1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/mmap_lock.h>
19#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
27#include <linux/page-flags.h>
28#include <linux/page_ref.h>
29#include <linux/memremap.h>
30#include <linux/overflow.h>
31#include <linux/sizes.h>
32#include <linux/sched.h>
33#include <linux/pgtable.h>
34
35struct mempolicy;
36struct anon_vma;
37struct anon_vma_chain;
38struct file_ra_state;
39struct user_struct;
40struct writeback_control;
41struct bdi_writeback;
42struct pt_regs;
43
44extern int sysctl_page_lock_unfairness;
45
46void init_mm_internals(void);
47
48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49extern unsigned long max_mapnr;
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53    max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit)
57{
58}
59#endif
60
61extern atomic_long_t _totalram_pages;
62static inline unsigned long totalram_pages(void)
63{
64    return (unsigned long)atomic_long_read(&_totalram_pages);
65}
66
67static inline void totalram_pages_inc(void)
68{
69    atomic_long_inc(&_totalram_pages);
70}
71
72static inline void totalram_pages_dec(void)
73{
74    atomic_long_dec(&_totalram_pages);
75}
76
77static inline void totalram_pages_add(long count)
78{
79    atomic_long_add(count, &_totalram_pages);
80}
81
82extern void *high_memory;
83extern int page_cluster;
84
85#ifdef CONFIG_SYSCTL
86extern int sysctl_legacy_va_layout;
87#else
88#define sysctl_legacy_va_layout 0
89#endif
90
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
92extern const int mmap_rnd_bits_min;
93extern const int mmap_rnd_bits_max;
94extern int mmap_rnd_bits __read_mostly;
95#endif
96#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
97extern const int mmap_rnd_compat_bits_min;
98extern const int mmap_rnd_compat_bits_max;
99extern int mmap_rnd_compat_bits __read_mostly;
100#endif
101
102#include <asm/page.h>
103#include <asm/processor.h>
104
105/*
106 * Architectures that support memory tagging (assigning tags to memory regions,
107 * embedding these tags into addresses that point to these memory regions, and
108 * checking that the memory and the pointer tags match on memory accesses)
109 * redefine this macro to strip tags from pointers.
110 * It's defined as noop for arcitectures that don't support memory tagging.
111 */
112#ifndef untagged_addr
113#define untagged_addr(addr) (addr)
114#endif
115
116#ifndef __pa_symbol
117#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
118#endif
119
120#ifndef page_to_virt
121#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
122#endif
123
124#ifndef lm_alias
125#define lm_alias(x) __va(__pa_symbol(x))
126#endif
127
128/*
129 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
130 * instrumented C code with jump table addresses. Architectures that
131 * support CFI can define this macro to return the actual function address
132 * when needed.
133 */
134#ifndef function_nocfi
135#define function_nocfi(x) (x)
136#endif
137
138#define MM_ZERO 0
139#define MM_ONE 1
140#define MM_TWO 2
141#define MM_THREE 3
142#define MM_FOUR 4
143#define MM_FIVE 5
144#define MM_SIX 6
145#define MM_SEVEN 7
146#define MM_EIGHT 8
147#define MM_NINE 9
148#define MM_FIFTYSIX 56
149#define MM_SIXTYFOUR 64
150#define MM_SEVENTYTWO 72
151#define MM_EIGHTY 80
152
153/*
154 * To prevent common memory management code establishing
155 * a zero page mapping on a read fault.
156 * This macro should be defined within <asm/pgtable.h>.
157 * s390 does this to prevent multiplexing of hardware bits
158 * related to the physical page in case of virtualization.
159 */
160#ifndef mm_forbids_zeropage
161#define mm_forbids_zeropage(X) (0)
162#endif
163
164/*
165 * On some architectures it is expensive to call memset() for small sizes.
166 * If an architecture decides to implement their own version of
167 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
168 * define their own version of this macro in <asm/pgtable.h>
169 */
170#if BITS_PER_LONG == 64
171/* This function must be updated when the size of struct page grows above 80
172 * or reduces below 56. The idea that compiler optimizes out switch()
173 * statement, and only leaves move/store instructions. Also the compiler can
174 * combine write statments if they are both assignments and can be reordered,
175 * this can result in several of the writes here being dropped.
176 */
177#define mm_zero_struct_page(pp) _mm_zero_struct_page(pp)
178static inline void _mm_zero_struct_page(struct page *page)
179{
180    unsigned long *_pp = (void *)page;
181
182    /* Check that struct page is either 56, 64, 72, or 80 bytes */
183    BUILD_BUG_ON(sizeof(struct page) & MM_SEVEN);
184    BUILD_BUG_ON(sizeof(struct page) < MM_FIFTYSIX);
185    BUILD_BUG_ON(sizeof(struct page) > MM_EIGHTY);
186
187    switch (sizeof(struct page)) {
188        case MM_EIGHTY:
189            _pp[MM_NINE] = 0;
190            fallthrough;
191        case MM_SEVENTYTWO:
192            _pp[MM_EIGHT] = 0;
193            fallthrough;
194        case MM_SIXTYFOUR:
195            _pp[MM_SEVEN] = 0;
196            fallthrough;
197        case MM_FIFTYSIX:
198            _pp[MM_SIX] = 0;
199            _pp[MM_FIVE] = 0;
200            _pp[MM_FOUR] = 0;
201            _pp[MM_THREE] = 0;
202            _pp[MM_TWO] = 0;
203            _pp[MM_ONE] = 0;
204            _pp[MM_ZERO] = 0;
205    }
206}
207#else
208#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
209#endif
210
211/*
212 * Default maximum number of active map areas, this limits the number of vmas
213 * per mm struct. Users can overwrite this number by sysctl but there is a
214 * problem.
215 *
216 * When a program's coredump is generated as ELF format, a section is created
217 * per a vma. In ELF, the number of sections is represented in unsigned short.
218 * This means the number of sections should be smaller than 65535 at coredump.
219 * Because the kernel adds some informative sections to a image of program at
220 * generating coredump, we need some margin. The number of extra sections is
221 * 1-3 now and depends on arch. We use "5" as safe margin, here.
222 *
223 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
224 * not a hard limit any more. Although some userspace tools can be surprised by
225 * that.
226 */
227#define MAPCOUNT_ELF_CORE_MARGIN (5)
228#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
229
230extern int sysctl_max_map_count;
231
232extern unsigned long sysctl_user_reserve_kbytes;
233extern unsigned long sysctl_admin_reserve_kbytes;
234
235extern int sysctl_overcommit_memory;
236extern int sysctl_overcommit_ratio;
237extern unsigned long sysctl_overcommit_kbytes;
238
239int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
240int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
241int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
242
243#define nth_page(page, n) pfn_to_page(page_to_pfn((page)) + (n))
244
245/* to align the pointer to the (next) page boundary */
246#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
247
248/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
249#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
250
251#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
252
253/*
254 * Linux kernel virtual memory manager primitives.
255 * The idea being to have a "virtual" mm in the same way
256 * we have a virtual fs - giving a cleaner interface to the
257 * mm details, and allowing different kinds of memory mappings
258 * (from shared memory to executable loading to arbitrary
259 * mmap() functions).
260 */
261
262struct vm_area_struct *vm_area_alloc(struct mm_struct *);
263struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
264void vm_area_free(struct vm_area_struct *);
265
266#ifndef CONFIG_MMU
267extern struct rb_root nommu_region_tree;
268extern struct rw_semaphore nommu_region_sem;
269
270extern unsigned int kobjsize(const void *objp);
271#endif
272
273/*
274 * vm_flags in vm_area_struct, see mm_types.h.
