1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73#include <linux/compat.h> 74#include <linux/slab.h> 75#include <linux/spinlock.h> 76#include <linux/init.h> 77#include <linux/proc_fs.h> 78#include <linux/time.h> 79#include <linux/security.h> 80#include <linux/syscalls.h> 81#include <linux/audit.h> 82#include <linux/capability.h> 83#include <linux/seq_file.h> 84#include <linux/rwsem.h> 85#include <linux/nsproxy.h> 86#include <linux/ipc_namespace.h> 87#include <linux/sched/wake_q.h> 88#include <linux/nospec.h> 89#include <linux/rhashtable.h> 90 91#include <linux/uaccess.h> 92#include "util.h" 93 94/* One semaphore structure for each semaphore in the system. */ 95struct sem { 96 int semval; /* current value */ 97 /* 98 * PID of the process that last modified the semaphore. For 99 * Linux, specifically these are: 100 * - semop 101 * - semctl, via SETVAL and SETALL. 102 * - at task exit when performing undo adjustments (see exit_sem). 103 */ 104 struct pid *sempid; 105 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 106 struct list_head pending_alter; /* pending single-sop operations */ 107 /* that alter the semaphore */ 108 struct list_head pending_const; /* pending single-sop operations */ 109 /* that do not alter the semaphore */ 110 time64_t sem_otime; /* candidate for sem_otime */ 111} ____cacheline_aligned_in_smp; 112 113/* One sem_array data structure for each set of semaphores in the system. */ 114struct sem_array { 115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ 116 time64_t sem_ctime; /* create/last semctl() time */ 117 struct list_head pending_alter; /* pending operations */ 118 /* that alter the array */ 119 struct list_head pending_const; /* pending complex operations */ 120 /* that do not alter semvals */ 121 struct list_head list_id; /* undo requests on this array */ 122 int sem_nsems; /* no. of semaphores in array */ 123 int complex_count; /* pending complex operations */ 124 unsigned int use_global_lock; /* >0: global lock required */ 125 126 struct sem sems[]; 127} __randomize_layout; 128 129/* One queue for each sleeping process in the system. */ 130struct sem_queue { 131 struct list_head list; /* queue of pending operations */ 132 struct task_struct *sleeper; /* this process */ 133 struct sem_undo *undo; /* undo structure */ 134 struct pid *pid; /* process id of requesting process */ 135 int status; /* completion status of operation */ 136 struct sembuf *sops; /* array of pending operations */ 137 struct sembuf *blocking; /* the operation that blocked */ 138 int nsops; /* number of operations */ 139 bool alter; /* does *sops alter the array? */ 140 bool dupsop; /* sops on more than one sem_num */ 141}; 142 143/* Each task has a list of undo requests. They are executed automatically 144 * when the process exits. 145 */ 146struct sem_undo { 147 struct list_head list_proc; /* per-process list: * 148 * all undos from one process 149 * rcu protected */ 150 struct rcu_head rcu; /* rcu struct for sem_undo */ 151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 152 struct list_head list_id; /* per semaphore array list: 153 * all undos for one array */ 154 int semid; /* semaphore set identifier */ 155 short *semadj; /* array of adjustments */ 156 /* one per semaphore */ 157}; 158 159/* sem_undo_list controls shared access to the list of sem_undo structures 160 * that may be shared among all a CLONE_SYSVSEM task group. 161 */ 162struct sem_undo_list { 163 refcount_t refcnt; 164 spinlock_t lock; 165 struct list_head list_proc; 166}; 167 168#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 169 170static int newary(struct ipc_namespace *, struct ipc_params *); 171static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 172#ifdef CONFIG_PROC_FS 173static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 174#endif 175 176#define SEMMSL_FAST 256 /* 512 bytes on stack */ 177#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 178 179/* 180 * Switching from the mode suitable for simple ops 181 * to the mode for complex ops is costly. Therefore: 182 * use some hysteresis 183 */ 184#define USE_GLOBAL_LOCK_HYSTERESIS 10 185 186/* 187 * Locking: 188 * a) global sem_lock() for read/write 189 * sem_undo.id_next, 190 * sem_array.complex_count, 191 * sem_array.pending{_alter,_const}, 192 * sem_array.sem_undo 193 * 194 * b) global or semaphore sem_lock() for read/write: 195 * sem_array.sems[i].pending_{const,alter}: 196 * 197 * c) special: 198 * sem_undo_list.list_proc: 199 * * undo_list->lock for write 200 * * rcu for read 201 * use_global_lock: 202 * * global sem_lock() for write 203 * * either local or global sem_lock() for read. 204 * 205 * Memory ordering: 206 * Most ordering is enforced by using spin_lock() and spin_unlock(). 207 * 208 * Exceptions: 209 * 1) use_global_lock: (SEM_BARRIER_1) 210 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 211 * using smp_store_release(): Immediately after setting it to 0, 212 * a simple op can start. 213 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 214 * smp_load_acquire(). 215 * Setting it from 0 to non-zero must be ordered with regards to 216 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 217 * is inside a spin_lock() and after a write from 0 to non-zero a 218 * spin_lock()+spin_unlock() is done. 219 * 220 * 2) queue.status: (SEM_BARRIER_2) 221 * Initialization is done while holding sem_lock(), so no further barrier is 222 * required. 223 * Setting it to a result code is a RELEASE, this is ensured by both a 224 * smp_store_release() (for case a) and while holding sem_lock() 225 * (for case b). 226 * The AQUIRE when reading the result code without holding sem_lock() is 227 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). 228 * (case a above). 229 * Reading the result code while holding sem_lock() needs no further barriers, 230 * the locks inside sem_lock() enforce ordering (case b above) 231 * 232 * 3) current->state: 233 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). 234 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may 235 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called 236 * when holding sem_lock(), no further barriers are required. 237 * 238 * See also ipc/mqueue.c for more details on the covered races. 239 */ 240 241#define sc_semmsl sem_ctls[0] 242#define sc_semmns sem_ctls[1] 243#define sc_semopm sem_ctls[2] 244#define sc_semmni sem_ctls[3] 245 246void sem_init_ns(struct ipc_namespace *ns) 247{ 248 ns->sc_semmsl = SEMMSL; 249 ns->sc_semmns = SEMMNS; 250 ns->sc_semopm = SEMOPM; 251 ns->sc_semmni = SEMMNI; 252 ns->used_sems = 0; 253 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 254} 255 256#ifdef CONFIG_IPC_NS 257void sem_exit_ns(struct ipc_namespace *ns) 258{ 259 free_ipcs(ns, &sem_ids(ns), freeary); 260 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 261 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 262} 263#endif 264 265void __init sem_init(void) 266{ 267 sem_init_ns(&init_ipc_ns); 268 ipc_init_proc_interface("sysvipc/sem", 269 " key semid perms nsems uid gid cuid cgid otime ctime\n", 270 IPC_SEM_IDS, sysvipc_sem_proc_show); 271} 272 273/** 274 * unmerge_queues - unmerge queues, if possible. 275 * @sma: semaphore array 276 * 277 * The function unmerges the wait queues if complex_count is 0. 278 * It must be called prior to dropping the global semaphore array lock. 279 */ 280static void unmerge_queues(struct sem_array *sma) 281{ 282 struct sem_queue *q, *tq; 283 284 /* complex operations still around? */ 285 if (sma->complex_count) { 286 return; 287 } 288 /* 289 * We will switch back to simple mode. 290 * Move all pending operation back into the per-semaphore 291 * queues. 292 */ 293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) 294 { 295 struct sem *curr; 296 curr = &sma->sems[q->sops[0].sem_num]; 297 298 list_add_tail(&q->list, &curr->pending_alter); 299 } 300 INIT_LIST_HEAD(&sma->pending_alter); 301} 302 303/** 304 * merge_queues - merge single semop queues into global queue 305 * @sma: semaphore array 306 * 307 * This function merges all per-semaphore queues into the global queue. 308 * It is necessary to achieve FIFO ordering for the pending single-sop 309 * operations when a multi-semop operation must sleep. 