1// SPDX-License-Identifier: GPL-2.0 2/* 3 * <linux/usb/gadget.h> 4 * 5 * We call the USB code inside a Linux-based peripheral device a "gadget" 6 * driver, except for the hardware-specific bus glue. One USB host can 7 * talk to many USB gadgets, but the gadgets are only able to communicate 8 * to one host. 9 * 10 * 11 * (C) Copyright 2002-2004 by David Brownell 12 * All Rights Reserved. 13 * 14 * This software is licensed under the GNU GPL version 2. 15 */ 16 17#ifndef __LINUX_USB_GADGET_H 18#define __LINUX_USB_GADGET_H 19 20#include <linux/device.h> 21#include <linux/errno.h> 22#include <linux/init.h> 23#include <linux/list.h> 24#include <linux/slab.h> 25#include <linux/scatterlist.h> 26#include <linux/types.h> 27#include <linux/workqueue.h> 28#include <linux/usb/ch9.h> 29 30#define UDC_TRACE_STR_MAX 512 31 32struct usb_ep; 33 34/** 35 * struct usb_request - describes one i/o request 36 * @buf: Buffer used for data. Always provide this; some controllers 37 * only use PIO, or don't use DMA for some endpoints. 38 * @dma: DMA address corresponding to 'buf'. If you don't set this 39 * field, and the usb controller needs one, it is responsible 40 * for mapping and unmapping the buffer. 41 * @sg: a scatterlist for SG-capable controllers. 42 * @num_sgs: number of SG entries 43 * @num_mapped_sgs: number of SG entries mapped to DMA (internal) 44 * @length: Length of that data 45 * @stream_id: The stream id, when USB3.0 bulk streams are being used 46 * @is_last: Indicates if this is the last request of a stream_id before 47 * switching to a different stream (required for DWC3 controllers). 48 * @no_interrupt: If true, hints that no completion irq is needed. 49 * Helpful sometimes with deep request queues that are handled 50 * directly by DMA controllers. 51 * @zero: If true, when writing data, makes the last packet be "short" 52 * by adding a zero length packet as needed; 53 * @short_not_ok: When reading data, makes short packets be 54 * treated as errors (queue stops advancing till cleanup). 55 * @dma_mapped: Indicates if request has been mapped to DMA (internal) 56 * @complete: Function called when request completes, so this request and 57 * its buffer may be re-used. The function will always be called with 58 * interrupts disabled, and it must not sleep. 59 * Reads terminate with a short packet, or when the buffer fills, 60 * whichever comes first. When writes terminate, some data bytes 61 * will usually still be in flight (often in a hardware fifo). 62 * Errors (for reads or writes) stop the queue from advancing 63 * until the completion function returns, so that any transfers 64 * invalidated by the error may first be dequeued. 65 * @context: For use by the completion callback 66 * @list: For use by the gadget driver. 67 * @frame_number: Reports the interval number in (micro)frame in which the 68 * isochronous transfer was transmitted or received. 69 * @status: Reports completion code, zero or a negative errno. 70 * Normally, faults block the transfer queue from advancing until 71 * the completion callback returns. 72 * Code "-ESHUTDOWN" indicates completion caused by device disconnect, 73 * or when the driver disabled the endpoint. 74 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT 75 * transfers) this may be less than the requested length. If the 76 * short_not_ok flag is set, short reads are treated as errors 77 * even when status otherwise indicates successful completion. 78 * Note that for writes (IN transfers) some data bytes may still 79 * reside in a device-side FIFO when the request is reported as 80 * complete. 81 * 82 * These are allocated/freed through the endpoint they're used with. The 83 * hardware's driver can add extra per-request data to the memory it returns, 84 * which often avoids separate memory allocations (potential failures), 85 * later when the request is queued. 86 * 87 * Request flags affect request handling, such as whether a zero length 88 * packet is written (the "zero" flag), whether a short read should be 89 * treated as an error (blocking request queue advance, the "short_not_ok" 90 * flag), or hinting that an interrupt is not required (the "no_interrupt" 91 * flag, for use with deep request queues). 92 * 93 * Bulk endpoints can use any size buffers, and can also be used for interrupt 94 * transfers. interrupt-only endpoints can be much less functional. 95 * 96 * NOTE: this is analogous to 'struct urb' on the host side, except that 97 * it's thinner and promotes more pre-allocation. 