275 * When changing, update also include/trace/events/mmflags.h
276 */
277#define VM_NONE 0x00000000
278
279#define VM_READ 0x00000001 /* currently active flags */
280#define VM_WRITE 0x00000002
281#define VM_EXEC 0x00000004
282#define VM_SHARED 0x00000008
283
284/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
285#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
286#define VM_MAYWRITE 0x00000020
287#define VM_MAYEXEC 0x00000040
288#define VM_MAYSHARE 0x00000080
289
290#define VM_GROWSDOWN 0x00000100    /* general info on the segment */
291#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
292#define VM_PFNMAP 0x00000400       /* Page-ranges managed without "struct page", just pure PFN */
293#define VM_DENYWRITE 0x00000800    /* ETXTBSY on write attempts.. */
294#define VM_UFFD_WP 0x00001000      /* wrprotect pages tracking */
295
296#define VM_LOCKED 0x00002000
297#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
298
299/* Used by sys_madvise() */
300#define VM_SEQ_READ 0x00008000  /* App will access data sequentially */
301#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
302
303#define VM_DONTCOPY 0x00020000    /* Do not copy this vma on fork */
304#define VM_DONTEXPAND 0x00040000  /* Cannot expand with mremap() */
305#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306#define VM_ACCOUNT 0x00100000     /* Is a VM accounted object */
307#define VM_NORESERVE 0x00200000   /* should the VM suppress accounting */
308#define VM_HUGETLB 0x00400000     /* Huge TLB Page VM */
309#define VM_SYNC 0x00800000        /* Synchronous page faults */
310#define VM_ARCH_1 0x01000000      /* Architecture-specific flag */
311#define VM_WIPEONFORK 0x02000000  /* Wipe VMA contents in child. */
312#define VM_DONTDUMP 0x04000000    /* Do not include in the core dump */
313
314#ifdef CONFIG_MEM_SOFT_DIRTY
315#define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
316#else
317#define VM_SOFTDIRTY 0
318#endif
319
320#define VM_MIXEDMAP 0x10000000   /* Can contain "struct page" and pure PFN pages */
321#define VM_HUGEPAGE 0x20000000   /* MADV_HUGEPAGE marked this vma */
322#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323#define VM_MERGEABLE 0x80000000  /* KSM may merge identical pages */
324
325#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333#define VM_HIGH_ARCH_BIT_7 39 /* bit only usable on 64-bit architectures */
334#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
335#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
336#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
337#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
338#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
339#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
340#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
341#define VM_HIGH_ARCH_7 BIT(VM_HIGH_ARCH_BIT_7)
342#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
343
344#ifdef CONFIG_MEM_PURGEABLE
345#define VM_PURGEABLE VM_HIGH_ARCH_5
346#define VM_USEREXPTE VM_HIGH_ARCH_6
347#else /* CONFIG_MEM_PURGEABLE */
348#define VM_PURGEABLE 0
349#define VM_USEREXPTE 0
350#endif /* CONFIG_MEM_PURGEABLE */
351
352#ifdef CONFIG_SECURITY_XPM
353#define VM_XPM	VM_HIGH_ARCH_7
354#else /* CONFIG_MEM_PURGEABLE */
355#define VM_XPM	VM_NONE
356#endif /* CONFIG_MEM_PURGEABLE */
357
358#ifdef CONFIG_ARCH_HAS_PKEYS
359#define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
360#define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
361#define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64   */
362#define VM_PKEY_BIT2 VM_HIGH_ARCH_2
363#define VM_PKEY_BIT3 VM_HIGH_ARCH_3
364#ifdef CONFIG_PPC
365#define VM_PKEY_BIT4 VM_HIGH_ARCH_4
366#else
367#define VM_PKEY_BIT4 0
368#endif
369#endif /* CONFIG_ARCH_HAS_PKEYS */
370
371#if defined(CONFIG_X86)
372#define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
373#elif defined(CONFIG_PPC)
374#define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
375#elif defined(CONFIG_PARISC)
376#define VM_GROWSUP VM_ARCH_1
377#elif defined(CONFIG_IA64)
378#define VM_GROWSUP VM_ARCH_1
379#elif defined(CONFIG_SPARC64)
380#define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
381#define VM_ARCH_CLEAR VM_SPARC_ADI
382#elif defined(CONFIG_ARM64)
383#define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
384#define VM_ARCH_CLEAR VM_ARM64_BTI
385#elif !defined(CONFIG_MMU)
386#define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
387#endif
388
389#if defined(CONFIG_ARM64_MTE)
390#define VM_MTE VM_HIGH_ARCH_0         /* Use Tagged memory for access control */
391#define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
392#else
393#define VM_MTE VM_NONE
394#define VM_MTE_ALLOWED VM_NONE
395#endif
396
397#ifndef VM_GROWSUP
398#define VM_GROWSUP VM_NONE
399#endif
400
401/* Bits set in the VMA until the stack is in its final location */
402#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
403
404#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
405
406/* Common data flag combinations */
407#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
408#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
409#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
410
411#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
412#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
413#endif
414
415#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
416#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
417#endif
418
419#ifdef CONFIG_STACK_GROWSUP
420#define VM_STACK VM_GROWSUP
421#else
422#define VM_STACK VM_GROWSDOWN
423#endif
424
425#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426
427/* VMA basic access permission flags */
428#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429
430/*
431 * Special vmas that are non-mergable, non-mlock()able.
432 */
433#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
434
435/* This mask prevents VMA from being scanned with khugepaged */
436#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
437
438/* This mask defines which mm->def_flags a process can inherit its parent */
439#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
440
441/* This mask is used to clear all the VMA flags used by mlock */
442#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
443
444/* Arch-specific flags to clear when updating VM flags on protection change */
445#ifndef VM_ARCH_CLEAR
446#define VM_ARCH_CLEAR VM_NONE
447#endif
448#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
449
450/*
451 * mapping from the currently active vm_flags protection bits (the
452 * low four bits) to a page protection mask..
453 */
454extern pgprot_t protection_map[16];
455
456/**
457 * Fault flag definitions.
458 *
459 * @FAULT_FLAG_WRITE: Fault was a write fault.
460 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
461 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
462 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
463 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
464 * @FAULT_FLAG_TRIED: The fault has been tried once.
465 * @FAULT_FLAG_USER: The fault originated in userspace.
466 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
467 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
468 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
469 *
470 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
471 * whether we would allow page faults to retry by specifying these two
472 * fault flags correctly.  Currently there can be three legal combinations:
473 *
474 * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
475 *                              this is the first try
476 *
477 * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
478 *                              we've already tried at least once
479 *
480 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
481 *
482 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
483 * be used.  Note that page faults can be allowed to retry for multiple times,
484 * in which case we'll have an initial fault with flags (a) then later on
485 * continuous faults with flags (b).  We should always try to detect pending
486 * signals before a retry to make sure the continuous page faults can still be
487 * interrupted if necessary.
488 */
489#define FAULT_FLAG_WRITE 0x01
490#define FAULT_FLAG_MKWRITE 0x02
491#define FAULT_FLAG_ALLOW_RETRY 0x04
492#define FAULT_FLAG_RETRY_NOWAIT 0x08
493#define FAULT_FLAG_KILLABLE 0x10
494#define FAULT_FLAG_TRIED 0x20
495#define FAULT_FLAG_USER 0x40
496#define FAULT_FLAG_REMOTE 0x80
497#define FAULT_FLAG_INSTRUCTION 0x100
498#define FAULT_FLAG_INTERRUPTIBLE 0x200
499
500/*
501 * The default fault flags that should be used by most of the
502 * arch-specific page fault handlers.
503 */
504#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE | FAULT_FLAG_INTERRUPTIBLE)
505
506/**
507 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
508 *
509 * This is mostly used for places where we want to try to avoid taking
510 * the mmap_lock for too long a time when waiting for another condition
511 * to change, in which case we can try to be polite to release the
512 * mmap_lock in the first round to avoid potential starvation of other
513 * processes that would also want the mmap_lock.
514 *
515 * Return: true if the page fault allows retry and this is the first
516 * attempt of the fault handling; false otherwise.
517 */
518static inline bool fault_flag_allow_retry_first(unsigned int flags)
519{
520    return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED));
521}
522
523#define FAULT_FLAG_TRACE                                                                                               \
524    {FAULT_FLAG_WRITE, "WRITE"}, {FAULT_FLAG_MKWRITE, "MKWRITE"}, {FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY"},             \
525        {FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT"}, {FAULT_FLAG_KILLABLE, "KILLABLE"}, {FAULT_FLAG_TRIED, "TRIED"},     \
526        {FAULT_FLAG_USER, "USER"}, {FAULT_FLAG_REMOTE, "REMOTE"}, {FAULT_FLAG_INSTRUCTION, "INSTRUCTION"},             \
527    {                                                                                                                  \
528        FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE"                                                                      \
529    }
530
531/*
532 * vm_fault is filled by the pagefault handler and passed to the vma's
533 * ->fault function. The vma's ->fault is responsible for returning a bitmask
534 * of VM_FAULT_xxx flags that give details about how the fault was handled.
535 *
536 * MM layer fills up gfp_mask for page allocations but fault handler might
537 * alter it if its implementation requires a different allocation context.
538 *
539 * pgoff should be used in favour of virtual_address, if possible.
540 */
541struct vm_fault {
542    struct vm_area_struct *vma; /* Target VMA */
543    unsigned int flags;         /* FAULT_FLAG_xxx flags */
544    gfp_t gfp_mask;             /* gfp mask to be used for allocations */
545    pgoff_t pgoff;              /* Logical page offset based on vma */
546    unsigned long address;      /* Faulting virtual address */
547    pmd_t *pmd;                 /* Pointer to pmd entry matching
548                                 * the 'address' */
549    pud_t *pud;                 /* Pointer to pud entry matching
550                                 * the 'address'
551                                 */
552    pte_t orig_pte;             /* Value of PTE at the time of fault */
553
554    struct page *cow_page; /* Page handler may use for COW fault */
555    struct page *page;     /* ->fault handlers should return a
556                            * page here, unless VM_FAULT_NOPAGE
557                            * is set (which is also implied by
558                            * VM_FAULT_ERROR).
559                            */
560    /* These three entries are valid only while holding ptl lock */
561    pte_t *pte;             /* Pointer to pte entry matching
562                             * the 'address'. NULL if the page
563                             * table hasn't been allocated.
564                             */
565    spinlock_t *ptl;        /* Page table lock.
566                             * Protects pte page table if 'pte'
567                             * is not NULL, otherwise pmd.
568                             */
569    pgtable_t prealloc_pte; /* Pre-allocated pte page table.
570                             * vm_ops->map_pages() calls
571                             * alloc_set_pte() from atomic context.
572                             * do_fault_around() pre-allocates
573                             * page table to avoid allocation from
574                             * atomic context.
575                             */
576};
577
578/* page entry size for vm->huge_fault() */
579enum page_entry_size {
580    PE_SIZE_PTE = 0,
581    PE_SIZE_PMD,
582    PE_SIZE_PUD,
583};
584
585/*
586 * These are the virtual MM functions - opening of an area, closing and
587 * unmapping it (needed to keep files on disk up-to-date etc), pointer
588 * to the functions called when a no-page or a wp-page exception occurs.
