1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_SIGNAL_H
3#define _LINUX_SCHED_SIGNAL_H
4
5#include <linux/rculist.h>
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/sched/jobctl.h>
9#include <linux/sched/task.h>
10#include <linux/cred.h>
11#include <linux/refcount.h>
12#include <linux/posix-timers.h>
13#include <linux/mm_types.h>
14#include <asm/ptrace.h>
15#include <linux/android_kabi.h>
16
17/*
18 * Types defining task->signal and task->sighand and APIs using them:
19 */
20
21struct sighand_struct {
22    spinlock_t siglock;
23    refcount_t count;
24    wait_queue_head_t signalfd_wqh;
25    struct k_sigaction action[_NSIG];
26};
27
28/*
29 * Per-process accounting stats:
30 */
31struct pacct_struct {
32    int ac_flag;
33    long ac_exitcode;
34    unsigned long ac_mem;
35    u64 ac_utime, ac_stime;
36    unsigned long ac_minflt, ac_majflt;
37};
38
39struct cpu_itimer {
40    u64 expires;
41    u64 incr;
42};
43
44/*
45 * This is the atomic variant of task_cputime, which can be used for
46 * storing and updating task_cputime statistics without locking.
47 */
48struct task_cputime_atomic {
49    atomic64_t utime;
50    atomic64_t stime;
51    atomic64_t sum_exec_runtime;
52};
53
54#define INIT_CPUTIME_ATOMIC                                                                                            \
55    (struct task_cputime_atomic)                                                                                       \
56    {                                                                                                                  \
57        .utime = ATOMIC64_INIT(0), .stime = ATOMIC64_INIT(0), .sum_exec_runtime = ATOMIC64_INIT(0),                    \
58    }
59/**
60 * struct thread_group_cputimer - thread group interval timer counts
61 * @cputime_atomic:    atomic thread group interval timers.
62 *
63 * This structure contains the version of task_cputime, above, that is
64 * used for thread group CPU timer calculations.
65 */
66struct thread_group_cputimer {
67    struct task_cputime_atomic cputime_atomic;
68};
69
70struct multiprocess_signals {
71    sigset_t signal;
72    struct hlist_node node;
73};
74
75/*
76 * NOTE! "signal_struct" does not have its own
77 * locking, because a shared signal_struct always
78 * implies a shared sighand_struct, so locking
79 * sighand_struct is always a proper superset of
80 * the locking of signal_struct.
81 */
82struct signal_struct {
83    refcount_t sigcnt;
84    atomic_t live;
85    int nr_threads;
86    struct list_head thread_head;
87
88    wait_queue_head_t wait_chldexit; /* for wait4() */
89
90    /* current thread group signal load-balancing target: */
91    struct task_struct *curr_target;
92
93    /* shared signal handling: */
94    struct sigpending shared_pending;
95
96    /* For collecting multiprocess signals during fork */
97    struct hlist_head multiprocess;
98
99    /* thread group exit support */
100    int group_exit_code;
101    /* overloaded:
102     * - notify group_exit_task when ->count is equal to notify_count
103     * - everyone except group_exit_task is stopped during signal delivery
104     *   of fatal signals, group_exit_task processes the signal.
105     */
106    int notify_count;
107    struct task_struct *group_exit_task;
108
109    /* thread group stop support, overloads group_exit_code too */
110    int group_stop_count;
111    unsigned int flags; /* see SIGNAL_* flags below */
112
113    /*
114     * PR_SET_CHILD_SUBREAPER marks a process, like a service
115     * manager, to re-parent orphan (double-forking) child processes
116     * to this process instead of 'init'. The service manager is
117     * able to receive SIGCHLD signals and is able to investigate
118     * the process until it calls wait(). All children of this
119     * process will inherit a flag if they should look for a
120     * child_subreaper process at exit.
121     */
122    unsigned int is_child_subreaper : 1;
123    unsigned int has_child_subreaper : 1;
124
125#ifdef CONFIG_POSIX_TIMERS
126
127    /* POSIX.1b Interval Timers */
128    int posix_timer_id;
129    struct list_head posix_timers;
130
131    /* ITIMER_REAL timer for the process */
132    struct hrtimer real_timer;
133    ktime_t it_real_incr;
134
135    /*
136     * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
137     * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
138     * values are defined to 0 and 1 respectively
139     */
140    struct cpu_itimer it[2];
141
142    /*
143     * Thread group totals for process CPU timers.