98 */ 99 100struct usb_request { 101 void *buf; 102 unsigned length; 103 dma_addr_t dma; 104 105 struct scatterlist *sg; 106 unsigned num_sgs; 107 unsigned num_mapped_sgs; 108 109 unsigned stream_id : 16; 110 unsigned is_last : 1; 111 unsigned no_interrupt : 1; 112 unsigned zero : 1; 113 unsigned short_not_ok : 1; 114 unsigned dma_mapped : 1; 115 116 void (*complete)(struct usb_ep *ep, struct usb_request *req); 117 void *context; 118 struct list_head list; 119 120 unsigned frame_number; /* ISO ONLY */ 121 122 int status; 123 unsigned actual; 124}; 125 126/*-------------------------------------------------------------------------*/ 127 128/* endpoint-specific parts of the api to the usb controller hardware. 129 * unlike the urb model, (de)multiplexing layers are not required. 130 * (so this api could slash overhead if used on the host side...) 131 * 132 * note that device side usb controllers commonly differ in how many 133 * endpoints they support, as well as their capabilities. 134 */ 135struct usb_ep_ops { 136 int (*enable)(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc); 137 int (*disable)(struct usb_ep *ep); 138 void (*dispose)(struct usb_ep *ep); 139 140 struct usb_request *(*alloc_request)(struct usb_ep *ep, gfp_t gfp_flags); 141 void (*free_request)(struct usb_ep *ep, struct usb_request *req); 142 143 int (*queue)(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags); 144 int (*dequeue)(struct usb_ep *ep, struct usb_request *req); 145 146 int (*set_halt)(struct usb_ep *ep, int value); 147 int (*set_wedge)(struct usb_ep *ep); 148 149 int (*fifo_status)(struct usb_ep *ep); 150 void (*fifo_flush)(struct usb_ep *ep); 151}; 152 153/** 154 * struct usb_ep_caps - endpoint capabilities description 155 * @type_control:Endpoint supports control type (reserved for ep0). 156 * @type_iso:Endpoint supports isochronous transfers. 157 * @type_bulk:Endpoint supports bulk transfers. 158 * @type_int:Endpoint supports interrupt transfers. 159 * @dir_in:Endpoint supports IN direction. 160 * @dir_out:Endpoint supports OUT direction. 161 */ 162struct usb_ep_caps { 163 unsigned type_control : 1; 164 unsigned type_iso : 1; 165 unsigned type_bulk : 1; 166 unsigned type_int : 1; 167 unsigned dir_in : 1; 168 unsigned dir_out : 1; 169}; 170 171#define USB_EP_CAPS_TYPE_CONTROL 0x01 172#define USB_EP_CAPS_TYPE_ISO 0x02 173#define USB_EP_CAPS_TYPE_BULK 0x04 174#define USB_EP_CAPS_TYPE_INT 0x08 175#define USB_EP_CAPS_TYPE_ALL (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT) 176#define USB_EP_CAPS_DIR_IN 0x01 177#define USB_EP_CAPS_DIR_OUT 0x02 178#define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT) 179 180#define USB_EP_CAPS(_type, _dir) \ 181 { \ 182 .type_control = !!((_type)&USB_EP_CAPS_TYPE_CONTROL), .type_iso = !!((_type)&USB_EP_CAPS_TYPE_ISO), \ 183 .type_bulk = !!((_type)&USB_EP_CAPS_TYPE_BULK), .type_int = !!((_type)&USB_EP_CAPS_TYPE_INT), \ 184 .dir_in = !!((_dir)&USB_EP_CAPS_DIR_IN), .dir_out = !!((_dir)&USB_EP_CAPS_DIR_OUT), \ 185 } 186 187/** 188 * struct usb_ep - device side representation of USB endpoint 189 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk" 190 * @ops: Function pointers used to access hardware-specific operations. 191 * @ep_list:the gadget's ep_list holds all of its endpoints 192 * @caps:The structure describing types and directions supported by endoint. 193 * @enabled: The current endpoint enabled/disabled state. 194 * @claimed: True if this endpoint is claimed by a function. 195 * @maxpacket:The maximum packet size used on this endpoint. The initial 196 * value can sometimes be reduced (hardware allowing), according to 197 * the endpoint descriptor used to configure the endpoint. 198 * @maxpacket_limit:The maximum packet size value which can be handled by this 199 * endpoint. It's set once by UDC driver when endpoint is initialized, and 200 * should not be changed. Should not be confused with maxpacket. 201 * @max_streams: The maximum number of streams supported 202 * by this EP (0 - 16, actual number is 2^n) 203 * @mult: multiplier, 'mult' value for SS Isoc EPs 204 * @maxburst: the maximum number of bursts supported by this EP (for usb3) 205 * @driver_data:for use by the gadget driver. 206 * @address: used to identify the endpoint when finding descriptor that 207 * matches connection speed 208 * @desc: endpoint descriptor. This pointer is set before the endpoint is 209 * enabled and remains valid until the endpoint is disabled. 210 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion 211 * descriptor that is used to configure the endpoint 212 * @transfer_type: Used to specify transfer type of EP. 213 * 214 * the bus controller driver lists all the general purpose endpoints in 215 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list, 216 * and is accessed only in response to a driver setup() callback. 