cfg(struct bpf_verifier_env *env) 8401{ 8402 struct bpf_insn *insns = env->prog->insnsi; 8403 int insn_cnt = env->prog->len; 8404 int *insn_stack, *insn_state; 8405 int ret = 0; 8406 int i, t; 8407 8408 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8409 if (!insn_state) { 8410 return -ENOMEM; 8411 } 8412 8413 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8414 if (!insn_stack) { 8415 kvfree(insn_state); 8416 return -ENOMEM; 8417 } 8418 8419 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8420 insn_stack[0] = 0; /* 0 is the first instruction */ 8421 env->cfg.cur_stack = 1; 8422 8423 while (1) { 8424 if (env->cfg.cur_stack == 0) { 8425 goto check_state; 8426 } 8427 t = insn_stack[env->cfg.cur_stack - 1]; 8428 8429 if (BPF_CLASS(insns[t].code) == BPF_JMP || BPF_CLASS(insns[t].code) == BPF_JMP32) { 8430 u8 opcode = BPF_OP(insns[t].code); 8431 if (opcode == BPF_EXIT) { 8432 goto mark_explored; 8433 } else if (opcode == BPF_CALL) { 8434 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8435 if (ret == 1) { 8436 continue; 8437 } else if (ret < 0) { 8438 goto err_free; 8439 } 8440 if (t + 1 < insn_cnt) { 8441 init_explored_state(env, t + 1); 8442 } 8443 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8444 init_explored_state(env, t); 8445 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, false); 8446 if (ret == 1) { 8447 continue; 8448 } else if (ret < 0) { 8449 goto err_free; 8450 } 8451 } 8452 } else if (opcode == BPF_JA) { 8453 if (BPF_SRC(insns[t].code) != BPF_K) { 8454 ret = -EINVAL; 8455 goto err_free; 8456 } 8457 /* unconditional jump with single edge */ 8458 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, true); 8459 if (ret == 1) { 8460 continue; 8461 } else if (ret < 0) { 8462 goto err_free; 8463 } 8464 /* unconditional jmp is not a good pruning point, 8465 * but it's marked, since backtracking needs 8466 * to record jmp history in is_state_visited(). 8467 */ 8468 init_explored_state(env, t + insns[t].off + 1); 8469 /* tell verifier to check for equivalent states 8470 * after every call and jump 8471 */ 8472 if (t + 1 < insn_cnt) { 8473 init_explored_state(env, t + 1); 8474 } 8475 } else { 8476 /* conditional jump with two edges */ 8477 init_explored_state(env, t); 8478 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8479 if (ret == 1) { 8480 continue; 8481 } else if (ret < 0) { 8482 goto err_free; 8483 } 8484 8485 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8486 if (ret == 1) { 8487 continue; 8488 } else if (ret < 0) { 8489 goto err_free; 8490 } 8491 } 8492 } else { 8493 /* all other non-branch instructions with single 8494 * fall-through edge 8495 */ 8496 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8497 if (ret == 1) { 8498 continue; 8499 } else if (ret < 0) { 8500 goto err_free; 8501 } 8502 } 8503 8504 mark_explored: 8505 insn_state[t] = EXPLORED; 8506 if (env->cfg.cur_stack-- <= 0) { 8507 verbose(env, "pop stack internal bug\n"); 8508 ret = -EFAULT; 8509 goto err_free; 8510 } 8511 continue; 8512 } 8513 8514check_state: 8515 for (i = 0; i < insn_cnt; i++) { 8516 if (insn_state[i] != EXPLORED) { 8517 verbose(env, "unreachable insn %d\n", i); 8518 ret = -EINVAL; 8519 goto err_free; 8520 } 8521 } 8522 ret = 0; /* cfg looks good */ 8523 8524err_free: 8525 kvfree(insn_state); 8526 kvfree(insn_stack); 8527 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8528 return ret; 8529} 8530 8531static int check_abnormal_return(struct bpf_verifier_env *env) 8532{ 8533 int i; 8534 8535 for (i = 1; i < env->subprog_cnt; i++) { 8536 if (env->subprog_info[i].has_ld_abs) { 8537 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8538 return -EINVAL; 8539 } 8540 if (env->subprog_info[i].has_tail_call) { 8541 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8542 return -EINVAL; 8543 } 8544 } 8545 return 0; 8546} 8547 8548/* The minimum supported BTF func info size */ 8549#define MIN_BPF_FUNCINFO_SIZE 8 8550#define MAX_FUNCINFO_REC_SIZE 252 8551 8552static int check_btf_func(struct bpf_verifier_env *env, const union bpf_attr *attr, union bpf_attr __user *uattr) 8553{ 8554 const struct btf_type *type, *func_proto, *ret_type; 8555 u32 i, nfuncs, urec_size, min_size; 8556 u32 krec_size = sizeof(struct bpf_func_info); 8557 struct bpf_func_info *krecord; 8558 struct bpf_func_info_aux *info_aux = NULL; 8559 struct bpf_prog *prog; 8560 const struct btf *btf; 8561 void __user *urecord; 8562 u32 prev_offset = 0; 8563 bool scalar_return; 8564 int ret = -ENOMEM; 8565 8566 nfuncs = attr->func_info_cnt; 8567 if (!nfuncs) { 8568 if (check_abnormal_return(env)) { 8569 return -EINVAL; 8570 } 8571 return 0; 8572 } 8573 8574 if (nfuncs != env->subprog_cnt) { 8575 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8576 return -EINVAL; 8577 } 8578 8579 urec_size = attr->func_info_rec_size; 8580 if (urec_size < MIN_BPF_FUNCINFO_SIZE || urec_size > MAX_FUNCINFO_REC_SIZE || urec_size % sizeof(u32)) { 8581 verbose(env, "invalid func info rec size %u\n", urec_size); 8582 return -EINVAL; 8583 } 8584 8585 prog = env->prog; 8586 btf = prog->aux->btf; 8587 8588 urecord = u64_to_user_ptr(attr->func_info); 8589 min_size = min_t(u32, krec_size, urec_size); 8590 8591 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8592 if (!krecord) { 8593 return -ENOMEM; 8594 } 8595 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8596 if (!info_aux) { 8597 goto err_free; 8598 } 8599 8600 for (i = 0; i < nfuncs; i++) { 8601 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8602 if (ret) { 8603 if (ret == -E2BIG) { 8604 verbose(env, "nonzero tailing record in func info"); 8605 /* set the size kernel expects so loader can zero 8606 * out the rest of the record. 8607 */ 8608 if (put_user(min_size, &uattr->func_info_rec_size)) { 8609 ret = -EFAULT; 8610 } 8611 } 8612 goto err_free; 8613 } 8614 8615 if (copy_from_user(&krecord[i], urecord, min_size)) { 8616 ret = -EFAULT; 8617 goto err_free; 8618 } 8619 8620 /* check insn_off */ 8621 ret = -EINVAL; 8622 if (i == 0) { 8623 if (krecord[i].insn_off) { 8624 verbose(env, "nonzero insn_off %u for the first func info record", krecord[i].insn_off); 8625 goto err_free; 8626 } 8627 } else if (krecord[i].insn_off <= prev_offset) { 8628 verbose(env, "same or smaller insn offset (%u) than previous func info record (%u)", krecord[i].insn_off, 8629 prev_offset); 8630 goto err_free; 8631 } 8632 8633 if (env->subprog_info[i].start != krecord[i].insn_off) { 8634 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8635 goto err_free; 8636 } 8637 8638 /* check type_id */ 8639 type = btf_type_by_id(btf, krecord[i].type_id); 8640 if (!type || !btf_type_is_func(type)) { 8641 verbose(env, "invalid type id %d in func info", krecord[i].type_id); 8642 goto err_free; 8643 } 8644 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8645 8646 func_proto = btf_type_by_id(btf, type->type); 8647 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) { 8648 /* btf_func_check() already verified it during BTF load */ 8649 goto err_free; 8650 } 8651 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8652 scalar_return = btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8653 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8654 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8655 goto err_free; 8656 } 8657 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8658 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8659 goto err_free; 8660 } 8661 8662 prev_offset = krecord[i].insn_off; 8663 urecord += urec_size; 8664 } 8665 8666 prog->aux->func_info = krecord; 8667 prog->aux->func_info_cnt = nfuncs; 8668 prog->aux->func_info_aux = info_aux; 8669 return 0; 8670 8671err_free: 8672 kvfree(krecord); 8673 kfree(info_aux); 8674 return ret; 8675} 8676 8677static void adjust_btf_func(struct bpf_verifier_env *env) 8678{ 8679 struct bpf_prog_aux *aux = env->prog->aux; 8680 int i; 8681 8682 if (!aux->func_info) { 8683 return; 8684 } 8685 8686 for (i = 0; i < env->subprog_cnt; i++) { 8687 aux->func_info[i].insn_off = env->subprog_info[i].start; 8688 } 8689} 8690 8691#define MIN_BPF_LINEINFO_SIZE \ 8692 (offsetof(struct bpf_line_info, line_col) + sizeof(((struct bpf_line_info *)(0))->line_col)) 8693#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8694 8695static int check_btf_line(struct bpf_verifier_env *env, const union bpf_attr *attr, union bpf_attr __user *uattr) 8696{ 8697 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8698 struct bpf_subprog_info *sub; 8699 struct bpf_line_info *linfo; 8700 struct bpf_prog *prog; 8701 const struct btf *btf; 8702 void __user *ulinfo; 8703 int err; 8704 8705 nr_linfo = attr->line_info_cnt; 8706 if (!nr_linfo) { 8707 return 0; 8708 } 8709 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) { 8710 return -EINVAL; 8711 } 8712 8713 rec_size = attr->line_info_rec_size; 8714 if (rec_size < MIN_BPF_LINEINFO_SIZE || rec_size > MAX_LINEINFO_REC_SIZE || rec_size & (sizeof(u32) - 1)) { 8715 return -EINVAL; 8716 } 8717 8718 /* Need to zero it in case the userspace may 8719 * pass in a smaller bpf_line_info object. 8720 */ 8721 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), GFP_KERNEL | __GFP_NOWARN); 8722 if (!linfo) { 8723 return -ENOMEM; 8724 } 8725 8726 prog = env->prog; 8727 btf = prog->aux->btf; 8728 8729 s = 0; 8730 sub = env->subprog_info; 8731 ulinfo = u64_to_user_ptr(attr->line_info); 8732 expected_size = sizeof(struct bpf_line_info); 8733 ncopy = min_t(u32, expected_size, rec_size); 8734 for (i = 0; i < nr_linfo; i++) { 8735 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8736 if (err) { 8737 if (err == -E2BIG) { 8738 verbose(env, "nonzero tailing record in line_info"); 8739 if (put_user(expected_size, &uattr->line_info_rec_size)) { 8740 err = -EFAULT; 8741 } 8742 } 8743 goto err_free; 8744 } 8745 8746 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8747 err = -EFAULT; 8748 goto err_free; 8749 } 8750 8751 /* 8752 * Check insn_off to ensure 8753 * 1) strictly increasing AND 8754 * 2) bounded by prog->len 8755 * 8756 * The linfo[0].insn_off == 0 check logically falls into 8757 * the later "missing bpf_line_info for func..." case 8758 * because the first linfo[0].insn_off must be the 8759 * first sub also and the first sub must have 8760 * subprog_info[0].start == 0. 8761 */ 8762 if ((i && linfo[i].insn_off <= prev_offset) || linfo[i].insn_off >= prog->len) { 8763 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", i, linfo[i].insn_off, 8764 prev_offset, prog->len); 8765 err = -EINVAL; 8766 goto err_free; 8767 } 8768 8769 if (!prog->insnsi[linfo[i].insn_off].code) { 8770 verbose(env, "Invalid insn code at line_info[%u].insn_off\n", i); 8771 err = -EINVAL; 8772 goto err_free; 8773 } 8774 8775 if (!btf_name_by_offset(btf, linfo[i].line_off) || !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8776 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8777 err = -EINVAL; 8778 goto err_free; 8779 } 8780 8781 if (s != env->subprog_cnt) { 8782 if (linfo[i].insn_off == sub[s].start) { 8783 sub[s].linfo_idx = i; 8784 s++; 8785 } else if (sub[s].start < linfo[i].insn_off) { 8786 verbose(env, "missing bpf_line_info for func#%u\n", s); 8787 err = -EINVAL; 8788 goto err_free; 8789 } 8790 } 8791 8792 prev_offset = linfo[i].insn_off; 8793 ulinfo += rec_size; 8794 } 8795 8796 if (s != env->subprog_cnt) { 8797 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", env->subprog_cnt - s, s); 8798 err = -EINVAL; 8799 goto err_free; 8800 } 8801 8802 prog->aux->linfo = linfo; 8803 prog->aux->nr_linfo = nr_linfo; 8804 8805 return 0; 8806 8807err_free: 8808 kvfree(linfo); 8809 return err; 8810} 8811 8812static int check_btf_info(struct bpf_verifier_env *env, const union bpf_attr *attr, union bpf_attr __user *uattr) 8813{ 8814 struct btf *btf; 8815 int err; 8816 8817 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8818 if (check_abnormal_return(env)) { 8819 return -EINVAL; 8820 } 8821 return 0; 8822 } 8823 8824 btf = btf_get_by_fd(attr->prog_btf_fd); 8825 if (IS_ERR(btf)) { 8826 return PTR_ERR(btf); 8827 } 8828 env->prog->aux->btf = btf; 8829 8830 err = check_btf_func(env, attr, uattr); 8831 if (err) { 8832 return err; 8833 } 8834 8835 err = check_btf_line(env, attr, uattr); 8836 if (err) { 8837 return err; 8838 } 8839 8840 return 0; 8841} 8842 8843/* check %cur's range satisfies %old's */ 8844static bool range_within(struct bpf_reg_state *old, struct bpf_reg_state *cur) 8845{ 8846 return old->umin_value <= cur->umin_value && old->umax_value >= cur->umax_value && 8847 old->smin_value <= cur->smin_value && old->smax_value >= cur->smax_value && 8848 old->u32_min_value <= cur->u32_min_value && old->u32_max_value >= cur->u32_max_value && 8849 old->s32_min_value <= cur->s32_min_value && old->s32_max_value >= cur->s32_max_value; 8850} 8851 8852/* If in the old state two registers had the same id, then they need to have 8853 * the same id in the new state as well. But that id could be different from 8854 * the old state, so we need to track the mapping from old to new ids. 8855 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8856 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8857 * regs with a different old id could still have new id 9, we don't care about 8858 * that. 8859 * So we look through our idmap to see if this old id has been seen before. If 8860 * so, we require the new id to match; otherwise, we add the id pair to the map. 8861 */ 8862static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 8863{ 8864 unsigned int i; 8865 8866 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 8867 if (!idmap[i].old) { 8868 /* Reached an empty slot; haven't seen this id before */ 8869 idmap[i].old = old_id; 8870 idmap[i].cur = cur_id; 8871 return true; 8872 } 8873 if (idmap[i].old == old_id) { 8874 return idmap[i].cur == cur_id; 8875 } 8876 } 8877 /* We ran out of idmap slots, which should be impossible */ 8878 WARN_ON_ONCE(1); 8879 return false; 8880} 8881 8882static void clean_func_state(struct bpf_verifier_env *env, struct bpf_func_state *st) 8883{ 8884 enum bpf_reg_liveness live; 8885 int i, j; 8886 8887 for (i = 0; i < BPF_REG_FP; i++) { 8888 live = st->regs[i].live; 8889 /* liveness must not touch this register anymore */ 8890 st->regs[i].live |= REG_LIVE_DONE; 8891 if (!(live & REG_LIVE_READ)) { 8892 /* since the register is unused, clear its state 8893 * to make further comparison simpler 8894 */ 8895 verifier_mark_reg_not_init(env, &st->regs[i]); 8896 } 8897 } 8898 8899 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8900 live = st->stack[i].spilled_ptr.live; 8901 /* liveness must not touch this stack slot anymore */ 8902 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8903 if (!(live & REG_LIVE_READ)) { 8904 verifier_mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8905 for (j = 0; j < BPF_REG_SIZE; j++) { 8906 st->stack[i].slot_type[j] = STACK_INVALID; 8907 } 8908 } 8909 } 8910} 8911 8912static void clean_verifier_state(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 8913{ 8914 int i; 8915 8916 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) { 8917 /* all regs in this state in all frames were already marked */ 8918 return; 8919 } 8920 8921 for (i = 0; i <= st->curframe; i++) { 8922 clean_func_state(env, st->frame[i]); 8923 } 8924} 8925 8926/* the parentage chains form a tree. 8927 * the verifier states are added to state lists at given insn and 8928 * pushed into state stack for future exploration. 8929 * when the verifier reaches bpf_exit insn some of the verifer states 8930 * stored in the state lists have their final liveness state already, 8931 * but a lot of states will get revised from liveness point of view when 8932 * the verifier explores other branches. 