310 * Only the alter operations must be moved, the const operations can stay. 311 */ 312static void merge_queues(struct sem_array *sma) 313{ 314 int i; 315 for (i = 0; i < sma->sem_nsems; i++) { 316 struct sem *sem = &sma->sems[i]; 317 318 list_splice_init(&sem->pending_alter, &sma->pending_alter); 319 } 320} 321 322static void sem_rcu_free(struct rcu_head *head) 323{ 324 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 325 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 326 327 security_sem_free(&sma->sem_perm); 328 kvfree(sma); 329} 330 331/* 332 * Enter the mode suitable for non-simple operations: 333 * Caller must own sem_perm.lock. 334 */ 335static void complexmode_enter(struct sem_array *sma) 336{ 337 int i; 338 struct sem *sem; 339 340 if (sma->use_global_lock > 0) { 341 /* 342 * We are already in global lock mode. 343 * Nothing to do, just reset the 344 * counter until we return to simple mode. 345 */ 346 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 347 return; 348 } 349 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 350 351 for (i = 0; i < sma->sem_nsems; i++) { 352 sem = &sma->sems[i]; 353 spin_lock(&sem->lock); 354 spin_unlock(&sem->lock); 355 } 356} 357 358/* 359 * Try to leave the mode that disallows simple operations: 360 * Caller must own sem_perm.lock. 361 */ 362static void complexmode_tryleave(struct sem_array *sma) 363{ 364 if (sma->complex_count) { 365 /* Complex ops are sleeping. 366 * We must stay in complex mode 367 */ 368 return; 369 } 370 if (sma->use_global_lock == 1) { 371 /* See SEM_BARRIER_1 for purpose/pairing */ 372 smp_store_release(&sma->use_global_lock, 0); 373 } else { 374 sma->use_global_lock--; 375 } 376} 377 378#define SEM_GLOBAL_LOCK (-1) 379/* 380 * If the request contains only one semaphore operation, and there are 381 * no complex transactions pending, lock only the semaphore involved. 382 * Otherwise, lock the entire semaphore array, since we either have 383 * multiple semaphores in our own semops, or we need to look at 384 * semaphores from other pending complex operations. 385 */ 386static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, int nsops) 387{ 388 struct sem *sem; 389 int idx; 390 391 if (nsops != 1) { 392 /* Complex operation - acquire a full lock */ 393 ipc_lock_object(&sma->sem_perm); 394 395 /* Prevent parallel simple ops */ 396 complexmode_enter(sma); 397 return SEM_GLOBAL_LOCK; 398 } 399 400 /* 401 * Only one semaphore affected - try to optimize locking. 402 * Optimized locking is possible if no complex operation 403 * is either enqueued or processed right now. 404 * 405 * Both facts are tracked by use_global_mode. 406 */ 407 idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 408 sem = &sma->sems[idx]; 409 410 /* 411 * Initial check for use_global_lock. Just an optimization, 412 * no locking, no memory barrier. 413 */ 414 if (!sma->use_global_lock) { 415 /* 416 * It appears that no complex operation is around. 417 * Acquire the per-semaphore lock. 418 */ 419 spin_lock(&sem->lock); 420 421 /* see SEM_BARRIER_1 for purpose/pairing */ 422 if (!smp_load_acquire(&sma->use_global_lock)) { 423 /* fast path successful! */ 424 return sops->sem_num; 425 } 426 spin_unlock(&sem->lock); 427 } 428 429 /* slow path: acquire the full lock */ 430 ipc_lock_object(&sma->sem_perm); 431 432 if (sma->use_global_lock == 0) { 433 /* 434 * The use_global_lock mode ended while we waited for 435 * sma->sem_perm.lock. Thus we must switch to locking 436 * with sem->lock. 437 * Unlike in the fast path, there is no need to recheck 438 * sma->use_global_lock after we have acquired sem->lock: 439 * We own sma->sem_perm.lock, thus use_global_lock cannot 440 * change. 441 */ 442 spin_lock(&sem->lock); 443 444 ipc_unlock_object(&sma->sem_perm); 445 return sops->sem_num; 446 } else { 447 /* 448 * Not a false alarm, thus continue to use the global lock 449 * mode. No need for complexmode_enter(), this was done by 450 * the caller that has set use_global_mode to non-zero. 451 */ 452 return SEM_GLOBAL_LOCK; 453 } 454} 455 456static inline void sem_unlock(struct sem_array *sma, int locknum) 457{ 458 if (locknum == SEM_GLOBAL_LOCK) { 459 unmerge_queues(sma); 460 complexmode_tryleave(sma); 461 ipc_unlock_object(&sma->sem_perm); 462 } else { 463 struct sem *sem = &sma->sems[locknum]; 464 spin_unlock(&sem->lock); 465 } 466} 467 468/* 469 * sem_lock_(check_) routines are called in the paths where the rwsem 470 * is not held. 471 * 472 * The caller holds the RCU read lock. 473 */ 474static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 475{ 476 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 477 478 if (IS_ERR(ipcp)) { 479 return ERR_CAST(ipcp); 480 } 481 482 return container_of(ipcp, struct sem_array, sem_perm); 483} 484 485static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, int id) 486{ 487 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 488 489 if (IS_ERR(ipcp)) { 490 return ERR_CAST(ipcp); 491 } 492 493 return container_of(ipcp, struct sem_array, sem_perm); 494} 495 496static inline void sem_lock_and_putref(struct sem_array *sma) 497{ 498 sem_lock(sma, NULL, -1); 499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 500} 501 502static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 503{ 504 ipc_rmid(&sem_ids(ns), &s->sem_perm); 505} 506 507static struct sem_array *sem_alloc(size_t nsems) 508{ 509 struct sem_array *sma; 510 511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) { 512 return NULL; 513 } 514 515 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL); 516 if (unlikely(!sma)) { 517 return NULL; 518 } 519 520 return sma; 521} 522 523/** 524 * newary - Create a new semaphore set 525 * @ns: namespace 526 * @params: ptr to the structure that contains key, semflg and nsems 527 * 528 * Called with sem_ids.rwsem held (as a writer) 529 */ 530static int newary(struct ipc_namespace *ns, struct ipc_params *params) 531{ 532 int retval; 533 struct sem_array *sma; 534 key_t key = params->key; 535 int nsems = params->u.nsems; 536 int semflg = params->flg; 537 int i; 538 539 if (!nsems) { 540 return -EINVAL; 541 } 542 if (ns->used_sems + nsems > ns->sc_semmns) { 543 return -ENOSPC; 544 } 545 546 sma = sem_alloc(nsems); 547 if (!sma) { 548 return -ENOMEM; 549 } 550 551 sma->sem_perm.mode = (semflg & S_IRWXUGO); 552 sma->sem_perm.key = key; 553 554 sma->sem_perm.security = NULL; 555 retval = security_sem_alloc(&sma->sem_perm); 556 if (retval) { 557 kvfree(sma); 558 return retval; 559 } 560 561 for (i = 0; i < nsems; i++) { 562 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 563 INIT_LIST_HEAD(&sma->sems[i].pending_const); 564 spin_lock_init(&sma->sems[i].lock); 565 } 566 567 sma->complex_count = 0; 568 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 569 INIT_LIST_HEAD(&sma->pending_alter); 570 INIT_LIST_HEAD(&sma->pending_const); 571 INIT_LIST_HEAD(&sma->list_id); 572 sma->sem_nsems = nsems; 573 sma->sem_ctime = ktime_get_real_seconds(); 574 575 /* ipc_addid() locks sma upon success. */ 576 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 577 if (retval < 0) { 578 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 579 return retval; 580 } 581 ns->used_sems += nsems; 582 583 sem_unlock(sma, -1); 584 rcu_read_unlock(); 585 586 return sma->sem_perm.id; 587} 588 589/* 590 * Called with sem_ids.rwsem and ipcp locked. 591 */ 592static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) 593{ 594 struct sem_array *sma; 595 596 sma = container_of(ipcp, struct sem_array, sem_perm); 597 if (params->u.nsems > sma->sem_nsems) { 598 return -EINVAL; 599 } 600 601 return 0; 602} 603 604long ksys_semget(key_t key, int nsems, int semflg) 605{ 606 struct ipc_namespace *ns; 607 static const struct ipc_ops sem_ops = { 608 .getnew = newary, 609 .associate = security_sem_associate, 610 .more_checks = sem_more_checks, 611 }; 612 struct ipc_params sem_params; 613 614 ns = current->nsproxy->ipc_ns; 615 616 if (nsems < 0 || nsems > ns->sc_semmsl) { 617 return -EINVAL; 618 } 619 620 sem_params.key = key; 621 sem_params.flg = semflg; 622 sem_params.u.nsems = nsems; 623 624 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 625} 626 627SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 628{ 629 return ksys_semget(key, nsems, semflg); 630} 631 632/** 633 * perform_atomic_semop[_slow] - Attempt to perform semaphore 634 * operations on a given array. 635 * @sma: semaphore array 636 * @q: struct sem_queue that describes the operation 637 * 638 * Caller blocking are as follows, based the value 639 * indicated by the semaphore operation (sem_op): 640 * 641 * (1) >0 never blocks. 