1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_SIGNAL_H 3#define _LINUX_SCHED_SIGNAL_H 4 5#include <linux/rculist.h> 6#include <linux/signal.h> 7#include <linux/sched.h> 8#include <linux/sched/jobctl.h> 9#include <linux/sched/task.h> 10#include <linux/cred.h> 11#include <linux/refcount.h> 12#include <linux/posix-timers.h> 13#include <linux/mm_types.h> 14#include <asm/ptrace.h> 15#include <linux/android_kabi.h> 16 17/* 18 * Types defining task->signal and task->sighand and APIs using them: 19 */ 20 21struct sighand_struct { 22 spinlock_t siglock; 23 refcount_t count; 24 wait_queue_head_t signalfd_wqh; 25 struct k_sigaction action[_NSIG]; 26}; 27 28/* 29 * Per-process accounting stats: 30 */ 31struct pacct_struct { 32 int ac_flag; 33 long ac_exitcode; 34 unsigned long ac_mem; 35 u64 ac_utime, ac_stime; 36 unsigned long ac_minflt, ac_majflt; 37}; 38 39struct cpu_itimer { 40 u64 expires; 41 u64 incr; 42}; 43 44/* 45 * This is the atomic variant of task_cputime, which can be used for 46 * storing and updating task_cputime statistics without locking. 47 */ 48struct task_cputime_atomic { 49 atomic64_t utime; 50 atomic64_t stime; 51 atomic64_t sum_exec_runtime; 52}; 53 54#define INIT_CPUTIME_ATOMIC \ 55 (struct task_cputime_atomic) \ 56 { \ 57 .utime = ATOMIC64_INIT(0), .stime = ATOMIC64_INIT(0), .sum_exec_runtime = ATOMIC64_INIT(0), \ 58 } 59/** 60 * struct thread_group_cputimer - thread group interval timer counts 61 * @cputime_atomic: atomic thread group interval timers. 62 * 63 * This structure contains the version of task_cputime, above, that is 64 * used for thread group CPU timer calculations. 65 */ 66struct thread_group_cputimer { 67 struct task_cputime_atomic cputime_atomic; 68}; 69 70struct multiprocess_signals { 71 sigset_t signal; 72 struct hlist_node node; 73}; 74 75/* 76 * NOTE! "signal_struct" does not have its own 77 * locking, because a shared signal_struct always 78 * implies a shared sighand_struct, so locking 79 * sighand_struct is always a proper superset of 80 * the locking of signal_struct. 81 */ 82struct signal_struct { 83 refcount_t sigcnt; 84 atomic_t live; 85 int nr_threads; 86 struct list_head thread_head; 87 88 wait_queue_head_t wait_chldexit; /* for wait4() */ 89 90 /* current thread group signal load-balancing target: */ 91 struct task_struct *curr_target; 92 93 /* shared signal handling: */ 94 struct sigpending shared_pending; 95 96 /* For collecting multiprocess signals during fork */ 97 struct hlist_head multiprocess; 98 99 /* thread group exit support */ 100 int group_exit_code; 101 /* overloaded: 102 * - notify group_exit_task when ->count is equal to notify_count 103 * - everyone except group_exit_task is stopped during signal delivery 104 * of fatal signals, group_exit_task processes the signal. 105 */ 106 int notify_count; 107 struct task_struct *group_exit_task; 108 109 /* thread group stop support, overloads group_exit_code too */ 110 int group_stop_count; 111 unsigned int flags; /* see SIGNAL_* flags below */ 112 113 /* 114 * PR_SET_CHILD_SUBREAPER marks a process, like a service 115 * manager, to re-parent orphan (double-forking) child processes 116 * to this process instead of 'init'. The service manager is 117 * able to receive SIGCHLD signals and is able to investigate 118 * the process until it calls wait(). All children of this 119 * process will inherit a flag if they should look for a 120 * child_subreaper process at exit. 121 */ 122 unsigned int is_child_subreaper : 1; 123 unsigned int has_child_subreaper : 1; 124 125#ifdef CONFIG_POSIX_TIMERS 126 127 /* POSIX.1b Interval Timers */ 128 int posix_timer_id; 129 struct list_head posix_timers; 130 131 /* ITIMER_REAL timer for the process */ 132 struct hrtimer real_timer; 133 ktime_t it_real_incr; 134 135 /* 136 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 137 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 138 * values are defined to 0 and 1 respectively 139 */ 140 struct cpu_itimer it[2]; 141 142 /* 143 * Thread group totals for process CPU timers. 144 * See thread_group_cputimer(), et al, for details. 