8933 * 1: r0 = 1 8934 * 2: if r1 == 100 goto pc+1 8935 * 3: r0 = 2 8936 * 4: exit 8937 * when the verifier reaches exit insn the register r0 in the state list of 8938 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8939 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8940 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8941 * 8942 * Since the verifier pushes the branch states as it sees them while exploring 8943 * the program the condition of walking the branch instruction for the second 8944 * time means that all states below this branch were already explored and 8945 * their final liveness markes are already propagated. 8946 * Hence when the verifier completes the search of state list in is_state_visited() 8947 * we can call this clean_live_states() function to mark all liveness states 8948 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8949 * will not be used. 8950 * This function also clears the registers and stack for states that !READ 8951 * to simplify state merging. 8952 * 8953 * Important note here that walking the same branch instruction in the callee 8954 * doesn't meant that the states are DONE. The verifier has to compare 8955 * the callsites 8956 */ 8957static void clean_live_states(struct bpf_verifier_env *env, int insn, struct bpf_verifier_state *cur) 8958{ 8959 struct bpf_verifier_state_list *sl; 8960 int i; 8961 8962 sl = *explored_state(env, insn); 8963 while (sl) { 8964 if (sl->state.branches) { 8965 goto next; 8966 } 8967 if (sl->state.insn_idx != insn || sl->state.curframe != cur->curframe) { 8968 goto next; 8969 } 8970 for (i = 0; i <= cur->curframe; i++) { 8971 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) { 8972 goto next; 8973 } 8974 } 8975 clean_verifier_state(env, &sl->state); 8976 next: 8977 sl = sl->next; 8978 } 8979} 8980 8981/* Returns true if (rold safe implies rcur safe) */ 8982static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8983 struct bpf_id_pair *idmap) 8984{ 8985 bool equal; 8986 8987 if (!(rold->live & REG_LIVE_READ)) { 8988 /* explored state didn't use this */ 8989 return true; 8990 } 8991 8992 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8993 8994 if (rold->type == PTR_TO_STACK) { 8995 /* two stack pointers are equal only if they're pointing to 8996 * the same stack frame, since fp-8 in foo != fp-8 in bar 8997 */ 8998 return equal && rold->frameno == rcur->frameno; 8999 } 9000 9001 if (equal) { 9002 return true; 9003 } 9004 9005 if (rold->type == NOT_INIT) { 9006 /* explored state can't have used this */ 9007 return true; 9008 } 9009 if (rcur->type == NOT_INIT) { 9010 return false; 9011 } 9012 switch (base_type(rold->type)) { 9013 case SCALAR_VALUE: 9014 if (env->explore_alu_limits) { 9015 return false; 9016 } 9017 if (rcur->type == SCALAR_VALUE) { 9018 if (!rold->precise && !rcur->precise) { 9019 return true; 9020 } 9021 /* new val must satisfy old val knowledge */ 9022 return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); 9023 } else { 9024 /* We're trying to use a pointer in place of a scalar. 9025 * Even if the scalar was unbounded, this could lead to 9026 * pointer leaks because scalars are allowed to leak 9027 * while pointers are not. We could make this safe in 9028 * special cases if root is calling us, but it's 9029 * probably not worth the hassle. 9030 */ 9031 return false; 9032 } 9033 case PTR_TO_MAP_VALUE: 9034 /* a PTR_TO_MAP_VALUE could be safe to use as a 9035 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 9036 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 9037 * checked, doing so could have affected others with the same 9038 * id, and we can't check for that because we lost the id when 9039 * we converted to a PTR_TO_MAP_VALUE. 9040 */ 9041 if (type_may_be_null(rold->type)) { 9042 if (!type_may_be_null(rcur->type)) { 9043 return false; 9044 } 9045 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) { 9046 return false; 9047 } 9048 /* Check our ids match any regs they're supposed to */ 9049 return check_ids(rold->id, rcur->id, idmap); 9050 } 9051 9052 /* If the new min/max/var_off satisfy the old ones and 9053 * everything else matches, we are OK. 9054 * 'id' is not compared, since it's only used for maps with 9055 * bpf_spin_lock inside map element and in such cases if 9056 * the rest of the prog is valid for one map element then 9057 * it's valid for all map elements regardless of the key 9058 * used in bpf_map_lookup() 9059 */ 9060 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && range_within(rold, rcur) && 9061 tnum_in(rold->var_off, rcur->var_off); 9062 case PTR_TO_PACKET_META: 9063 case PTR_TO_PACKET: 9064 if (rcur->type != rold->type) { 9065 return false; 9066 } 9067 /* We must have at least as much range as the old ptr 9068 * did, so that any accesses which were safe before are 9069 * still safe. This is true even if old range < old off, 9070 * since someone could have accessed through (ptr - k), or 9071 * even done ptr -= k in a register, to get a safe access. 9072 */ 9073 if (rold->range > rcur->range) { 9074 return false; 9075 } 9076 /* If the offsets don't match, we can't trust our alignment; 9077 * nor can we be sure that we won't fall out of range. 9078 */ 9079 if (rold->off != rcur->off) { 9080 return false; 9081 } 9082 /* id relations must be preserved */ 9083 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) { 9084 return false; 9085 } 9086 /* new val must satisfy old val knowledge */ 9087 return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); 9088 case PTR_TO_CTX: 9089 case CONST_PTR_TO_MAP: 9090 case PTR_TO_PACKET_END: 9091 case PTR_TO_FLOW_KEYS: 9092 case PTR_TO_SOCKET: 9093 case PTR_TO_SOCK_COMMON: 9094 case PTR_TO_TCP_SOCK: 9095 case PTR_TO_XDP_SOCK: 9096 /* Only valid matches are exact, which memcmp() above 9097 * would have accepted 9098 */ 9099 default: 9100 /* Don't know what's going on, just say it's not safe */ 9101 return false; 9102 } 9103 9104 /* Shouldn't get here; if we do, say it's not safe */ 9105 WARN_ON_ONCE(1); 9106 return false; 9107} 9108 9109static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, struct bpf_func_state *cur, 9110 struct bpf_id_pair *idmap) 9111{ 9112 int i, spi; 9113 9114 /* walk slots of the explored stack and ignore any additional 9115 * slots in the current stack, since explored(safe) state 9116 * didn't use them 9117 */ 9118 for (i = 0; i < old->allocated_stack; i++) { 9119 spi = i / BPF_REG_SIZE; 9120 9121 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 9122 i += BPF_REG_SIZE - 1; 9123 /* explored state didn't use this */ 9124 continue; 9125 } 9126 9127 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) { 9128 continue; 9129 } 9130 9131 /* explored stack has more populated slots than current stack 9132 * and these slots were used 9133 */ 9134 if (i >= cur->allocated_stack) { 9135 return false; 9136 } 9137 9138 /* if old state was safe with misc data in the stack 9139 * it will be safe with zero-initialized stack. 9140 * The opposite is not true 9141 */ 9142 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 9143 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) { 9144 continue; 9145 } 9146 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != cur->stack[spi].slot_type[i % BPF_REG_SIZE]) { 9147 /* Ex: old explored (safe) state has STACK_SPILL in 9148 * this stack slot, but current has STACK_MISC -> 9149 * this verifier states are not equivalent, 9150 * return false to continue verification of this path 9151 */ 9152 return false; 9153 } 9154 if (i % BPF_REG_SIZE) { 9155 continue; 9156 } 9157 if (old->stack[spi].slot_type[0] != STACK_SPILL) { 9158 continue; 9159 } 9160 if (!regsafe(env, &old->stack[spi].spilled_ptr, &cur->stack[spi].spilled_ptr, idmap)) { 9161 /* when explored and current stack slot are both storing 9162 * spilled registers, check that stored pointers types 9163 * are the same as well. 9164 * Ex: explored safe path could have stored 9165 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 9166 * but current path has stored: 9167 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 9168 * such verifier states are not equivalent. 9169 * return false to continue verification of this path 9170 */ 9171 return false; 9172 } 9173 } 9174 return true; 9175} 9176 9177static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 9178{ 9179 if (old->acquired_refs != cur->acquired_refs) { 9180 return false; 9181 } 9182 return !memcmp(old->refs, cur->refs, sizeof(*old->refs) * old->acquired_refs); 9183} 9184 9185/* compare two verifier states 9186 * 9187 * all states stored in state_list are known to be valid, since 9188 * verifier reached 'bpf_exit' instruction through them 9189 * 9190 * this function is called when verifier exploring different branches of 9191 * execution popped from the state stack. If it sees an old state that has 9192 * more strict register state and more strict stack state then this execution 9193 * branch doesn't need to be explored further, since verifier already 9194 * concluded that more strict state leads to valid finish. 9195 * 9196 * Therefore two states are equivalent if register state is more conservative 9197 * and explored stack state is more conservative than the current one. 9198 * Example: 9199 * explored current 9200 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 9201 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 9202 * 9203 * In other words if current stack state (one being explored) has more 9204 * valid slots than old one that already passed validation, it means 9205 * the verifier can stop exploring and conclude that current state is valid too 9206 * 9207 * Similarly with registers. If explored state has register type as invalid 9208 * whereas register type in current state is meaningful, it means that 9209 * the current state will reach 'bpf_exit' instruction safely 9210 */ 9211static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, struct bpf_func_state *cur) 9212{ 9213 int i; 9214 9215 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 9216 for (i = 0; i < MAX_BPF_REG; i++) { 9217 if (!regsafe(env, &old->regs[i], &cur->regs[i], env->idmap_scratch)) { 9218 return false; 9219 } 9220 } 9221 9222 if (!stacksafe(env, old, cur, env->idmap_scratch)) { 9223 return false; 9224 } 9225 9226 if (!refsafe(old, cur)) { 9227 return false; 9228 } 9229 9230 return true; 9231} 9232 9233static bool states_equal(struct bpf_verifier_env *env, struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 9234{ 9235 int i; 9236 9237 if (old->curframe != cur->curframe) { 9238 return false; 9239 } 9240 9241 /* Verification state from speculative execution simulation 9242 * must never prune a non-speculative execution one. 9243 */ 9244 if (old->speculative && !cur->speculative) { 9245 return false; 9246 } 9247 9248 if (old->active_spin_lock != cur->active_spin_lock) { 9249 return false; 9250 } 9251 9252 /* for states to be equal callsites have to be the same 9253 * and all frame states need to be equivalent 9254 */ 9255 for (i = 0; i <= old->curframe; i++) { 9256 if (old->frame[i]->callsite != cur->frame[i]->callsite) { 9257 return false; 9258 } 9259 if (!func_states_equal(env, old->frame[i], cur->frame[i])) { 9260 return false; 9261 } 9262 } 9263 return true; 9264} 9265 9266/* Return 0 if no propagation happened. Return negative error code if error 9267 * happened. Otherwise, return the propagated bit. 9268 */ 9269static int propagate_liveness_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 9270 struct bpf_reg_state *parent_reg) 9271{ 9272 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 9273 u8 flag = reg->live & REG_LIVE_READ; 9274 int err; 9275 9276 /* When comes here, read flags of PARENT_REG or REG could be any of 9277 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 9278 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 9279 */ 9280 if (parent_flag == REG_LIVE_READ64 || 9281 /* Or if there is no read flag from REG. */ 9282 !flag || 9283 /* Or if the read flag from REG is the same as PARENT_REG. */ 9284 parent_flag == flag) { 9285 return 0; 9286 } 9287 9288 err = mark_reg_read(env, reg, parent_reg, flag); 9289 if (err) { 9290 return err; 9291 } 9292 9293 return flag; 9294} 9295 9296/* A write screens off any subsequent reads; but write marks come from the 9297 * straight-line code between a state and its parent. When we arrive at an 9298 * equivalent state (jump target or such) we didn't arrive by the straight-line 9299 * code, so read marks in the state must propagate to the parent regardless 9300 * of the state's write marks. That's what 'parent == state->parent' comparison 9301 * in mark_reg_read() is for. 9302 */ 9303static int propagate_liveness(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 9304 struct bpf_verifier_state *vparent) 9305{ 9306 struct bpf_reg_state *state_reg, *parent_reg; 9307 struct bpf_func_state *state, *parent; 9308 int i, frame, err = 0; 9309 9310 if (vparent->curframe != vstate->curframe) { 9311 WARN(1, "propagate_live: parent frame %d current frame %d\n", vparent->curframe, vstate->curframe); 9312 return -EFAULT; 9313 } 9314 /* Propagate read liveness of registers... */ 9315 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 9316 for (frame = 0; frame <= vstate->curframe; frame++) { 9317 parent = vparent->frame[frame]; 9318 state = vstate->frame[frame]; 9319 parent_reg = parent->regs; 9320 state_reg = state->regs; 9321 /* We don't need to worry about FP liveness, it's read-only */ 9322 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9323 err = propagate_liveness_reg(env, &state_reg[i], &parent_reg[i]); 9324 if (err < 0) { 9325 return err; 9326 } 9327 if (err == REG_LIVE_READ64) { 9328 mark_insn_zext(env, &parent_reg[i]); 9329 } 9330 } 9331 9332 /* Propagate stack slots. */ 9333 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && i < parent->allocated_stack / BPF_REG_SIZE; i++) { 9334 parent_reg = &parent->stack[i].spilled_ptr; 9335 state_reg = &state->stack[i].spilled_ptr; 9336 err = propagate_liveness_reg(env, state_reg, parent_reg); 9337 if (err < 0) { 9338 return err; 9339 } 9340 } 9341 } 9342 return 0; 9343} 9344 9345/* find precise scalars in the previous equivalent state and 9346 * propagate them into the current state 9347 */ 9348static int propagate_precision(struct bpf_verifier_env *env, const struct bpf_verifier_state *old) 9349{ 9350 struct bpf_reg_state *state_reg; 9351 struct bpf_func_state *state; 9352 int i, err = 0; 9353 9354 state = old->frame[old->curframe]; 9355 state_reg = state->regs; 9356 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 9357 if (state_reg->type != SCALAR_VALUE || !state_reg->precise) { 9358 continue; 9359 } 9360 if (env->log.level & BPF_LOG_LEVEL2) { 9361 verbose(env, "propagating r%d\n", i); 9362 } 9363 err = mark_chain_precision(env, i); 9364 if (err < 0) { 9365 return err; 9366 } 9367 } 9368 9369 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 9370 if (state->stack[i].slot_type[0] != STACK_SPILL) { 9371 continue; 9372 } 9373 state_reg = &state->stack[i].spilled_ptr; 9374 if (state_reg->type != SCALAR_VALUE || !state_reg->precise) { 9375 continue; 9376 } 9377 if (env->log.level & BPF_LOG_LEVEL2) { 9378 verbose(env, "propagating fp%d\n", (-i - 1) * BPF_REG_SIZE); 9379 } 9380 err = mark_chain_precision_stack(env, i); 9381 if (err < 0) { 9382 return err; 9383 } 9384 } 9385 return 0; 9386} 9387 9388static bool states_maybe_looping(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 9389{ 9390 struct bpf_func_state *fold, *fcur; 9391 int i, fr = cur->curframe; 9392 9393 if (old->curframe != fr) { 9394 return false; 9395 } 9396 9397 fold = old->frame[fr]; 9398 fcur = cur->frame[fr]; 9399 for (i = 0; i < MAX_BPF_REG; i++) { 9400 if (memcmp(&fold->regs[i], &fcur->regs[i], offsetof(struct bpf_reg_state, parent))) { 9401 return false; 9402 } 9403 } 9404 return true; 9405} 9406 9407static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9408{ 9409 struct bpf_verifier_state_list *new_sl; 9410 struct bpf_verifier_state_list *sl, **pprev; 9411 struct bpf_verifier_state *cur = env->cur_state, *new; 9412 int i, j, err, states_cnt = 0; 9413 bool add_new_state = env->test_state_freq ? true : false; 9414 9415 cur->last_insn_idx = env->prev_insn_idx; 9416 if (!env->insn_aux_data[insn_idx].prune_point) { 9417 /* this 'insn_idx' instruction wasn't marked, so we will not 9418 * be doing state search here 9419 */ 9420 return 0; 9421 } 9422 9423 /* bpf progs typically have pruning point every 4 instructions 9424 * http://vger.kernel.org/bpfconf2019.html#session-1 9425 * Do not add new state for future pruning if the verifier hasn't seen 9426 * at least 2 jumps and at least 8 instructions. 