642 * (2) 0 (wait-for-zero operation): semval is non-zero. 643 * (3) <0 attempting to decrement semval to a value smaller than zero. 644 * 645 * Returns 0 if the operation was possible. 646 * Returns 1 if the operation is impossible, the caller must sleep. 647 * Returns <0 for error codes. 648 */ 649static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 650{ 651 int result, sem_op, nsops; 652 struct pid *pid; 653 struct sembuf *sop; 654 struct sem *curr; 655 struct sembuf *sops; 656 struct sem_undo *un; 657 658 sops = q->sops; 659 nsops = q->nsops; 660 un = q->undo; 661 662 for (sop = sops; sop < sops + nsops; sop++) { 663 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 664 curr = &sma->sems[idx]; 665 sem_op = sop->sem_op; 666 result = curr->semval; 667 668 if (!sem_op && result) { 669 goto would_block; 670 } 671 672 result += sem_op; 673 if (result < 0) { 674 goto would_block; 675 } 676 if (result > SEMVMX) { 677 goto out_of_range; 678 } 679 680 if (sop->sem_flg & SEM_UNDO) { 681 int undo = un->semadj[sop->sem_num] - sem_op; 682 /* Exceeding the undo range is an error. */ 683 if (undo < (-SEMAEM - 1) || undo > SEMAEM) { 684 goto out_of_range; 685 } 686 un->semadj[sop->sem_num] = undo; 687 } 688 689 curr->semval = result; 690 } 691 692 sop--; 693 pid = q->pid; 694 while (sop >= sops) { 695 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); 696 sop--; 697 } 698 699 return 0; 700 701out_of_range: 702 result = -ERANGE; 703 goto undo; 704 705would_block: 706 q->blocking = sop; 707 708 if (sop->sem_flg & IPC_NOWAIT) { 709 result = -EAGAIN; 710 } else { 711 result = 1; 712 } 713 714undo: 715 sop--; 716 while (sop >= sops) { 717 sem_op = sop->sem_op; 718 sma->sems[sop->sem_num].semval -= sem_op; 719 if (sop->sem_flg & SEM_UNDO) { 720 un->semadj[sop->sem_num] += sem_op; 721 } 722 sop--; 723 } 724 725 return result; 726} 727 728static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 729{ 730 int result, sem_op, nsops; 731 struct sembuf *sop; 732 struct sem *curr; 733 struct sembuf *sops; 734 struct sem_undo *un; 735 736 sops = q->sops; 737 nsops = q->nsops; 738 un = q->undo; 739 740 if (unlikely(q->dupsop)) { 741 return perform_atomic_semop_slow(sma, q); 742 } 743 744 /* 745 * We scan the semaphore set twice, first to ensure that the entire 746 * operation can succeed, therefore avoiding any pointless writes 747 * to shared memory and having to undo such changes in order to block 748 * until the operations can go through. 749 */ 750 for (sop = sops; sop < sops + nsops; sop++) { 751 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 752 753 curr = &sma->sems[idx]; 754 sem_op = sop->sem_op; 755 result = curr->semval; 756 757 if (!sem_op && result) { 758 goto would_block; /* wait-for-zero */ 759 } 760 761 result += sem_op; 762 if (result < 0) { 763 goto would_block; 764 } 765 766 if (result > SEMVMX) { 767 return -ERANGE; 768 } 769 770 if (sop->sem_flg & SEM_UNDO) { 771 int undo = un->semadj[sop->sem_num] - sem_op; 772 773 /* Exceeding the undo range is an error. */ 774 if (undo < (-SEMAEM - 1) || undo > SEMAEM) { 775 return -ERANGE; 776 } 777 } 778 } 779 780 for (sop = sops; sop < sops + nsops; sop++) { 781 curr = &sma->sems[sop->sem_num]; 782 sem_op = sop->sem_op; 783 result = curr->semval; 784 785 if (sop->sem_flg & SEM_UNDO) { 786 int undo = un->semadj[sop->sem_num] - sem_op; 787 788 un->semadj[sop->sem_num] = undo; 789 } 790 curr->semval += sem_op; 791 ipc_update_pid(&curr->sempid, q->pid); 792 } 793 794 return 0; 795 796would_block: 797 q->blocking = sop; 798 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 799} 800 801static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, struct wake_q_head *wake_q) 802{ 803 struct task_struct *sleeper; 804 805 sleeper = get_task_struct(q->sleeper); 806 807 /* see SEM_BARRIER_2 for purpuse/pairing */ 808 smp_store_release(&q->status, error); 809 810 wake_q_add_safe(wake_q, sleeper); 811} 812 813static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 814{ 815 list_del(&q->list); 816 if (q->nsops > 1) { 817 sma->complex_count--; 818 } 819} 820 821/** check_restart(sma, q) 822 * @sma: semaphore array 823 * @q: the operation that just completed 824 * 825 * update_queue is O(N^2) when it restarts scanning the whole queue of 826 * waiting operations. Therefore this function checks if the restart is 827 * really necessary. It is called after a previously waiting operation 828 * modified the array. 829 * Note that wait-for-zero operations are handled without restart. 830 */ 831static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 832{ 833 /* pending complex alter operations are too difficult to analyse */ 834 if (!list_empty(&sma->pending_alter)) { 835 return 1; 836 } 837 838 /* we were a sleeping complex operation. Too difficult */ 839 if (q->nsops > 1) { 840 return 1; 841 } 842 843 /* It is impossible that someone waits for the new value: 844 * - complex operations always restart. 845 * - wait-for-zero are handled seperately. 846 * - q is a previously sleeping simple operation that 847 * altered the array. It must be a decrement, because 848 * simple increments never sleep. 849 * - If there are older (higher priority) decrements 850 * in the queue, then they have observed the original 851 * semval value and couldn't proceed. The operation 852 * decremented to value - thus they won't proceed either. 853 */ 854 return 0; 855} 856 857/** 858 * wake_const_ops - wake up non-alter tasks 859 * @sma: semaphore array. 860 * @semnum: semaphore that was modified. 861 * @wake_q: lockless wake-queue head. 862 * 863 * wake_const_ops must be called after a semaphore in a semaphore array 864 * was set to 0. If complex const operations are pending, wake_const_ops must 865 * be called with semnum = -1, as well as with the number of each modified 866 * semaphore. 867 * The tasks that must be woken up are added to @wake_q. The return code 868 * is stored in q->pid. 869 * The function returns 1 if at least one operation was completed successfully. 870 */ 871static int wake_const_ops(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 872{ 873 struct sem_queue *q, *tmp; 874 struct list_head *pending_list; 875 int semop_completed = 0; 876 877 if (semnum == -1) { 878 pending_list = &sma->pending_const; 879 } else { 880 pending_list = &sma->sems[semnum].pending_const; 881 } 882 883 list_for_each_entry_safe(q, tmp, pending_list, list) 884 { 885 int error = perform_atomic_semop(sma, q); 886 if (error > 0) { 887 continue; 888 } 889 /* operation completed, remove from queue & wakeup */ 890 unlink_queue(sma, q); 891 892 wake_up_sem_queue_prepare(q, error, wake_q); 893 if (error == 0) { 894 semop_completed = 1; 895 } 896 } 897 898 return semop_completed; 899} 900 901/** 902 * do_smart_wakeup_zero - wakeup all wait for zero tasks 903 * @sma: semaphore array 904 * @sops: operations that were performed 905 * @nsops: number of operations 906 * @wake_q: lockless wake-queue head 907 * 908 * Checks all required queue for wait-for-zero operations, based 909 * on the actual changes that were performed on the semaphore array. 910 * The function returns 1 if at least one operation was completed successfully. 911 */ 912static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, int nsops, struct wake_q_head *wake_q) 913{ 914 int i; 915 int semop_completed = 0; 916 int got_zero = 0; 917 918 /* first: the per-semaphore queues, if known */ 919 if (sops) { 920 for (i = 0; i < nsops; i++) { 921 int num = sops[i].sem_num; 922 923 if (sma->sems[num].semval == 0) { 924 got_zero = 1; 925 semop_completed |= wake_const_ops(sma, num, wake_q); 926 } 927 } 928 } else { 929 /* 930 * No sops means modified semaphores not known. 931 * Assume all were changed. 932 */ 933 for (i = 0; i < sma->sem_nsems; i++) { 934 if (sma->sems[i].semval == 0) { 935 got_zero = 1; 936 semop_completed |= wake_const_ops(sma, i, wake_q); 937 } 938 } 939 } 940 /* 941 * If one of the modified semaphores got 0, 942 * then check the global queue, too. 943 */ 944 if (got_zero) { 945 semop_completed |= wake_const_ops(sma, -1, wake_q); 946 } 947 948 return semop_completed; 949} 950 951/** 952 * update_queue - look for tasks that can be completed. 953 * @sma: semaphore array. 954 * @semnum: semaphore that was modified. 955 * @wake_q: lockless wake-queue head. 956 * 957 * update_queue must be called after a semaphore in a semaphore array 958 * was modified. If multiple semaphores were modified, update_queue must 959 * be called with semnum = -1, as well as with the number of each modified 960 * semaphore. 