144     * See thread_group_cputimer(), et al, for details.
145     */
146    struct thread_group_cputimer cputimer;
147
148#endif
149    /* Empty if CONFIG_POSIX_TIMERS=n */
150    struct posix_cputimers posix_cputimers;
151
152    /* PID/PID hash table linkage. */
153    struct pid *pids[PIDTYPE_MAX];
154
155#ifdef CONFIG_NO_HZ_FULL
156    atomic_t tick_dep_mask;
157#endif
158
159    struct pid *tty_old_pgrp;
160
161    /* boolean value for session group leader */
162    int leader;
163
164    struct tty_struct *tty; /* NULL if no tty */
165
166#ifdef CONFIG_SCHED_AUTOGROUP
167    struct autogroup *autogroup;
168#endif
169    /*
170     * Cumulative resource counters for dead threads in the group,
171     * and for reaped dead child processes forked by this group.
172     * Live threads maintain their own counters and add to these
173     * in __exit_signal, except for the group leader.
174     */
175    seqlock_t stats_lock;
176    u64 utime, stime, cutime, cstime;
177    u64 gtime;
178    u64 cgtime;
179    struct prev_cputime prev_cputime;
180    unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
181    unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
182    unsigned long inblock, oublock, cinblock, coublock;
183    unsigned long maxrss, cmaxrss;
184    struct task_io_accounting ioac;
185
186    /*
187     * Cumulative ns of schedule CPU time fo dead threads in the
188     * group, not including a zombie group leader, (This only differs
189     * from jiffies_to_ns(utime + stime) if sched_clock uses something
190     * other than jiffies.)
191     */
192    unsigned long long sum_sched_runtime;
193
194    /*
195     * We don't bother to synchronize most readers of this at all,
196     * because there is no reader checking a limit that actually needs
197     * to get both rlim_cur and rlim_max atomically, and either one
198     * alone is a single word that can safely be read normally.
199     * getrlimit/setrlimit use task_lock(current->group_leader) to
200     * protect this instead of the siglock, because they really
201     * have no need to disable irqs.
202     */
203    struct rlimit rlim[RLIM_NLIMITS];
204
205#ifdef CONFIG_BSD_PROCESS_ACCT
206    struct pacct_struct pacct; /* per-process accounting information */
207#endif
208#ifdef CONFIG_TASKSTATS
209    struct taskstats *stats;
210#endif
211#ifdef CONFIG_AUDIT
212    unsigned audit_tty;
213    struct tty_audit_buf *tty_audit_buf;
214#endif
215
216    /*
217     * Thread is the potential origin of an oom condition; kill first on
218     * oom
219     */
220    bool oom_flag_origin;
221    short oom_score_adj;      /* OOM kill score adjustment */
222    short oom_score_adj_min;  /* OOM kill score adjustment min value.
223                               * Only settable by CAP_SYS_RESOURCE. */
224    struct mm_struct *oom_mm; /* recorded mm when the thread group got
225                               * killed by the oom killer */
226
227    struct mutex cred_guard_mutex;        /* guard against foreign influences on
228                                           * credential calculations
229                                           * (notably. ptrace)
230                                           * Deprecated do not use in new code.
231                                           * Use exec_update_lock instead.
232                                           */
233    struct rw_semaphore exec_update_lock; /* Held while task_struct is
234                                           * being updated during exec,
235                                           * and may have inconsistent
236                                           * permissions.
237                                           */
238} __randomize_layout;
239
240/*
241 * Bits in flags field of signal_struct.
242 */
243#define SIGNAL_STOP_STOPPED 0x00000001   /* job control stop in effect */
244#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
245#define SIGNAL_GROUP_EXIT 0x00000004     /* group exit in progress */
246#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
247/*
248 * Pending notifications to parent.