9427 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9428 * In tests that amounts to up to 50% reduction into total verifier 9429 * memory consumption and 20% verifier time speedup. 9430 */ 9431 if (env->jmps_processed - env->prev_jmps_processed >= 2 && env->insn_processed - env->prev_insn_processed >= 8) { 9432 add_new_state = true; 9433 } 9434 9435 pprev = explored_state(env, insn_idx); 9436 sl = *pprev; 9437 9438 clean_live_states(env, insn_idx, cur); 9439 9440 while (sl) { 9441 states_cnt++; 9442 if (sl->state.insn_idx != insn_idx) { 9443 goto next; 9444 } 9445 if (sl->state.branches) { 9446 if (states_maybe_looping(&sl->state, cur) && states_equal(env, &sl->state, cur)) { 9447 verbose_linfo(env, insn_idx, "; "); 9448 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9449 return -EINVAL; 9450 } 9451 /* if the verifier is processing a loop, avoid adding new state 9452 * too often, since different loop iterations have distinct 9453 * states and may not help future pruning. 9454 * This threshold shouldn't be too low to make sure that 9455 * a loop with large bound will be rejected quickly. 9456 * The most abusive loop will be: 9457 * r1 += 1 9458 * if r1 < 1000000 goto pc-2 9459 * 1M insn_procssed limit / 100 == 10k peak states. 9460 * This threshold shouldn't be too high either, since states 9461 * at the end of the loop are likely to be useful in pruning. 9462 */ 9463 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9464 env->insn_processed - env->prev_insn_processed < 100) { 9465 add_new_state = false; 9466 } 9467 goto miss; 9468 } 9469 if (states_equal(env, &sl->state, cur)) { 9470 sl->hit_cnt++; 9471 /* reached equivalent register/stack state, 9472 * prune the search. 9473 * Registers read by the continuation are read by us. 9474 * If we have any write marks in env->cur_state, they 9475 * will prevent corresponding reads in the continuation 9476 * from reaching our parent (an explored_state). Our 9477 * own state will get the read marks recorded, but 9478 * they'll be immediately forgotten as we're pruning 9479 * this state and will pop a new one. 9480 */ 9481 err = propagate_liveness(env, &sl->state, cur); 9482 9483 /* if previous state reached the exit with precision and 9484 * current state is equivalent to it (except precsion marks) 9485 * the precision needs to be propagated back in 9486 * the current state. 9487 */ 9488 err = err ?: push_jmp_history(env, cur); 9489 err = err ?: propagate_precision(env, &sl->state); 9490 if (err) { 9491 return err; 9492 } 9493 return 1; 9494 } 9495 miss: 9496 /* when new state is not going to be added do not increase miss count. 9497 * Otherwise several loop iterations will remove the state 9498 * recorded earlier. The goal of these heuristics is to have 9499 * states from some iterations of the loop (some in the beginning 9500 * and some at the end) to help pruning. 9501 */ 9502 if (add_new_state) { 9503 sl->miss_cnt++; 9504 } 9505 /* heuristic to determine whether this state is beneficial 9506 * to keep checking from state equivalence point of view. 9507 * Higher numbers increase max_states_per_insn and verification time, 9508 * but do not meaningfully decrease insn_processed. 9509 */ 9510 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9511 /* the state is unlikely to be useful. Remove it to 9512 * speed up verification 9513 */ 9514 *pprev = sl->next; 9515 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9516 u32 br = sl->state.branches; 9517 9518 WARN_ONCE(br, "BUG live_done but branches_to_explore %d\n", br); 9519 free_verifier_state(&sl->state, false); 9520 kfree(sl); 9521 env->peak_states--; 9522 } else { 9523 /* cannot free this state, since parentage chain may 9524 * walk it later. Add it for free_list instead to 9525 * be freed at the end of verification 9526 */ 9527 sl->next = env->free_list; 9528 env->free_list = sl; 9529 } 9530 sl = *pprev; 9531 continue; 9532 } 9533 next: 9534 pprev = &sl->next; 9535 sl = *pprev; 9536 } 9537 9538 if (env->max_states_per_insn < states_cnt) { 9539 env->max_states_per_insn = states_cnt; 9540 } 9541 9542 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) { 9543 return push_jmp_history(env, cur); 9544 } 9545 9546 if (!add_new_state) { 9547 return push_jmp_history(env, cur); 9548 } 9549 9550 /* There were no equivalent states, remember the current one. 9551 * Technically the current state is not proven to be safe yet, 9552 * but it will either reach outer most bpf_exit (which means it's safe) 9553 * or it will be rejected. When there are no loops the verifier won't be 9554 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9555 * again on the way to bpf_exit. 9556 * When looping the sl->state.branches will be > 0 and this state 9557 * will not be considered for equivalence until branches == 0. 9558 */ 9559 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9560 if (!new_sl) { 9561 return -ENOMEM; 9562 } 9563 env->total_states++; 9564 env->peak_states++; 9565 env->prev_jmps_processed = env->jmps_processed; 9566 env->prev_insn_processed = env->insn_processed; 9567 9568 /* add new state to the head of linked list */ 9569 new = &new_sl->state; 9570 err = copy_verifier_state(new, cur); 9571 if (err) { 9572 free_verifier_state(new, false); 9573 kfree(new_sl); 9574 return err; 9575 } 9576 new->insn_idx = insn_idx; 9577 WARN_ONCE(new->branches != 1, "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9578 9579 cur->parent = new; 9580 cur->first_insn_idx = insn_idx; 9581 clear_jmp_history(cur); 9582 new_sl->next = *explored_state(env, insn_idx); 9583 *explored_state(env, insn_idx) = new_sl; 9584 /* connect new state to parentage chain. Current frame needs all 9585 * registers connected. Only r6 - r9 of the callers are alive (pushed 9586 * to the stack implicitly by JITs) so in callers' frames connect just 9587 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9588 * the state of the call instruction (with WRITTEN set), and r0 comes 9589 * from callee with its full parentage chain, anyway. 9590 */ 9591 /* clear write marks in current state: the writes we did are not writes 9592 * our child did, so they don't screen off its reads from us. 9593 * (There are no read marks in current state, because reads always mark 9594 * their parent and current state never has children yet. Only 9595 * explored_states can get read marks.) 9596 */ 9597 for (j = 0; j <= cur->curframe; j++) { 9598 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9599 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9600 } 9601 for (i = 0; i < BPF_REG_FP; i++) { 9602 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9603 } 9604 } 9605 9606 /* all stack frames are accessible from callee, clear them all */ 9607 for (j = 0; j <= cur->curframe; j++) { 9608 struct bpf_func_state *frame = cur->frame[j]; 9609 struct bpf_func_state *newframe = new->frame[j]; 9610 9611 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9612 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9613 frame->stack[i].spilled_ptr.parent = &newframe->stack[i].spilled_ptr; 9614 } 9615 } 9616 return 0; 9617} 9618 9619/* Return true if it's OK to have the same insn return a different type. */ 9620static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9621{ 9622 switch (base_type(type)) { 9623 case PTR_TO_CTX: 9624 case PTR_TO_SOCKET: 9625 case PTR_TO_SOCK_COMMON: 9626 case PTR_TO_TCP_SOCK: 9627 case PTR_TO_XDP_SOCK: 9628 case PTR_TO_BTF_ID: 9629 return false; 9630 default: 9631 return true; 9632 } 9633} 9634 9635/* If an instruction was previously used with particular pointer types, then we 9636 * need to be careful to avoid cases such as the below, where it may be ok 9637 * for one branch accessing the pointer, but not ok for the other branch: 9638 * 9639 * R1 = sock_ptr 9640 * goto X; 9641 * ... 9642 * R1 = some_other_valid_ptr; 9643 * goto X; 9644 * ... 9645 * R2 = *(u32 *)(R1 + 0); 9646 */ 9647static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9648{ 9649 return src != prev && (!reg_type_mismatch_ok(src) || !reg_type_mismatch_ok(prev)); 9650} 9651 9652static int do_check(struct bpf_verifier_env *env) 9653{ 9654 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9655 struct bpf_verifier_state *state = env->cur_state; 9656 struct bpf_insn *insns = env->prog->insnsi; 9657 struct bpf_reg_state *regs; 9658 int insn_cnt = env->prog->len; 9659 bool do_print_state = false; 9660 int prev_insn_idx = -1; 9661 9662 for (;;) { 9663 struct bpf_insn *insn; 9664 u8 class; 9665 int err; 9666 9667 env->prev_insn_idx = prev_insn_idx; 9668 if (env->insn_idx >= insn_cnt) { 9669 verbose(env, "invalid insn idx %d insn_cnt %d\n", env->insn_idx, insn_cnt); 9670 return -EFAULT; 9671 } 9672 9673 insn = &insns[env->insn_idx]; 9674 class = BPF_CLASS(insn->code); 9675 9676 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9677 verbose(env, "BPF program is too large. Processed %d insn\n", env->insn_processed); 9678 return -E2BIG; 9679 } 9680 9681 err = is_state_visited(env, env->insn_idx); 9682 if (err < 0) { 9683 return err; 9684 } 9685 if (err == 1) { 9686 /* found equivalent state, can prune the search */ 9687 if (env->log.level & BPF_LOG_LEVEL) { 9688 if (do_print_state) { 9689 verbose(env, "\nfrom %d to %d%s: safe\n", env->prev_insn_idx, env->insn_idx, 9690 env->cur_state->speculative ? " (speculative execution)" : ""); 9691 } else { 9692 verbose(env, "%d: safe\n", env->insn_idx); 9693 } 9694 } 9695 goto process_bpf_exit; 9696 } 9697 9698 if (signal_pending(current)) { 9699 return -EAGAIN; 9700 } 9701 9702 if (need_resched()) { 9703 cond_resched(); 9704 } 9705 9706 if ((env->log.level & BPF_LOG_LEVEL2) || ((env->log.level & BPF_LOG_LEVEL) && do_print_state)) { 9707 if (env->log.level & BPF_LOG_LEVEL2) { 9708 verbose(env, "%d:", env->insn_idx); 9709 } else { 9710 verbose(env, "\nfrom %d to %d%s:", env->prev_insn_idx, env->insn_idx, 9711 env->cur_state->speculative ? " (speculative execution)" : ""); 9712 } 9713 print_verifier_state(env, state->frame[state->curframe]); 9714 do_print_state = false; 9715 } 9716 9717 if (env->log.level & BPF_LOG_LEVEL) { 9718 const struct bpf_insn_cbs cbs = { 9719 .cb_print = verbose, 9720 .private_data = env, 9721 }; 9722 9723 verbose_linfo(env, env->insn_idx, "; "); 9724 verbose(env, "%d: ", env->insn_idx); 9725 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9726 } 9727 9728 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9729 err = bpf_prog_offload_verify_insn(env, env->insn_idx, env->prev_insn_idx); 9730 if (err) { 9731 return err; 9732 } 9733 } 9734 9735 regs = cur_regs(env); 9736 sanitize_mark_insn_seen(env); 9737 prev_insn_idx = env->insn_idx; 9738 9739 if (class == BPF_ALU || class == BPF_ALU64) { 9740 err = check_alu_op(env, insn); 9741 if (err) { 9742 return err; 9743 } 9744 } else if (class == BPF_LDX) { 9745 enum bpf_reg_type *prev_src_type, src_reg_type; 9746 9747 /* check for reserved fields is already done */ 9748 9749 /* check src operand */ 9750 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9751 if (err) { 9752 return err; 9753 } 9754 9755 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9756 if (err) { 9757 return err; 9758 } 9759 9760 src_reg_type = regs[insn->src_reg].type; 9761 9762 /* check that memory (src_reg + off) is readable, 9763 * the state of dst_reg will be updated by this func 9764 */ 9765 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, BPF_SIZE(insn->code), BPF_READ, 9766 insn->dst_reg, false); 9767 if (err) { 9768 return err; 9769 } 9770 9771 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9772 9773 if (*prev_src_type == NOT_INIT) { 9774 /* saw a valid insn 9775 * dst_reg = *(u32 *)(src_reg + off) 9776 * save type to validate intersecting paths 9777 */ 9778 *prev_src_type = src_reg_type; 9779 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9780 /* ABuser program is trying to use the same insn 9781 * dst_reg = *(u32*) (src_reg + off) 9782 * with different pointer types: 9783 * src_reg == ctx in one branch and 9784 * src_reg == stack|map in some other branch. 9785 * Reject it. 9786 */ 9787 verbose(env, "same insn cannot be used with different pointers\n"); 9788 return -EINVAL; 9789 } 9790 } else if (class == BPF_STX) { 9791 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9792 if (BPF_MODE(insn->code) == BPF_XADD) { 9793 err = check_xadd(env, env->insn_idx, insn); 9794 if (err) { 9795 return err; 9796 } 9797 env->insn_idx++; 9798 continue; 9799 } 9800 9801 /* check src1 operand */ 9802 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9803 if (err) { 9804 return err; 9805 } 9806 /* check src2 operand */ 9807 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9808 if (err) { 9809 return err; 9810 } 9811 9812 dst_reg_type = regs[insn->dst_reg].type; 9813 9814 /* check that memory (dst_reg + off) is writeable */ 9815 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, 9816 insn->src_reg, false); 9817 if (err) { 9818 return err; 9819 } 9820 9821 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9822 9823 if (*prev_dst_type == NOT_INIT) { 9824 *prev_dst_type = dst_reg_type; 9825 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9826 verbose(env, "same insn cannot be used with different pointers\n"); 9827 return -EINVAL; 9828 } 9829 } else if (class == BPF_ST) { 9830 if (BPF_MODE(insn->code) != BPF_MEM || insn->src_reg != BPF_REG_0) { 9831 verbose(env, "BPF_ST uses reserved fields\n"); 9832 return -EINVAL; 9833 } 9834 /* check src operand */ 9835 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9836 if (err) { 9837 return err; 9838 } 9839 if (is_ctx_reg(env, insn->dst_reg)) { 9840 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", insn->dst_reg, 9841 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 9842 return -EACCES; 9843 } 9844 9845 /* check that memory (dst_reg + off) is writeable */ 9846 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, BPF_SIZE(insn->code), BPF_WRITE, -1, 9847 false); 9848 if (err) { 9849 return err; 9850 } 9851 } else if (class == BPF_JMP || class == BPF_JMP32) { 9852 u8 opcode = BPF_OP(insn->code); 9853 env->jmps_processed++; 9854 if (opcode == BPF_CALL) { 9855 if (BPF_SRC(insn->code) != BPF_K || insn->off != 0 || 9856 (insn->src_reg != BPF_REG_0 && insn->src_reg != BPF_PSEUDO_CALL) || insn->dst_reg != BPF_REG_0 || 9857 class == BPF_JMP32) { 9858 verbose(env, "BPF_CALL uses reserved fields\n"); 9859 return -EINVAL; 9860 } 9861 9862 if (env->cur_state->active_spin_lock && 9863 (insn->src_reg == BPF_PSEUDO_CALL || insn->imm != BPF_FUNC_spin_unlock)) { 9864 verbose(env, "function calls are not allowed while holding a lock\n"); 9865 return -EINVAL; 9866 } 9867 if (insn->src_reg == BPF_PSEUDO_CALL) { 9868 err = check_func_call(env, insn, &env->insn_idx); 9869 } else { 9870 err = check_helper_call(env, insn->imm, env->insn_idx); 9871 } 9872 if (err) { 9873 return err; 9874 } 9875 } else if (opcode == BPF_JA) { 9876 if (BPF_SRC(insn->code) != BPF_K || insn->imm != 0 || insn->src_reg != BPF_REG_0 || 9877 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 9878 verbose(env, "BPF_JA uses reserved fields\n"); 9879 return -EINVAL; 9880 } 9881 env->insn_idx += insn->off + 1; 9882 continue; 9883 } else if (opcode == BPF_EXIT) { 9884 if (BPF_SRC(insn->code) != BPF_K || insn->imm != 0 || insn->src_reg != BPF_REG_0 || 9885 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 9886 verbose(env, "BPF_EXIT uses reserved fields\n"); 9887 return -EINVAL; 9888 } 9889 if (env->cur_state->active_spin_lock) { 9890 verbose(env, "bpf_spin_unlock is missing\n"); 9891 return -EINVAL; 9892 } 9893 if (state->curframe) { 9894 /* exit from nested function */ 9895 err = prepare_func_exit(env, &env->insn_idx); 9896 if (err) { 9897 return err; 9898 } 9899 do_print_state = true; 9900 continue; 9901 } 9902 9903 err = check_reference_leak(env); 9904 if (err) { 9905 return err; 9906 } 9907 9908 err = check_return_code(env); 9909 if (err) { 9910 return err; 9911 } 9912 process_bpf_exit: 9913 update_branch_counts(env, env->cur_state); 9914 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, pop_log); 9915 if (err < 0) { 9916 if (err != -ENOENT) { 9917 return err; 9918 } 9919 break; 9920 } else { 9921 do_print_state = true; 9922 continue; 9923 } 9924 } else { 9925 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9926 if (err) { 9927 return err; 9928 } 9929 } 9930 } else if (class == BPF_LD) { 9931 u8 mode = BPF_MODE(insn->code); 9932 if (mode == BPF_ABS || mode == BPF_IND) { 9933 err = check_ld_abs(env, insn); 9934 if (err) { 9935 return err; 9936 } 9937 } else if (mode == BPF_IMM) { 9938 err = check_ld_imm(env, insn); 9939 if (err) { 9940 return err; 9941 } 9942 env->insn_idx++; 9943 sanitize_mark_insn_seen(env); 9944 } else { 9945 verbose(env, "invalid BPF_LD mode\n"); 9946 return -EINVAL; 9947 } 9948 } else { 9949 verbose(env, "unknown insn class %d\n", class); 9950 return -EINVAL; 9951 } 9952 env->insn_idx++; 9953 } 9954 9955 return 0; 9956} 9957 9958/* replace pseudo btf_id with kernel symbol address */ 9959static int check_pseudo_btf_id(struct bpf_verifier_env *env, struct bpf_insn *insn, struct bpf_insn_aux_data *aux) 9960{ 9961 const struct btf_var_secinfo *vsi; 9962 const struct btf_type *datasec; 9963 const struct btf_type *t; 9964 const char *sym_name; 9965 bool percpu = false; 9966 u32 type, id = insn->imm; 9967 s32 datasec_id; 9968 u64 addr; 9969 int i; 9970 9971 if (!btf_vmlinux) { 9972 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9973 return -EINVAL; 9974 } 9975 9976 if (insn[1].imm != 0) { 9977 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9978 return -EINVAL; 9979 } 9980 9981 t = btf_type_by_id(btf_vmlinux, id); 9982 if (!t) { 9983 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9984 return -ENOENT; 9985 } 9986 9987 if (!btf_type_is_var(t)) { 9988 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 9989 return -EINVAL; 9990 } 9991 9992 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9993 addr = kallsyms_lookup_name(sym_name); 9994 if (!addr) { 9995 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", sym_name); 9996 return -ENOENT; 9997 } 9998 9999 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", BTF_KIND_DATASEC); 10000 if (datasec_id > 0) { 10001 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 10002 for_each_vsi(i, datasec, vsi) 10003 { 10004 if (vsi->type == id) { 10005 percpu = true; 10006 break; 10007 } 10008 } 10009 } 10010 10011 insn[0].imm = (u32)addr; 10012 insn[1].imm = addr >> VERIFIER_THIRTYTWO; 10013 10014 type = t->type; 10015 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 10016 if (percpu) { 10017 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 10018 aux->btf_var.btf_id = type; 10019 } else if (!btf_type_is_struct(t)) { 10020 const struct btf_type *ret; 10021 const char *tname; 10022 u32 tsize; 10023 10024 /* resolve the type size of ksym. */ 10025 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 10026 if (IS_ERR(ret)) { 10027 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 10028 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", tname, PTR_ERR(ret)); 10029 return -EINVAL; 10030 } 10031 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 10032 aux->btf_var.mem_size = tsize; 10033 } else { 10034 aux->btf_var.reg_type = PTR_TO_BTF_ID; 10035 aux->btf_var.btf_id = type; 10036 } 10037 return 0; 10038} 10039 10040static int check_map_prealloc(struct bpf_map *map) 10041{ 10042 return (map->map_type != BPF_MAP_TYPE_HASH && map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10043 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 10044 !(map->map_flags & BPF_F_NO_PREALLOC); 10045} 10046 10047static bool is_tracing_prog_type(enum bpf_prog_type type) 10048{ 10049 switch (type) { 10050 case BPF_PROG_TYPE_KPROBE: 10051 case BPF_PROG_TYPE_TRACEPOINT: 10052 case BPF_PROG_TYPE_PERF_EVENT: 10053 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10054 return true; 10055 default: 10056 return false; 10057 } 10058} 10059 10060static bool is_preallocated_map(struct bpf_map *map) 10061{ 10062 if (!check_map_prealloc(map)) { 10063 return false; 10064 } 10065 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) { 10066 return false; 10067 } 10068 return true; 10069} 10070 10071static int check_map_prog_compatibility(struct bpf_verifier_env *env, struct bpf_map *map, struct bpf_prog *prog) 10072 10073{ 10074 enum bpf_prog_type prog_type = resolve_prog_type(prog); 10075 /* 10076 * Validate that trace type programs use preallocated hash maps. 10077 * 10078 * For programs attached to PERF events this is mandatory as the 10079 * perf NMI can hit any arbitrary code sequence. 10080 * 10081 * All other trace types using preallocated hash maps are unsafe as 10082 * well because tracepoint or kprobes can be inside locked regions 10083 * of the memory allocator or at a place where a recursion into the 10084 * memory allocator would see inconsistent state. 10085 * 10086 * On RT enabled kernels run-time allocation of all trace type 10087 * programs is strictly prohibited due to lock type constraints. On 10088 * !RT kernels it is allowed for backwards compatibility reasons for 10089 * now, but warnings are emitted so developers are made aware of 10090 * the unsafety and can fix their programs before this is enforced. 10091 */ 10092 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 10093 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 10094 verbose(env, "perf_event programs can only use preallocated hash map\n"); 10095 return -EINVAL; 10096 } 10097 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 10098 verbose(env, "trace type programs can only use preallocated hash map\n"); 10099 return -EINVAL; 10100 } 10101 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 10102 verbose( 10103 env, 10104 "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 10105 } 10106 10107 if ((is_tracing_prog_type(prog_type) || prog_type == BPF_PROG_TYPE_SOCKET_FILTER) && map_value_has_spin_lock(map)) { 10108 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 10109 return -EINVAL; 10110 } 10111 10112 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && !bpf_offload_prog_map_match(prog, map)) { 10113 verbose(env, "offload device mismatch between prog and map\n"); 10114 return -EINVAL; 10115 } 10116 10117 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 10118 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 10119 return -EINVAL; 10120 } 10121 10122 if (prog->aux->sleepable) { 10123 switch (map->map_type) { 10124 case BPF_MAP_TYPE_HASH: 10125 case BPF_MAP_TYPE_LRU_HASH: 10126 case BPF_MAP_TYPE_ARRAY: 10127 if (!is_preallocated_map(map)) { 10128 verbose(env, "Sleepable programs can only use preallocated hash maps\n"); 10129 return -EINVAL; 10130 } 10131 break; 10132 default: 10133 verbose(env, "Sleepable programs can only use array and hash maps\n"); 10134 return -EINVAL; 10135 } 10136 } 10137 10138 return 0; 10139} 10140 10141static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 10142{ 10143 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 10144} 10145 10146/* find and rewrite pseudo imm in ld_imm64 instructions: 10147 * 10148 * 1. if it accesses map FD, replace it with actual map pointer. 10149 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 10150 * 10151 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 10152 */ 10153static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 10154{ 10155 struct bpf_insn *insn = env->prog->insnsi; 10156 int insn_cnt = env->prog->len; 10157 int i, j, err; 10158 10159 err = bpf_prog_calc_tag(env->prog); 10160 if (err) { 10161 return err; 10162 } 10163 10164 for (i = 0; i < insn_cnt; i++, insn++) { 10165 if (BPF_CLASS(insn->code) == BPF_LDX && (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 10166 verbose(env, "BPF_LDX uses reserved fields\n"); 10167 return -EINVAL; 10168 } 10169 10170 if (BPF_CLASS(insn->code) == BPF_STX && 10171 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 10172 verbose(env, "BPF_STX uses reserved fields\n"); 10173 return -EINVAL; 10174 } 10175 10176 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 10177 struct bpf_insn_aux_data *aux; 10178 struct bpf_map *map; 10179 struct fd f; 10180 u64 addr; 10181 10182 if (i == insn_cnt - 1 || insn[1].code != 0 || insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 10183 insn[1].off != 0) { 10184 verbose(env, "invalid bpf_ld_imm64 insn\n"); 10185 return -EINVAL; 10186 } 10187 10188 if (insn[0].src_reg == 0) { 10189 /* valid generic load 64-bit imm */ 10190 goto next_insn; 10191 } 10192 10193 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 10194 aux = &env->insn_aux_data[i]; 10195 err = check_pseudo_btf_id(env, insn, aux); 10196 if (err) { 10197 return err; 10198 } 10199 goto next_insn; 10200 } 10201 10202 /* In final convert_pseudo_ld_imm64() step, this is 10203 * converted into regular 64-bit imm load insn. 10204 */ 10205 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 10206 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && insn[1].imm != 0)) { 10207 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 10208 return -EINVAL; 10209 } 10210 10211 f = fdget(insn[0].imm); 10212 map = __bpf_map_get(f); 10213 if (IS_ERR(map)) { 10214 verbose(env, "fd %d is not pointing to valid bpf_map\n", insn[0].imm); 10215 return PTR_ERR(map); 10216 } 10217 10218 err = check_map_prog_compatibility(env, map, env->prog); 10219 if (err) { 10220 fdput(f); 10221 return err; 10222 } 10223 10224 aux = &env->insn_aux_data[i]; 10225 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 10226 addr = (unsigned long)map; 10227 } else { 10228 u32 off = insn[1].imm; 10229 10230 if (off >= BPF_MAX_VAR_OFF) { 10231 verbose(env, "direct value offset of %u is not allowed\n", off); 10232 fdput(f); 10233 return -EINVAL; 10234 } 10235 10236 if (!map->ops->map_direct_value_addr) { 10237 verbose(env, "no direct value access support for this map type\n"); 10238 fdput(f); 10239 return -EINVAL; 10240 } 10241 10242 err = map->ops->map_direct_value_addr(map, &addr, off); 10243 if (err) { 10244 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", map->value_size, off); 10245 fdput(f); 10246 return err; 10247 } 10248 10249 aux->map_off = off; 10250 addr += off; 10251 } 10252 10253 insn[0].imm = (u32)addr; 10254 insn[1].imm = addr >> VERIFIER_THIRTYTWO; 10255 10256 /* check whether we recorded this map already */ 10257 for (j = 0; j < env->used_map_cnt; j++) { 10258 if (env->used_maps[j] == map) { 10259 aux->map_index = j; 10260 fdput(f); 10261 goto next_insn; 10262 } 10263 } 10264 10265 if (env->used_map_cnt >= MAX_USED_MAPS) { 10266 fdput(f); 10267 return -E2BIG; 10268 } 10269 10270 /* hold the map. If the program is rejected by verifier, 10271 * the map will be released by release_maps() or it 10272 * will be used by the valid program until it's unloaded 10273 * and all maps are released in free_used_maps() 10274 */ 10275 bpf_map_inc(map); 10276 10277 aux->map_index = env->used_map_cnt; 10278 env->used_maps[env->used_map_cnt++] = map; 10279 10280 if (bpf_map_is_cgroup_storage(map) && bpf_cgroup_storage_assign(env->prog->aux, map)) { 10281 verbose(env, "only one cgroup storage of each type is allowed\n"); 10282 fdput(f); 10283 return -EBUSY; 10284 } 10285 10286 fdput(f); 10287 next_insn: 10288 insn++; 10289 i++; 10290 continue; 10291 } 10292 10293 /* Basic sanity check before we invest more work here. */ 10294 if (!bpf_opcode_in_insntable(insn->code)) { 10295 verbose(env, "unknown opcode %02x\n", insn->code); 10296 return -EINVAL; 10297 } 10298 } 10299 10300 /* now all pseudo BPF_LD_IMM64 instructions load valid 10301 * 'struct bpf_map *' into a register instead of user map_fd. 10302 * These pointers will be used later by verifier to validate map access. 10303 */ 10304 return 0; 10305} 10306 10307/* drop refcnt of maps used by the rejected program */ 10308static void release_maps(struct bpf_verifier_env *env) 10309{ 10310 __bpf_free_used_maps(env->prog->aux, env->used_maps, env->used_map_cnt); 10311} 10312 10313/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 10314static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 10315{ 10316 struct bpf_insn *insn = env->prog->insnsi; 10317 int insn_cnt = env->prog->len; 10318 int i; 10319 10320 for (i = 0; i < insn_cnt; i++, insn++) { 10321 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) { 10322 insn->src_reg = 0; 10323 } 10324 } 10325} 10326 10327/* single env->prog->insni[off] instruction was replaced with the range 10328 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 10329 * [0, off) and [off, end) to new locations, so the patched range stays zero 10330 */ 10331static void adjust_insn_aux_data(struct bpf_verifier_env *env, struct bpf_insn_aux_data *new_data, 10332 struct bpf_prog *new_prog, u32 off, u32 cnt) 10333{ 10334 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 10335 struct bpf_insn *insn = new_prog->insnsi; 10336 u32 old_seen = old_data[off].seen; 10337 u32 prog_len; 10338 int i; 10339 10340 /* aux info at OFF always needs adjustment, no matter fast path 10341 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 10342 * original insn at old prog. 10343 */ 10344 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 10345 10346 if (cnt == 1) { 10347 return; 10348 } 10349 prog_len = new_prog->len; 10350 10351 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10352 memcpy(new_data + off + cnt - 1, old_data + off, sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10353 for (i = off; i < off + cnt - 1; i++) { 10354 /* Expand insni[off]'s seen count to the patched range. */ 10355 new_data[i].seen = old_seen; 10356 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10357 } 10358 env->insn_aux_data = new_data; 10359 vfree(old_data); 10360} 10361 10362static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10363{ 10364 int i; 10365 10366 if (len == 1) { 10367 return; 10368 } 10369 /* NOTE: fake 'exit' subprog should be updated as well. */ 10370 for (i = 0; i <= env->subprog_cnt; i++) { 10371 if (env->subprog_info[i].start <= off) { 10372 continue; 10373 } 10374 env->subprog_info[i].start += len - 1; 10375 } 10376} 10377 10378static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 10379{ 10380 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10381 int i, sz = prog->aux->size_poke_tab; 