961 * The tasks that must be woken up are added to @wake_q. The return code 962 * is stored in q->pid. 963 * The function internally checks if const operations can now succeed. 964 * 965 * The function return 1 if at least one semop was completed successfully. 966 */ 967static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 968{ 969 struct sem_queue *q, *tmp; 970 struct list_head *pending_list; 971 int semop_completed = 0; 972 973 if (semnum == -1) { 974 pending_list = &sma->pending_alter; 975 } else { 976 pending_list = &sma->sems[semnum].pending_alter; 977 } 978 979again: 980 list_for_each_entry_safe(q, tmp, pending_list, list) 981 { 982 int error, restart; 983 984 /* If we are scanning the single sop, per-semaphore list of 985 * one semaphore and that semaphore is 0, then it is not 986 * necessary to scan further: simple increments 987 * that affect only one entry succeed immediately and cannot 988 * be in the per semaphore pending queue, and decrements 989 * cannot be successful if the value is already 0. 990 */ 991 if (semnum != -1 && sma->sems[semnum].semval == 0) { 992 break; 993 } 994 error = perform_atomic_semop(sma, q); 995 /* Does q->sleeper still need to sleep? */ 996 if (error > 0) { 997 continue; 998 } 999 1000 unlink_queue(sma, q); 1001 1002 if (error) { 1003 restart = 0; 1004 } else { 1005 semop_completed = 1; 1006 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 1007 restart = check_restart(sma, q); 1008 } 1009 1010 wake_up_sem_queue_prepare(q, error, wake_q); 1011 if (restart) { 1012 goto again; 1013 } 1014 } 1015 return semop_completed; 1016} 1017 1018/** 1019 * set_semotime - set sem_otime 1020 * @sma: semaphore array 1021 * @sops: operations that modified the array, may be NULL 1022 * 1023 * sem_otime is replicated to avoid cache line trashing. 1024 * This function sets one instance to the current time. 1025 */ 1026static void set_semotime(struct sem_array *sma, struct sembuf *sops) 1027{ 1028 if (sops == NULL) { 1029 sma->sems[0].sem_otime = ktime_get_real_seconds(); 1030 } else { 1031 sma->sems[sops[0].sem_num].sem_otime = ktime_get_real_seconds(); 1032 } 1033} 1034 1035/** 1036 * do_smart_update - optimized update_queue 1037 * @sma: semaphore array 1038 * @sops: operations that were performed 1039 * @nsops: number of operations 1040 * @otime: force setting otime 1041 * @wake_q: lockless wake-queue head 1042 * 1043 * do_smart_update() does the required calls to update_queue and wakeup_zero, 1044 * based on the actual changes that were performed on the semaphore array. 1045 * Note that the function does not do the actual wake-up: the caller is 1046 * responsible for calling wake_up_q(). 1047 * It is safe to perform this call after dropping all locks. 1048 */ 1049static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, int otime, 1050 struct wake_q_head *wake_q) 1051{ 1052 int i; 1053 1054 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 1055 1056 if (!list_empty(&sma->pending_alter)) { 1057 /* semaphore array uses the global queue - just process it. */ 1058 otime |= update_queue(sma, -1, wake_q); 1059 } else { 1060 if (!sops) { 1061 /* 1062 * No sops, thus the modified semaphores are not 1063 * known. Check all. 1064 */ 1065 for (i = 0; i < sma->sem_nsems; i++) { 1066 otime |= update_queue(sma, i, wake_q); 1067 } 1068 } else { 1069 /* 1070 * Check the semaphores that were increased: 1071 * - No complex ops, thus all sleeping ops are 1072 * decrease. 1073 * - if we decreased the value, then any sleeping 1074 * semaphore ops wont be able to run: If the 1075 * previous value was too small, then the new 1076 * value will be too small, too. 1077 */ 1078 for (i = 0; i < nsops; i++) { 1079 if (sops[i].sem_op > 0) { 1080 otime |= update_queue(sma, sops[i].sem_num, wake_q); 1081 } 1082 } 1083 } 1084 } 1085 if (otime) { 1086 set_semotime(sma, sops); 1087 } 1088} 1089 1090/* 1091 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1092 */ 1093static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, bool count_zero) 1094{ 1095 struct sembuf *sop = q->blocking; 1096 1097 /* 1098 * Linux always (since 0.99.10) reported a task as sleeping on all 1099 * semaphores. This violates SUS, therefore it was changed to the 1100 * standard compliant behavior. 1101 * Give the administrators a chance to notice that an application 1102 * might misbehave because it relies on the Linux behavior. 1103 */ 1104 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1105 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1106 current->comm, task_pid_nr(current)); 1107 1108 if (sop->sem_num != semnum) { 1109 return 0; 1110 } 1111 1112 if (count_zero && sop->sem_op == 0) { 1113 return 1; 1114 } 1115 if (!count_zero && sop->sem_op < 0) { 1116 return 1; 1117 } 1118 1119 return 0; 1120} 1121 1122/* The following counts are associated to each semaphore: 1123 * semncnt number of tasks waiting on semval being nonzero 1124 * semzcnt number of tasks waiting on semval being zero 1125 * 1126 * Per definition, a task waits only on the semaphore of the first semop 1127 * that cannot proceed, even if additional operation would block, too. 1128 */ 1129static int count_semcnt(struct sem_array *sma, ushort semnum, bool count_zero) 1130{ 1131 struct list_head *l; 1132 struct sem_queue *q; 1133 int semcnt; 1134 1135 semcnt = 0; 1136 /* First: check the simple operations. They are easy to evaluate */ 1137 if (count_zero) { 1138 l = &sma->sems[semnum].pending_const; 1139 } else { 1140 l = &sma->sems[semnum].pending_alter; 1141 } 1142 1143 list_for_each_entry(q, l, list) 1144 { 1145 /* all task on a per-semaphore list sleep on exactly 1146 * that semaphore 1147 */ 1148 semcnt++; 1149 } 1150 1151 /* Then: check the complex operations. */ 1152 list_for_each_entry(q, &sma->pending_alter, list) 1153 { 1154 semcnt += check_qop(sma, semnum, q, count_zero); 1155 } 1156 if (count_zero) { 1157 list_for_each_entry(q, &sma->pending_const, list) 1158 { 1159 semcnt += check_qop(sma, semnum, q, count_zero); 1160 } 1161 } 1162 return semcnt; 1163} 1164 1165/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1166 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1167 * remains locked on exit. 1168 */ 1169static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1170{ 1171 struct sem_undo *un, *tu; 1172 struct sem_queue *q, *tq; 1173 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1174 int i; 1175 DEFINE_WAKE_Q(wake_q); 1176 1177 /* Free the existing undo structures for this semaphore set. */ 1178 ipc_assert_locked_object(&sma->sem_perm); 1179 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) 1180 { 1181 list_del(&un->list_id); 1182 spin_lock(&un->ulp->lock); 1183 un->semid = -1; 1184 list_del_rcu(&un->list_proc); 1185 spin_unlock(&un->ulp->lock); 1186 kfree_rcu(un, rcu); 1187 } 1188 1189 /* Wake up all pending processes and let them fail with EIDRM. */ 1190 list_for_each_entry_safe(q, tq, &sma->pending_const, list) 1191 { 1192 unlink_queue(sma, q); 1193 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1194 } 1195 1196 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) 1197 { 1198 unlink_queue(sma, q); 1199 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1200 } 1201 for (i = 0; i < sma->sem_nsems; i++) { 1202 struct sem *sem = &sma->sems[i]; 1203 list_for_each_entry_safe(q, tq, &sem->pending_const, list) 1204 { 1205 unlink_queue(sma, q); 1206 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1207 } 1208 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) 1209 { 1210 unlink_queue(sma, q); 1211 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1212 } 1213 ipc_update_pid(&sem->sempid, NULL); 1214 } 1215 1216 /* Remove the semaphore set from the IDR */ 1217 sem_rmid(ns, sma); 1218 sem_unlock(sma, -1); 1219 rcu_read_unlock(); 1220 1221 wake_up_q(&wake_q); 1222 ns->used_sems -= sma->sem_nsems; 1223 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1224} 1225 1226static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1227{ 1228 switch (version) { 1229 case IPC_64: 1230 return copy_to_user(buf, in, sizeof(*in)); 1231 case IPC_OLD: { 1232 struct semid_ds out; 1233 1234 memset(&out, 0, sizeof(out)); 1235 1236 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1237 1238 out.sem_otime = in->sem_otime; 1239 out.sem_ctime = in->sem_ctime; 1240 out.sem_nsems = in->sem_nsems; 1241 1242 return copy_to_user(buf, &out, sizeof(out)); 1243 } 1244 default: 