145 */ 146 struct thread_group_cputimer cputimer; 147 148#endif 149 /* Empty if CONFIG_POSIX_TIMERS=n */ 150 struct posix_cputimers posix_cputimers; 151 152 /* PID/PID hash table linkage. */ 153 struct pid *pids[PIDTYPE_MAX]; 154 155#ifdef CONFIG_NO_HZ_FULL 156 atomic_t tick_dep_mask; 157#endif 158 159 struct pid *tty_old_pgrp; 160 161 /* boolean value for session group leader */ 162 int leader; 163 164 struct tty_struct *tty; /* NULL if no tty */ 165 166#ifdef CONFIG_SCHED_AUTOGROUP 167 struct autogroup *autogroup; 168#endif 169 /* 170 * Cumulative resource counters for dead threads in the group, 171 * and for reaped dead child processes forked by this group. 172 * Live threads maintain their own counters and add to these 173 * in __exit_signal, except for the group leader. 174 */ 175 seqlock_t stats_lock; 176 u64 utime, stime, cutime, cstime; 177 u64 gtime; 178 u64 cgtime; 179 struct prev_cputime prev_cputime; 180 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 181 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 182 unsigned long inblock, oublock, cinblock, coublock; 183 unsigned long maxrss, cmaxrss; 184 struct task_io_accounting ioac; 185 186 /* 187 * Cumulative ns of schedule CPU time fo dead threads in the 188 * group, not including a zombie group leader, (This only differs 189 * from jiffies_to_ns(utime + stime) if sched_clock uses something 190 * other than jiffies.) 191 */ 192 unsigned long long sum_sched_runtime; 193 194 /* 195 * We don't bother to synchronize most readers of this at all, 196 * because there is no reader checking a limit that actually needs 197 * to get both rlim_cur and rlim_max atomically, and either one 198 * alone is a single word that can safely be read normally. 199 * getrlimit/setrlimit use task_lock(current->group_leader) to 200 * protect this instead of the siglock, because they really 201 * have no need to disable irqs. 202 */ 203 struct rlimit rlim[RLIM_NLIMITS]; 204 205#ifdef CONFIG_BSD_PROCESS_ACCT 206 struct pacct_struct pacct; /* per-process accounting information */ 207#endif 208#ifdef CONFIG_TASKSTATS 209 struct taskstats *stats; 210#endif 211#ifdef CONFIG_AUDIT 212 unsigned audit_tty; 213 struct tty_audit_buf *tty_audit_buf; 214#endif 215 216 /* 217 * Thread is the potential origin of an oom condition; kill first on 218 * oom 219 */ 220 bool oom_flag_origin; 221 short oom_score_adj; /* OOM kill score adjustment */ 222 short oom_score_adj_min; /* OOM kill score adjustment min value. 223 * Only settable by CAP_SYS_RESOURCE. */ 224 struct mm_struct *oom_mm; /* recorded mm when the thread group got 225 * killed by the oom killer */ 226 227 struct mutex cred_guard_mutex; /* guard against foreign influences on 228 * credential calculations 229 * (notably. ptrace) 230 * Deprecated do not use in new code. 231 * Use exec_update_lock instead. 232 */ 233 struct rw_semaphore exec_update_lock; /* Held while task_struct is 234 * being updated during exec, 235 * and may have inconsistent 236 * permissions. 237 */ 238} __randomize_layout; 239 240/* 241 * Bits in flags field of signal_struct. 242 */ 243#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 244#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 245#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 246#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 247/* 248 * Pending notifications to parent. 249 */ 250#define SIGNAL_CLD_STOPPED 0x00000010 251#define SIGNAL_CLD_CONTINUED 0x00000020 252#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED | SIGNAL_CLD_CONTINUED) 253 254#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 255 256#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | SIGNAL_STOP_CONTINUED) 257 258static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags) 259{ 260 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)); 261 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 262} 263 264/* If true, all threads except ->group_exit_task have pending SIGKILL */ 265static inline int signal_group_exit(const struct signal_struct *sig) 266{ 267 return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); 268} 269 270extern void flush_signals(struct task_struct *); 271extern void ignore_signals(struct task_struct *); 272extern void flush_signal_handlers(struct task_struct *, int force_default); 273extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info); 274 275static inline int kernel_dequeue_signal(void) 276{ 277 struct task_struct *task = current; 278 kernel_siginfo_t _info; 279 int ret; 280 281 spin_lock_irq(&task->sighand->siglock); 282 ret = dequeue_signal(task, &task->blocked, &_info); 283 spin_unlock_irq(&task->sighand->siglock); 284 285 return ret; 286} 287 288static inline void kernel_signal_stop(void) 