589 */
590struct vm_operations_struct {
591    void (*open)(struct vm_area_struct *area);
592    void (*close)(struct vm_area_struct *area);
593    int (*split)(struct vm_area_struct *area, unsigned long addr);
594    int (*mremap)(struct vm_area_struct *area);
595    vm_fault_t (*fault)(struct vm_fault *vmf);
596    vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
597    void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
598    unsigned long (*pagesize)(struct vm_area_struct *area);
599
600    /* notification that a previously read-only page is about to become
601     * writable, if an error is returned it will cause a SIGBUS */
602    vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
603
604    /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
605    vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
606
607    /* called by access_process_vm when get_user_pages() fails, typically
608     * for use by special VMAs that can switch between memory and hardware
609     */
610    int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
611
612    /* Called by the /proc/PID/maps code to ask the vma whether it
613     * has a special name.  Returning non-NULL will also cause this
614     * vma to be dumped unconditionally. */
615    const char *(*name)(struct vm_area_struct *vma);
616
617#ifdef CONFIG_NUMA
618    /*
619     * set_policy() op must add a reference to any non-NULL @new mempolicy
620     * to hold the policy upon return.  Caller should pass NULL @new to
621     * remove a policy and fall back to surrounding context--i.e. do not
622     * install a MPOL_DEFAULT policy, nor the task or system default
623     * mempolicy.
624     */
625    int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
626
627    /*
628     * get_policy() op must add reference [mpol_get()] to any policy at
629     * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
630     * in mm/mempolicy.c will do this automatically.
631     * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632     * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633     * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634     * must return NULL--i.e., do not "fallback" to task or system default
635     * policy.
636     */
637    struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr);
638#endif
639    /*
640     * Called by vm_normal_page() for special PTEs to find the
641     * page for @addr.  This is useful if the default behavior
642     * (using pte_page()) would not find the correct page.
643     */
644    struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr);
645};
646
647static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
648{
649    static const struct vm_operations_struct dummy_vm_ops = {};
650
651    memset(vma, 0, sizeof(*vma));
652    vma->vm_mm = mm;
653    vma->vm_ops = &dummy_vm_ops;
654    INIT_LIST_HEAD(&vma->anon_vma_chain);
655}
656
657static inline void vma_set_anonymous(struct vm_area_struct *vma)
658{
659    vma->vm_ops = NULL;
660}
661
662static inline bool vma_is_anonymous(struct vm_area_struct *vma)
663{
664    return !vma->vm_ops;
665}
666
667static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
668{
669    int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
670
671    if (!maybe_stack) {
672        return false;
673    }
674
675    if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) {
676        return true;
677    }
678
679    return false;
680}
681
682static inline bool vma_is_foreign(struct vm_area_struct *vma)
683{
684    if (!current->mm) {
685        return true;
686    }
687
688    if (current->mm != vma->vm_mm) {
689        return true;
690    }
691
692    return false;
693}
694
695static inline bool vma_is_accessible(struct vm_area_struct *vma)
696{
697    return vma->vm_flags & VM_ACCESS_FLAGS;
698}
699
700#ifdef CONFIG_SHMEM
701/*
702 * The vma_is_shmem is not inline because it is used only by slow
703 * paths in userfault.
704 */
705bool vma_is_shmem(struct vm_area_struct *vma);
706#else
707static inline bool vma_is_shmem(struct vm_area_struct *vma)
708{
709    return false;
710}
711#endif
712
713int vma_is_stack_for_current(struct vm_area_struct *vma);
714
715/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
716#define TLB_FLUSH_VMA(mm, flags)                                                                                       \
717    {                                                                                                                  \
718        .vm_mm = (mm), .vm_flags = (flags)                                                                             \
719    }
720
721struct mmu_gather;
722struct inode;
723
724#include <linux/huge_mm.h>
725
726/*
727 * Methods to modify the page usage count.
728 *
729 * What counts for a page usage:
730 * - cache mapping   (page->mapping)
731 * - private data    (page->private)
732 * - page mapped in a task's page tables, each mapping
733 *   is counted separately
734 *
735 * Also, many kernel routines increase the page count before a critical
736 * routine so they can be sure the page doesn't go away from under them.
737 */
738
739/*
740 * Drop a ref, return true if the refcount fell to zero (the page has no users)
741 */
742static inline int put_page_testzero(struct page *page)
743{
744    VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
745    return page_ref_dec_and_test(page);
746}
747
748/*
749 * Try to grab a ref unless the page has a refcount of zero, return false if
750 * that is the case.
751 * This can be called when MMU is off so it must not access
752 * any of the virtual mappings.
753 */
754static inline int get_page_unless_zero(struct page *page)
755{
756    return page_ref_add_unless(page, 1, 0);
757}
758
759extern int page_is_ram(unsigned long pfn);
760
761enum {
762    REGION_INTERSECTS,
763    REGION_DISJOINT,
764    REGION_MIXED,
765};
766
767int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc);
768
769/* Support for virtually mapped pages */
770struct page *vmalloc_to_page(const void *addr);
771unsigned long vmalloc_to_pfn(const void *addr);
772
773/*
774 * Determine if an address is within the vmalloc range
775 *
776 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
777 * is no special casing required.
778 */
779
780#ifndef is_ioremap_addr
781#define is_ioremap_addr(x) is_vmalloc_addr(x)
782#endif
783
784#ifdef CONFIG_MMU
785extern bool is_vmalloc_addr(const void *x);
786extern int is_vmalloc_or_module_addr(const void *x);
787#else
788static inline bool is_vmalloc_addr(const void *x)
789{
790    return false;
791}
792static inline int is_vmalloc_or_module_addr(const void *x)
793{
794    return 0;
795}
796#endif
797
798extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
799static inline void *kvmalloc(size_t size, gfp_t flags)
800{
801    return kvmalloc_node(size, flags, NUMA_NO_NODE);
802}
803static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
804{
805    return kvmalloc_node(size, flags | __GFP_ZERO, node);
806}
807static inline void *kvzalloc(size_t size, gfp_t flags)
808{
809    return kvmalloc(size, flags | __GFP_ZERO);
810}
811
812static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
813{
814    size_t bytes;
815
816    if (unlikely(check_mul_overflow(n, size, &bytes))) {
817        return NULL;
818    }
819
820    return kvmalloc(bytes, flags);
821}
822
823static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
824{
825    return kvmalloc_array(n, size, flags | __GFP_ZERO);
826}
827
828extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags);
829extern void kvfree(const void *addr);
830extern void kvfree_sensitive(const void *addr, size_t len);
831
832static inline int head_compound_mapcount(struct page *head)
833{
834    return atomic_read(compound_mapcount_ptr(head)) + 1;
835}
836
837/*
838 * Mapcount of compound page as a whole, does not include mapped sub-pages.
839 *
840 * Must be called only for compound pages or any their tail sub-pages.
841 */
842static inline int compound_mapcount(struct page *page)
843{
844    VM_BUG_ON_PAGE(!PageCompound(page), page);
845    page = compound_head(page);
846    return head_compound_mapcount(page);
847}
848
849/*
850 * The atomic page->_mapcount, starts from -1: so that transitions
851 * both from it and to it can be tracked, using atomic_inc_and_test
852 * and atomic_add_negative(-1).
853 */
854static inline void page_mapcount_reset(struct page *page)
855{
856    atomic_set(&(page)->_mapcount, -1);
857}
858
859int __page_mapcount(struct page *page);
860
861/*
862 * Mapcount of 0-order page; when compound sub-page, includes
863 * compound_mapcount().
864 *
865 * Result is undefined for pages which cannot be mapped into userspace.
866 * For example SLAB or special types of pages. See function page_has_type().
867 * They use this place in struct page differently.
868 */
869static inline int page_mapcount(struct page *page)
870{
871    if (unlikely(PageCompound(page))) {
872        return __page_mapcount(page);
873    }
874    return atomic_read(&page->_mapcount) + 1;
875}
876
877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
878int total_mapcount(struct page *page);
879int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880#else
881static inline int total_mapcount(struct page *page)
882{
883    return page_mapcount(page);
884}
885static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
886{
887    int mapcount = page_mapcount(page);
888    if (total_mapcount) {
889        *total_mapcount = mapcount;
890    }
891    return mapcount;
892}
893#endif
894
895static inline struct page *virt_to_head_page(const void *x)
896{
897    struct page *page = virt_to_page(x);
898
899    return compound_head(page);
900}
901
902void __put_page(struct page *page);
903
904void put_pages_list(struct list_head *pages);
905
906void split_page(struct page *page, unsigned int order);
907
908/*
909 * Compound pages have a destructor function.  Provide a
910 * prototype for that function and accessor functions.
911 * These are _only_ valid on the head of a compound page.
912 */
913typedef void compound_page_dtor(struct page *);
914
915/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916enum compound_dtor_id {
917    NULL_COMPOUND_DTOR,
918    COMPOUND_PAGE_DTOR,
919#ifdef CONFIG_HUGETLB_PAGE
920    HUGETLB_PAGE_DTOR,
921#endif
922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
923    TRANSHUGE_PAGE_DTOR,
924#endif
925    NR_COMPOUND_DTORS,
926};
927extern compound_page_dtor *const compound_page_dtors[NR_COMPOUND_DTORS];
928
929static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor)
930{
931    VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
932    page[1].compound_dtor = compound_dtor;
933}
934
935static inline void destroy_compound_page(struct page *page)
936{
937    VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
938    compound_page_dtors[page[1].compound_dtor](page);
939}
940
941static inline unsigned int compound_order(struct page *page)
942{
943    if (!PageHead(page)) {
944        return 0;
945    }
946    return page[1].compound_order;
947}
948
949static inline bool hpage_pincount_available(struct page *page)
950{
951    /*
952     * Can the page->hpage_pinned_refcount field be used? That field is in
953     * the 3rd page of the compound page, so the smallest (2-page) compound
954     * pages cannot support it.