217 */ 218 219struct usb_ep { 220 void *driver_data; 221 222 const char *name; 223 const struct usb_ep_ops *ops; 224 struct list_head ep_list; 225 struct usb_ep_caps caps; 226 bool claimed; 227 bool enabled; 228 unsigned maxpacket : 16; 229 unsigned maxpacket_limit : 16; 230 unsigned max_streams : 16; 231 unsigned mult : 2; 232 unsigned maxburst : 5; 233 u8 address; 234 const struct usb_endpoint_descriptor *desc; 235 const struct usb_ss_ep_comp_descriptor *comp_desc; 236#if defined(CONFIG_ARCH_ROCKCHIP) && defined(CONFIG_NO_GKI) 237 u8 transfer_type; 238#endif 239}; 240 241/*-------------------------------------------------------------------------*/ 242 243#if IS_ENABLED(CONFIG_USB_GADGET) 244void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit); 245int usb_ep_enable(struct usb_ep *ep); 246int usb_ep_disable(struct usb_ep *ep); 247struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags); 248void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req); 249int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags); 250int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req); 251int usb_ep_set_halt(struct usb_ep *ep); 252int usb_ep_clear_halt(struct usb_ep *ep); 253int usb_ep_set_wedge(struct usb_ep *ep); 254int usb_ep_fifo_status(struct usb_ep *ep); 255void usb_ep_fifo_flush(struct usb_ep *ep); 256#else 257static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit) 258{ 259} 260static inline int usb_ep_enable(struct usb_ep *ep) 261{ 262 return 0; 263} 264static inline int usb_ep_disable(struct usb_ep *ep) 265{ 266 return 0; 267} 268static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) 269{ 270 return NULL; 271} 272static inline void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req) 273{ 274} 275static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) 276{ 277 return 0; 278} 279static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 280{ 281 return 0; 282} 283static inline int usb_ep_set_halt(struct usb_ep *ep) 284{ 285 return 0; 286} 287static inline int usb_ep_clear_halt(struct usb_ep *ep) 288{ 289 return 0; 290} 291static inline int usb_ep_set_wedge(struct usb_ep *ep) 292{ 293 return 0; 294} 295static inline int usb_ep_fifo_status(struct usb_ep *ep) 296{ 297 return 0; 298} 299static inline void usb_ep_fifo_flush(struct usb_ep *ep) 300{ 301} 302#endif /* USB_GADGET */ 303 304/*-------------------------------------------------------------------------*/ 305 306struct usb_dcd_config_params { 307 __u8 bU1devExitLat; /* U1 Device exit Latency */ 308#define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */ 309 __le16 bU2DevExitLat; /* U2 Device exit Latency */ 310#define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */ 311 __u8 besl_baseline; /* Recommended baseline BESL (0-15) */ 312 __u8 besl_deep; /* Recommended deep BESL (0-15) */ 313#define USB_DEFAULT_BESL_UNSPECIFIED 0xFF /* No recommended value */ 314}; 315 316struct usb_gadget; 317struct usb_gadget_driver; 318struct usb_udc; 319 320/* the rest of the api to the controller hardware: device operations, 321 * which don't involve endpoints (or i/o). 322 */ 323struct usb_gadget_ops { 324 int (*get_frame)(struct usb_gadget *); 325 int (*wakeup)(struct usb_gadget *); 326 int (*set_selfpowered)(struct usb_gadget *, int is_selfpowered); 327 int (*vbus_session)(struct usb_gadget *, int is_active); 328 int (*vbus_draw)(struct usb_gadget *, unsigned mA); 329 int (*pullup)(struct usb_gadget *, int is_on); 330 int (*ioctl)(struct usb_gadget *, unsigned code, unsigned long param); 331 void (*get_config_params)(struct usb_gadget *, struct usb_dcd_config_params *); 332 int (*udc_start)(struct usb_gadget *, struct usb_gadget_driver *); 333 int (*udc_stop)(struct usb_gadget *); 334 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed); 335 void (*udc_set_ssp_rate)(struct usb_gadget *gadget, enum usb_ssp_rate rate); 336 void (*udc_async_callbacks)(struct usb_gadget *gadget, bool enable); 337 struct usb_ep *(*match_ep)(struct usb_gadget *, struct usb_endpoint_descriptor *, 338 struct usb_ss_ep_comp_descriptor *); 339 int (*check_config)(struct usb_gadget *gadget); 340}; 341 342/** 343 * struct usb_gadget - represents a usb device 344 * @work: (internal use) Workqueue to be used for sysfs_notify() 345 * @udc: struct usb_udc pointer for this gadget 346 * @ops: Function pointers used to access hardware-specific operations. 347 * @ep0: Endpoint zero, used when reading or writing responses to 348 * driver setup() requests 349 * @ep_list: List of other endpoints supported by the device. 350 * @speed: Speed of current connection to USB host. 351 * @max_speed: Maximal speed the UDC can handle. UDC must support this 352 * and all slower speeds. 353 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count. 