289{ 290 spin_lock_irq(¤t->sighand->siglock); 291 if (current->jobctl & JOBCTL_STOP_DEQUEUED) { 292 set_special_state(TASK_STOPPED); 293 } 294 spin_unlock_irq(¤t->sighand->siglock); 295 296 schedule(); 297} 298#ifdef __ARCH_SI_TRAPNO 299#define ___ARCH_SI_TRAPNO(_a1) (, _a1) 300#else 301#define ___ARCH_SI_TRAPNO(_a1) 302#endif 303#ifdef __ia64__ 304#define ___ARCH_SI_IA64(_a1, _a2, _a3) (, _a1, _a2, _a3) 305#else 306#define ___ARCH_SI_IA64(_a1, _a2, _a3) 307#endif 308 309int force_sig_fault_to_task(int sig, int code, 310 void __user *addr ___ARCH_SI_TRAPNO(int trapno) 311 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr), 312 struct task_struct *t); 313int force_sig_fault(int sig, int code, 314 void __user *addr ___ARCH_SI_TRAPNO(int trapno) 315 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); 316int send_sig_fault(int sig, int code, 317 void __user *addr ___ARCH_SI_TRAPNO(int trapno) 318 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr), 319 struct task_struct *t); 320 321int force_sig_mceerr(int code, void __user *, short); 322int send_sig_mceerr(int code, void __user *, short, struct task_struct *); 323 324int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); 325int force_sig_pkuerr(void __user *addr, u32 pkey); 326 327int force_sig_ptrace_errno_trap(int errno, void __user *addr); 328 329extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); 330extern void force_sigsegv(int sig); 331extern int force_sig_info(struct kernel_siginfo *); 332extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); 333extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); 334extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *); 335extern int kill_pgrp(struct pid *pid, int sig, int priv); 336extern int kill_pid(struct pid *pid, int sig, int priv); 337extern __must_check bool do_notify_parent(struct task_struct *, int); 338extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 339extern void force_sig(int); 340extern int send_sig(int, struct task_struct *, int); 341extern int zap_other_threads(struct task_struct *p); 342extern struct sigqueue *sigqueue_alloc(void); 343extern void sigqueue_free(struct sigqueue *); 344extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); 345extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 346 347static inline int restart_syscall(void) 348{ 349 set_tsk_thread_flag(current, TIF_SIGPENDING); 350 return -ERESTARTNOINTR; 351} 352 353static inline int task_sigpending(struct task_struct *p) 354{ 355 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 356} 357 358static inline int signal_pending(struct task_struct *p) 359{ 360 /* 361 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same 362 * behavior in terms of ensuring that we break out of wait loops 363 * so that notify signal callbacks can be processed. 364 */ 365 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) { 366 return 1; 367 } 368 369 return task_sigpending(p); 370} 371 372static inline int __fatal_signal_pending(struct task_struct *p) 373{ 374 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 375} 376 377static inline int fatal_signal_pending(struct task_struct *p) 378{ 379 return task_sigpending(p) && __fatal_signal_pending(p); 380} 381 382static inline int signal_pending_state(long state, struct task_struct *p) 383{ 384 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) { 385 return 0; 386 } 387 if (!signal_pending(p)) { 388 return 0; 389 } 390 391 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 392} 393 394/* 395 * This should only be used in fault handlers to decide whether we 396 * should stop the current fault routine to handle the signals 397 * instead, especially with the case where we've got interrupted with 398 * a VM_FAULT_RETRY. 399 */ 400static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs) 401{ 402 return unlikely((fault_flags & VM_FAULT_RETRY) && 403 (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current)))); 404} 405 406/* 407 * Reevaluate whether the task has signals pending delivery. 408 * Wake the task if so. 409 * This is required every time the blocked sigset_t changes. 410 * callers must hold sighand->siglock. 