955     */
956    page = compound_head(page);
957    return PageCompound(page) && compound_order(page) > 1;
958}
959
960static inline int head_compound_pincount(struct page *head)
961{
962    return atomic_read(compound_pincount_ptr(head));
963}
964
965static inline int compound_pincount(struct page *page)
966{
967    VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968    page = compound_head(page);
969    return head_compound_pincount(page);
970}
971
972static inline void set_compound_order(struct page *page, unsigned int order)
973{
974    page[1].compound_order = order;
975    page[1].compound_nr = 1U << order;
976}
977
978/* Returns the number of pages in this potentially compound page. */
979static inline unsigned long compound_nr(struct page *page)
980{
981    if (!PageHead(page)) {
982        return 1;
983    }
984    return page[1].compound_nr;
985}
986
987/* Returns the number of bytes in this potentially compound page. */
988static inline unsigned long page_size(struct page *page)
989{
990    return PAGE_SIZE << compound_order(page);
991}
992
993/* Returns the number of bits needed for the number of bytes in a page */
994static inline unsigned int page_shift(struct page *page)
995{
996    return PAGE_SHIFT + compound_order(page);
997}
998
999void free_compound_page(struct page *page);
1000
1001#ifdef CONFIG_MMU
1002/*
1003 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1004 * servicing faults for write access.  In the normal case, do always want
1005 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1006 * that do not have writing enabled, when used by access_process_vm.
1007 */
1008static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1009{
1010    if (likely(vma->vm_flags & VM_WRITE)) {
1011        pte = pte_mkwrite(pte);
1012    }
1013    return pte;
1014}
1015
1016vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
1017vm_fault_t finish_fault(struct vm_fault *vmf);
1018vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019#endif
1020
1021/*
1022 * Multiple processes may "see" the same page. E.g. for untouched
1023 * mappings of /dev/null, all processes see the same page full of
1024 * zeroes, and text pages of executables and shared libraries have
1025 * only one copy in memory, at most, normally.
1026 *
1027 * For the non-reserved pages, page_count(page) denotes a reference count.
1028 *   page_count() == 0 means the page is free. page->lru is then used for
1029 *   freelist management in the buddy allocator.
1030 *   page_count() > 0  means the page has been allocated.
1031 *
1032 * Pages are allocated by the slab allocator in order to provide memory
1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035 * unless a particular usage is carefully commented. (the responsibility of
1036 * freeing the kmalloc memory is the caller's, of course).
1037 *
1038 * A page may be used by anyone else who does a __get_free_page().
1039 * In this case, page_count still tracks the references, and should only
1040 * be used through the normal accessor functions. The top bits of page->flags
1041 * and page->virtual store page management information, but all other fields
1042 * are unused and could be used privately, carefully. The management of this
1043 * page is the responsibility of the one who allocated it, and those who have
1044 * subsequently been given references to it.
1045 *
1046 * The other pages (we may call them "pagecache pages") are completely
1047 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048 * The following discussion applies only to them.
1049 *
1050 * A pagecache page contains an opaque `private' member, which belongs to the
1051 * page's address_space. Usually, this is the address of a circular list of
1052 * the page's disk buffers. PG_private must be set to tell the VM to call
1053 * into the filesystem to release these pages.
1054 *
1055 * A page may belong to an inode's memory mapping. In this case, page->mapping
1056 * is the pointer to the inode, and page->index is the file offset of the page,
1057 * in units of PAGE_SIZE.
1058 *
1059 * If pagecache pages are not associated with an inode, they are said to be
1060 * anonymous pages. These may become associated with the swapcache, and in that
1061 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062 *
1063 * In either case (swapcache or inode backed), the pagecache itself holds one
1064 * reference to the page. Setting PG_private should also increment the
1065 * refcount. The each user mapping also has a reference to the page.
1066 *
1067 * The pagecache pages are stored in a per-mapping radix tree, which is
1068 * rooted at mapping->i_pages, and indexed by offset.
1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071 *
1072 * All pagecache pages may be subject to I/O:
1073 * - inode pages may need to be read from disk,
1074 * - inode pages which have been modified and are MAP_SHARED may need
1075 *   to be written back to the inode on disk,
1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077 *   modified may need to be swapped out to swap space and (later) to be read
1078 *   back into memory.
1079 */
1080
1081/*
1082 * The zone field is never updated after free_area_init_core()
1083 * sets it, so none of the operations on it need to be atomic.
1084 */
1085
1086/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087#define SECTIONS_PGOFF ((sizeof(unsigned long) * 8) - SECTIONS_WIDTH)
1088#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1090#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092
1093/*
1094 * Define the bit shifts to access each section.  For non-existent
1095 * sections we define the shift as 0; that plus a 0 mask ensures
1096 * the compiler will optimise away reference to them.
1097 */
1098#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1101#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103
1104/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105#ifdef NODE_NOT_IN_PAGE_FLAGS
1106#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1107#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? SECTIONS_PGOFF : ZONES_PGOFF)
1108#else
1109#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1110#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? NODES_PGOFF : ZONES_PGOFF)
1111#endif
1112
1113#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1114
1115#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1116#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1117#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1118#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1119#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1120#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1121
1122static inline enum zone_type page_zonenum(const struct page *page)
1123{
1124    ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1125    return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1126}
1127
1128#ifdef CONFIG_ZONE_DEVICE
1129static inline bool is_zone_device_page(const struct page *page)
1130{
1131    return page_zonenum(page) == ZONE_DEVICE;
1132}
1133extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *);
1134#else
1135static inline bool is_zone_device_page(const struct page *page)
1136{
1137    return false;
1138}
1139#endif
1140
1141#ifdef CONFIG_DEV_PAGEMAP_OPS
1142void free_devmap_managed_page(struct page *page);
1143DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1144
1145static inline bool page_is_devmap_managed(struct page *page)
1146{
1147    if (!static_branch_unlikely(&devmap_managed_key)) {
1148        return false;
1149    }
1150    if (!is_zone_device_page(page)) {
1151        return false;
1152    }
1153    switch (page->pgmap->type) {
1154        case MEMORY_DEVICE_PRIVATE:
1155        case MEMORY_DEVICE_FS_DAX:
1156            return true;
1157        default:
1158            break;
1159    }
1160    return false;
1161}
1162
1163void put_devmap_managed_page(struct page *page);
1164
1165#else  /* CONFIG_DEV_PAGEMAP_OPS */
1166static inline bool page_is_devmap_managed(struct page *page)
1167{
1168    return false;
1169}
1170
1171static inline void put_devmap_managed_page(struct page *page)
1172{
1173}
1174#endif /* CONFIG_DEV_PAGEMAP_OPS */
1175
1176static inline bool is_device_private_page(const struct page *page)
1177{
1178    return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) &&
1179           page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1180}
1181
1182static inline bool is_pci_p2pdma_page(const struct page *page)
1183{
1184    return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) &&
1185           page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1186}
1187
1188/* 127: arbitrary random number, small enough to assemble well */
1189#define page_ref_zero_or_close_to_overflow(page) ((unsigned int)page_ref_count(page) + 127u <= 127u)
1190
1191static inline void get_page(struct page *page)
1192{
1193    page = compound_head(page);
1194    /*
1195     * Getting a normal page or the head of a compound page
1196     * requires to already have an elevated page->_refcount.
1197     */
1198    VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1199    page_ref_inc(page);
1200}
1201
1202bool __must_check try_grab_page(struct page *page, unsigned int flags);
1203
1204static inline __must_check bool try_get_page(struct page *page)
1205{
1206    page = compound_head(page);
1207    if (WARN_ON_ONCE(page_ref_count(page) <= 0)) {
1208        return false;
1209    }
1210    page_ref_inc(page);
1211    return true;
1212}
1213
1214static inline void put_page(struct page *page)
1215{
1216    page = compound_head(page);
1217    /*
1218     * For devmap managed pages we need to catch refcount transition from
1219     * 2 to 1, when refcount reach one it means the page is free and we
1220     * need to inform the device driver through callback. See
1221     * include/linux/memremap.h and HMM for details.
1222     */
1223    if (page_is_devmap_managed(page)) {
1224        put_devmap_managed_page(page);
1225        return;
1226    }
1227
1228    if (put_page_testzero(page)) {
1229        __put_page(page);
1230    }
1231}
1232
1233/*
1234 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1235 * the page's refcount so that two separate items are tracked: the original page
1236 * reference count, and also a new count of how many pin_user_pages() calls were
1237 * made against the page. ("gup-pinned" is another term for the latter).
1238 *
1239 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1240 * distinct from normal pages. As such, the unpin_user_page() call (and its
1241 * variants) must be used in order to release gup-pinned pages.
1242 *
1243 * Choice of value:
1244 *
1245 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1246 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1247 * simpler, due to the fact that adding an even power of two to the page
1248 * refcount has the effect of using only the upper N bits, for the code that
1249 * counts up using the bias value. This means that the lower bits are left for
1250 * the exclusive use of the original code that increments and decrements by one
1251 * (or at least, by much smaller values than the bias value).
1252 *
1253 * Of course, once the lower bits overflow into the upper bits (and this is
1254 * OK, because subtraction recovers the original values), then visual inspection
1255 * no longer suffices to directly view the separate counts. However, for normal
1256 * applications that don't have huge page reference counts, this won't be an
1257 * issue.