1245 return -EINVAL; 1246 } 1247} 1248 1249static time64_t get_semotime(struct sem_array *sma) 1250{ 1251 int i; 1252 time64_t res; 1253 1254 res = sma->sems[0].sem_otime; 1255 for (i = 1; i < sma->sem_nsems; i++) { 1256 time64_t to = sma->sems[i].sem_otime; 1257 1258 if (to > res) { 1259 res = to; 1260 } 1261 } 1262 return res; 1263} 1264 1265static int semctl_stat(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) 1266{ 1267 struct sem_array *sma; 1268 time64_t semotime; 1269 int err; 1270 1271 memset(semid64, 0, sizeof(*semid64)); 1272 1273 rcu_read_lock(); 1274 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { 1275 sma = sem_obtain_object(ns, semid); 1276 if (IS_ERR(sma)) { 1277 err = PTR_ERR(sma); 1278 goto out_unlock; 1279 } 1280 } else { /* IPC_STAT */ 1281 sma = sem_obtain_object_check(ns, semid); 1282 if (IS_ERR(sma)) { 1283 err = PTR_ERR(sma); 1284 goto out_unlock; 1285 } 1286 } 1287 1288 /* see comment for SHM_STAT_ANY */ 1289 if (cmd == SEM_STAT_ANY) { 1290 audit_ipc_obj(&sma->sem_perm); 1291 } else { 1292 err = -EACCES; 1293 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) { 1294 goto out_unlock; 1295 } 1296 } 1297 1298 err = security_sem_semctl(&sma->sem_perm, cmd); 1299 if (err) { 1300 goto out_unlock; 1301 } 1302 1303 ipc_lock_object(&sma->sem_perm); 1304 1305 if (!ipc_valid_object(&sma->sem_perm)) { 1306 ipc_unlock_object(&sma->sem_perm); 1307 err = -EIDRM; 1308 goto out_unlock; 1309 } 1310 1311 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1312 semotime = get_semotime(sma); 1313 semid64->sem_otime = semotime; 1314 semid64->sem_ctime = sma->sem_ctime; 1315#ifndef CONFIG_64BIT 1316 semid64->sem_otime_high = semotime >> 0x20; 1317 semid64->sem_ctime_high = sma->sem_ctime >> 0x20; 1318#endif 1319 semid64->sem_nsems = sma->sem_nsems; 1320 1321 if (cmd == IPC_STAT) { 1322 /* 1323 * As defined in SUS: 1324 * Return 0 on success 1325 */ 1326 err = 0; 1327 } else { 1328 /* 1329 * SEM_STAT and SEM_STAT_ANY (both Linux specific) 1330 * Return the full id, including the sequence number 1331 */ 1332 err = sma->sem_perm.id; 1333 } 1334 ipc_unlock_object(&sma->sem_perm); 1335out_unlock: 1336 rcu_read_unlock(); 1337 return err; 1338} 1339 1340static int semctl_info(struct ipc_namespace *ns, int semid, int cmd, void __user *p) 1341{ 1342 struct seminfo seminfo; 1343 int max_idx; 1344 int err; 1345 1346 err = security_sem_semctl(NULL, cmd); 1347 if (err) { 1348 return err; 1349 } 1350 1351 memset(&seminfo, 0, sizeof(seminfo)); 1352 seminfo.semmni = ns->sc_semmni; 1353 seminfo.semmns = ns->sc_semmns; 1354 seminfo.semmsl = ns->sc_semmsl; 1355 seminfo.semopm = ns->sc_semopm; 1356 seminfo.semvmx = SEMVMX; 1357 seminfo.semmnu = SEMMNU; 1358 seminfo.semmap = SEMMAP; 1359 seminfo.semume = SEMUME; 1360 down_read(&sem_ids(ns).rwsem); 1361 if (cmd == SEM_INFO) { 1362 seminfo.semusz = sem_ids(ns).in_use; 1363 seminfo.semaem = ns->used_sems; 1364 } else { 1365 seminfo.semusz = SEMUSZ; 1366 seminfo.semaem = SEMAEM; 1367 } 1368 max_idx = ipc_get_maxidx(&sem_ids(ns)); 1369 up_read(&sem_ids(ns).rwsem); 1370 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) { 1371 return -EFAULT; 1372 } 1373 return (max_idx < 0) ? 0 : max_idx; 1374} 1375 1376static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, int val) 1377{ 1378 struct sem_undo *un; 1379 struct sem_array *sma; 1380 struct sem *curr; 1381 int err; 1382 DEFINE_WAKE_Q(wake_q); 1383 1384 if (val > SEMVMX || val < 0) { 1385 return -ERANGE; 1386 } 1387 1388 rcu_read_lock(); 1389 sma = sem_obtain_object_check(ns, semid); 1390 if (IS_ERR(sma)) { 1391 rcu_read_unlock(); 1392 return PTR_ERR(sma); 1393 } 1394 1395 if (semnum < 0 || semnum >= sma->sem_nsems) { 1396 rcu_read_unlock(); 1397 return -EINVAL; 1398 } 1399 1400 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1401 rcu_read_unlock(); 1402 return -EACCES; 1403 } 1404 1405 err = security_sem_semctl(&sma->sem_perm, SETVAL); 1406 if (err) { 1407 rcu_read_unlock(); 1408 return -EACCES; 1409 } 1410 1411 sem_lock(sma, NULL, -1); 1412 1413 if (!ipc_valid_object(&sma->sem_perm)) { 1414 sem_unlock(sma, -1); 1415 rcu_read_unlock(); 1416 return -EIDRM; 1417 } 1418 1419 semnum = array_index_nospec(semnum, sma->sem_nsems); 1420 curr = &sma->sems[semnum]; 1421 1422 ipc_assert_locked_object(&sma->sem_perm); 1423 list_for_each_entry(un, &sma->list_id, list_id) un->semadj[semnum] = 0; 1424 1425 curr->semval = val; 1426 ipc_update_pid(&curr->sempid, task_tgid(current)); 1427 sma->sem_ctime = ktime_get_real_seconds(); 1428 /* maybe some queued-up processes were waiting for this */ 1429 do_smart_update(sma, NULL, 0, 0, &wake_q); 1430 sem_unlock(sma, -1); 1431 rcu_read_unlock(); 1432 wake_up_q(&wake_q); 1433 return 0; 1434} 1435 1436static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, int cmd, void __user *p) 1437{ 1438 struct sem_array *sma; 1439 struct sem *curr; 1440 int err, nsems; 1441 ushort fast_sem_io[SEMMSL_FAST]; 1442 ushort *sem_io = fast_sem_io; 1443 DEFINE_WAKE_Q(wake_q); 1444 1445 rcu_read_lock(); 1446 sma = sem_obtain_object_check(ns, semid); 1447 if (IS_ERR(sma)) { 1448 rcu_read_unlock(); 1449 return PTR_ERR(sma); 1450 } 1451 1452 nsems = sma->sem_nsems; 1453 1454 err = -EACCES; 1455 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) { 1456 goto out_rcu_wakeup; 1457 } 1458 1459 err = security_sem_semctl(&sma->sem_perm, cmd); 1460 if (err) { 1461 goto out_rcu_wakeup; 1462 } 1463 1464 err = -EACCES; 1465 switch (cmd) { 1466 case GETALL: { 1467 ushort __user *array = p; 1468 int i; 1469 1470 sem_lock(sma, NULL, -1); 1471 if (!ipc_valid_object(&sma->sem_perm)) { 1472 err = -EIDRM; 1473 goto out_unlock; 1474 } 1475 if (nsems > SEMMSL_FAST) { 1476 if (!ipc_rcu_getref(&sma->sem_perm)) { 1477 err = -EIDRM; 1478 goto out_unlock; 1479 } 1480 sem_unlock(sma, -1); 1481 rcu_read_unlock(); 1482 sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); 1483 if (sem_io == NULL) { 1484 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1485 return -ENOMEM; 1486 } 1487 1488 rcu_read_lock(); 1489 sem_lock_and_putref(sma); 1490 if (!ipc_valid_object(&sma->sem_perm)) { 1491 err = -EIDRM; 1492 goto out_unlock; 1493 } 1494 } 1495 for (i = 0; i < sma->sem_nsems; i++) { 1496 sem_io[i] = sma->sems[i].semval; 1497 } 1498 sem_unlock(sma, -1); 1499 rcu_read_unlock(); 1500 err = 0; 1501 if (copy_to_user(array, sem_io, nsems * sizeof(ushort))) { 1502 err = -EFAULT; 1503 } 1504 goto out_free; 1505 } 1506 case SETALL: { 1507 int i; 1508 struct sem_undo *un; 1509 1510 if (!ipc_rcu_getref(&sma->sem_perm)) { 1511 err = -EIDRM; 1512 goto out_rcu_wakeup; 1513 } 1514 rcu_read_unlock(); 1515 1516 if (nsems > SEMMSL_FAST) { 1517 sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); 1518 if (sem_io == NULL) { 1519 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1520 return -ENOMEM; 1521 } 1522 } 1523 1524 if (copy_from_user(sem_io, p, nsems * sizeof(ushort))) { 1525 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1526 err = -EFAULT; 1527 goto out_free; 1528 } 1529 1530 for (i = 0; i < nsems; i++) { 1531 if (sem_io[i] > SEMVMX) { 1532 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1533 err = -ERANGE; 1534 goto out_free; 1535 } 1536 } 1537 rcu_read_lock(); 1538 sem_lock_and_putref(sma); 1539 if (!ipc_valid_object(&sma->sem_perm)) { 1540 err = -EIDRM; 1541 goto out_unlock; 1542 } 1543 1544 for (i = 0; i < nsems; i++) { 1545 sma->sems[i].semval = sem_io[i]; 1546 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); 1547 } 1548 1549 ipc_assert_locked_object(&sma->sem_perm); 1550 list_for_each_entry(un, &sma->list_id, list_id) 1551 { 1552 for (i = 0; i < nsems; i++) { 1553 un->semadj[i] = 0; 1554 } 1555 } 1556 sma->sem_ctime = ktime_get_real_seconds(); 1557 /* maybe some queued-up processes were waiting for this */ 1558 do_smart_update(sma, NULL, 0, 0, &wake_q); 1559 err = 0; 1560 goto out_unlock; 1561 } 1562 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1563 } 1564 err = -EINVAL; 1565 if (semnum < 0 || semnum >= nsems) { 1566 goto out_rcu_wakeup; 1567 } 1568 1569 sem_lock(sma, NULL, -1); 1570 if (!ipc_valid_object(&sma->sem_perm)) { 1571 err = -EIDRM; 1572 goto out_unlock; 1573 } 1574 1575 semnum = array_index_nospec(semnum, nsems); 1576 curr = &sma->sems[semnum]; 1577 1578 switch (cmd) { 1579 case GETVAL: 1580 err = curr->semval; 1581 goto out_unlock; 1582 case GETPID: 1583 err = pid_vnr(curr->sempid); 1584 goto out_unlock; 1585 case GETNCNT: 1586 err = count_semcnt(sma, semnum, 0); 1587 goto out_unlock; 1588 case GETZCNT: 1589 err = count_semcnt(sma, semnum, 1); 1590 goto out_unlock; 1591 } 1592 1593out_unlock: 1594 sem_unlock(sma, -1); 1595out_rcu_wakeup: 1596 rcu_read_unlock(); 1597 wake_up_q(&wake_q); 1598out_free: 1599 if (sem_io != fast_sem_io) { 1600 kvfree(sem_io); 1601 } 1602 return err; 1603} 1604 1605static inline unsigned long copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1606{ 1607 switch (version) { 1608 case IPC_64: 1609 if (copy_from_user(out, buf, sizeof(*out))) { 1610 return -EFAULT; 1611 } 1612 return 0; 1613 case IPC_OLD: { 1614 struct semid_ds tbuf_old; 1615 1616 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) { 1617 return -EFAULT; 1618 } 1619 1620 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1621 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1622 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1623 1624 return 0; 1625 } 1626 default: 1627 return -EINVAL; 1628 } 1629} 1630 1631/* 1632 * This function handles some semctl commands which require the rwsem 1633 * to be held in write mode. 1634 * NOTE: no locks must be held, the rwsem is taken inside this function. 