10382 struct bpf_jit_poke_descriptor *desc; 10383 10384 for (i = 0; i < sz; i++) { 10385 desc = &tab[i]; 10386 if (desc->insn_idx <= off) { 10387 continue; 10388 } 10389 desc->insn_idx += len - 1; 10390 } 10391} 10392 10393static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, const struct bpf_insn *patch, 10394 u32 len) 10395{ 10396 struct bpf_prog *new_prog; 10397 struct bpf_insn_aux_data *new_data = NULL; 10398 10399 if (len > 1) { 10400 new_data = vzalloc(array_size(env->prog->len + len - 1, sizeof(struct bpf_insn_aux_data))); 10401 if (!new_data) { 10402 return NULL; 10403 } 10404 } 10405 10406 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10407 if (IS_ERR(new_prog)) { 10408 if (PTR_ERR(new_prog) == -ERANGE) { 10409 verbose(env, "insn %d cannot be patched due to 16-bit range\n", env->insn_aux_data[off].orig_idx); 10410 } 10411 vfree(new_data); 10412 return NULL; 10413 } 10414 adjust_insn_aux_data(env, new_data, new_prog, off, len); 10415 adjust_subprog_starts(env, off, len); 10416 adjust_poke_descs(new_prog, off, len); 10417 return new_prog; 10418} 10419 10420static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, u32 off, u32 cnt) 10421{ 10422 int i, j; 10423 10424 /* find first prog starting at or after off (first to remove) */ 10425 for (i = 0; i < env->subprog_cnt; i++) { 10426 if (env->subprog_info[i].start >= off) { 10427 break; 10428 } 10429 } 10430 /* find first prog starting at or after off + cnt (first to stay) */ 10431 for (j = i; j < env->subprog_cnt; j++) { 10432 if (env->subprog_info[j].start >= off + cnt) { 10433 break; 10434 } 10435 } 10436 /* if j doesn't start exactly at off + cnt, we are just removing 10437 * the front of previous prog 10438 */ 10439 if (env->subprog_info[j].start != off + cnt) { 10440 j--; 10441 } 10442 10443 if (j > i) { 10444 struct bpf_prog_aux *aux = env->prog->aux; 10445 int move; 10446 10447 /* move fake 'exit' subprog as well */ 10448 move = env->subprog_cnt + 1 - j; 10449 10450 memmove(env->subprog_info + i, env->subprog_info + j, sizeof(*env->subprog_info) * move); 10451 env->subprog_cnt -= j - i; 10452 10453 /* remove func_info */ 10454 if (aux->func_info) { 10455 move = aux->func_info_cnt - j; 10456 10457 memmove(aux->func_info + i, aux->func_info + j, sizeof(*aux->func_info) * move); 10458 aux->func_info_cnt -= j - i; 10459 /* func_info->insn_off is set after all code rewrites, 10460 * in adjust_btf_func() - no need to adjust 10461 */ 10462 } 10463 } else { 10464 /* convert i from "first prog to remove" to "first to adjust" */ 10465 if (env->subprog_info[i].start == off) { 10466 i++; 10467 } 10468 } 10469 10470 /* update fake 'exit' subprog as well */ 10471 for (; i <= env->subprog_cnt; i++) { 10472 env->subprog_info[i].start -= cnt; 10473 } 10474 10475 return 0; 10476} 10477 10478static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, u32 cnt) 10479{ 10480 struct bpf_prog *prog = env->prog; 10481 u32 i, l_off, l_cnt, nr_linfo; 10482 struct bpf_line_info *linfo; 10483 10484 nr_linfo = prog->aux->nr_linfo; 10485 if (!nr_linfo) { 10486 return 0; 10487 } 10488 10489 linfo = prog->aux->linfo; 10490 10491 /* find first line info to remove, count lines to be removed */ 10492 for (i = 0; i < nr_linfo; i++) { 10493 if (linfo[i].insn_off >= off) { 10494 break; 10495 } 10496 } 10497 10498 l_off = i; 10499 l_cnt = 0; 10500 for (; i < nr_linfo; i++) { 10501 if (linfo[i].insn_off < off + cnt) { 10502 l_cnt++; 10503 } else { 10504 break; 10505 } 10506 } 10507 10508 /* First live insn doesn't match first live linfo, it needs to "inherit" 10509 * last removed linfo. prog is already modified, so prog->len == off 10510 * means no live instructions after (tail of the program was removed). 10511 */ 10512 if (prog->len != off && l_cnt && (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10513 l_cnt--; 10514 linfo[--i].insn_off = off + cnt; 10515 } 10516 10517 /* remove the line info which refer to the removed instructions */ 10518 if (l_cnt) { 10519 memmove(linfo + l_off, linfo + i, sizeof(*linfo) * (nr_linfo - i)); 10520 10521 prog->aux->nr_linfo -= l_cnt; 10522 nr_linfo = prog->aux->nr_linfo; 10523 } 10524 10525 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10526 for (i = l_off; i < nr_linfo; i++) { 10527 linfo[i].insn_off -= cnt; 10528 } 10529 10530 /* fix up all subprogs (incl. 'exit') which start >= off */ 10531 for (i = 0; i <= env->subprog_cnt; i++) { 10532 if (env->subprog_info[i].linfo_idx > l_off) { 10533 /* program may have started in the removed region but 10534 * may not be fully removed 10535 */ 10536 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) { 10537 env->subprog_info[i].linfo_idx -= l_cnt; 10538 } else { 10539 env->subprog_info[i].linfo_idx = l_off; 10540 } 10541 } 10542 } 10543 10544 return 0; 10545} 10546 10547static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10548{ 10549 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10550 unsigned int orig_prog_len = env->prog->len; 10551 int err; 10552 10553 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10554 bpf_prog_offload_remove_insns(env, off, cnt); 10555 } 10556 10557 err = bpf_remove_insns(env->prog, off, cnt); 10558 if (err) { 10559 return err; 10560 } 10561 10562 err = adjust_subprog_starts_after_remove(env, off, cnt); 10563 if (err) { 10564 return err; 10565 } 10566 10567 err = bpf_adj_linfo_after_remove(env, off, cnt); 10568 if (err) { 10569 return err; 10570 } 10571 10572 memmove(aux_data + off, aux_data + off + cnt, sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10573 10574 return 0; 10575} 10576 10577/* The verifier does more data flow analysis than llvm and will not 10578 * explore branches that are dead at run time. Malicious programs can 10579 * have dead code too. Therefore replace all dead at-run-time code 10580 * with 'ja -1'. 10581 * 10582 * Just nops are not optimal, e.g. if they would sit at the end of the 10583 * program and through another bug we would manage to jump there, then 10584 * we'd execute beyond program memory otherwise. Returning exception 10585 * code also wouldn't work since we can have subprogs where the dead 10586 * code could be located. 10587 */ 10588static void sanitize_dead_code(struct bpf_verifier_env *env) 10589{ 10590 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10591 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10592 struct bpf_insn *insn = env->prog->insnsi; 10593 const int insn_cnt = env->prog->len; 10594 int i; 10595 10596 for (i = 0; i < insn_cnt; i++) { 10597 if (aux_data[i].seen) { 10598 continue; 10599 } 10600 memcpy(insn + i, &trap, sizeof(trap)); 10601 aux_data[i].zext_dst = false; 10602 } 10603} 10604 10605static bool insn_is_cond_jump(u8 code) 10606{ 10607 u8 op; 10608 10609 if (BPF_CLASS(code) == BPF_JMP32) { 10610 return true; 10611 } 10612 10613 if (BPF_CLASS(code) != BPF_JMP) { 10614 return false; 10615 } 10616 10617 op = BPF_OP(code); 10618 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10619} 10620 10621static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10622{ 10623 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10624 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10625 struct bpf_insn *insn = env->prog->insnsi; 10626 const int insn_cnt = env->prog->len; 10627 int i; 10628 10629 for (i = 0; i < insn_cnt; i++, insn++) { 10630 if (!insn_is_cond_jump(insn->code)) { 10631 continue; 10632 } 10633 10634 if (!aux_data[i + 1].seen) { 10635 ja.off = insn->off; 10636 } else if (!aux_data[i + 1 + insn->off].seen) { 10637 ja.off = 0; 10638 } else { 10639 continue; 10640 } 10641 10642 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10643 bpf_prog_offload_replace_insn(env, i, &ja); 10644 } 10645 10646 memcpy(insn, &ja, sizeof(ja)); 10647 } 10648} 10649 10650static int opt_remove_dead_code(struct bpf_verifier_env *env) 10651{ 10652 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10653 int insn_cnt = env->prog->len; 10654 int i, err; 10655 10656 for (i = 0; i < insn_cnt; i++) { 10657 int j; 10658 10659 j = 0; 10660 while (i + j < insn_cnt && !aux_data[i + j].seen) { 10661 j++; 10662 } 10663 if (!j) { 10664 continue; 10665 } 10666 10667 err = verifier_remove_insns(env, i, j); 10668 if (err) { 10669 return err; 10670 } 10671 insn_cnt = env->prog->len; 10672 } 10673 10674 return 0; 10675} 10676 10677static int opt_remove_nops(struct bpf_verifier_env *env) 10678{ 10679 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10680 struct bpf_insn *insn = env->prog->insnsi; 10681 int insn_cnt = env->prog->len; 10682 int i, err; 10683 10684 for (i = 0; i < insn_cnt; i++) { 10685 if (memcmp(&insn[i], &ja, sizeof(ja))) { 10686 continue; 10687 } 10688 10689 err = verifier_remove_insns(env, i, 1); 10690 if (err) { 10691 return err; 10692 } 10693 insn_cnt--; 10694 i--; 10695 } 10696 10697 return 0; 10698} 10699 10700static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, const union bpf_attr *attr) 10701{ 10702 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10703 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10704 int i, patch_len, delta = 0, len = env->prog->len; 10705 struct bpf_insn *insns = env->prog->insnsi; 10706 struct bpf_prog *new_prog; 10707 bool rnd_hi32; 10708 10709 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10710 zext_patch[1] = BPF_ZEXT_REG(0); 10711 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10712 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10713 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10714 for (i = 0; i < len; i++) { 10715 int adj_idx = i + delta; 10716 struct bpf_insn insn; 10717 10718 insn = insns[adj_idx]; 10719 if (!aux[adj_idx].zext_dst) { 10720 u8 code, class; 10721 u32 imm_rnd; 10722 10723 if (!rnd_hi32) { 10724 continue; 10725 } 10726 10727 code = insn.code; 10728 class = BPF_CLASS(code); 10729 if (insn_no_def(&insn)) { 10730 continue; 10731 } 10732 10733 /* NOTE: arg "reg" (the fourth one) is only used for 10734 * BPF_STX which has been ruled out in above 10735 * check, it is safe to pass NULL here. 10736 */ 10737 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10738 if (class == BPF_LD && BPF_MODE(code) == BPF_IMM) { 10739 i++; 10740 } 10741 continue; 10742 } 10743 10744 /* ctx load could be transformed into wider load. */ 10745 if (class == BPF_LDX && aux[adj_idx].ptr_type == PTR_TO_CTX) { 10746 continue; 10747 } 10748 10749 imm_rnd = get_random_int(); 10750 rnd_hi32_patch[0] = insn; 10751 rnd_hi32_patch[1].imm = imm_rnd; 10752 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10753 patch = rnd_hi32_patch; 10754 patch_len = VERIFIER_FOUR; 10755 goto apply_patch_buffer; 10756 } 10757 10758 if (!bpf_jit_needs_zext()) { 10759 continue; 10760 } 10761 10762 zext_patch[0] = insn; 10763 zext_patch[1].dst_reg = insn.dst_reg; 10764 zext_patch[1].src_reg = insn.dst_reg; 10765 patch = zext_patch; 10766 patch_len = 2; 10767 apply_patch_buffer: 10768 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10769 if (!new_prog) { 10770 return -ENOMEM; 10771 } 10772 env->prog = new_prog; 10773 insns = new_prog->insnsi; 10774 aux = env->insn_aux_data; 10775 delta += patch_len - 1; 10776 } 10777 10778 return 0; 10779} 10780 10781/* convert load instructions that access fields of a context type into a 10782 * sequence of instructions that access fields of the underlying structure: 10783 * struct __sk_buff -> struct sk_buff 10784 * struct bpf_sock_ops -> struct sock 10785 */ 10786static int convert_ctx_accesses(struct bpf_verifier_env *env) 10787{ 10788 const struct bpf_verifier_ops *ops = env->ops; 10789 int i, cnt, size, ctx_field_size, delta = 0; 10790 const int insn_cnt = env->prog->len; 10791 struct bpf_insn insn_buf[VERIFIER_SIXTEEN], *insn; 10792 u32 target_size, size_default, off; 10793 struct bpf_prog *new_prog; 10794 enum bpf_access_type type; 10795 bool is_narrower_load; 10796 10797 if (ops->gen_prologue || env->seen_direct_write) { 10798 if (!ops->gen_prologue) { 10799 verbose(env, "bpf verifier is misconfigured\n"); 10800 return -EINVAL; 10801 } 10802 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, env->prog); 10803 if (cnt >= ARRAY_SIZE(insn_buf)) { 10804 verbose(env, "bpf verifier is misconfigured\n"); 10805 return -EINVAL; 10806 } else if (cnt) { 10807 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10808 if (!new_prog) { 10809 return -ENOMEM; 10810 } 10811 10812 env->prog = new_prog; 10813 delta += cnt - 1; 10814 } 10815 } 10816 10817 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10818 return 0; 10819 } 10820 10821 insn = env->prog->insnsi + delta; 10822 10823 for (i = 0; i < insn_cnt; i++, insn++) { 10824 bpf_convert_ctx_access_t convert_ctx_access; 10825 bool ctx_access; 10826 10827 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10828 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 10829 type = BPF_READ; 10830 ctx_access = true; 10831 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10832 insn->code == (BPF_STX | BPF_MEM | BPF_W) || insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 10833 insn->code == (BPF_ST | BPF_MEM | BPF_B) || insn->code == (BPF_ST | BPF_MEM | BPF_H) || 10834 insn->code == (BPF_ST | BPF_MEM | BPF_W) || insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 10835 type = BPF_WRITE; 10836 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 10837 } else { 10838 continue; 10839 } 10840 10841 if (type == BPF_WRITE && env->insn_aux_data[i + delta].sanitize_stack_spill) { 10842 struct bpf_insn patch[] = { 10843 *insn, 10844 BPF_ST_NOSPEC(), 10845 }; 10846 10847 cnt = ARRAY_SIZE(patch); 10848 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10849 if (!new_prog) { 10850 return -ENOMEM; 10851 } 10852 10853 delta += cnt - 1; 10854 env->prog = new_prog; 10855 insn = new_prog->insnsi + i + delta; 10856 continue; 10857 } 10858 10859 if (!ctx_access) { 10860 continue; 10861 } 10862 10863 switch (env->insn_aux_data[i + delta].ptr_type) { 10864 case PTR_TO_CTX: 10865 if (!ops->convert_ctx_access) { 10866 continue; 10867 } 10868 convert_ctx_access = ops->convert_ctx_access; 10869 break; 10870 case PTR_TO_SOCKET: 10871 case PTR_TO_SOCK_COMMON: 10872 convert_ctx_access = bpf_sock_convert_ctx_access; 10873 break; 10874 case PTR_TO_TCP_SOCK: 10875 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10876 break; 10877 case PTR_TO_XDP_SOCK: 10878 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10879 break; 10880 case PTR_TO_BTF_ID: 10881 if (type == BPF_READ) { 10882 insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code); 10883 env->prog->aux->num_exentries++; 10884 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10885 verbose(env, "Writes through BTF pointers are not allowed\n"); 10886 return -EINVAL; 10887 } 10888 continue; 10889 default: 10890 continue; 10891 } 10892 10893 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10894 size = BPF_LDST_BYTES(insn); 10895 10896 /* If the read access is a narrower load of the field, 10897 * convert to a 4/8-byte load, to minimum program type specific 10898 * convert_ctx_access changes. If conversion is successful, 10899 * we will apply proper mask to the result. 