1258 *
1259 * Locking: the lockless algorithm described in page_cache_get_speculative()
1260 * and page_cache_gup_pin_speculative() provides safe operation for
1261 * get_user_pages and page_mkclean and other calls that race to set up page
1262 * table entries.
1263 */
1264#define GUP_PIN_COUNTING_BIAS (1U << 10)
1265
1266void unpin_user_page(struct page *page);
1267void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty);
1268void unpin_user_pages(struct page **pages, unsigned long npages);
1269
1270/**
1271 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1272 *
1273 * This function checks if a page has been pinned via a call to
1274 * pin_user_pages*().
1275 *
1276 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1277 * because it means "definitely not pinned for DMA", but true means "probably
1278 * pinned for DMA, but possibly a false positive due to having at least
1279 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1280 *
1281 * False positives are OK, because: a) it's unlikely for a page to get that many
1282 * refcounts, and b) all the callers of this routine are expected to be able to
1283 * deal gracefully with a false positive.
1284 *
1285 * For huge pages, the result will be exactly correct. That's because we have
1286 * more tracking data available: the 3rd struct page in the compound page is
1287 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1288 * scheme).
1289 *
1290 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1291 *
1292 * @page:    pointer to page to be queried.
1293 * @Return:    True, if it is likely that the page has been "dma-pinned".
1294 *        False, if the page is definitely not dma-pinned.
1295 */
1296static inline bool page_maybe_dma_pinned(struct page *page)
1297{
1298    if (hpage_pincount_available(page)) {
1299        return compound_pincount(page) > 0;
1300    }
1301
1302    /*
1303     * page_ref_count() is signed. If that refcount overflows, then
1304     * page_ref_count() returns a negative value, and callers will avoid
1305     * further incrementing the refcount.
1306     *
1307     * Here, for that overflow case, use the signed bit to count a little
1308     * bit higher via unsigned math, and thus still get an accurate result.
1309     */
1310    return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS;
1311}
1312
1313#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1314#define SECTION_IN_PAGE_FLAGS
1315#endif
1316
1317/*
1318 * The identification function is mainly used by the buddy allocator for
1319 * determining if two pages could be buddies. We are not really identifying
1320 * the zone since we could be using the section number id if we do not have
1321 * node id available in page flags.
1322 * We only guarantee that it will return the same value for two combinable
1323 * pages in a zone.
1324 */
1325static inline int page_zone_id(struct page *page)
1326{
1327    return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1328}
1329
1330#ifdef NODE_NOT_IN_PAGE_FLAGS
1331extern int page_to_nid(const struct page *page);
1332#else
1333static inline int page_to_nid(const struct page *page)
1334{
1335    struct page *p = (struct page *)page;
1336
1337    return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1338}
1339#endif
1340
1341#ifdef CONFIG_NUMA_BALANCING
1342static inline int cpu_pid_to_cpupid(int cpu, int pid)
1343{
1344    return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1345}
1346
1347static inline int cpupid_to_pid(int cpupid)
1348{
1349    return cpupid & LAST__PID_MASK;
1350}
1351
1352static inline int cpupid_to_cpu(int cpupid)
1353{
1354    return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1355}
1356
1357static inline int cpupid_to_nid(int cpupid)
1358{
1359    return cpu_to_node(cpupid_to_cpu(cpupid));
1360}
1361
1362static inline bool cpupid_pid_unset(int cpupid)
1363{
1364    return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1365}
1366
1367static inline bool cpupid_cpu_unset(int cpupid)
1368{
1369    return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1370}
1371
1372static inline bool _cpupid_match_pid(pid_t task_pid, int cpupid)
1373{
1374    return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1375}
1376
1377#define cpupid_match_pid(task, cpupid) _cpupid_match_pid(task->pid, cpupid)
1378#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1379static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1380{
1381    return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1382}
1383
1384static inline int page_cpupid_last(struct page *page)
1385{
1386    return page->_last_cpupid;
1387}
1388static inline void page_cpupid_reset_last(struct page *page)
1389{
1390    page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1391}
1392#else
1393static inline int page_cpupid_last(struct page *page)
1394{
1395    return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1396}
1397
1398extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1399
1400static inline void page_cpupid_reset_last(struct page *page)
1401{
1402    page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1403}
1404#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1405#else  /* !CONFIG_NUMA_BALANCING */
1406static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1407{
1408    return page_to_nid(page); /* XXX */
1409}
1410
1411static inline int page_cpupid_last(struct page *page)
1412{
1413    return page_to_nid(page); /* XXX */
1414}
1415
1416static inline int cpupid_to_nid(int cpupid)
1417{
1418    return -1;
1419}
1420
1421static inline int cpupid_to_pid(int cpupid)
1422{
1423    return -1;
1424}
1425
1426static inline int cpupid_to_cpu(int cpupid)
1427{
1428    return -1;
1429}
1430
1431static inline int cpu_pid_to_cpupid(int nid, int pid)
1432{
1433    return -1;
1434}
1435
1436static inline bool cpupid_pid_unset(int cpupid)
1437{
1438    return true;
1439}
1440
1441static inline void page_cpupid_reset_last(struct page *page)
1442{
1443}
1444
1445static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1446{
1447    return false;
1448}
1449#endif /* CONFIG_NUMA_BALANCING */
1450
1451#ifdef CONFIG_KASAN_SW_TAGS
1452
1453/*
1454 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1455 * setting tags for all pages to native kernel tag value 0xff, as the default
1456 * value 0x00 maps to 0xff.
1457 */
1458
1459static inline u8 page_kasan_tag(const struct page *page)
1460{
1461    u8 tag;
1462
1463    tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1464    tag ^= 0xff;
1465
1466    return tag;
1467}
1468
1469static inline void page_kasan_tag_set(struct page *page, u8 tag)
1470{
1471    tag ^= 0xff;
1472    page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1473    page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1474}
1475
1476static inline void page_kasan_tag_reset(struct page *page)
1477{
1478    page_kasan_tag_set(page, 0xff);
1479}
1480#else
1481static inline u8 page_kasan_tag(const struct page *page)
1482{
1483    return 0xff;
1484}
1485
1486static inline void page_kasan_tag_set(struct page *page, u8 tag)
1487{
1488}
1489static inline void page_kasan_tag_reset(struct page *page)
1490{
1491}
1492#endif
1493
1494static inline struct zone *page_zone(const struct page *page)
1495{
1496    return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1497}
1498
1499static inline pg_data_t *page_pgdat(const struct page *page)
1500{
1501    return NODE_DATA(page_to_nid(page));
1502}
1503
1504#ifdef SECTION_IN_PAGE_FLAGS
1505static inline void set_page_section(struct page *page, unsigned long section)
1506{
1507    page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1508    page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1509}
1510
1511static inline unsigned long page_to_section(const struct page *page)
1512{
1513    return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1514}
1515#endif
1516
1517static inline void set_page_zone(struct page *page, enum zone_type zone)
1518{
1519    page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1520    page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1521}
1522
1523static inline void set_page_node(struct page *page, unsigned long node)
1524{
1525    page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1526    page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1527}
1528
1529static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn)
1530{
1531    set_page_zone(page, zone);
1532    set_page_node(page, node);
1533#ifdef SECTION_IN_PAGE_FLAGS
1534    set_page_section(page, pfn_to_section_nr(pfn));
1535#endif
1536}
1537
1538#ifdef CONFIG_MEMCG
1539static inline struct mem_cgroup *page_memcg(struct page *page)
1540{
1541    return page->mem_cgroup;
1542}
1543static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1544{
1545    WARN_ON_ONCE(!rcu_read_lock_held());
1546    return READ_ONCE(page->mem_cgroup);
1547}
1548#else
1549static inline struct mem_cgroup *page_memcg(struct page *page)
1550{
1551    return NULL;
1552}
1553static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1554{
1555    WARN_ON_ONCE(!rcu_read_lock_held());
1556    return NULL;
1557}
1558#endif
1559
1560/*
1561 * Some inline functions in vmstat.h depend on page_zone()
1562 */
1563#include <linux/vmstat.h>
1564
1565static __always_inline void *lowmem_page_address(const struct page *page)
1566{
1567    return page_to_virt(page);
1568}
1569
1570#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1571#define HASHED_PAGE_VIRTUAL
1572#endif
1573
1574#if defined(WANT_PAGE_VIRTUAL)
1575static inline void *page_address(const struct page *page)
1576{
1577    return page->virtual;
1578}
1579static inline void set_page_address(struct page *page, void *address)
1580{
1581    page->virtual = address;
1582}
1583#define page_address_init()                                                                                            \
1584    do {                                                                                                               \
1585    } while (0)
1586#endif
1587
1588#if defined(HASHED_PAGE_VIRTUAL)
1589void *page_address(const struct page *page);
1590void set_page_address(struct page *page, void *virtual);
1591void page_address_init(void);
1592#endif
1593
1594#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1595#define page_address(page) lowmem_page_address(page)
1596#define set_page_address(page, address)                                                                                \
1597    do {                                                                                                               \
1598    } while (0)
1599#define page_address_init()                                                                                            \
1600    do {                                                                                                               \
1601    } while (0)
1602#endif
1603
1604extern void *page_rmapping(struct page *page);
1605extern struct anon_vma *page_anon_vma(struct page *page);
1606extern struct address_space *page_mapping(struct page *page);
1607
1608extern struct address_space *__page_file_mapping(struct page *);
1609
1610static inline struct address_space *page_file_mapping(struct page *page)
1611{
1612    if (unlikely(PageSwapCache(page))) {
1613        return __page_file_mapping(page);
1614    }
1615
1616    return page->mapping;
1617}
1618
1619extern pgoff_t __page_file_index(struct page *page);
1620
1621/*
1622 * Return the pagecache index of the passed page.  Regular pagecache pages
1623 * use ->index whereas swapcache pages use swp_offset(->private)
1624 */
1625static inline pgoff_t page_index(struct page *page)
1626{
1627    if (unlikely(PageSwapCache(page))) {
1628        return __page_file_index(page);
1629    }
1630    return page->index;
1631}
1632
1633bool page_mapped(struct page *page);
1634struct address_space *page_mapping(struct page *page);
1635struct address_space *page_mapping_file(struct page *page);
1636
1637/*
1638 * Return true only if the page has been allocated with
1639 * ALLOC_NO_WATERMARKS and the low watermark was not
1640 * met implying that the system is under some pressure.