1635 */ 1636static int semctl_down(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) 1637{ 1638 struct sem_array *sma; 1639 int err; 1640 struct kern_ipc_perm *ipcp; 1641 1642 down_write(&sem_ids(ns).rwsem); 1643 rcu_read_lock(); 1644 1645 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, &semid64->sem_perm, 0); 1646 if (IS_ERR(ipcp)) { 1647 err = PTR_ERR(ipcp); 1648 goto out_unlock1; 1649 } 1650 1651 sma = container_of(ipcp, struct sem_array, sem_perm); 1652 1653 err = security_sem_semctl(&sma->sem_perm, cmd); 1654 if (err) { 1655 goto out_unlock1; 1656 } 1657 1658 switch (cmd) { 1659 case IPC_RMID: 1660 sem_lock(sma, NULL, -1); 1661 /* freeary unlocks the ipc object and rcu */ 1662 freeary(ns, ipcp); 1663 goto out_up; 1664 case IPC_SET: 1665 sem_lock(sma, NULL, -1); 1666 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1667 if (err) { 1668 goto out_unlock0; 1669 } 1670 sma->sem_ctime = ktime_get_real_seconds(); 1671 break; 1672 default: 1673 err = -EINVAL; 1674 goto out_unlock1; 1675 } 1676 1677out_unlock0: 1678 sem_unlock(sma, -1); 1679out_unlock1: 1680 rcu_read_unlock(); 1681out_up: 1682 up_write(&sem_ids(ns).rwsem); 1683 return err; 1684} 1685 1686static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) 1687{ 1688 struct ipc_namespace *ns; 1689 void __user *p = (void __user *)arg; 1690 struct semid64_ds semid64; 1691 int err; 1692 1693 if (semid < 0) { 1694 return -EINVAL; 1695 } 1696 1697 ns = current->nsproxy->ipc_ns; 1698 1699 switch (cmd) { 1700 case IPC_INFO: 1701 case SEM_INFO: 1702 return semctl_info(ns, semid, cmd, p); 1703 case IPC_STAT: 1704 case SEM_STAT: 1705 case SEM_STAT_ANY: 1706 err = semctl_stat(ns, semid, cmd, &semid64); 1707 if (err < 0) { 1708 return err; 1709 } 1710 if (copy_semid_to_user(p, &semid64, version)) { 1711 err = -EFAULT; 1712 } 1713 return err; 1714 case GETALL: 1715 case GETVAL: 1716 case GETPID: 1717 case GETNCNT: 1718 case GETZCNT: 1719 case SETALL: 1720 return semctl_main(ns, semid, semnum, cmd, p); 1721 case SETVAL: { 1722 int val; 1723#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1724 /* big-endian 64bit */ 1725 val = arg >> 0x20; 1726#else 1727 /* 32bit or little-endian 64bit */ 1728 val = arg; 1729#endif 1730 return semctl_setval(ns, semid, semnum, val); 1731 } 1732 case IPC_SET: 1733 if (copy_semid_from_user(&semid64, p, version)) { 1734 return -EFAULT; 1735 } 1736 fallthrough; 1737 case IPC_RMID: 1738 return semctl_down(ns, semid, cmd, &semid64); 1739 default: 1740 return -EINVAL; 1741 } 1742} 1743 1744SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1745{ 1746 return ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1747} 1748 1749#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION 1750long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) 1751{ 1752 int version = ipc_parse_version(&cmd); 1753 1754 return ksys_semctl(semid, semnum, cmd, arg, version); 1755} 1756 1757SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1758{ 1759 return ksys_old_semctl(semid, semnum, cmd, arg); 1760} 1761#endif 1762 1763#ifdef CONFIG_COMPAT 1764 1765struct compat_semid_ds { 1766 struct compat_ipc_perm sem_perm; 1767 old_time32_t sem_otime; 1768 old_time32_t sem_ctime; 1769 compat_uptr_t sem_base; 1770 compat_uptr_t sem_pending; 1771 compat_uptr_t sem_pending_last; 1772 compat_uptr_t undo; 1773 unsigned short sem_nsems; 1774}; 1775 1776static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1777{ 1778 memset(out, 0, sizeof(*out)); 1779 if (version == IPC_64) { 1780 struct compat_semid64_ds __user *p = buf; 1781 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1782 } else { 1783 struct compat_semid_ds __user *p = buf; 1784 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1785 } 1786} 1787 1788static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1789{ 1790 if (version == IPC_64) { 1791 struct compat_semid64_ds v; 1792 memset(&v, 0, sizeof(v)); 1793 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1794 v.sem_otime = lower_32_bits(in->sem_otime); 1795 v.sem_otime_high = upper_32_bits(in->sem_otime); 1796 v.sem_ctime = lower_32_bits(in->sem_ctime); 1797 v.sem_ctime_high = upper_32_bits(in->sem_ctime); 1798 v.sem_nsems = in->sem_nsems; 1799 return copy_to_user(buf, &v, sizeof(v)); 1800 } else { 1801 struct compat_semid_ds v; 1802 memset(&v, 0, sizeof(v)); 1803 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1804 v.sem_otime = in->sem_otime; 1805 v.sem_ctime = in->sem_ctime; 1806 v.sem_nsems = in->sem_nsems; 1807 return copy_to_user(buf, &v, sizeof(v)); 1808 } 1809} 1810 1811static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) 1812{ 1813 void __user *p = compat_ptr(arg); 1814 struct ipc_namespace *ns; 1815 struct semid64_ds semid64; 1816 int err; 1817 1818 ns = current->nsproxy->ipc_ns; 1819 1820 if (semid < 0) { 1821 return -EINVAL; 1822 } 1823 1824 switch (cmd & (~IPC_64)) { 1825 case IPC_INFO: 1826 case SEM_INFO: 1827 return semctl_info(ns, semid, cmd, p); 1828 case IPC_STAT: 1829 case SEM_STAT: 1830 case SEM_STAT_ANY: 1831 err = semctl_stat(ns, semid, cmd, &semid64); 1832 if (err < 0) { 1833 return err; 1834 } 1835 if (copy_compat_semid_to_user(p, &semid64, version)) { 1836 err = -EFAULT; 1837 } 1838 return err; 1839 case GETVAL: 1840 case GETPID: 1841 case GETNCNT: 1842 case GETZCNT: 1843 case GETALL: 1844 case SETALL: 1845 return semctl_main(ns, semid, semnum, cmd, p); 1846 case SETVAL: 1847 return semctl_setval(ns, semid, semnum, arg); 1848 case IPC_SET: 1849 if (copy_compat_semid_from_user(&semid64, p, version)) { 1850 return -EFAULT; 1851 } 1852 fallthrough; 1853 case IPC_RMID: 1854 return semctl_down(ns, semid, cmd, &semid64); 1855 default: 1856 return -EINVAL; 1857 } 1858} 1859 1860COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1861{ 1862 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1863} 1864 1865#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION 1866long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) 1867{ 1868 int version = compat_ipc_parse_version(&cmd); 1869 1870 return compat_ksys_semctl(semid, semnum, cmd, arg, version); 1871} 1872 1873COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) 1874{ 1875 return compat_ksys_old_semctl(semid, semnum, cmd, arg); 1876} 1877#endif 1878#endif 1879 1880/* If the task doesn't already have a undo_list, then allocate one 1881 * here. We guarantee there is only one thread using this undo list, 1882 * and current is THE ONE 1883 * 1884 * If this allocation and assignment succeeds, but later 1885 * portions of this code fail, there is no need to free the sem_undo_list. 1886 * Just let it stay associated with the task, and it'll be freed later 1887 * at exit time. 1888 * 1889 * This can block, so callers must hold no locks. 