10900 */ 10901 is_narrower_load = size < ctx_field_size; 10902 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10903 off = insn->off; 10904 if (is_narrower_load) { 10905 u8 size_code; 10906 10907 if (type == BPF_WRITE) { 10908 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10909 return -EINVAL; 10910 } 10911 10912 size_code = BPF_H; 10913 if (ctx_field_size == VERIFIER_FOUR) { 10914 size_code = BPF_W; 10915 } else if (ctx_field_size == VERIFIER_EIGHT) { 10916 size_code = BPF_DW; 10917 } 10918 10919 insn->off = off & ~(size_default - 1); 10920 insn->code = BPF_LDX | BPF_MEM | size_code; 10921 } 10922 10923 target_size = 0; 10924 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, &target_size); 10925 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || (ctx_field_size && !target_size)) { 10926 verbose(env, "bpf verifier is misconfigured\n"); 10927 return -EINVAL; 10928 } 10929 10930 if (is_narrower_load && size < target_size) { 10931 u8 shift = bpf_ctx_narrow_access_offset(off, size, size_default) * VERIFIER_EIGHT; 10932 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 10933 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 10934 return -EINVAL; 10935 } 10936 if (ctx_field_size <= VERIFIER_FOUR) { 10937 if (shift) { 10938 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, insn->dst_reg, shift); 10939 } 10940 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, ((1 << size) * VERIFIER_EIGHT) - 1); 10941 } else { 10942 if (shift) { 10943 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, insn->dst_reg, shift); 10944 } 10945 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, ((1ULL << size) * VERIFIER_EIGHT) - 1); 10946 } 10947 } 10948 10949 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10950 if (!new_prog) { 10951 return -ENOMEM; 10952 } 10953 10954 delta += cnt - 1; 10955 10956 /* keep walking new program and skip insns we just inserted */ 10957 env->prog = new_prog; 10958 insn = new_prog->insnsi + i + delta; 10959 } 10960 10961 return 0; 10962} 10963 10964static int jit_subprogs(struct bpf_verifier_env *env) 10965{ 10966 struct bpf_prog *prog = env->prog, **func, *tmp; 10967 int i, j, subprog_start, subprog_end = 0, len, subprog; 10968 struct bpf_map *map_ptr; 10969 struct bpf_insn *insn; 10970 void *old_bpf_func; 10971 int err, num_exentries; 10972 10973 if (env->subprog_cnt <= 1) { 10974 return 0; 10975 } 10976 10977 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10978 if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) { 10979 continue; 10980 } 10981 /* Upon error here we cannot fall back to interpreter but 10982 * need a hard reject of the program. Thus -EFAULT is 10983 * propagated in any case. 10984 */ 10985 subprog = find_subprog(env, i + insn->imm + 1); 10986 if (subprog < 0) { 10987 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", i + insn->imm + 1); 10988 return -EFAULT; 10989 } 10990 /* temporarily remember subprog id inside insn instead of 10991 * aux_data, since next loop will split up all insns into funcs 10992 */ 10993 insn->off = subprog; 10994 /* remember original imm in case JIT fails and fallback 10995 * to interpreter will be needed 10996 */ 10997 env->insn_aux_data[i].call_imm = insn->imm; 10998 /* point imm to __bpf_call_base+1 from JITs point of view */ 10999 insn->imm = 1; 11000 } 11001 11002 err = bpf_prog_alloc_jited_linfo(prog); 11003 if (err) { 11004 goto out_undo_insn; 11005 } 11006 11007 err = -ENOMEM; 11008 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 11009 if (!func) { 11010 goto out_undo_insn; 11011 } 11012 11013 for (i = 0; i < env->subprog_cnt; i++) { 11014 subprog_start = subprog_end; 11015 subprog_end = env->subprog_info[i + 1].start; 11016 11017 len = subprog_end - subprog_start; 11018 /* BPF_PROG_RUN doesn't call subprogs directly, 11019 * hence main prog stats include the runtime of subprogs. 11020 * subprogs don't have IDs and not reachable via prog_get_next_id 11021 * func[i]->aux->stats will never be accessed and stays NULL 11022 */ 11023 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 11024 if (!func[i]) { 11025 goto out_free; 11026 } 11027 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], len * sizeof(struct bpf_insn)); 11028 func[i]->type = prog->type; 11029 func[i]->len = len; 11030 if (bpf_prog_calc_tag(func[i])) { 11031 goto out_free; 11032 } 11033 func[i]->is_func = 1; 11034 func[i]->aux->func_idx = i; 11035 /* Below members will be freed only at prog->aux */ 11036 func[i]->aux->btf = prog->aux->btf; 11037 func[i]->aux->func_info = prog->aux->func_info; 11038 func[i]->aux->poke_tab = prog->aux->poke_tab; 11039 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 11040 11041 for (j = 0; j < prog->aux->size_poke_tab; j++) { 11042 struct bpf_jit_poke_descriptor *poke; 11043 11044 poke = &prog->aux->poke_tab[j]; 11045 if (poke->insn_idx < subprog_end && poke->insn_idx >= subprog_start) { 11046 poke->aux = func[i]->aux; 11047 } 11048 } 11049 11050 /* Use bpf_prog_F_tag to indicate functions in stack traces. 11051 * Long term would need debug info to populate names 11052 */ 11053 func[i]->aux->name[0] = 'F'; 11054 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 11055 func[i]->jit_requested = 1; 11056 func[i]->aux->linfo = prog->aux->linfo; 11057 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 11058 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 11059 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 11060 num_exentries = 0; 11061 insn = func[i]->insnsi; 11062 for (j = 0; j < func[i]->len; j++, insn++) { 11063 if (BPF_CLASS(insn->code) == BPF_LDX && BPF_MODE(insn->code) == BPF_PROBE_MEM) { 11064 num_exentries++; 11065 } 11066 } 11067 func[i]->aux->num_exentries = num_exentries; 11068 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 11069 func[i] = bpf_int_jit_compile(func[i]); 11070 if (!func[i]->jited) { 11071 err = -ENOTSUPP; 11072 goto out_free; 11073 } 11074 cond_resched(); 11075 } 11076 11077 /* at this point all bpf functions were successfully JITed 11078 * now populate all bpf_calls with correct addresses and 11079 * run last pass of JIT 11080 */ 11081 for (i = 0; i < env->subprog_cnt; i++) { 11082 insn = func[i]->insnsi; 11083 for (j = 0; j < func[i]->len; j++, insn++) { 11084 if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) { 11085 continue; 11086 } 11087 subprog = insn->off; 11088 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - __bpf_call_base; 11089 } 11090 11091 /* we use the aux data to keep a list of the start addresses 11092 * of the JITed images for each function in the program 11093 * 11094 * for some architectures, such as powerpc64, the imm field 11095 * might not be large enough to hold the offset of the start 11096 * address of the callee's JITed image from __bpf_call_base 11097 * 11098 * in such cases, we can lookup the start address of a callee 11099 * by using its subprog id, available from the off field of 11100 * the call instruction, as an index for this list 11101 */ 11102 func[i]->aux->func = func; 11103 func[i]->aux->func_cnt = env->subprog_cnt; 11104 } 11105 for (i = 0; i < env->subprog_cnt; i++) { 11106 old_bpf_func = func[i]->bpf_func; 11107 tmp = bpf_int_jit_compile(func[i]); 11108 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 11109 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 11110 err = -ENOTSUPP; 11111 goto out_free; 11112 } 11113 cond_resched(); 11114 } 11115 11116 /* finally lock prog and jit images for all functions and 11117 * populate kallsysm 11118 */ 11119 for (i = 0; i < env->subprog_cnt; i++) { 11120 bpf_prog_lock_ro(func[i]); 11121 bpf_prog_kallsyms_add(func[i]); 11122 } 11123 11124 /* Last step: make now unused interpreter insns from main 11125 * prog consistent for later dump requests, so they can 11126 * later look the same as if they were interpreted only. 11127 */ 11128 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11129 if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) { 11130 continue; 11131 } 11132 insn->off = env->insn_aux_data[i].call_imm; 11133 subprog = find_subprog(env, i + insn->off + 1); 11134 insn->imm = subprog; 11135 } 11136 11137 prog->jited = 1; 11138 prog->bpf_func = func[0]->bpf_func; 11139 prog->aux->func = func; 11140 prog->aux->func_cnt = env->subprog_cnt; 11141 bpf_prog_free_unused_jited_linfo(prog); 11142 return 0; 11143out_free: 11144 /* We failed JIT'ing, so at this point we need to unregister poke 11145 * descriptors from subprogs, so that kernel is not attempting to 11146 * patch it anymore as we're freeing the subprog JIT memory. 11147 */ 11148 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11149 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11150 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 11151 } 11152 /* At this point we're guaranteed that poke descriptors are not 11153 * live anymore. We can just unlink its descriptor table as it's 11154 * released with the main prog. 11155 */ 11156 for (i = 0; i < env->subprog_cnt; i++) { 11157 if (!func[i]) { 11158 continue; 11159 } 11160 func[i]->aux->poke_tab = NULL; 11161 bpf_jit_free(func[i]); 11162 } 11163 kfree(func); 11164out_undo_insn: 11165 /* cleanup main prog to be interpreted */ 11166 prog->jit_requested = 0; 11167 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 11168 if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) { 11169 continue; 11170 } 11171 insn->off = 0; 11172 insn->imm = env->insn_aux_data[i].call_imm; 11173 } 11174 bpf_prog_free_jited_linfo(prog); 11175 return err; 11176} 11177 11178static int fixup_call_args(struct bpf_verifier_env *env) 11179{ 11180#ifndef CONFIG_BPF_JIT_ALWAYS_ON 11181 struct bpf_prog *prog = env->prog; 11182 struct bpf_insn *insn = prog->insnsi; 11183 int i, depth; 11184#endif 11185 int err = 0; 11186 11187 if (env->prog->jit_requested && !bpf_prog_is_dev_bound(env->prog->aux)) { 11188 err = jit_subprogs(env); 11189 if (err == 0) { 11190 return 0; 11191 } 11192 if (err == -EFAULT) { 11193 return err; 11194 } 11195 } 11196#ifndef CONFIG_BPF_JIT_ALWAYS_ON 11197 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 11198 /* When JIT fails the progs with bpf2bpf calls and tail_calls 11199 * have to be rejected, since interpreter doesn't support them yet. 11200 */ 11201 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 11202 return -EINVAL; 11203 } 11204 for (i = 0; i < prog->len; i++, insn++) { 11205 if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) { 11206 continue; 11207 } 11208 depth = get_callee_stack_depth(env, insn, i); 11209 if (depth < 0) { 11210 return depth; 11211 } 11212 bpf_patch_call_args(insn, depth); 11213 } 11214 err = 0; 11215#endif 11216 return err; 11217} 11218 11219/* fixup insn->imm field of bpf_call instructions 11220 * and inline eligible helpers as explicit sequence of BPF instructions 11221 * 11222 * this function is called after eBPF program passed verification 11223 */ 11224static int fixup_bpf_calls(struct bpf_verifier_env *env) 11225{ 11226 struct bpf_prog *prog = env->prog; 11227 bool expect_blinding = bpf_jit_blinding_enabled(prog); 11228 struct bpf_insn *insn = prog->insnsi; 11229 const struct bpf_func_proto *fn; 11230 const int insn_cnt = prog->len; 11231 const struct bpf_map_ops *ops; 11232 struct bpf_insn_aux_data *aux; 11233 struct bpf_insn insn_buf[VERIFIER_SIXTEEN]; 11234 struct bpf_prog *new_prog; 11235 struct bpf_map *map_ptr; 11236 int i, ret, cnt, delta = 0; 11237 11238 for (i = 0; i < insn_cnt; i++, insn++) { 11239 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 11240 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 11241 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 11242 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 11243 struct bpf_insn *patchlet; 11244 struct bpf_insn chk_and_div[] = { 11245 /* [R,W]x div 0 -> 0 */ 11246 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | BPF_JNE | BPF_K, insn->src_reg, 0, 2, 0), 11247 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 11248 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11249 *insn, 11250 }; 11251 struct bpf_insn chk_and_mod[] = { 11252 /* [R,W]x mod 0 -> [R,W]x */ 11253 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | BPF_JEQ | BPF_K, insn->src_reg, 0, 1 + (is64 ? 0 : 1), 0), 11254 *insn, 11255 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11256 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 11257 }; 11258 11259 patchlet = isdiv ? chk_and_div : chk_and_mod; 11260 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : ARRAY_SIZE(chk_and_mod) - (is64 ? 0x2 : 0); 11261 11262 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 11263 if (!new_prog) { 11264 return -ENOMEM; 11265 } 11266 11267 delta += cnt - 1; 11268 env->prog = prog = new_prog; 11269 insn = new_prog->insnsi + i + delta; 11270 continue; 11271 } 11272 11273 if (BPF_CLASS(insn->code) == BPF_LD && (BPF_MODE(insn->code) == BPF_ABS || BPF_MODE(insn->code) == BPF_IND)) { 11274 cnt = env->ops->gen_ld_abs(insn, insn_buf); 11275 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11276 verbose(env, "bpf verifier is misconfigured\n"); 11277 return -EINVAL; 11278 } 11279 11280 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11281 if (!new_prog) { 11282 return -ENOMEM; 11283 } 11284 11285 delta += cnt - 1; 11286 env->prog = prog = new_prog; 11287 insn = new_prog->insnsi + i + delta; 11288 continue; 11289 } 11290 11291 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 11292 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 11293 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 11294 struct bpf_insn insn_buf_in[VERIFIER_SIXTEEN]; 11295 struct bpf_insn *patch = &insn_buf_in[0]; 11296 bool issrc, isneg, isimm; 11297 u32 off_reg; 11298 11299 aux = &env->insn_aux_data[i + delta]; 11300 if (!aux->alu_state || aux->alu_state == BPF_ALU_NON_POINTER) { 11301 continue; 11302 } 11303 11304 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 11305 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == BPF_ALU_SANITIZE_SRC; 11306 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 11307 11308 off_reg = issrc ? insn->src_reg : insn->dst_reg; 11309 if (isimm) { 11310 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 11311 } else { 11312 if (isneg) { 11313 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11314 } 11315 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 11316 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 11317 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 11318 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 11319 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, VERIFIER_SIXTYTHREE); 11320 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 11321 } 11322 if (!issrc) { 11323 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 11324 } 11325 insn->src_reg = BPF_REG_AX; 11326 if (isneg) { 11327 insn->code = insn->code == code_add ? code_sub : code_add; 11328 } 11329 *patch++ = *insn; 11330 if (issrc && isneg && !isimm) { 11331 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11332 } 11333 cnt = patch - insn_buf_in; 11334 11335 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf_in, cnt); 11336 if (!new_prog) { 11337 return -ENOMEM; 11338 } 11339 11340 delta += cnt - 1; 11341 env->prog = prog = new_prog; 11342 insn = new_prog->insnsi + i + delta; 11343 continue; 11344 } 11345 11346 if (insn->code != (BPF_JMP | BPF_CALL)) { 11347 continue; 11348 } 11349 if (insn->src_reg == BPF_PSEUDO_CALL) { 11350 continue; 11351 } 11352 11353 if (insn->imm == BPF_FUNC_get_route_realm) { 11354 prog->dst_needed = 1; 11355 } 11356 if (insn->imm == BPF_FUNC_get_prandom_u32) { 11357 bpf_user_rnd_init_once(); 11358 } 11359 if (insn->imm == BPF_FUNC_override_return) { 11360 prog->kprobe_override = 1; 11361 } 11362 if (insn->imm == BPF_FUNC_tail_call) { 11363 /* If we tail call into other programs, we 11364 * cannot make any assumptions since they can 11365 * be replaced dynamically during runtime in 11366 * the program array. 