249 */
250#define SIGNAL_CLD_STOPPED 0x00000010
251#define SIGNAL_CLD_CONTINUED 0x00000020
252#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED | SIGNAL_CLD_CONTINUED)
253
254#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
255
256#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | SIGNAL_STOP_CONTINUED)
257
258static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags)
259{
260    WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP));
261    sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
262}
263
264/* If true, all threads except ->group_exit_task have pending SIGKILL */
265static inline int signal_group_exit(const struct signal_struct *sig)
266{
267    return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL);
268}
269
270extern void flush_signals(struct task_struct *);
271extern void ignore_signals(struct task_struct *);
272extern void flush_signal_handlers(struct task_struct *, int force_default);
273extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info);
274
275static inline int kernel_dequeue_signal(void)
276{
277    struct task_struct *task = current;
278    kernel_siginfo_t _info;
279    int ret;
280
281    spin_lock_irq(&task->sighand->siglock);
282    ret = dequeue_signal(task, &task->blocked, &_info);
283    spin_unlock_irq(&task->sighand->siglock);
284
285    return ret;
286}
287
288static inline void kernel_signal_stop(void)
289{
290    spin_lock_irq(&current->sighand->siglock);
291    if (current->jobctl & JOBCTL_STOP_DEQUEUED) {
292        set_special_state(TASK_STOPPED);
293    }
294    spin_unlock_irq(&current->sighand->siglock);
295
296    schedule();
297}
298#ifdef __ARCH_SI_TRAPNO
299#define ___ARCH_SI_TRAPNO(_a1) (, _a1)
300#else
301#define ___ARCH_SI_TRAPNO(_a1)
302#endif
303#ifdef __ia64__
304#define ___ARCH_SI_IA64(_a1, _a2, _a3) (, _a1, _a2, _a3)
305#else
306#define ___ARCH_SI_IA64(_a1, _a2, _a3)
307#endif
308
309int force_sig_fault_to_task(int sig, int code,
310                            void __user *addr ___ARCH_SI_TRAPNO(int trapno)
311                                ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr),
312                            struct task_struct *t);
313int force_sig_fault(int sig, int code,
314                    void __user *addr ___ARCH_SI_TRAPNO(int trapno)
315                        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
316int send_sig_fault(int sig, int code,
317                   void __user *addr ___ARCH_SI_TRAPNO(int trapno)
318                        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr),
319                   struct task_struct *t);
320
321int force_sig_mceerr(int code, void __user *, short);
322int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
323
324int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
325int force_sig_pkuerr(void __user *addr, u32 pkey);
326
327int force_sig_ptrace_errno_trap(int errno, void __user *addr);
328
329extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
330extern void force_sigsegv(int sig);
331extern int force_sig_info(struct kernel_siginfo *);
332extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
333extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
334extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *);
335extern int kill_pgrp(struct pid *pid, int sig, int priv);
336extern int kill_pid(struct pid *pid, int sig, int priv);
337extern __must_check bool do_notify_parent(struct task_struct *, int);
338extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
339extern void force_sig(int);
340extern int send_sig(int, struct task_struct *, int);
341extern int zap_other_threads(struct task_struct *p);
342extern struct sigqueue *sigqueue_alloc(void);
343extern void sigqueue_free(struct sigqueue *);
344extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
345extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
346
347static inline int restart_syscall(void)
348{
349    set_tsk_thread_flag(current, TIF_SIGPENDING);
350    return -ERESTARTNOINTR;
351}
352
353static inline int task_sigpending(struct task_struct *p)
354{
355    return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
356}
357
358static inline int signal_pending(struct task_struct *p)
359{
360    /*
361     * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
362     * behavior in terms of ensuring that we break out of wait loops
363     * so that notify signal callbacks can be processed.
364     */
365    if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL))) {
366        return 1;
367    }
368
369    return task_sigpending(p);
370}
371
372static inline int __fatal_signal_pending(struct task_struct *p)
373{
374    return unlikely(sigismember(&p->pending.signal, SIGKILL));
375}
376
377static inline int fatal_signal_pending(struct task_struct *p)
378{
379    return task_sigpending(p) && __fatal_signal_pending(p);
380}
381
382static inline int signal_pending_state(long state, struct task_struct *p)
383{
384    if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) {
385        return 0;
386    }
387    if (!signal_pending(p)) {
388        return 0;
389    }
390
391    return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
392}
393
394/*
395 * This should only be used in fault handlers to decide whether we
396 * should stop the current fault routine to handle the signals
397 * instead, especially with the case where we've got interrupted with
398 * a VM_FAULT_RETRY.
399 */
400static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs)
401{
402    return unlikely((fault_flags & VM_FAULT_RETRY) &&
403                    (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current))));
404}
405
406/*
407 * Reevaluate whether the task has signals pending delivery.
408 * Wake the task if so.
409 * This is required every time the blocked sigset_t changes.
410 * callers must hold sighand->siglock.