1890 */ 1891static inline int get_undo_list(struct sem_undo_list **undo_listp) 1892{ 1893 struct sem_undo_list *undo_list; 1894 1895 undo_list = current->sysvsem.undo_list; 1896 if (!undo_list) { 1897 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1898 if (undo_list == NULL) { 1899 return -ENOMEM; 1900 } 1901 spin_lock_init(&undo_list->lock); 1902 refcount_set(&undo_list->refcnt, 1); 1903 INIT_LIST_HEAD(&undo_list->list_proc); 1904 1905 current->sysvsem.undo_list = undo_list; 1906 } 1907 *undo_listp = undo_list; 1908 return 0; 1909} 1910 1911static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1912{ 1913 struct sem_undo *un; 1914 1915 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, spin_is_locked(&ulp->lock)) 1916 { 1917 if (un->semid == semid) { 1918 return un; 1919 } 1920 } 1921 return NULL; 1922} 1923 1924static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1925{ 1926 struct sem_undo *un; 1927 1928 assert_spin_locked(&ulp->lock); 1929 1930 un = __lookup_undo(ulp, semid); 1931 if (un) { 1932 list_del_rcu(&un->list_proc); 1933 list_add_rcu(&un->list_proc, &ulp->list_proc); 1934 } 1935 return un; 1936} 1937 1938/** 1939 * find_alloc_undo - lookup (and if not present create) undo array 1940 * @ns: namespace 1941 * @semid: semaphore array id 1942 * 1943 * The function looks up (and if not present creates) the undo structure. 1944 * The size of the undo structure depends on the size of the semaphore 1945 * array, thus the alloc path is not that straightforward. 1946 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1947 * performs a rcu_read_lock(). 1948 */ 1949static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1950{ 1951 struct sem_array *sma; 1952 struct sem_undo_list *ulp; 1953 struct sem_undo *un, *new; 1954 int nsems, error; 1955 1956 error = get_undo_list(&ulp); 1957 if (error) { 1958 return ERR_PTR(error); 1959 } 1960 1961 rcu_read_lock(); 1962 spin_lock(&ulp->lock); 1963 un = lookup_undo(ulp, semid); 1964 spin_unlock(&ulp->lock); 1965 if (likely(un != NULL)) { 1966 goto out; 1967 } 1968 1969 /* no undo structure around - allocate one. */ 1970 /* step 1: figure out the size of the semaphore array */ 1971 sma = sem_obtain_object_check(ns, semid); 1972 if (IS_ERR(sma)) { 1973 rcu_read_unlock(); 1974 return ERR_CAST(sma); 1975 } 1976 1977 nsems = sma->sem_nsems; 1978 if (!ipc_rcu_getref(&sma->sem_perm)) { 1979 rcu_read_unlock(); 1980 un = ERR_PTR(-EIDRM); 1981 goto out; 1982 } 1983 rcu_read_unlock(); 1984 1985 /* step 2: allocate new undo structure */ 1986 new = kzalloc(sizeof(struct sem_undo) + sizeof(short) * nsems, GFP_KERNEL); 1987 if (!new) { 1988 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1989 return ERR_PTR(-ENOMEM); 1990 } 1991 1992 /* step 3: Acquire the lock on semaphore array */ 1993 rcu_read_lock(); 1994 sem_lock_and_putref(sma); 1995 if (!ipc_valid_object(&sma->sem_perm)) { 1996 sem_unlock(sma, -1); 1997 rcu_read_unlock(); 1998 kfree(new); 1999 un = ERR_PTR(-EIDRM); 2000 goto out; 2001 } 2002 spin_lock(&ulp->lock); 2003 2004 /* 2005 * step 4: check for races: did someone else allocate the undo struct? 2006 */ 2007 un = lookup_undo(ulp, semid); 2008 if (un) { 2009 kfree(new); 2010 goto success; 2011 } 2012 /* step 5: initialize & link new undo structure */ 2013 new->semadj = (short *)&new[1]; 2014 new->ulp = ulp; 2015 new->semid = semid; 2016 assert_spin_locked(&ulp->lock); 2017 list_add_rcu(&new->list_proc, &ulp->list_proc); 2018 ipc_assert_locked_object(&sma->sem_perm); 2019 list_add(&new->list_id, &sma->list_id); 2020 un = new; 2021 2022success: 2023 spin_unlock(&ulp->lock); 2024 sem_unlock(sma, -1); 2025out: 2026 return un; 2027} 2028 2029static long do_semtimedop(int semid, struct sembuf __user *tsops, unsigned nsops, const struct timespec64 *timeout) 2030{ 2031 int error = -EINVAL; 2032 struct sem_array *sma; 2033 struct sembuf fast_sops[SEMOPM_FAST]; 2034 struct sembuf *sops = fast_sops, *sop; 2035 struct sem_undo *un; 2036 int max, locknum; 2037 bool undos = false, alter = false, dupsop = false; 2038 struct sem_queue queue; 2039 unsigned long dup = 0, jiffies_left = 0; 2040 struct ipc_namespace *ns; 2041 2042 ns = current->nsproxy->ipc_ns; 2043 2044 if (nsops < 1 || semid < 0) { 2045 return -EINVAL; 2046 } 2047 if (nsops > ns->sc_semopm) { 2048 return -E2BIG; 2049 } 2050 if (nsops > SEMOPM_FAST) { 2051 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); 2052 if (sops == NULL) { 2053 return -ENOMEM; 2054 } 2055 } 2056 2057 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 2058 error = -EFAULT; 2059 goto out_free; 2060 } 2061 2062 if (timeout) { 2063 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || timeout->tv_nsec >= 1000000000L) { 2064 error = -EINVAL; 2065 goto out_free; 2066 } 2067 jiffies_left = timespec64_to_jiffies(timeout); 2068 } 2069 2070 max = 0; 2071 for (sop = sops; sop < sops + nsops; sop++) { 2072 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 2073 2074 if (sop->sem_num >= max) { 2075 max = sop->sem_num; 2076 } 2077 if (sop->sem_flg & SEM_UNDO) { 2078 undos = true; 2079 } 2080 if (dup & mask) { 2081 /* 2082 * There was a previous alter access that appears 2083 * to have accessed the same semaphore, thus use 2084 * the dupsop logic. "appears", because the detection 2085 * can only check % BITS_PER_LONG. 2086 */ 2087 dupsop = true; 2088 } 2089 if (sop->sem_op != 0) { 2090 alter = true; 2091 dup |= mask; 2092 } 2093 } 2094 2095 if (undos) { 2096 /* On success, find_alloc_undo takes the rcu_read_lock */ 2097 un = find_alloc_undo(ns, semid); 2098 if (IS_ERR(un)) { 2099 error = PTR_ERR(un); 2100 goto out_free; 2101 } 2102 } else { 2103 un = NULL; 2104 rcu_read_lock(); 2105 } 2106 2107 sma = sem_obtain_object_check(ns, semid); 2108 if (IS_ERR(sma)) { 2109 rcu_read_unlock(); 2110 error = PTR_ERR(sma); 2111 goto out_free; 2112 } 2113 2114 error = -EFBIG; 2115 if (max >= sma->sem_nsems) { 2116 rcu_read_unlock(); 2117 goto out_free; 2118 } 2119 2120 error = -EACCES; 2121 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 2122 rcu_read_unlock(); 2123 goto out_free; 2124 } 2125 2126 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); 2127 if (error) { 2128 rcu_read_unlock(); 2129 goto out_free; 2130 } 2131 2132 error = -EIDRM; 2133 locknum = sem_lock(sma, sops, nsops); 2134 /* 2135 * We eventually might perform the following check in a lockless 2136 * fashion, considering ipc_valid_object() locking constraints. 2137 * If nsops == 1 and there is no contention for sem_perm.lock, then 2138 * only a per-semaphore lock is held and it's OK to proceed with the 2139 * check below. More details on the fine grained locking scheme 2140 * entangled here and why it's RMID race safe on comments at sem_lock() 2141 */ 2142 if (!ipc_valid_object(&sma->sem_perm)) { 2143 goto out_unlock_free; 2144 } 2145 /* 2146 * semid identifiers are not unique - find_alloc_undo may have 2147 * allocated an undo structure, it was invalidated by an RMID 2148 * and now a new array with received the same id. Check and fail. 2149 * This case can be detected checking un->semid. The existence of 2150 * "un" itself is guaranteed by rcu. 2151 */ 2152 if (un && un->semid == -1) { 2153 goto out_unlock_free; 2154 } 2155 2156 queue.sops = sops; 2157 queue.nsops = nsops; 2158 queue.undo = un; 2159 queue.pid = task_tgid(current); 2160 queue.alter = alter; 2161 queue.dupsop = dupsop; 2162 2163 error = perform_atomic_semop(sma, &queue); 2164 if (error == 0) { /* non-blocking succesfull path */ 2165 DEFINE_WAKE_Q(wake_q); 2166 2167 /* 2168 * If the operation was successful, then do 2169 * the required updates. 2170 */ 2171 if (alter) { 2172 do_smart_update(sma, sops, nsops, 1, &wake_q); 2173 } else { 2174 set_semotime(sma, sops); 2175 } 2176 2177 sem_unlock(sma, locknum); 2178 rcu_read_unlock(); 2179 wake_up_q(&wake_q); 2180 2181 goto out_free; 2182 } 2183 if (error < 0) { /* non-blocking error path */ 2184 goto out_unlock_free; 2185 } 2186 2187 /* 2188 * We need to sleep on this operation, so we put the current 2189 * task into the pending queue and go to sleep. 2190 */ 2191 if (nsops == 1) { 2192 struct sem *curr; 2193 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 2194 curr = &sma->sems[idx]; 2195 2196 if (alter) { 2197 if (sma->complex_count) { 2198 list_add_tail(&queue.list, &sma->pending_alter); 2199 } else { 2200 2201 list_add_tail(&queue.list, &curr->pending_alter); 2202 } 2203 } else { 2204 list_add_tail(&queue.list, &curr->pending_const); 2205 } 2206 } else { 2207 if (!sma->complex_count) { 2208 merge_queues(sma); 2209 } 2210 2211 if (alter) { 2212 list_add_tail(&queue.list, &sma->pending_alter); 2213 } else { 2214 list_add_tail(&queue.list, &sma->pending_const); 2215 } 2216 2217 sma->complex_count++; 2218 } 2219 2220 do { 2221 /* memory ordering ensured by the lock in sem_lock() */ 2222 WRITE_ONCE(queue.status, -EINTR); 2223 queue.sleeper = current; 2224 2225 /* memory ordering is ensured by the lock in sem_lock() */ 2226 __set_current_state(TASK_INTERRUPTIBLE); 2227 sem_unlock(sma, locknum); 2228 rcu_read_unlock(); 2229 2230 if (timeout) { 2231 jiffies_left = schedule_timeout(jiffies_left); 2232 } else { 2233 schedule(); 2234 } 2235 2236 /* 2237 * fastpath: the semop has completed, either successfully or 2238 * not, from the syscall pov, is quite irrelevant to us at this 2239 * point; we're done. 2240 * 2241 * We _do_ care, nonetheless, about being awoken by a signal or 2242 * spuriously. The queue.status is checked again in the 2243 * slowpath (aka after taking sem_lock), such that we can detect 2244 * scenarios where we were awakened externally, during the 2245 * window between wake_q_add() and wake_up_q(). 