1641 */
1642static inline bool page_is_pfmemalloc(struct page *page)
1643{
1644    /*
1645     * Page index cannot be this large so this must be
1646     * a pfmemalloc page.
1647     */
1648    return page->index == -1UL;
1649}
1650
1651/*
1652 * Only to be called by the page allocator on a freshly allocated
1653 * page.
1654 */
1655static inline void set_page_pfmemalloc(struct page *page)
1656{
1657    page->index = -1UL;
1658}
1659
1660static inline void clear_page_pfmemalloc(struct page *page)
1661{
1662    page->index = 0;
1663}
1664
1665/*
1666 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1667 */
1668extern void pagefault_out_of_memory(void);
1669
1670#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1671#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1672
1673/*
1674 * Flags passed to show_mem() and show_free_areas() to suppress output in
1675 * various contexts.
1676 */
1677#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1678
1679extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1680
1681#ifdef CONFIG_MMU
1682extern bool can_do_mlock(void);
1683#else
1684static inline bool can_do_mlock(void)
1685{
1686    return false;
1687}
1688#endif
1689extern int user_shm_lock(size_t, struct user_struct *);
1690extern void user_shm_unlock(size_t, struct user_struct *);
1691
1692/*
1693 * Parameter block passed down to zap_pte_range in exceptional cases.
1694 */
1695struct zap_details {
1696    struct address_space *check_mapping; /* Check page->mapping if set */
1697    pgoff_t first_index;                 /* Lowest page->index to unmap */
1698    pgoff_t last_index;                  /* Highest page->index to unmap */
1699    struct page *single_page;            /* Locked page to be unmapped */
1700};
1701
1702struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte);
1703struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd);
1704
1705void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1706void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size);
1707void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end);
1708
1709struct mmu_notifier_range;
1710
1711void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor,
1712                    unsigned long ceiling);
1713int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1714int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp,
1715                          pmd_t **pmdpp, spinlock_t **ptlp);
1716int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp);
1717int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn);
1718int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot,
1719                resource_size_t *phys);
1720int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write);
1721
1722extern void truncate_pagecache(struct inode *inode, loff_t new);
1723extern void truncate_setsize(struct inode *inode, loff_t newsize);
1724void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1725void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1726int truncate_inode_page(struct address_space *mapping, struct page *page);
1727int generic_error_remove_page(struct address_space *mapping, struct page *page);
1728int invalidate_inode_page(struct page *page);
1729
1730#ifdef CONFIG_MMU
1731extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1732                                  struct pt_regs *regs);
1733extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked);
1734void unmap_mapping_page(struct page *page);
1735void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows);
1736void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows);
1737#else
1738static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags,
1739                                         struct pt_regs *regs)
1740{
1741    /* should never happen if there's no MMU */
1742    BUG();
1743    return VM_FAULT_SIGBUS;
1744}
1745static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags,
1746                                   bool *unlocked)
1747{
1748    /* should never happen if there's no MMU */
1749    BUG();
1750    return -EFAULT;
1751}
1752static inline void unmap_mapping_page(struct page *page)
1753{
1754}
1755static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows)
1756{
1757}
1758static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen,
1759                                       int even_cows)
1760{
1761}
1762#endif
1763
1764static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin,
1765                                              loff_t const holelen)
1766{
1767    unmap_mapping_range(mapping, holebegin, holelen, 0);
1768}
1769
1770extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1771extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags);
1772extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len,
1773                              unsigned int gup_flags);
1774
1775long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1776                           struct page **pages, struct vm_area_struct **vmas, int *locked);
1777long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
1778                           struct page **pages, struct vm_area_struct **vmas, int *locked);
1779long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1780                    struct vm_area_struct **vmas);
1781long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1782                    struct vm_area_struct **vmas);
1783long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1784                           int *locked);
1785long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages,
1786                           int *locked);
1787long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1788long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags);
1789
1790int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1791int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1792
1793int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1794int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task,
1795                        bool bypass_rlim);
1796
1797/* Container for pinned pfns / pages */
1798struct frame_vector {
1799    unsigned int nr_allocated; /* Number of frames we have space for */
1800    unsigned int nr_frames;    /* Number of frames stored in ptrs array */
1801    bool got_ref;              /* Did we pin pages by getting page ref? */
1802    bool is_pfns;              /* Does array contain pages or pfns? */
1803    void *ptrs[];              /* Array of pinned pfns / pages. Use
1804                                * pfns_vector_pages() or pfns_vector_pfns()
1805                                * for access */
1806};
1807
1808struct frame_vector *frame_vector_create(unsigned int nr_frames);
1809void frame_vector_destroy(struct frame_vector *vec);
1810int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec);
1811void put_vaddr_frames(struct frame_vector *vec);
1812int frame_vector_to_pages(struct frame_vector *vec);
1813void frame_vector_to_pfns(struct frame_vector *vec);
1814
1815static inline unsigned int frame_vector_count(struct frame_vector *vec)
1816{
1817    return vec->nr_frames;
1818}
1819
1820static inline struct page **frame_vector_pages(struct frame_vector *vec)
1821{
1822    if (vec->is_pfns) {
1823        int err = frame_vector_to_pages(vec);
1824        if (err) {
1825            return ERR_PTR(err);
1826        }
1827    }
1828    return (struct page **)(vec->ptrs);
1829}
1830
1831static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1832{
1833    if (!vec->is_pfns) {
1834        frame_vector_to_pfns(vec);
1835    }
1836    return (unsigned long *)(vec->ptrs);
1837}
1838
1839struct kvec;
1840int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages);
1841int get_kernel_page(unsigned long start, int write, struct page **pages);
1842struct page *get_dump_page(unsigned long addr);
1843
1844extern int try_to_release_page(struct page *page, gfp_t gfp_mask);
1845extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length);
1846
1847void __set_page_dirty(struct page *, struct address_space *, int warn);
1848int __set_page_dirty_nobuffers(struct page *page);
1849int __set_page_dirty_no_writeback(struct page *page);
1850int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page);
1851void account_page_dirtied(struct page *page, struct address_space *mapping);
1852void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb);
1853int set_page_dirty(struct page *page);
1854int set_page_dirty_lock(struct page *page);
1855void __cancel_dirty_page(struct page *page);
1856static inline void cancel_dirty_page(struct page *page)
1857{
1858    /* Avoid atomic ops, locking, etc. when not actually needed. */
1859    if (PageDirty(page)) {
1860        __cancel_dirty_page(page);
1861    }
1862}
1863int clear_page_dirty_for_io(struct page *page);
1864
1865int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1866
1867extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr,
1868                                      struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len,
1869                                      bool need_rmap_locks);
1870
1871/*
1872 * Flags used by change_protection().  For now we make it a bitmap so
1873 * that we can pass in multiple flags just like parameters.  However
1874 * for now all the callers are only use one of the flags at the same
1875 * time.
1876 */
1877/* Whether we should allow dirty bit accounting */
1878#define MM_CP_DIRTY_ACCT (1UL << 0)
1879/* Whether this protection change is for NUMA hints */
1880#define MM_CP_PROT_NUMA (1UL << 1)
1881/* Whether this change is for write protecting */
1882#define MM_CP_UFFD_WP (1UL << 2)         /* do wp */
1883#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1884#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | MM_CP_UFFD_WP_RESOLVE)
1885
1886extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end,
1887                                       pgprot_t newprot, unsigned long cp_flags);
1888extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start,
1889                          unsigned long end, unsigned long newflags);
1890
1891/*
1892 * doesn't attempt to fault and will return short.
1893 */
1894int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1895int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages);
1896
1897static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep)
1898{
1899    return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1900}
1901/*
1902 * per-process(per-mm_struct) statistics.
1903 */
1904static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1905{
1906    long val = atomic_long_read(&mm->rss_stat.count[member]);
1907#ifdef SPLIT_RSS_COUNTING
1908    /*
1909     * counter is updated in asynchronous manner and may go to minus.
1910     * But it's never be expected number for users.