411 */
412extern void recalc_sigpending_and_wake(struct task_struct *t);
413extern void recalc_sigpending(void);
414extern void calculate_sigpending(void);
415
416extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
417
418static inline void signal_wake_up(struct task_struct *t, bool resume)
419{
420    signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
421}
422static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
423{
424    signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
425}
426
427void task_join_group_stop(struct task_struct *task);
428
429#ifdef TIF_RESTORE_SIGMASK
430/*
431 * Legacy restore_sigmask accessors.  These are inefficient on
432 * SMP architectures because they require atomic operations.
433 */
434
435/**
436 * set_restore_sigmask() - make sure saved_sigmask processing gets done
437 *
438 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
439 * will run before returning to user mode, to process the flag.  For
440 * all callers, TIF_SIGPENDING is already set or it's no harm to set
441 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
442 * arch code will notice on return to user mode, in case those bits
443 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
444 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
445 */
446static inline void set_restore_sigmask(void)
447{
448    set_thread_flag(TIF_RESTORE_SIGMASK);
449}
450
451static inline void clear_tsk_restore_sigmask(struct task_struct *task)
452{
453    clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
454}
455
456static inline void clear_restore_sigmask(void)
457{
458    clear_thread_flag(TIF_RESTORE_SIGMASK);
459}
460static inline bool test_tsk_restore_sigmask(struct task_struct *task)
461{
462    return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
463}
464static inline bool test_restore_sigmask(void)
465{
466    return test_thread_flag(TIF_RESTORE_SIGMASK);
467}
468static inline bool test_and_clear_restore_sigmask(void)
469{
470    return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
471}
472
473#else /* TIF_RESTORE_SIGMASK */
474
475/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
476static inline void set_restore_sigmask(void)
477{
478    current->restore_sigmask = true;
479}
480static inline void clear_tsk_restore_sigmask(struct task_struct *task)
481{
482    task->restore_sigmask = false;
483}
484static inline void clear_restore_sigmask(void)
485{
486    current->restore_sigmask = false;
487}
488static inline bool test_restore_sigmask(void)
489{
490    return current->restore_sigmask;
491}
492static inline bool test_tsk_restore_sigmask(struct task_struct *task)
493{
494    return task->restore_sigmask;
495}
496static inline bool test_and_clear_restore_sigmask(void)
497{
498    if (!current->restore_sigmask) {
499        return false;
500    }
501    current->restore_sigmask = false;
502    return true;
503}
504#endif
505
506static inline void restore_saved_sigmask(void)
507{
508    if (test_and_clear_restore_sigmask()) {
509        __set_current_blocked(&current->saved_sigmask);
510    }
511}
512
513extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
514
515static inline void restore_saved_sigmask_unless(bool interrupted)
516{
517    if (interrupted) {
518        WARN_ON(!signal_pending(current));
519    } else {
520        restore_saved_sigmask();
521    }
522}
523
524static inline sigset_t *sigmask_to_save(void)
525{
526    sigset_t *res = &current->blocked;
527    if (unlikely(test_restore_sigmask())) {
528        res = &current->saved_sigmask;
529    }
530    return res;
531}
532
533static inline int kill_cad_pid(int sig, int priv)
534{
535    return kill_pid(cad_pid, sig, priv);
536}
537
538/* These can be the second arg to send_sig_info/send_group_sig_info.  */
539#define SEND_SIG_NOINFO ((struct kernel_siginfo *)0)
540#define SEND_SIG_PRIV ((struct kernel_siginfo *)1)
541
542static inline int __on_sig_stack(unsigned long sp)
543{
544#ifdef CONFIG_STACK_GROWSUP
545    return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size;
546#else
547    return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size;
548#endif
549}
550
551/*
552 * True if we are on the alternate signal stack.
553 */
554static inline int on_sig_stack(unsigned long sp)
555{
556    /*
557     * If the signal stack is SS_AUTODISARM then, by construction, we
558     * can't be on the signal stack unless user code deliberately set
559     * SS_AUTODISARM when we were already on it.
560     *
561     * This improves reliability: if user state gets corrupted such that
562     * the stack pointer points very close to the end of the signal stack,
563     * then this check will enable the signal to be handled anyway.