354 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC 355 * can handle. The UDC must support this and all slower speeds and lower 356 * number of lanes. 357 * @state: the state we are now (attached, suspended, configured, etc) 358 * @name: Identifies the controller hardware type. Used in diagnostics 359 * and sometimes configuration. 360 * @dev: Driver model state for this abstract device. 361 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP 362 * @out_epnum: last used out ep number 363 * @in_epnum: last used in ep number 364 * @mA: last set mA value 365 * @otg_caps: OTG capabilities of this gadget. 366 * @sg_supported: true if we can handle scatter-gather 367 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the 368 * gadget driver must provide a USB OTG descriptor. 369 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable 370 * is in the Mini-AB jack, and HNP has been used to switch roles 371 * so that the "A" device currently acts as A-Peripheral, not A-Host. 372 * @a_hnp_support: OTG device feature flag, indicating that the A-Host 373 * supports HNP at this port. 374 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host 375 * only supports HNP on a different root port. 376 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host 377 * enabled HNP support. 378 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device 379 * in peripheral mode can support HNP polling. 380 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral 381 * or B-Peripheral wants to take host role. 382 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to 383 * MaxPacketSize. 384 * @quirk_altset_not_supp: UDC controller doesn't support alt settings. 385 * @quirk_stall_not_supp: UDC controller doesn't support stalling. 386 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP. 387 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in 388 * u_ether.c to improve performance. 389 * @is_selfpowered: if the gadget is self-powered. 390 * @deactivated: True if gadget is deactivated - in deactivated state it cannot 391 * be connected. 392 * @connected: True if gadget is connected. 393 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag 394 * indicates that it supports LPM as per the LPM ECN & errata. 395 * @irq: the interrupt number for device controller. 396 * 397 * Gadgets have a mostly-portable "gadget driver" implementing device 398 * functions, handling all usb configurations and interfaces. Gadget 399 * drivers talk to hardware-specific code indirectly, through ops vectors. 400 * That insulates the gadget driver from hardware details, and packages 401 * the hardware endpoints through generic i/o queues. The "usb_gadget" 402 * and "usb_ep" interfaces provide that insulation from the hardware. 403 * 404 * Except for the driver data, all fields in this structure are 405 * read-only to the gadget driver. That driver data is part of the 406 * "driver model" infrastructure in 2.6 (and later) kernels, and for 407 * earlier systems is grouped in a similar structure that's not known 408 * to the rest of the kernel. 409 * 410 * Values of the three OTG device feature flags are updated before the 411 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before 412 * driver suspend() calls. They are valid only when is_otg, and when the 413 * device is acting as a B-Peripheral (so is_a_peripheral is false). 414 */ 415struct usb_gadget { 416 struct work_struct work; 417 struct usb_udc *udc; 418 /* readonly to gadget driver */ 419 const struct usb_gadget_ops *ops; 420 struct usb_ep *ep0; 421 struct list_head ep_list; /* of usb_ep */ 422 enum usb_device_speed speed; 423 enum usb_device_speed max_speed; 424 425 /* USB SuperSpeed Plus only */ 426 enum usb_ssp_rate ssp_rate; 427 enum usb_ssp_rate max_ssp_rate; 428 429 enum usb_device_state state; 430 const char *name; 431 struct device dev; 432 unsigned isoch_delay; 433 unsigned out_epnum; 434 unsigned in_epnum; 435 unsigned mA; 436 struct usb_otg_caps *otg_caps; 437 438 unsigned sg_supported : 1; 439 unsigned is_otg : 1; 440 unsigned is_a_peripheral : 1; 441 unsigned b_hnp_enable : 1; 442 unsigned a_hnp_support : 1; 443 unsigned a_alt_hnp_support : 1; 444 unsigned hnp_polling_support : 1; 445 unsigned host_request_flag : 1; 446 unsigned quirk_ep_out_aligned_size : 1; 447 unsigned quirk_altset_not_supp : 1; 448 unsigned quirk_stall_not_supp : 1; 449 unsigned quirk_zlp_not_supp : 1; 450 unsigned quirk_avoids_skb_reserve : 1; 451 unsigned is_selfpowered : 1; 452 unsigned deactivated : 1; 453 unsigned connected : 1; 454 unsigned lpm_capable : 1; 455 int irq; 456}; 457#define work_to_gadget(w) (container_of((w), struct usb_gadget, work)) 458 459/* Interface to the device model */ 460static inline void set_gadget_data(struct