1911     */
1912    if (val < 0) {
1913        val = 0;
1914    }
1915#endif
1916    return (unsigned long)val;
1917}
1918
1919void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1920
1921#ifdef CONFIG_RSS_THRESHOLD
1922void listen_rss_threshold(struct mm_struct *mm);
1923#endif
1924
1925static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1926{
1927    long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1928
1929#ifdef CONFIG_RSS_THRESHOLD
1930    listen_rss_threshold(mm);
1931#endif
1932
1933    mm_trace_rss_stat(mm, member, count);
1934}
1935
1936static inline void inc_mm_counter(struct mm_struct *mm, int member)
1937{
1938    long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1939
1940#ifdef CONFIG_RSS_THRESHOLD
1941    listen_rss_threshold(mm);
1942#endif
1943
1944    mm_trace_rss_stat(mm, member, count);
1945}
1946
1947static inline void dec_mm_counter(struct mm_struct *mm, int member)
1948{
1949    long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1950
1951    mm_trace_rss_stat(mm, member, count);
1952}
1953
1954/* Optimized variant when page is already known not to be PageAnon */
1955static inline int mm_counter_file(struct page *page)
1956{
1957    if (PageSwapBacked(page)) {
1958        return MM_SHMEMPAGES;
1959    }
1960    return MM_FILEPAGES;
1961}
1962
1963static inline int mm_counter(struct page *page)
1964{
1965    if (PageAnon(page)) {
1966        return MM_ANONPAGES;
1967    }
1968    return mm_counter_file(page);
1969}
1970
1971static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972{
1973    return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES);
1974}
1975
1976static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1977{
1978    return max(mm->hiwater_rss, get_mm_rss(mm));
1979}
1980
1981static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1982{
1983    return max(mm->hiwater_vm, mm->total_vm);
1984}
1985
1986static inline void update_hiwater_rss(struct mm_struct *mm)
1987{
1988    unsigned long _rss = get_mm_rss(mm);
1989    if ((mm)->hiwater_rss < _rss) {
1990        (mm)->hiwater_rss = _rss;
1991    }
1992}
1993
1994static inline void update_hiwater_vm(struct mm_struct *mm)
1995{
1996    if (mm->hiwater_vm < mm->total_vm) {
1997        mm->hiwater_vm = mm->total_vm;
1998    }
1999}
2000
2001static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2002{
2003    mm->hiwater_rss = get_mm_rss(mm);
2004}
2005
2006static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm)
2007{
2008    unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2009    if (*maxrss < hiwater_rss) {
2010        *maxrss = hiwater_rss;
2011    }
2012}
2013
2014#if defined(SPLIT_RSS_COUNTING)
2015void sync_mm_rss(struct mm_struct *mm);
2016#else
2017static inline void sync_mm_rss(struct mm_struct *mm)
2018{
2019}
2020#endif
2021
2022#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2023static inline int pte_special(pte_t pte)
2024{
2025    return 0;
2026}
2027
2028static inline pte_t pte_mkspecial(pte_t pte)
2029{
2030    return pte;
2031}
2032#endif
2033
2034#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2035static inline int pte_devmap(pte_t pte)
2036{
2037    return 0;
2038}
2039#endif
2040
2041int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2042
2043extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
2044static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
2045{
2046    pte_t *ptep;
2047    __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2048    return ptep;
2049}
2050
2051#ifdef __PAGETABLE_P4D_FOLDED
2052static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2053{
2054    return 0;
2055}
2056#else
2057int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2058#endif
2059
2060#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2061static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2062{
2063    return 0;
2064}
2065static inline void mm_inc_nr_puds(struct mm_struct *mm)
2066{
2067}
2068static inline void mm_dec_nr_puds(struct mm_struct *mm)
2069{
2070}
2071
2072#else
2073int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2074
2075static inline void mm_inc_nr_puds(struct mm_struct *mm)
2076{
2077    if (mm_pud_folded(mm)) {
2078        return;
2079    }
2080    atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2081}
2082
2083static inline void mm_dec_nr_puds(struct mm_struct *mm)
2084{
2085    if (mm_pud_folded(mm)) {
2086        return;
2087    }
2088    atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089}
2090#endif
2091
2092#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2093static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2094{
2095    return 0;
2096}
2097
2098static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2099{
2100}
2101static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2102{
2103}
2104
2105#else
2106int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2107
2108static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2109{
2110    if (mm_pmd_folded(mm)) {
2111        return;
2112    }
2113    atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2114}
2115
2116static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2117{
2118    if (mm_pmd_folded(mm)) {
2119        return;
2120    }
2121    atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2122}
2123#endif
2124
2125#ifdef CONFIG_MMU
2126static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2127{
2128    atomic_long_set(&mm->pgtables_bytes, 0);
2129}
2130
2131static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2132{
2133    return atomic_long_read(&mm->pgtables_bytes);
2134}
2135
2136static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2137{
2138    atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139}
2140
2141static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2142{
2143    atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2144}
2145#else
2146
2147static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2148{
2149}
2150static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2151{
2152    return 0;
2153}
2154
2155static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2156{
2157}
2158static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2159{
2160}
2161#endif
2162
2163int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2164int __pte_alloc_kernel(pmd_t *pmd);
2165
2166#if defined(CONFIG_MMU)
2167
2168static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2169{
2170    return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address);
2171}
2172
2173static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
2174{
2175    return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address);
2176}
2177
2178static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2179{
2180    return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address)) ? NULL : pmd_offset(pud, address);
2181}
2182#endif /* CONFIG_MMU */
2183
2184#if USE_SPLIT_PTE_PTLOCKS
2185#if ALLOC_SPLIT_PTLOCKS
2186void __init ptlock_cache_init(void);
2187extern bool ptlock_alloc(struct page *page);
2188extern void ptlock_free(struct page *page);
2189
2190static inline spinlock_t *ptlock_ptr(struct page *page)
2191{
2192    return page->ptl;
2193}
2194#else  /* ALLOC_SPLIT_PTLOCKS */
2195static inline void ptlock_cache_init(void)
2196{
2197}
2198
2199static inline bool ptlock_alloc(struct page *page)
2200{
2201    return true;
2202}
2203
2204static inline void ptlock_free(struct page *page)
2205{
2206}
2207
2208static inline spinlock_t *ptlock_ptr(struct page *page)
2209{
2210    return &page->ptl;
2211}
2212#endif /* ALLOC_SPLIT_PTLOCKS */
2213
2214static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2215{
2216    return ptlock_ptr(pmd_page(*pmd));
2217}
2218
2219static inline bool ptlock_init(struct page *page)
2220{
2221    /*
2222     * prep_new_page() initialize page->private (and therefore page->ptl)
2223     * with 0. Make sure nobody took it in use in between.
2224     *
2225     * It can happen if arch try to use slab for page table allocation:
2226     * slab code uses page->slab_cache, which share storage with page->ptl.
2227     */
2228    VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2229    if (!ptlock_alloc(page)) {
2230        return false;
2231    }
2232    spin_lock_init(ptlock_ptr(page));
2233    return true;
2234}
2235
2236#else  /* !USE_SPLIT_PTE_PTLOCKS */
2237/*
2238 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2239 */
2240static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2241{
2242    return &mm->page_table_lock;
2243}
2244static inline void ptlock_cache_init(void)
2245{
2246}
2247static inline bool ptlock_init(struct page *page)
2248{
2249    return true;
2250}
2251static inline void ptlock_free(struct page *page)
2252{
2253}
2254#endif /* USE_SPLIT_PTE_PTLOCKS */
2255
2256static inline void pgtable_init(void)
2257{
2258    ptlock_cache_init();
2259    pgtable_cache_init();
2260}
2261
2262static inline bool pgtable_pte_page_ctor(struct page *page)
2263{
2264    if (!ptlock_init(page)) {
2265        return false;
2266    }
2267    __SetPageTable(page);
2268    inc_zone_page_state(page, NR_PAGETABLE);
2269    return true;
2270}
2271
2272static inline void pgtable_pte_page_dtor(struct page *page)
2273{
2274    ptlock_free(page);
2275    __ClearPageTable(page);
2276    dec_zone_page_state(page, NR_PAGETABLE);
2277}
2278
2279#define pte_offset_map_lock(mm, pmd, address, ptlp)                                                                    \
2280    ( {                                                                                                                \
2281        spinlock_t *__ptl = pte_lockptr(mm, pmd);                                                                      \
2282        pte_t *__pte = pte_offset_map(pmd, address);                                                                   \
2283        *(ptlp) = __ptl;                                                                                               \
2284        spin_lock(__ptl);                                                                                              \
2285        __pte;                                                                                                         \
2286    })
2287
2288#define pte_unmap_unlock(pte, ptl)                                                                                     \
2289    do {                                                                                                               \
2290        spin_unlock(ptl);                                                                                              \
2291        pte_unmap(pte);                                                                                                \
2292    } while (0)
2293
2294#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2295
2296#define pte_alloc_map(mm, pmd, address) (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2297
2298#define pte_alloc_map_lock(mm, pmd, address, ptlp)                                                                     \
2299    (pte_alloc(mm, pmd) ? NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2300
2301#define pte_alloc_kernel(pmd, address)                                                                                 \
2302    ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd)) ? NULL : pte_offset_kernel(pmd, address))
2303
2304#if USE_SPLIT_PMD_PTLOCKS
2305
2306static struct page *pmd_to_page(pmd_t *pmd)
2307{
2308    unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2309    return virt_to_page((void *)((unsigned long)pmd & mask));
2310}
2311
2312static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2313{
2314    return ptlock_ptr(pmd_to_page(pmd));
2315}
2316
2317static inline bool pmd_ptlock_init(struct page *page)
2318{
2319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2320    page->pmd_huge_pte = NULL;
2321#endif
2322    return ptlock_init(page);
2323}
2324
2325static inline void pmd_ptlock_free(struct page *page)
2326{
2327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2328    VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2329#endif
2330    ptlock_free(page);
2331}
2332
2333#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2334
2335#else
2336
2337static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338{
2339    return &mm->page_table_lock;
2340}
2341
2342static inline bool pmd_ptlock_init(struct page *page)
2343{
2344    return true;
2345}
2346static inline void pmd_ptlock_free(struct page *page)
2347{
2348}
2349
2350#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2351
2352#endif
2353
2354static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2355{
2356    spinlock_t *ptl = pmd_lockptr(mm, pmd);
2357    spin_lock(ptl);
2358    return ptl;
2359}
2360
2361static inline bool pgtable_pmd_page_ctor(struct page *page)
2362{
2363    if (!pmd_ptlock_init(page)) {
2364        return false;
2365    }
2366    __SetPageTable(page);
2367    inc_zone_page_state(page, NR_PAGETABLE);
2368    return true;
2369}
2370
2371static inline void pgtable_pmd_page_dtor(struct page *page)
2372{
2373    pmd_ptlock_free(page);
2374    __ClearPageTable(page);
2375    dec_zone_page_state(page, NR_PAGETABLE);
2376}
2377
2378/*
2379 * No scalability reason to split PUD locks yet, but follow the same pattern
2380 * as the PMD locks to make it easier if we decide to.  The VM should not be
2381 * considered ready to switch to split PUD locks yet; there may be places
2382 * which need to be converted from page_table_lock.