564     */
565    if (current->sas_ss_flags & SS_AUTODISARM) {
566        return 0;
567    }
568
569    return __on_sig_stack(sp);
570}
571
572static inline int sas_ss_flags(unsigned long sp)
573{
574    if (!current->sas_ss_size) {
575        return SS_DISABLE;
576    }
577
578    return on_sig_stack(sp) ? SS_ONSTACK : 0;
579}
580
581static inline void sas_ss_reset(struct task_struct *p)
582{
583    p->sas_ss_sp = 0;
584    p->sas_ss_size = 0;
585    p->sas_ss_flags = SS_DISABLE;
586}
587
588static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
589{
590    if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && !sas_ss_flags(sp))
591#ifdef CONFIG_STACK_GROWSUP
592        return current->sas_ss_sp;
593#else
594        return current->sas_ss_sp + current->sas_ss_size;
595#endif
596    return sp;
597}
598
599extern void __cleanup_sighand(struct sighand_struct *);
600extern void flush_itimer_signals(void);
601
602#define tasklist_empty() list_empty(&init_task.tasks)
603
604#define next_task(p) list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
605
606#define for_each_process(p) for ((p) = &init_task; ((p) = next_task(p)) != &init_task;)
607
608extern bool current_is_single_threaded(void);
609
610/*
611 * Careful: do_each_thread/while_each_thread is a double loop so
612 *          'break' will not work as expected - use goto instead.
613 */
614#define do_each_thread(g, t)                                                                                           \
615    for ((g) = (t) = &init_task; ((g) = (t) = next_task(g)) != &init_task;)                                            \
616        do
617
618#define while_each_thread(g, t) while (((t) = next_thread(t)) != (g))
619
620#define _for_each_thread(signal, t) list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
621
622#define for_each_thread(p, t) _for_each_thread((p)->signal, t)
623
624/* Careful: this is a double loop, 'break' won't work as expected. */
625#define for_each_process_thread(p, t) for_each_process(p) for_each_thread(p, t)
626
627typedef int (*proc_visitor)(struct task_struct *p, void *data);
628void walk_process_tree(struct task_struct *top, proc_visitor, void *);
629
630static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
631{
632    struct pid *pid;
633    if (type == PIDTYPE_PID) {
634        pid = task_pid(task);
635    } else {
636        pid = task->signal->pids[type];
637    }
638    return pid;
639}
640
641static inline struct pid *task_tgid(struct task_struct *task)
642{
643    return task->signal->pids[PIDTYPE_TGID];
644}
645
646/*
647 * Without tasklist or RCU lock it is not safe to dereference
648 * the result of task_pgrp/task_session even if task == current,
649 * we can race with another thread doing sys_setsid/sys_setpgid.
650 */
651static inline struct pid *task_pgrp(struct task_struct *task)
652{
653    return task->signal->pids[PIDTYPE_PGID];
654}
655
656static inline struct pid *task_session(struct task_struct *task)
657{
658    return task->signal->pids[PIDTYPE_SID];
659}
660
661static inline int get_nr_threads(struct task_struct *task)
662{
663    return task->signal->nr_threads;
664}
665
666static inline bool thread_group_leader(struct task_struct *p)
667{
668    return p->exit_signal >= 0;
669}
670
671static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
672{
673    return p1->signal == p2->signal;
674}
675
676static inline struct task_struct *next_thread(const struct task_struct *p)
677{
678    return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group);
679}
680
681static inline int thread_group_empty(struct task_struct *p)
682{
683    return list_empty(&p->thread_group);
684}
685
686#define delay_group_leader(p) (thread_group_leader(p) && !thread_group_empty(p))
687
688extern bool thread_group_exited(struct pid *pid);
689
690extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags);
691
692static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags)
693{
694    struct sighand_struct *ret;
695
696    ret = __lock_task_sighand(task, flags);
697    (void)__cond_lock(&task->sighand->siglock, ret);
698    return ret;
699}
700
701static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags)
702{
703    spin_unlock_irqrestore(&task->sighand->siglock, *flags);
704}
705
706static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit)
707{
708    return READ_ONCE(task->signal->rlim[limit].rlim_cur);
709}
710
711static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit)
712{
713    return READ_ONCE(task->signal->rlim[limit].rlim_max);
714}
715
716static inline unsigned long rlimit(unsigned int limit)
717{
718    return task_rlimit(current, limit);
719}
720
721static inline unsigned long rlimit_max(unsigned int limit)
722{
723    return task_rlimit_max(current, limit);
724}
725
726#endif /* _LINUX_SCHED_SIGNAL_H */
727