2246 */ 2247 error = READ_ONCE(queue.status); 2248 if (error != -EINTR) { 2249 /* see SEM_BARRIER_2 for purpose/pairing */ 2250 smp_acquire__after_ctrl_dep(); 2251 goto out_free; 2252 } 2253 2254 rcu_read_lock(); 2255 locknum = sem_lock(sma, sops, nsops); 2256 2257 if (!ipc_valid_object(&sma->sem_perm)) { 2258 goto out_unlock_free; 2259 } 2260 2261 /* 2262 * No necessity for any barrier: We are protect by sem_lock() 2263 */ 2264 error = READ_ONCE(queue.status); 2265 2266 /* 2267 * If queue.status != -EINTR we are woken up by another process. 2268 * Leave without unlink_queue(), but with sem_unlock(). 2269 */ 2270 if (error != -EINTR) { 2271 goto out_unlock_free; 2272 } 2273 2274 /* 2275 * If an interrupt occurred we have to clean up the queue. 2276 */ 2277 if (timeout && jiffies_left == 0) { 2278 error = -EAGAIN; 2279 } 2280 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2281 2282 unlink_queue(sma, &queue); 2283 2284out_unlock_free: 2285 sem_unlock(sma, locknum); 2286 rcu_read_unlock(); 2287out_free: 2288 if (sops != fast_sops) { 2289 kvfree(sops); 2290 } 2291 return error; 2292} 2293 2294long ksys_semtimedop(int semid, struct sembuf __user *tsops, unsigned int nsops, 2295 const struct __kernel_timespec __user *timeout) 2296{ 2297 if (timeout) { 2298 struct timespec64 ts; 2299 if (get_timespec64(&ts, timeout)) { 2300 return -EFAULT; 2301 } 2302 return do_semtimedop(semid, tsops, nsops, &ts); 2303 } 2304 return do_semtimedop(semid, tsops, nsops, NULL); 2305} 2306 2307SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, unsigned int, nsops, 2308 const struct __kernel_timespec __user *, timeout) 2309{ 2310 return ksys_semtimedop(semid, tsops, nsops, timeout); 2311} 2312 2313#ifdef CONFIG_COMPAT_32BIT_TIME 2314long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, unsigned int nsops, 2315 const struct old_timespec32 __user *timeout) 2316{ 2317 if (timeout) { 2318 struct timespec64 ts; 2319 if (get_old_timespec32(&ts, timeout)) { 2320 return -EFAULT; 2321 } 2322 return do_semtimedop(semid, tsems, nsops, &ts); 2323 } 2324 return do_semtimedop(semid, tsems, nsops, NULL); 2325} 2326 2327SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, unsigned int, nsops, 2328 const struct old_timespec32 __user *, timeout) 2329{ 2330 return compat_ksys_semtimedop(semid, tsems, nsops, timeout); 2331} 2332#endif 2333 2334SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, unsigned, nsops) 2335{ 2336 return do_semtimedop(semid, tsops, nsops, NULL); 2337} 2338 2339/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2340 * parent and child tasks. 2341 */ 2342 2343int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2344{ 2345 struct sem_undo_list *undo_list; 2346 int error; 2347 2348 if (clone_flags & CLONE_SYSVSEM) { 2349 error = get_undo_list(&undo_list); 2350 if (error) { 2351 return error; 2352 } 2353 refcount_inc(&undo_list->refcnt); 2354 tsk->sysvsem.undo_list = undo_list; 2355 } else { 2356 tsk->sysvsem.undo_list = NULL; 2357 } 2358 2359 return 0; 2360} 2361 2362/* 2363 * add semadj values to semaphores, free undo structures. 2364 * undo structures are not freed when semaphore arrays are destroyed 2365 * so some of them may be out of date. 2366 * IMPLEMENTATION NOTE: There is some confusion over whether the 2367 * set of adjustments that needs to be done should be done in an atomic 2368 * manner or not. That is, if we are attempting to decrement the semval 2369 * should we queue up and wait until we can do so legally? 2370 * The original implementation attempted to do this (queue and wait). 2371 * The current implementation does not do so. The POSIX standard 2372 * and SVID should be consulted to determine what behavior is mandated. 2373 */ 2374void exit_sem(struct task_struct *tsk) 2375{ 2376 struct sem_undo_list *ulp; 2377 2378 ulp = tsk->sysvsem.undo_list; 2379 if (!ulp) { 2380 return; 2381 } 2382 tsk->sysvsem.undo_list = NULL; 2383 2384 if (!refcount_dec_and_test(&ulp->refcnt)) { 2385 return; 2386 } 2387 2388 for (;;) { 2389 struct sem_array *sma; 2390 struct sem_undo *un; 2391 int semid, i; 2392 DEFINE_WAKE_Q(wake_q); 2393 2394 cond_resched(); 2395 2396 rcu_read_lock(); 2397 un = list_entry_rcu(ulp->list_proc.next, struct sem_undo, list_proc); 2398 if (&un->list_proc == &ulp->list_proc) { 2399 /* 2400 * We must wait for freeary() before freeing this ulp, 2401 * in case we raced with last sem_undo. There is a small 2402 * possibility where we exit while freeary() didn't 2403 * finish unlocking sem_undo_list. 2404 */ 2405 spin_lock(&ulp->lock); 2406 spin_unlock(&ulp->lock); 2407 rcu_read_unlock(); 2408 break; 2409 } 2410 spin_lock(&ulp->lock); 2411 semid = un->semid; 2412 spin_unlock(&ulp->lock); 2413 2414 /* exit_sem raced with IPC_RMID, nothing to do */ 2415 if (semid == -1) { 2416 rcu_read_unlock(); 2417 continue; 2418 } 2419 2420 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2421 /* exit_sem raced with IPC_RMID, nothing to do */ 2422 if (IS_ERR(sma)) { 2423 rcu_read_unlock(); 2424 continue; 2425 } 2426 2427 sem_lock(sma, NULL, -1); 2428 /* exit_sem raced with IPC_RMID, nothing to do */ 2429 if (!ipc_valid_object(&sma->sem_perm)) { 2430 sem_unlock(sma, -1); 2431 rcu_read_unlock(); 2432 continue; 2433 } 2434 un = __lookup_undo(ulp, semid); 2435 if (un == NULL) { 2436 /* exit_sem raced with IPC_RMID+semget() that created 2437 * exactly the same semid. Nothing to do. 2438 */ 2439 sem_unlock(sma, -1); 2440 rcu_read_unlock(); 2441 continue; 2442 } 2443 2444 /* remove un from the linked lists */ 2445 ipc_assert_locked_object(&sma->sem_perm); 2446 list_del(&un->list_id); 2447 2448 spin_lock(&ulp->lock); 2449 list_del_rcu(&un->list_proc); 2450 spin_unlock(&ulp->lock); 2451 2452 /* perform adjustments registered in un */ 2453 for (i = 0; i < sma->sem_nsems; i++) { 2454 struct sem *semaphore = &sma->sems[i]; 2455 if (un->semadj[i]) { 2456 semaphore->semval += un->semadj[i]; 2457 /* 2458 * Range checks of the new semaphore value, 2459 * not defined by sus: 2460 * - Some unices ignore the undo entirely 2461 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2462 * - some cap the value (e.g. FreeBSD caps 2463 * at 0, but doesn't enforce SEMVMX) 2464 * 2465 * Linux caps the semaphore value, both at 0 2466 * and at SEMVMX. 2467 * 2468 * Manfred <manfred@colorfullife.com> 2469 */ 2470 if (semaphore->semval < 0) { 2471 semaphore->semval = 0; 2472 } 2473 if (semaphore->semval > SEMVMX) { 2474 semaphore->semval = SEMVMX; 2475 } 2476 ipc_update_pid(&semaphore->sempid, task_tgid(current)); 2477 } 2478 } 2479 /* maybe some queued-up processes were waiting for this */ 2480 do_smart_update(sma, NULL, 0, 1, &wake_q); 2481 sem_unlock(sma, -1); 2482 rcu_read_unlock(); 2483 wake_up_q(&wake_q); 2484 2485 kfree_rcu(un, rcu); 2486 } 2487 kfree(ulp); 2488} 2489 2490#ifdef CONFIG_PROC_FS 2491static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2492{ 2493 struct user_namespace *user_ns = seq_user_ns(s); 2494 struct kern_ipc_perm *ipcp = it; 2495 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2496 time64_t sem_otime; 2497 2498 /* 2499 * The proc interface isn't aware of sem_lock(), it calls 2500 * ipc_lock_object() directly (in sysvipc_find_ipc). 2501 * In order to stay compatible with sem_lock(), we must 2502 * enter / leave complex_mode. 2503 */ 2504 complexmode_enter(sma); 2505 2506 sem_otime = get_semotime(sma); 2507 2508 seq_printf(s, "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", sma->sem_perm.key, sma->sem_perm.id, 2509 sma->sem_perm.mode, sma->sem_nsems, from_kuid_munged(user_ns, sma->sem_perm.uid), 2510 from_kgid_munged(user_ns, sma->sem_perm.gid), from_kuid_munged(user_ns, sma->sem_perm.cuid), 2511 from_kgid_munged(user_ns, sma->sem_perm.cgid), sem_otime, sma->sem_ctime); 2512 2513 complexmode_tryleave(sma); 2514 2515 return 0; 2516} 2517#endif 2518