usb_gadget *gadget, void *data) 461{ 462 dev_set_drvdata(&gadget->dev, data); 463} 464static inline void *get_gadget_data(struct usb_gadget *gadget) 465{ 466 return dev_get_drvdata(&gadget->dev); 467} 468static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev) 469{ 470 return container_of(dev, struct usb_gadget, dev); 471} 472static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget) 473{ 474 get_device(&gadget->dev); 475 return gadget; 476} 477static inline void usb_put_gadget(struct usb_gadget *gadget) 478{ 479 put_device(&gadget->dev); 480} 481extern void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 482 void (*release)(struct device *dev)); 483extern int usb_add_gadget(struct usb_gadget *gadget); 484extern void usb_del_gadget(struct usb_gadget *gadget); 485 486/* Legacy device-model interface */ 487extern int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 488 void (*release)(struct device *dev)); 489extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget); 490extern void usb_del_gadget_udc(struct usb_gadget *gadget); 491extern char *usb_get_gadget_udc_name(void); 492 493/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */ 494#define gadget_for_each_ep(tmp, gadget) list_for_each_entry(tmp, &(gadget)->ep_list, ep_list) 495 496/** 497 * usb_ep_align - returns @len aligned to ep's maxpacketsize. 498 * @ep: the endpoint whose maxpacketsize is used to align @len 499 * @len: buffer size's length to align to @ep's maxpacketsize 500 * 501 * This helper is used to align buffer's size to an ep's maxpacketsize. 502 */ 503static inline size_t usb_ep_align(struct usb_ep *ep, size_t len) 504{ 505 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff; 506 507 return round_up(len, max_packet_size); 508} 509 510/** 511 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget 512 * requires quirk_ep_out_aligned_size, otherwise returns len. 513 * @g: controller to check for quirk 514 * @ep: the endpoint whose maxpacketsize is used to align @len 515 * @len: buffer size's length to align to @ep's maxpacketsize 516 * 517 * This helper is used in case it's required for any reason to check and maybe 518 * align buffer's size to an ep's maxpacketsize. 519 */ 520static inline size_t usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len) 521{ 522 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len; 523} 524 525/** 526 * gadget_is_altset_supported - return true iff the hardware supports 527 * altsettings 528 * @g: controller to check for quirk 529 */ 530static inline int gadget_is_altset_supported(struct usb_gadget *g) 531{ 532 return !g->quirk_altset_not_supp; 533} 534 535/** 536 * gadget_is_stall_supported - return true iff the hardware supports stalling 537 * @g: controller to check for quirk 538 */ 539static inline int gadget_is_stall_supported(struct usb_gadget *g) 540{ 541 return !g->quirk_stall_not_supp; 542} 543 544/** 545 * gadget_is_zlp_supported - return true iff the hardware supports zlp 546 * @g: controller to check for quirk 547 */ 548static inline int gadget_is_zlp_supported(struct usb_gadget *g) 549{ 550 return !g->quirk_zlp_not_supp; 551} 552 553/** 554 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid 555 * skb_reserve to improve performance. 556 * @g: controller to check for quirk 557 */ 558static inline int gadget_avoids_skb_reserve(struct usb_gadget *g) 559{ 560 return g->quirk_avoids_skb_reserve; 561} 562 563/** 564 * gadget_is_dualspeed - return true iff the hardware handles high speed 565 * @g: controller that might support both high and full speeds 566 */ 567static inline int gadget_is_dualspeed(struct usb_gadget *g) 568{ 569 return g->max_speed >= USB_SPEED_HIGH; 570} 571 572/** 573 * gadget_is_superspeed() - return true if the hardware handles superspeed 574 * @g: controller that might support superspeed 575 */ 576static inline int gadget_is_superspeed(struct usb_gadget *g) 577{ 578 return g->max_speed >= USB_SPEED_SUPER; 579} 580 581/** 582 * gadget_is_superspeed_plus() - return true if the hardware handles 583 * superspeed plus 584 * @g: controller that might support superspeed plus 585 */ 586static inline int gadget_is_superspeed_plus(struct usb_gadget *g) 587{ 588 return g->max_speed >= USB_SPEED_SUPER_PLUS; 589} 590 591/** 592 * gadget_is_otg - return true iff the hardware is OTG-ready 593 * @g: controller that might have a Mini-AB connector 594 * 595 * This is a runtime test, since kernels with a USB-OTG stack sometimes 596 * run on boards which only have a Mini-B (or Mini-A) connector. 