411 */ 412extern void recalc_sigpending_and_wake(struct task_struct *t); 413extern void recalc_sigpending(void); 414extern void calculate_sigpending(void); 415 416extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 417 418static inline void signal_wake_up(struct task_struct *t, bool resume) 419{ 420 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 421} 422static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 423{ 424 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 425} 426 427void task_join_group_stop(struct task_struct *task); 428 429#ifdef TIF_RESTORE_SIGMASK 430/* 431 * Legacy restore_sigmask accessors. These are inefficient on 432 * SMP architectures because they require atomic operations. 433 */ 434 435/** 436 * set_restore_sigmask() - make sure saved_sigmask processing gets done 437 * 438 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 439 * will run before returning to user mode, to process the flag. For 440 * all callers, TIF_SIGPENDING is already set or it's no harm to set 441 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 442 * arch code will notice on return to user mode, in case those bits 443 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 444 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 445 */ 446static inline void set_restore_sigmask(void) 447{ 448 set_thread_flag(TIF_RESTORE_SIGMASK); 449} 450 451static inline void clear_tsk_restore_sigmask(struct task_struct *task) 452{ 453 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 454} 455 456static inline void clear_restore_sigmask(void) 457{ 458 clear_thread_flag(TIF_RESTORE_SIGMASK); 459} 460static inline bool test_tsk_restore_sigmask(struct task_struct *task) 461{ 462 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); 463} 464static inline bool test_restore_sigmask(void) 465{ 466 return test_thread_flag(TIF_RESTORE_SIGMASK); 467} 468static inline bool test_and_clear_restore_sigmask(void) 469{ 470 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 471} 472 473#else /* TIF_RESTORE_SIGMASK */ 474 475/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 476static inline void set_restore_sigmask(void) 477{ 478 current->restore_sigmask = true; 479} 480static inline void clear_tsk_restore_sigmask(struct task_struct *task) 481{ 482 task->restore_sigmask = false; 483} 484static inline void clear_restore_sigmask(void) 485{ 486 current->restore_sigmask = false; 487} 488static inline bool test_restore_sigmask(void) 489{ 490 return current->restore_sigmask; 491} 492static inline bool test_tsk_restore_sigmask(struct task_struct *task) 493{ 494 return task->restore_sigmask; 495} 496static inline bool test_and_clear_restore_sigmask(void) 497{ 498 if (!current->restore_sigmask) { 499 return false; 500 } 501 current->restore_sigmask = false; 502 return true; 503} 504#endif 505 506static inline void restore_saved_sigmask(void) 507{ 508 if (test_and_clear_restore_sigmask()) { 509 __set_current_blocked(¤t->saved_sigmask); 510 } 511} 512 513extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); 514 515static inline void restore_saved_sigmask_unless(bool interrupted) 516{ 517 if (interrupted) { 518 WARN_ON(!signal_pending(current)); 519 } else { 520 restore_saved_sigmask(); 521 } 522} 523 524static inline sigset_t *sigmask_to_save(void) 525{ 526 sigset_t *res = ¤t->blocked; 527 if (unlikely(test_restore_sigmask())) { 528 res = ¤t->saved_sigmask; 529 } 530 return res; 531} 532 533static inline int kill_cad_pid(int sig, int priv) 534{ 535 return kill_pid(cad_pid, sig, priv); 536} 537 538/* These can be the second arg to send_sig_info/send_group_sig_info. */ 539#define SEND_SIG_NOINFO ((struct kernel_siginfo *)0) 540#define SEND_SIG_PRIV ((struct kernel_siginfo *)1) 541 542static inline int __on_sig_stack(unsigned long sp) 543{ 544#ifdef CONFIG_STACK_GROWSUP 545 return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; 546#else 547 return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; 548#endif 549} 550 551/* 552 * True if we are on the alternate signal stack. 553 */ 554static inline int on_sig_stack(unsigned long sp) 555{ 556 /* 557 * If the signal stack is SS_AUTODISARM then, by construction, we 558 * can't be on the signal stack unless user code deliberately set 559 * SS_AUTODISARM when we were already on it. 560 * 561 * This improves reliability: if user state gets corrupted such that 562 * the stack pointer points very close to the end of the signal stack, 563 * then this check will enable the signal to be handled anyway. 