11367 */ 11368 prog->cb_access = 1; 11369 if (!allow_tail_call_in_subprogs(env)) { 11370 prog->aux->stack_depth = MAX_BPF_STACK; 11371 } 11372 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11373 11374 /* mark bpf_tail_call as different opcode to avoid 11375 * conditional branch in the interpeter for every normal 11376 * call and to prevent accidental JITing by JIT compiler 11377 * that doesn't support bpf_tail_call yet 11378 */ 11379 insn->imm = 0; 11380 insn->code = BPF_JMP | BPF_TAIL_CALL; 11381 11382 aux = &env->insn_aux_data[i + delta]; 11383 if (env->bpf_capable && !expect_blinding && prog->jit_requested && !bpf_map_key_poisoned(aux) && 11384 !bpf_map_ptr_poisoned(aux) && !bpf_map_ptr_unpriv(aux)) { 11385 struct bpf_jit_poke_descriptor desc = { 11386 .reason = BPF_POKE_REASON_TAIL_CALL, 11387 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11388 .tail_call.key = bpf_map_key_immediate(aux), 11389 .insn_idx = i + delta, 11390 }; 11391 11392 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11393 if (ret < 0) { 11394 verbose(env, "adding tail call poke descriptor failed\n"); 11395 return ret; 11396 } 11397 11398 insn->imm = ret + 1; 11399 continue; 11400 } 11401 11402 if (!bpf_map_ptr_unpriv(aux)) { 11403 continue; 11404 } 11405 11406 /* instead of changing every JIT dealing with tail_call 11407 * emit two extra insns: 11408 * if (index >= max_entries) goto out; 11409 * index &= array->index_mask; 11410 * to avoid out-of-bounds cpu speculation 11411 */ 11412 if (bpf_map_ptr_poisoned(aux)) { 11413 verbose(env, "tail_call abusing map_ptr\n"); 11414 return -EINVAL; 11415 } 11416 11417 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11418 insn_buf[0x0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, map_ptr->max_entries, 0x2); 11419 insn_buf[0x1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, container_of(map_ptr, struct bpf_array, map)->index_mask); 11420 insn_buf[0x2] = *insn; 11421 cnt = VERIFIER_THREE; 11422 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11423 if (!new_prog) { 11424 return -ENOMEM; 11425 } 11426 11427 delta += cnt - 1; 11428 env->prog = prog = new_prog; 11429 insn = new_prog->insnsi + i + delta; 11430 continue; 11431 } 11432 11433 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11434 * and other inlining handlers are currently limited to 64 bit 11435 * only. 11436 */ 11437 if (prog->jit_requested && BITS_PER_LONG == VERIFIER_SIXTYFOUR && 11438 (insn->imm == BPF_FUNC_map_lookup_elem || insn->imm == BPF_FUNC_map_update_elem || 11439 insn->imm == BPF_FUNC_map_delete_elem || insn->imm == BPF_FUNC_map_push_elem || 11440 insn->imm == BPF_FUNC_map_pop_elem || insn->imm == BPF_FUNC_map_peek_elem)) { 11441 aux = &env->insn_aux_data[i + delta]; 11442 if (bpf_map_ptr_poisoned(aux)) { 11443 goto patch_call_imm; 11444 } 11445 11446 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11447 ops = map_ptr->ops; 11448 if (insn->imm == BPF_FUNC_map_lookup_elem && ops->map_gen_lookup) { 11449 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11450 if (cnt == -EOPNOTSUPP) { 11451 goto patch_map_ops_generic; 11452 } 11453 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11454 verbose(env, "bpf verifier is misconfigured\n"); 11455 return -EINVAL; 11456 } 11457 11458 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11459 if (!new_prog) { 11460 return -ENOMEM; 11461 } 11462 11463 delta += cnt - 1; 11464 env->prog = prog = new_prog; 11465 insn = new_prog->insnsi + i + delta; 11466 continue; 11467 } 11468 11469 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, (void *(*)(struct bpf_map * map, void *key)) NULL)); 11470 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, (int (*)(struct bpf_map * map, void *key)) NULL)); 11471 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11472 (int (*)(struct bpf_map * map, void *key, void *value, u64 flags)) NULL)); 11473 BUILD_BUG_ON( 11474 !__same_type(ops->map_push_elem, (int (*)(struct bpf_map * map, void *value, u64 flags)) NULL)); 11475 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, (int (*)(struct bpf_map * map, void *value)) NULL)); 11476 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, (int (*)(struct bpf_map * map, void *value)) NULL)); 11477 patch_map_ops_generic: 11478 switch (insn->imm) { 11479 case BPF_FUNC_map_lookup_elem: 11480 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - __bpf_call_base; 11481 continue; 11482 case BPF_FUNC_map_update_elem: 11483 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - __bpf_call_base; 11484 continue; 11485 case BPF_FUNC_map_delete_elem: 11486 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - __bpf_call_base; 11487 continue; 11488 case BPF_FUNC_map_push_elem: 11489 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - __bpf_call_base; 11490 continue; 11491 case BPF_FUNC_map_pop_elem: 11492 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - __bpf_call_base; 11493 continue; 11494 case BPF_FUNC_map_peek_elem: 11495 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - __bpf_call_base; 11496 continue; 11497 default: 11498 break; 11499 } 11500 11501 goto patch_call_imm; 11502 } 11503 11504 if (prog->jit_requested && BITS_PER_LONG == VERIFIER_SIXTYFOUR && insn->imm == BPF_FUNC_jiffies64) { 11505 struct bpf_insn ld_jiffies_addr[2] = { 11506 BPF_LD_IMM64(BPF_REG_0, (unsigned long)&jiffies), 11507 }; 11508 11509 insn_buf[0x0] = ld_jiffies_addr[0]; 11510 insn_buf[0x1] = ld_jiffies_addr[1]; 11511 insn_buf[0x2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 11512 cnt = VERIFIER_THREE; 11513 11514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11515 if (!new_prog) { 11516 return -ENOMEM; 11517 } 11518 11519 delta += cnt - 1; 11520 env->prog = prog = new_prog; 11521 insn = new_prog->insnsi + i + delta; 11522 continue; 11523 } 11524 11525 patch_call_imm: 11526 fn = env->ops->get_func_proto(insn->imm, env->prog); 11527 /* all functions that have prototype and verifier allowed 11528 * programs to call them, must be real in-kernel functions 11529 */ 11530 if (!fn->func) { 11531 verbose(env, "kernel subsystem misconfigured func %s#%d\n", func_id_name(insn->imm), insn->imm); 11532 return -EFAULT; 11533 } 11534 insn->imm = fn->func - __bpf_call_base; 11535 } 11536 11537 /* Since poke tab is now finalized, publish aux to tracker. */ 11538 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11539 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11540 if (!map_ptr->ops->map_poke_track || !map_ptr->ops->map_poke_untrack || !map_ptr->ops->map_poke_run) { 11541 verbose(env, "bpf verifier is misconfigured\n"); 11542 return -EINVAL; 11543 } 11544 11545 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11546 if (ret < 0) { 11547 verbose(env, "tracking tail call prog failed\n"); 11548 return ret; 11549 } 11550 } 11551 11552 return 0; 11553} 11554 11555static void free_states(struct bpf_verifier_env *env) 11556{ 11557 struct bpf_verifier_state_list *sl, *sln; 11558 int i; 11559 11560 sl = env->free_list; 11561 while (sl) { 11562 sln = sl->next; 11563 free_verifier_state(&sl->state, false); 11564 kfree(sl); 11565 sl = sln; 11566 } 11567 env->free_list = NULL; 11568 11569 if (!env->explored_states) { 11570 return; 11571 } 11572 11573 for (i = 0; i < state_htab_size(env); i++) { 11574 sl = env->explored_states[i]; 11575 11576 while (sl) { 11577 sln = sl->next; 11578 free_verifier_state(&sl->state, false); 11579 kfree(sl); 11580 sl = sln; 11581 } 11582 env->explored_states[i] = NULL; 11583 } 11584} 11585 11586static int do_check_common(struct bpf_verifier_env *env, int subprog) 11587{ 11588 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11589 struct bpf_verifier_state *state; 11590 struct bpf_reg_state *regs; 11591 int ret, i; 11592 11593 env->prev_linfo = NULL; 11594 env->pass_cnt++; 11595 11596 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11597 if (!state) { 11598 return -ENOMEM; 11599 } 11600 state->curframe = 0; 11601 state->speculative = false; 11602 state->branches = 1; 11603 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11604 if (!state->frame[0]) { 11605 kfree(state); 11606 return -ENOMEM; 11607 } 11608 env->cur_state = state; 11609 init_func_state(env, state->frame[0], BPF_MAIN_FUNC /* callsite */, 0 /* frameno */, subprog); 11610 11611 regs = state->frame[state->curframe]->regs; 11612 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11613 ret = btf_prepare_func_args(env, subprog, regs); 11614 if (ret) { 11615 goto out; 11616 } 11617 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11618 if (regs[i].type == PTR_TO_CTX) { 11619 mark_reg_known_zero(env, regs, i); 11620 } else if (regs[i].type == SCALAR_VALUE) { 11621 mark_reg_unknown(env, regs, i); 11622 } 11623 } 11624 } else { 11625 /* 1st arg to a function */ 11626 regs[BPF_REG_1].type = PTR_TO_CTX; 11627 mark_reg_known_zero(env, regs, BPF_REG_1); 11628 ret = btf_check_func_arg_match(env, subprog, regs); 11629 if (ret == -EFAULT) { 11630 /* unlikely verifier bug. abort. 11631 * ret == 0 and ret < 0 are sadly acceptable for 11632 * main() function due to backward compatibility. 11633 * Like socket filter program may be written as: 11634 * int bpf_prog(struct pt_regs *ctx) 11635 * and never dereference that ctx in the program. 11636 * 'struct pt_regs' is a type mismatch for socket 11637 * filter that should be using 'struct __sk_buff'. 11638 */ 11639 goto out; 11640 } 11641 } 11642 11643 ret = do_check(env); 11644out: 11645 /* check for NULL is necessary, since cur_state can be freed inside 11646 * do_check() under memory pressure. 11647 */ 11648 if (env->cur_state) { 11649 free_verifier_state(env->cur_state, true); 11650 env->cur_state = NULL; 11651 } 11652 while (!pop_stack(env, NULL, NULL, false)) { 11653 ; 11654 } 11655 if (!ret && pop_log) { 11656 bpf_vlog_reset(&env->log, 0); 11657 } 11658 free_states(env); 11659 return ret; 11660} 11661 11662/* Verify all global functions in a BPF program one by one based on their BTF. 11663 * All global functions must pass verification. Otherwise the whole program is rejected. 11664 * Consider: 11665 * int bar(int); 11666 * int foo(int f) 11667 * { 11668 * return bar(f); 11669 * } 11670 * int bar(int b) 11671 * { 11672 * ... 11673 * } 11674 * foo() will be verified first for R1=any_scalar_value. During verification it 11675 * will be assumed that bar() already verified successfully and call to bar() 11676 * from foo() will be checked for type match only. Later bar() will be verified 11677 * independently to check that it's safe for R1=any_scalar_value. 11678 */ 11679static int do_check_subprogs(struct bpf_verifier_env *env) 11680{ 11681 struct bpf_prog_aux *aux = env->prog->aux; 11682 int i, ret; 11683 11684 if (!aux->func_info) { 11685 return 0; 11686 } 11687 11688 for (i = 1; i < env->subprog_cnt; i++) { 11689 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) { 11690 continue; 11691 } 11692 env->insn_idx = env->subprog_info[i].start; 11693 WARN_ON_ONCE(env->insn_idx == 0); 11694 ret = do_check_common(env, i); 11695 if (ret) { 11696 return ret; 11697 } else if (env->log.level & BPF_LOG_LEVEL) { 11698 verbose(env, "Func#%d is safe for any args that match its prototype\n", i); 11699 } 11700 } 11701 return 0; 11702} 11703 11704static int do_check_main(struct bpf_verifier_env *env) 11705{ 11706 int ret; 11707 11708 env->insn_idx = 0; 11709 ret = do_check_common(env, 0); 11710 if (!ret) { 11711 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11712 } 11713 return ret; 11714} 11715 11716static void print_verification_stats(struct bpf_verifier_env *env) 11717{ 11718 int i; 11719 11720 if (env->log.level & BPF_LOG_STATS) { 11721 verbose(env, "verification time %lld usec\n", div_u64(env->verification_time, VERIFIER_ONETHOUSAND)); 11722 verbose(env, "stack depth "); 11723 for (i = 0; i < env->subprog_cnt; i++) { 11724 u32 depth = env->subprog_info[i].stack_depth; 11725 11726 verbose(env, "%d", depth); 11727 if (i + 1 < env->subprog_cnt) { 11728 verbose(env, "+"); 11729 } 11730 } 11731 verbose(env, "\n"); 11732 } 11733 verbose(env, 11734 "processed %d insns (limit %d) max_states_per_insn %d " 11735 "total_states %d peak_states %d mark_read %d\n", 11736 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, env->max_states_per_insn, env->total_states, 11737 env->peak_states, env->longest_mark_read_walk); 11738} 11739 11740static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11741{ 11742 const struct btf_type *t, *func_proto; 11743 const struct bpf_struct_ops *st_ops; 11744 const struct btf_member *member; 11745 struct bpf_prog *prog = env->prog; 11746 u32 btf_id, member_idx; 11747 const char *mname; 11748 11749 if (!prog->gpl_compatible) { 11750 verbose(env, "struct ops programs must have a GPL compatible license\n"); 11751 return -EINVAL; 11752 } 11753 11754 btf_id = prog->aux->attach_btf_id; 11755 st_ops = bpf_struct_ops_find(btf_id); 11756 if (!st_ops) { 11757 verbose(env, "attach_btf_id %u is not a supported struct\n", btf_id); 11758 return -ENOTSUPP; 11759 } 11760 11761 t = st_ops->type; 11762 member_idx = prog->expected_attach_type; 11763 if (member_idx >= btf_type_vlen(t)) { 11764 verbose(env, "attach to invalid member idx %u of struct %s\n", member_idx, st_ops->name); 11765 return -EINVAL; 11766 } 11767 11768 member = &btf_type_member(t)[member_idx]; 11769 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11770 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, NULL); 11771 if (!func_proto) { 11772 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", mname, member_idx, st_ops->name); 11773 return -EINVAL; 11774 } 11775 11776 if (st_ops->check_member) { 11777 int err = st_ops->check_member(t, member); 11778 if (err) { 11779 verbose(env, "attach to unsupported member %s of struct %s\n", mname, st_ops->name); 11780 return err; 11781 } 11782 } 11783 11784 prog->aux->attach_func_proto = func_proto; 11785 prog->aux->attach_func_name = mname; 11786 env->ops = st_ops->verifier_ops; 11787 11788 return 0; 11789} 11790#define SECURITY_PREFIX "security_" 11791 11792static int check_attach_modify_return(unsigned long addr, const char *func_name) 11793{ 11794 if (within_error_injection_list(addr) || !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) { 11795 return 0; 11796 } 11797 return -EINVAL; 11798} 11799 11800/* non exhaustive list of sleepable bpf_lsm_*() functions */ 11801BTF_SET_START(btf_sleepable_lsm_hooks) 11802#ifdef CONFIG_BPF_LSM 11803BTF_ID(func, bpf_lsm_bprm_committed_creds) 11804#else 11805BTF_ID_UNUSED 11806#endif 11807BTF_SET_END(btf_sleepable_lsm_hooks) 11808 11809static int check_sleepable_lsm_hook(u32 btf_id) 11810{ 11811 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id); 11812} 11813 11814/* list of non-sleepable functions that are otherwise on 11815 * ALLOW_ERROR_INJECTION list 11816 */ 11817BTF_SET_START(btf_non_sleepable_error_inject) 11818/* Three functions below can be called from sleepable and non-sleepable context. 