597 */ 598static inline int gadget_is_otg(struct usb_gadget *g) 599{ 600#ifdef CONFIG_USB_OTG 601 return g->is_otg; 602#else 603 return 0; 604#endif 605} 606 607/*-------------------------------------------------------------------------*/ 608 609#if IS_ENABLED(CONFIG_USB_GADGET) 610int usb_gadget_frame_number(struct usb_gadget *gadget); 611int usb_gadget_wakeup(struct usb_gadget *gadget); 612int usb_gadget_set_selfpowered(struct usb_gadget *gadget); 613int usb_gadget_clear_selfpowered(struct usb_gadget *gadget); 614int usb_gadget_vbus_connect(struct usb_gadget *gadget); 615int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA); 616int usb_gadget_vbus_disconnect(struct usb_gadget *gadget); 617int usb_gadget_connect(struct usb_gadget *gadget); 618int usb_gadget_disconnect(struct usb_gadget *gadget); 619int usb_gadget_deactivate(struct usb_gadget *gadget); 620int usb_gadget_activate(struct usb_gadget *gadget); 621int usb_gadget_check_config(struct usb_gadget *gadget); 622#else 623static inline int usb_gadget_frame_number(struct usb_gadget *gadget) 624{ 625 return 0; 626} 627static inline int usb_gadget_wakeup(struct usb_gadget *gadget) 628{ 629 return 0; 630} 631static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 632{ 633 return 0; 634} 635static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 636{ 637 return 0; 638} 639static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget) 640{ 641 return 0; 642} 643static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 644{ 645 return 0; 646} 647static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 648{ 649 return 0; 650} 651static inline int usb_gadget_connect(struct usb_gadget *gadget) 652{ 653 return 0; 654} 655static inline int usb_gadget_disconnect(struct usb_gadget *gadget) 656{ 657 return 0; 658} 659static inline int usb_gadget_deactivate(struct usb_gadget *gadget) 660{ 661 return 0; 662} 663static inline int usb_gadget_activate(struct usb_gadget *gadget) 664{ 665 return 0; 666} 667static inline int usb_gadget_check_config(struct usb_gadget *gadget) 668{ 669 return 0; 670} 671#endif /* CONFIG_USB_GADGET */ 672 673/*-------------------------------------------------------------------------*/ 674 675/** 676 * struct usb_gadget_driver - driver for usb gadget devices 677 * @function: String describing the gadget's function 678 * @max_speed: Highest speed the driver handles. 679 * @setup: Invoked for ep0 control requests that aren't handled by 680 * the hardware level driver. Most calls must be handled by 681 * the gadget driver, including descriptor and configuration 682 * management. The 16 bit members of the setup data are in 683 * USB byte order. Called in_interrupt; this may not sleep. Driver 684 * queues a response to ep0, or returns negative to stall. 685 * @disconnect: Invoked after all transfers have been stopped, 686 * when the host is disconnected. May be called in_interrupt; this 687 * may not sleep. Some devices can't detect disconnect, so this might 688 * not be called except as part of controller shutdown. 689 * @bind: the driver's bind callback 690 * @unbind: Invoked when the driver is unbound from a gadget, 691 * usually from rmmod (after a disconnect is reported). 692 * Called in a context that permits sleeping. 693 * @suspend: Invoked on USB suspend. May be called in_interrupt. 694 * @resume: Invoked on USB resume. May be called in_interrupt. 695 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers 696 * and should be called in_interrupt. 697 * @driver: Driver model state for this driver. 698 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL, 699 * this driver will be bound to any available UDC. 700 * @pending: UDC core private data used for deferred probe of this driver. 701 * @match_existing_only: If udc is not found, return an error and don't add this 702 * gadget driver to list of pending driver 703 * 704 * Devices are disabled till a gadget driver successfully bind()s, which 705 * means the driver will handle setup() requests needed to enumerate (and 706 * meet "chapter 9" requirements) then do some useful work. 707 * 708 * If gadget->is_otg is true, the gadget driver must provide an OTG 709 * descriptor during enumeration, or else fail the bind() call. In such 710 * cases, no USB traffic may flow until both bind() returns without 711 * having called usb_gadget_disconnect(), and the USB host stack has 712 * initialized. 713 * 714 * Drivers use hardware-specific knowledge to configure the usb hardware. 715 * endpoint addressing is only one of several hardware characteristics that 716 * are in descriptors the ep0 implementation returns from setup() calls. 717 * 718 * Except for ep0 implementation, most driver code shouldn't need change to 719 * run on top of different usb controllers. It'll use endpoints set up by 720 * that ep0 implementation. 