564 */ 565 if (current->sas_ss_flags & SS_AUTODISARM) { 566 return 0; 567 } 568 569 return __on_sig_stack(sp); 570} 571 572static inline int sas_ss_flags(unsigned long sp) 573{ 574 if (!current->sas_ss_size) { 575 return SS_DISABLE; 576 } 577 578 return on_sig_stack(sp) ? SS_ONSTACK : 0; 579} 580 581static inline void sas_ss_reset(struct task_struct *p) 582{ 583 p->sas_ss_sp = 0; 584 p->sas_ss_size = 0; 585 p->sas_ss_flags = SS_DISABLE; 586} 587 588static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 589{ 590 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && !sas_ss_flags(sp)) 591#ifdef CONFIG_STACK_GROWSUP 592 return current->sas_ss_sp; 593#else 594 return current->sas_ss_sp + current->sas_ss_size; 595#endif 596 return sp; 597} 598 599extern void __cleanup_sighand(struct sighand_struct *); 600extern void flush_itimer_signals(void); 601 602#define tasklist_empty() list_empty(&init_task.tasks) 603 604#define next_task(p) list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 605 606#define for_each_process(p) for ((p) = &init_task; ((p) = next_task(p)) != &init_task;) 607 608extern bool current_is_single_threaded(void); 609 610/* 611 * Careful: do_each_thread/while_each_thread is a double loop so 612 * 'break' will not work as expected - use goto instead. 613 */ 614#define do_each_thread(g, t) \ 615 for ((g) = (t) = &init_task; ((g) = (t) = next_task(g)) != &init_task;) \ 616 do 617 618#define while_each_thread(g, t) while (((t) = next_thread(t)) != (g)) 619 620#define _for_each_thread(signal, t) list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 621 622#define for_each_thread(p, t) _for_each_thread((p)->signal, t) 623 624/* Careful: this is a double loop, 'break' won't work as expected. */ 625#define for_each_process_thread(p, t) for_each_process(p) for_each_thread(p, t) 626 627typedef int (*proc_visitor)(struct task_struct *p, void *data); 628void walk_process_tree(struct task_struct *top, proc_visitor, void *); 629 630static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 631{ 632 struct pid *pid; 633 if (type == PIDTYPE_PID) { 634 pid = task_pid(task); 635 } else { 636 pid = task->signal->pids[type]; 637 } 638 return pid; 639} 640 641static inline struct pid *task_tgid(struct task_struct *task) 642{ 643 return task->signal->pids[PIDTYPE_TGID]; 644} 645 646/* 647 * Without tasklist or RCU lock it is not safe to dereference 648 * the result of task_pgrp/task_session even if task == current, 649 * we can race with another thread doing sys_setsid/sys_setpgid. 650 */ 651static inline struct pid *task_pgrp(struct task_struct *task) 652{ 653 return task->signal->pids[PIDTYPE_PGID]; 654} 655 656static inline struct pid *task_session(struct task_struct *task) 657{ 658 return task->signal->pids[PIDTYPE_SID]; 659} 660 661static inline int get_nr_threads(struct task_struct *task) 662{ 663 return task->signal->nr_threads; 664} 665 666static inline bool thread_group_leader(struct task_struct *p) 667{ 668 return p->exit_signal >= 0; 669} 670 671static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 672{ 673 return p1->signal == p2->signal; 674} 675 676static inline struct task_struct *next_thread(const struct task_struct *p) 677{ 678 return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); 679} 680 681static inline int thread_group_empty(struct task_struct *p) 682{ 683 return list_empty(&p->thread_group); 684} 685 686#define delay_group_leader(p) (thread_group_leader(p) && !thread_group_empty(p)) 687 688extern bool thread_group_exited(struct pid *pid); 689 690extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags); 691 692static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags) 693{ 694 struct sighand_struct *ret; 695 696 ret = __lock_task_sighand(task, flags); 697 (void)__cond_lock(&task->sighand->siglock, ret); 698 return ret; 699} 700 701static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags) 702{ 703 spin_unlock_irqrestore(&task->sighand->siglock, *flags); 704} 705 706static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit) 707{ 708 return READ_ONCE(task->signal->rlim[limit].rlim_cur); 709} 710 711static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit) 712{ 713 return READ_ONCE(task->signal->rlim[limit].rlim_max); 714} 715 716static inline unsigned long rlimit(unsigned int limit) 717{ 718 return task_rlimit(current, limit); 719} 720 721static inline unsigned long rlimit_max(unsigned int limit) 722{ 723 return task_rlimit_max(current, limit); 724} 725 726#endif /* _LINUX_SCHED_SIGNAL_H */ 727