11819 * Assume non-sleepable from bpf safety point of view. 11820 */ 11821BTF_ID(func, __add_to_page_cache_locked) 11822BTF_ID(func, should_fail_alloc_page) 11823BTF_ID(func, should_failslab) 11824BTF_SET_END(btf_non_sleepable_error_inject) 11825 11826static int check_non_sleepable_error_inject(u32 btf_id) 11827{ 11828 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11829} 11830 11831int bpf_check_attach_target(struct bpf_verifier_log *log, const struct bpf_prog *prog, const struct bpf_prog *tgt_prog, 11832 u32 btf_id, struct bpf_attach_target_info *tgt_info) 11833{ 11834 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11835 const char prefix[] = "btf_trace_"; 11836 int ret = 0, subprog = -1, i; 11837 const struct btf_type *t; 11838 bool conservative = true; 11839 const char *tname; 11840 struct btf *btf; 11841 long addr = 0; 11842 11843 if (!btf_id) { 11844 bpf_log(log, "Tracing programs must provide btf_id\n"); 11845 return -EINVAL; 11846 } 11847 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux; 11848 if (!btf) { 11849 bpf_log(log, "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11850 return -EINVAL; 11851 } 11852 t = btf_type_by_id(btf, btf_id); 11853 if (!t) { 11854 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11855 return -EINVAL; 11856 } 11857 tname = btf_name_by_offset(btf, t->name_off); 11858 if (!tname) { 11859 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11860 return -EINVAL; 11861 } 11862 if (tgt_prog) { 11863 struct bpf_prog_aux *aux = tgt_prog->aux; 11864 11865 for (i = 0; i < aux->func_info_cnt; i++) { 11866 if (aux->func_info[i].type_id == btf_id) { 11867 subprog = i; 11868 break; 11869 } 11870 } 11871 if (subprog == -1) { 11872 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11873 return -EINVAL; 11874 } 11875 conservative = aux->func_info_aux[subprog].unreliable; 11876 if (prog_extension) { 11877 if (conservative) { 11878 bpf_log(log, "Cannot replace static functions\n"); 11879 return -EINVAL; 11880 } 11881 if (!prog->jit_requested) { 11882 bpf_log(log, "Extension programs should be JITed\n"); 11883 return -EINVAL; 11884 } 11885 } 11886 if (!tgt_prog->jited) { 11887 bpf_log(log, "Can attach to only JITed progs\n"); 11888 return -EINVAL; 11889 } 11890 if (tgt_prog->type == prog->type) { 11891 /* Cannot fentry/fexit another fentry/fexit program. 11892 * Cannot attach program extension to another extension. 11893 * It's ok to attach fentry/fexit to extension program. 11894 */ 11895 bpf_log(log, "Cannot recursively attach\n"); 11896 return -EINVAL; 11897 } 11898 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && prog_extension && 11899 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11900 /* Program extensions can extend all program types 11901 * except fentry/fexit. The reason is the following. 11902 * The fentry/fexit programs are used for performance 11903 * analysis, stats and can be attached to any program 11904 * type except themselves. When extension program is 11905 * replacing XDP function it is necessary to allow 11906 * performance analysis of all functions. Both original 11907 * XDP program and its program extension. Hence 11908 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11909 * allowed. If extending of fentry/fexit was allowed it 11910 * would be possible to create long call chain 11911 * fentry->extension->fentry->extension beyond 11912 * reasonable stack size. Hence extending fentry is not 11913 * allowed. 11914 */ 11915 bpf_log(log, "Cannot extend fentry/fexit\n"); 11916 return -EINVAL; 11917 } 11918 } else { 11919 if (prog_extension) { 11920 bpf_log(log, "Cannot replace kernel functions\n"); 11921 return -EINVAL; 11922 } 11923 } 11924 11925 switch (prog->expected_attach_type) { 11926 case BPF_TRACE_RAW_TP: 11927 if (tgt_prog) { 11928 bpf_log(log, "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11929 return -EINVAL; 11930 } 11931 if (!btf_type_is_typedef(t)) { 11932 bpf_log(log, "attach_btf_id %u is not a typedef\n", btf_id); 11933 return -EINVAL; 11934 } 11935 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11936 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", btf_id, tname); 11937 return -EINVAL; 11938 } 11939 tname += sizeof(prefix) - 1; 11940 t = btf_type_by_id(btf, t->type); 11941 if (!btf_type_is_ptr(t)) { 11942 /* should never happen in valid vmlinux build */ 11943 return -EINVAL; 11944 } 11945 t = btf_type_by_id(btf, t->type); 11946 if (!btf_type_is_func_proto(t)) { 11947 /* should never happen in valid vmlinux build */ 11948 return -EINVAL; 11949 } 11950 11951 break; 11952 case BPF_TRACE_ITER: 11953 if (!btf_type_is_func(t)) { 11954 bpf_log(log, "attach_btf_id %u is not a function\n", btf_id); 11955 return -EINVAL; 11956 } 11957 t = btf_type_by_id(btf, t->type); 11958 if (!btf_type_is_func_proto(t)) { 11959 return -EINVAL; 11960 } 11961 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11962 if (ret) { 11963 return ret; 11964 } 11965 break; 11966 default: 11967 if (!prog_extension) { 11968 return -EINVAL; 11969 } 11970 fallthrough; 11971 case BPF_MODIFY_RETURN: 11972 case BPF_LSM_MAC: 11973 case BPF_TRACE_FENTRY: 11974 case BPF_TRACE_FEXIT: 11975 if (!btf_type_is_func(t)) { 11976 bpf_log(log, "attach_btf_id %u is not a function\n", btf_id); 11977 return -EINVAL; 11978 } 11979 if (prog_extension && btf_check_type_match(log, prog, btf, t)) { 11980 return -EINVAL; 11981 } 11982 t = btf_type_by_id(btf, t->type); 11983 if (!btf_type_is_func_proto(t)) { 11984 return -EINVAL; 11985 } 11986 11987 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11988 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11989 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) { 11990 return -EINVAL; 11991 } 11992 11993 if (tgt_prog && conservative) { 11994 t = NULL; 11995 } 11996 11997 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11998 if (ret < 0) { 11999 return ret; 12000 } 12001 12002 if (tgt_prog) { 12003 if (subprog == 0) { 12004 addr = (long)tgt_prog->bpf_func; 12005 } else { 12006 addr = (long)tgt_prog->aux->func[subprog]->bpf_func; 12007 } 12008 } else { 12009 addr = kallsyms_lookup_name(tname); 12010 if (!addr) { 12011 bpf_log(log, "The address of function %s cannot be found\n", tname); 12012 return -ENOENT; 12013 } 12014 } 12015 12016 if (prog->aux->sleepable) { 12017 ret = -EINVAL; 12018 switch (prog->type) { 12019 case BPF_PROG_TYPE_TRACING: 12020 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 12021 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 12022 */ 12023 if (!check_non_sleepable_error_inject(btf_id) && within_error_injection_list(addr)) { 12024 ret = 0; 12025 } 12026 break; 12027 case BPF_PROG_TYPE_LSM: 12028 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 12029 * Only some of them are sleepable. 12030 */ 12031 if (check_sleepable_lsm_hook(btf_id)) { 12032 ret = 0; 12033 } 12034 break; 12035 default: 12036 break; 12037 } 12038 if (ret) { 12039 bpf_log(log, "%s is not sleepable\n", tname); 12040 return ret; 12041 } 12042 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 12043 if (tgt_prog) { 12044 bpf_log(log, "can't modify return codes of BPF programs\n"); 12045 return -EINVAL; 12046 } 12047 ret = check_attach_modify_return(addr, tname); 12048 if (ret) { 12049 bpf_log(log, "%s() is not modifiable\n", tname); 12050 return ret; 12051 } 12052 } 12053 12054 break; 12055 } 12056 tgt_info->tgt_addr = addr; 12057 tgt_info->tgt_name = tname; 12058 tgt_info->tgt_type = t; 12059 return 0; 12060} 12061 12062static int check_attach_btf_id(struct bpf_verifier_env *env) 12063{ 12064 struct bpf_prog *prog = env->prog; 12065 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 12066 struct bpf_attach_target_info tgt_info = {}; 12067 u32 btf_id = prog->aux->attach_btf_id; 12068 struct bpf_trampoline *tr; 12069 int ret; 12070 u64 key; 12071 12072 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && prog->type != BPF_PROG_TYPE_LSM) { 12073 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 12074 return -EINVAL; 12075 } 12076 12077 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 12078 return check_struct_ops_btf_id(env); 12079 } 12080 12081 if (prog->type != BPF_PROG_TYPE_TRACING && prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_EXT) { 12082 return 0; 12083 } 12084 12085 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 12086 if (ret) { 12087 return ret; 12088 } 12089 12090 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 12091 /* to make freplace equivalent to their targets, they need to 12092 * inherit env->ops and expected_attach_type for the rest of the 12093 * verification 12094 */ 12095 env->ops = bpf_verifier_ops[tgt_prog->type]; 12096 prog->expected_attach_type = tgt_prog->expected_attach_type; 12097 } 12098 12099 /* store info about the attachment target that will be used later */ 12100 prog->aux->attach_func_proto = tgt_info.tgt_type; 12101 prog->aux->attach_func_name = tgt_info.tgt_name; 12102 12103 if (tgt_prog) { 12104 prog->aux->saved_dst_prog_type = tgt_prog->type; 12105 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 12106 } 12107 12108 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 12109 prog->aux->attach_btf_trace = true; 12110 return 0; 12111 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 12112 if (!bpf_iter_prog_supported(prog)) { 12113 return -EINVAL; 12114 } 12115 return 0; 12116 } 12117 12118 if (prog->type == BPF_PROG_TYPE_LSM) { 12119 ret = bpf_lsm_verify_prog(&env->log, prog); 12120 if (ret < 0) { 12121 return ret; 12122 } 12123 } 12124 12125 key = bpf_trampoline_compute_key(tgt_prog, btf_id); 12126 tr = bpf_trampoline_get(key, &tgt_info); 12127 if (!tr) { 12128 return -ENOMEM; 12129 } 12130 12131 prog->aux->dst_trampoline = tr; 12132 return 0; 12133} 12134 12135struct btf *bpf_get_btf_vmlinux(void) 12136{ 12137 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 12138 mutex_lock(&bpf_verifier_lock); 12139 if (!btf_vmlinux) { 12140 btf_vmlinux = btf_parse_vmlinux(); 12141 } 12142 mutex_unlock(&bpf_verifier_lock); 12143 } 12144 return btf_vmlinux; 12145} 12146 12147int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, union bpf_attr __user *uattr) 12148{ 12149 u64 start_time = ktime_get_ns(); 12150 struct bpf_verifier_env *env; 12151 struct bpf_verifier_log *log; 12152 int i, len, ret = -EINVAL; 12153 bool is_priv; 12154 12155 /* no program is valid */ 12156 if (ARRAY_SIZE(bpf_verifier_ops) == 0) { 12157 return -EINVAL; 12158 } 12159 12160 /* 'struct bpf_verifier_env' can be global, but since it's not small, 12161 * allocate/free it every time bpf_check() is called 12162 */ 12163 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 12164 if (!env) { 12165 return -ENOMEM; 12166 } 12167 log = &env->log; 12168 12169 len = (*prog)->len; 12170 env->insn_aux_data = vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 12171 ret = -ENOMEM; 12172 if (!env->insn_aux_data) { 12173 goto err_free_env; 12174 } 12175 for (i = 0; i < len; i++) { 12176 env->insn_aux_data[i].orig_idx = i; 12177 } 12178 env->prog = *prog; 12179 env->ops = bpf_verifier_ops[env->prog->type]; 12180 is_priv = bpf_capable(); 12181 12182 bpf_get_btf_vmlinux(); 12183 12184 /* grab the mutex to protect few globals used by verifier */ 12185 if (!is_priv) { 12186 mutex_lock(&bpf_verifier_lock); 12187 } 12188 12189 if (attr->log_level || attr->log_buf || attr->log_size) { 12190 /* user requested verbose verifier output 12191 * and supplied buffer to store the verification trace 12192 */ 12193 log->level = attr->log_level; 12194 log->ubuf = (char __user *)(unsigned long)attr->log_buf; 12195 log->len_total = attr->log_size; 12196 12197 /* log attributes have to be sane */ 12198 if (!bpf_verifier_log_attr_valid(log)) { 12199 ret = -EINVAL; 12200 goto err_unlock; 12201 } 12202 } 12203 12204 if (IS_ERR(btf_vmlinux)) { 12205 /* Either gcc or pahole or kernel are broken. */ 12206 verbose(env, "in-kernel BTF is malformed\n"); 12207 ret = PTR_ERR(btf_vmlinux); 12208 goto skip_full_check; 12209 } 12210 12211 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 12212 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { 12213 env->strict_alignment = true; 12214 } 12215 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) { 12216 env->strict_alignment = false; 12217 } 12218 12219 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 12220 env->allow_uninit_stack = bpf_allow_uninit_stack(); 12221 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 12222 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 12223 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 12224 env->bpf_capable = bpf_capable(); 12225 12226 if (is_priv) { 12227 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 12228 } 12229 12230 env->explored_states = kvcalloc(state_htab_size(env), sizeof(struct bpf_verifier_state_list *), GFP_USER); 12231 ret = -ENOMEM; 12232 if (!env->explored_states) { 12233 goto skip_full_check; 12234 } 12235 12236 ret = check_subprogs(env); 12237 if (ret < 0) { 12238 goto skip_full_check; 12239 } 12240 12241 ret = check_btf_info(env, attr, uattr); 12242 if (ret < 0) { 12243 goto skip_full_check; 12244 } 12245 12246 ret = check_attach_btf_id(env); 12247 if (ret) { 12248 goto skip_full_check; 12249 } 12250 12251 ret = resolve_pseudo_ldimm64(env); 12252 if (ret < 0) { 12253 goto skip_full_check; 12254 } 12255 12256 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12257 ret = bpf_prog_offload_verifier_prep(env->prog); 12258 if (ret) { 12259 goto skip_full_check; 12260 } 12261 } 12262 12263 ret = check_cfg(env); 12264 if (ret < 0) { 12265 goto skip_full_check; 12266 } 12267 12268 ret = do_check_subprogs(env); 12269 ret = ret ?: do_check_main(env); 12270 12271 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) { 12272 ret = bpf_prog_offload_finalize(env); 12273 } 12274 12275skip_full_check: 12276 kvfree(env->explored_states); 12277 12278 if (ret == 0) { 12279 ret = check_max_stack_depth(env); 12280 } 12281 12282 /* instruction rewrites happen after this point */ 12283 if (is_priv) { 12284 if (ret == 0) { 12285 opt_hard_wire_dead_code_branches(env); 12286 } 12287 if (ret == 0) { 12288 ret = opt_remove_dead_code(env); 12289 } 12290 if (ret == 0) { 12291 ret = opt_remove_nops(env); 12292 } 12293 } else { 12294 if (ret == 0) { 12295 sanitize_dead_code(env); 12296 } 12297 } 12298 12299 if (ret == 0) { 12300 /* program is valid, convert *(u32*)(ctx + off) accesses */ 12301 ret = convert_ctx_accesses(env); 12302 } 12303 12304 if (ret == 0) { 12305 ret = fixup_bpf_calls(env); 12306 } 12307 12308 /* do 32-bit optimization after insn patching has done so those patched 12309 * insns could be handled correctly. 12310 */ 12311 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 12312 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 12313 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret : false; 12314 } 12315 12316 if (ret == 0) { 12317 ret = fixup_call_args(env); 12318 } 12319 12320 env->verification_time = ktime_get_ns() - start_time; 12321 print_verification_stats(env); 12322 12323 if (log->level && bpf_verifier_log_full(log)) { 12324 ret = -ENOSPC; 12325 } 12326 if (log->level && !log->ubuf) { 12327 ret = -EFAULT; 12328 goto err_release_maps; 12329 } 12330 12331 if (ret == 0 && env->used_map_cnt) { 12332 /* if program passed verifier, update used_maps in bpf_prog_info */ 12333 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, sizeof(env->used_maps[0]), GFP_KERNEL); 12334 12335 if (!env->prog->aux->used_maps) { 12336 ret = -ENOMEM; 12337 goto err_release_maps; 12338 } 12339 12340 memcpy(env->prog->aux->used_maps, env->used_maps, sizeof(env->used_maps[0]) * env->used_map_cnt); 12341 env->prog->aux->used_map_cnt = env->used_map_cnt; 12342 12343 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12344 * bpf_ld_imm64 instructions 12345 */ 12346 convert_pseudo_ld_imm64(env); 12347 } 12348 12349 if (ret == 0) { 12350 adjust_btf_func(env); 12351 } 12352 12353err_release_maps: 12354 if (!env->prog->aux->used_maps) { 12355 /* if we didn't copy map pointers into bpf_prog_info, release 12356 * them now. Otherwise free_used_maps() will release them. 12357 */ 12358 release_maps(env); 12359 } 12360 12361 /* extension progs temporarily inherit the attach_type of their targets 12362 for verification purposes, so set it back to zero before returning 12363 */ 12364 if (env->prog->type == BPF_PROG_TYPE_EXT) { 12365 env->prog->expected_attach_type = 0; 12366 } 12367 12368 *prog = env->prog; 12369err_unlock: 12370 if (!is_priv) { 12371 mutex_unlock(&bpf_verifier_lock); 12372 } 12373 vfree(env->insn_aux_data); 12374err_free_env: 12375 kfree(env); 12376 return ret; 12377} 12378