721 * 722 * The usb controller driver handles a few standard usb requests. Those 723 * include set_address, and feature flags for devices, interfaces, and 724 * endpoints (the get_status, set_feature, and clear_feature requests). 725 * 726 * Accordingly, the driver's setup() callback must always implement all 727 * get_descriptor requests, returning at least a device descriptor and 728 * a configuration descriptor. Drivers must make sure the endpoint 729 * descriptors match any hardware constraints. Some hardware also constrains 730 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3). 731 * 732 * The driver's setup() callback must also implement set_configuration, 733 * and should also implement set_interface, get_configuration, and 734 * get_interface. Setting a configuration (or interface) is where 735 * endpoints should be activated or (config 0) shut down. 736 * 737 * (Note that only the default control endpoint is supported. Neither 738 * hosts nor devices generally support control traffic except to ep0.) 739 * 740 * Most devices will ignore USB suspend/resume operations, and so will 741 * not provide those callbacks. However, some may need to change modes 742 * when the host is not longer directing those activities. For example, 743 * local controls (buttons, dials, etc) may need to be re-enabled since 744 * the (remote) host can't do that any longer; or an error state might 745 * be cleared, to make the device behave identically whether or not 746 * power is maintained. 747 */ 748struct usb_gadget_driver { 749 char *function; 750 enum usb_device_speed max_speed; 751 int (*bind)(struct usb_gadget *gadget, struct usb_gadget_driver *driver); 752 void (*unbind)(struct usb_gadget *); 753 int (*setup)(struct usb_gadget *, const struct usb_ctrlrequest *); 754 void (*disconnect)(struct usb_gadget *); 755 void (*suspend)(struct usb_gadget *); 756 void (*resume)(struct usb_gadget *); 757 void (*reset)(struct usb_gadget *); 758 759 /* support safe rmmod */ 760 struct device_driver driver; 761 762 char *udc_name; 763 struct list_head pending; 764 unsigned match_existing_only : 1; 765}; 766 767/*-------------------------------------------------------------------------*/ 768 769/* driver modules register and unregister, as usual. 770 * these calls must be made in a context that can sleep. 771 * 772 * these will usually be implemented directly by the hardware-dependent 773 * usb bus interface driver, which will only support a single driver. 774 */ 775 776/** 777 * usb_gadget_probe_driver - probe a gadget driver 778 * @driver: the driver being registered 779 * Context: can sleep 780 * 781 * Call this in your gadget driver's module initialization function, 782 * to tell the underlying usb controller driver about your driver. 783 * The @bind() function will be called to bind it to a gadget before this 784 * registration call returns. It's expected that the @bind() function will 785 * be in init sections. 786 */ 787int usb_gadget_probe_driver(struct usb_gadget_driver *driver); 788 789/** 790 * usb_gadget_unregister_driver - unregister a gadget driver 791 * @driver:the driver being unregistered 792 * Context: can sleep 793 * 794 * Call this in your gadget driver's module cleanup function, 795 * to tell the underlying usb controller that your driver is 796 * going away. If the controller is connected to a USB host, 797 * it will first disconnect(). The driver is also requested 798 * to unbind() and clean up any device state, before this procedure 799 * finally returns. It's expected that the unbind() functions 800 * will be in exit sections, so may not be linked in some kernels. 801 */ 802int usb_gadget_unregister_driver(struct usb_gadget_driver *driver); 803 804/*-------------------------------------------------------------------------*/ 805 806/* utility to simplify dealing with string descriptors */ 807 808/** 809 * struct usb_string - wraps a C string and its USB id 810 * @id:the (nonzero) ID for this string 811 * @s:the string, in UTF-8 encoding 812 * 813 * If you're using usb_gadget_get_string(), use this to wrap a string 814 * together with its ID. 815 */ 816struct usb_string { 817 u8 id; 818 const char *s; 819}; 820 821/** 822 * struct usb_gadget_strings - a set of USB strings in a given language 823 * @language:identifies the strings' language (0x0409 for en-us) 824 * @strings:array of strings with their ids 825 * 826 * If you're using usb_gadget_get_string(), use this to wrap all the 827 * strings for a given language. 828 */ 829struct usb_gadget_strings { 830 u16 language; /* 0x0409 for en-us */ 831 struct usb_string *strings; 832}; 833 834struct usb_gadget_string_container { 835 struct list_head list; 836 u8 *stash[]; 837}; 838 839/* put descriptor for string with that id into buf (buflen >= 256) */ 840int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf); 841 842/* check if the given language identifier is valid */ 843bool usb_validate_langid(u16 langid); 844 845/*-------------------------------------------------------------------------*/ 846 847/* utility to simplify managing config descriptors */ 848 849/* write vector of descriptors into buffer */ 850int usb_descriptor_fillbuf(void *, unsigned, const struct usb_descriptor_header **); 851 852/* build config descriptor from single descriptor vector */ 853int usb_gadget_config_buf(const struct usb_config_descriptor *config, void *buf, unsigned buflen, 854 const struct usb_descriptor_header **desc); 855 856/* copy a NULL-terminated vector of descriptors */ 857struct usb_descriptor_header **usb_copy_descriptors(struct usb_descriptor_header **); 858 859/** 860 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors() 861 * @v: vector of descriptors 862 */ 863static inline void usb_free_descriptors(struct usb_descriptor_header **v) 864{ 865 kfree(v); 866} 867 868struct usb_function; 869int usb_assign_descriptors(struct usb_function *f, struct usb_descriptor_header **fs, struct usb_descriptor_header **hs, 870 struct usb_descriptor_header **ss, struct usb_descriptor_header **ssp); 871void usb_free_all_descriptors(struct usb_function *f); 872 873struct usb_descriptor_header *usb_otg_descriptor_alloc(struct usb_gadget *gadget); 874int usb_otg_descriptor_init(struct usb_gadget *gadget, struct usb_descriptor_header *otg_desc); 875/*-------------------------------------------------------------------------*/ 876 877/* utility to simplify map/unmap of usb_requests to/from DMA */ 878 879#ifdef CONFIG_HAS_DMA 880extern int usb_gadget_map_request_by_dev(struct device *dev, struct usb_request *req, int is_in); 881extern int usb_gadget_map_request(struct usb_gadget *gadget, struct usb_request *req, int is_in); 882 883extern void usb_gadget_unmap_request_by_dev(struct device *dev, struct usb_request *req, int is_in); 884extern void usb_gadget_unmap_request(struct usb_gadget *gadget, struct usb_request *req, int is_in); 885#else /* !CONFIG_HAS_DMA */ 886static inline int usb_gadget_map_request_by_dev(struct device *dev, struct usb_request *req, int is_in) 887{ 888 return -ENOSYS; 889} 890static inline int usb_gadget_map_request(struct usb_gadget *gadget, struct usb_request *req, int is_in) 891{ 892 return -ENOSYS; 893} 894 895static inline void usb_gadget_unmap_request_by_dev(struct device *dev, struct usb_request *req, int is_in) 896{ 897} 898static inline void usb_gadget_unmap_request(struct usb_gadget *gadget, struct usb_request *req, int is_in) 899{ 900} 901#endif /* !CONFIG_HAS_DMA */ 902 903/*-------------------------------------------------------------------------*/ 904 905/* utility to set gadget state properly */ 906 907extern void usb_gadget_set_state(struct usb_gadget *gadget, enum usb_device_state state); 908 909/*-------------------------------------------------------------------------*/ 910 911/* utility to tell udc core that the bus reset occurs */ 912extern void usb_gadget_udc_reset(struct usb_gadget *gadget, struct usb_gadget_driver *driver); 913 914/*-------------------------------------------------------------------------*/ 915 916/* utility to give requests back to the gadget layer */ 917 918extern void usb_gadget_giveback_request(struct usb_ep *ep, struct usb_request *req); 919 920/*-------------------------------------------------------------------------*/ 921 922/* utility to find endpoint by name */ 923 924extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name); 925 926/*-------------------------------------------------------------------------*/ 927 928/* utility to check if endpoint caps match descriptor needs */ 929 930extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget, struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 931 struct usb_ss_ep_comp_descriptor *ep_comp); 932 933/*-------------------------------------------------------------------------*/ 934 935/* utility to update vbus status for udc core, it may be scheduled */ 936extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status); 937 938/*-------------------------------------------------------------------------*/ 939 940/* utility wrapping a simple endpoint selection policy */ 941 942extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *, struct usb_endpoint_descriptor *); 943 944extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *, struct usb_endpoint_descriptor *, 945 struct usb_ss_ep_comp_descriptor *); 946 947extern void usb_ep_autoconfig_release(struct usb_ep *); 948 949extern void usb_ep_autoconfig_reset(struct usb_gadget *); 950 951#endif /* __LINUX_USB_GADGET_H */ 952