2383 */
2384static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2385{
2386    return &mm->page_table_lock;
2387}
2388
2389static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2390{
2391    spinlock_t *ptl = pud_lockptr(mm, pud);
2392
2393    spin_lock(ptl);
2394    return ptl;
2395}
2396
2397extern void __init pagecache_init(void);
2398extern void __init free_area_init_memoryless_node(int nid);
2399extern void free_initmem(void);
2400
2401/*
2402 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2403 * into the buddy system. The freed pages will be poisoned with pattern
2404 * "poison" if it's within range [0, UCHAR_MAX].
2405 * Return pages freed into the buddy system.
2406 */
2407extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s);
2408
2409#ifdef CONFIG_HIGHMEM
2410/*
2411 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2412 * and totalram_pages.
2413 */
2414extern void free_highmem_page(struct page *page);
2415#endif
2416
2417extern void adjust_managed_page_count(struct page *page, long count);
2418extern void mem_init_print_info(const char *str);
2419
2420extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2421
2422/* Free the reserved page into the buddy system, so it gets managed. */
2423static inline void __free_reserved_page(struct page *page)
2424{
2425    ClearPageReserved(page);
2426    init_page_count(page);
2427    __free_page(page);
2428}
2429
2430static inline void free_reserved_page(struct page *page)
2431{
2432    __free_reserved_page(page);
2433    adjust_managed_page_count(page, 1);
2434}
2435
2436static inline void mark_page_reserved(struct page *page)
2437{
2438    SetPageReserved(page);
2439    adjust_managed_page_count(page, -1);
2440}
2441
2442/*
2443 * Default method to free all the __init memory into the buddy system.
2444 * The freed pages will be poisoned with pattern "poison" if it's within
2445 * range [0, UCHAR_MAX].
2446 * Return pages freed into the buddy system.
2447 */
2448static inline unsigned long free_initmem_default(int poison)
2449{
2450    extern char __init_begin[], __init_end[];
2451
2452    return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel");
2453}
2454
2455static inline unsigned long get_num_physpages(void)
2456{
2457    int nid;
2458    unsigned long phys_pages = 0;
2459
2460    for_each_online_node(nid) phys_pages += node_present_pages(nid);
2461
2462    return phys_pages;
2463}
2464
2465/*
2466 * Using memblock node mappings, an architecture may initialise its
2467 * zones, allocate the backing mem_map and account for memory holes in an
2468 * architecture independent manner.
2469 *
2470 * An architecture is expected to register range of page frames backed by
2471 * physical memory with memblock_add[_node]() before calling
2472 * free_area_init() passing in the PFN each zone ends at. At a basic
2473 * usage, an architecture is expected to do something like
2474 *
2475 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2476 *                              max_highmem_pfn};
2477 * for_each_valid_physical_page_range()
2478 *     memblock_add_node(base, size, nid)
2479 * free_area_init(max_zone_pfns);
2480 */
2481void free_area_init(unsigned long *max_zone_pfn);
2482unsigned long node_map_pfn_alignment(void);
2483unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn);
2484extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn);
2485extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn);
2486extern unsigned long find_min_pfn_with_active_regions(void);
2487
2488#ifndef CONFIG_NEED_MULTIPLE_NODES
2489static inline int early_pfn_to_nid(unsigned long pfn)
2490{
2491    return 0;
2492}
2493#else
2494/* please see mm/page_alloc.c */
2495extern int __meminit early_pfn_to_nid(unsigned long pfn);
2496/* there is a per-arch backend function. */
2497extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state);
2498#endif
2499
2500extern void set_dma_reserve(unsigned long new_dma_reserve);
2501extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context,
2502                             struct vmem_altmap *, int migratetype);
2503extern void setup_per_zone_wmarks(void);
2504extern int __meminit init_per_zone_wmark_min(void);
2505extern void mem_init(void);
2506extern void __init mmap_init(void);
2507extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2508extern long si_mem_available(void);
2509extern void si_meminfo(struct sysinfo *val);
2510extern void si_meminfo_node(struct sysinfo *val, int nid);
2511#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2512extern unsigned long arch_reserved_kernel_pages(void);
2513#endif
2514
2515extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2516
2517extern void setup_per_cpu_pageset(void);
2518
2519/* page_alloc.c */
2520extern int min_free_kbytes;
2521extern int watermark_boost_factor;
2522extern int watermark_scale_factor;
2523extern bool arch_has_descending_max_zone_pfns(void);
2524
2525/* nommu.c */
2526extern atomic_long_t mmap_pages_allocated;
2527extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2528
2529/* interval_tree.c */
2530void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root);
2531void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev,
2532                                    struct rb_root_cached *root);
2533void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root);
2534struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2535                                                    unsigned long last);
2536struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start,
2537                                                   unsigned long last);
2538
2539#define vma_interval_tree_foreach(vma, root, start, last)                                                              \
2540    for (vma = vma_interval_tree_iter_first(root, start, last); vma;                                                   \
2541         vma = vma_interval_tree_iter_next(vma, start, last))
2542
2543void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root);
2544void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root);
2545struct anon_vma_chain *anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2546                                                         unsigned long last);
2547struct anon_vma_chain *anon_vma_interval_tree_iter_next(struct anon_vma_chain *node, unsigned long start,
2548                                                        unsigned long last);
2549#ifdef CONFIG_DEBUG_VM_RB
2550void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2551#endif
2552
2553#define anon_vma_interval_tree_foreach(avc, root, start, last)                                                         \
2554    for (avc = anon_vma_interval_tree_iter_first(root, start, last); avc;                                              \
2555         avc = anon_vma_interval_tree_iter_next(avc, start, last))
2556
2557/* mmap.c */
2558extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2559extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2560                        struct vm_area_struct *insert, struct vm_area_struct *expand);
2561static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff,
2562                             struct vm_area_struct *insert)
2563{
2564    return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2565}
2566extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2567                                        unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *,
2568                                        pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2569extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2570extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2571extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below);
2572extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2573extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *);
2574extern void unlink_file_vma(struct vm_area_struct *);
2575extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff,
2576                                       bool *need_rmap_locks);
2577extern void exit_mmap(struct mm_struct *);
2578
2579static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data,
2580                                    unsigned long start_data)
2581{
2582    if (rlim < RLIM_INFINITY) {
2583        if (((new - start) + (end_data - start_data)) > rlim) {
2584            return -ENOSPC;
2585        }
2586    }
2587
2588    return 0;
2589}
2590
2591extern int mm_take_all_locks(struct mm_struct *mm);
2592extern void mm_drop_all_locks(struct mm_struct *mm);
2593
2594extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2595extern struct file *get_mm_exe_file(struct mm_struct *mm);
2596extern struct file *get_task_exe_file(struct task_struct *task);
2597
2598extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2599extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2600
2601extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm);
2602extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len,
2603                                                       unsigned long flags, const struct vm_special_mapping *spec);
2604/* This is an obsolete alternative to _install_special_mapping. */
2605extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags,
2606                                   struct page **pages);
2607
2608unsigned long randomize_stack_top(unsigned long stack_top);
2609unsigned long randomize_page(unsigned long start, unsigned long range);
2610
2611extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2612
2613extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags,
2614                                 unsigned long pgoff, struct list_head *uf);
2615extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot,
2616                             unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2617extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade);
2618extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf);
2619extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2620
2621#ifdef CONFIG_MMU
2622extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors);
2623static inline void mm_populate(unsigned long addr, unsigned long len)
2624{
2625    /* Ignore errors */
2626    (void)__mm_populate(addr, len, 1);
2627}
2628#else
2629static inline void mm_populate(unsigned long addr, unsigned long len)
2630{
2631}
2632#endif
2633
2634/* These take the mm semaphore themselves */
2635extern int __must_check vm_brk(unsigned long, unsigned long);
2636extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2637extern int vm_munmap(unsigned long, size_t);
2638extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long,
2639                                          unsigned long);
2640
2641struct vm_unmapped_area_info {
2642#define VM_UNMAPPED_AREA_TOPDOWN 1
2643    unsigned long flags;
2644    unsigned long length;
2645    unsigned long low_limit;
2646    unsigned long high_limit;
2647    unsigned long align_mask;
2648    unsigned long align_offset;
2649};
2650
2651extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2652
2653/* truncate.c */
2654extern void truncate_inode_pages(struct address_space *, loff_t);
2655extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend);
2656extern void truncate_inode_pages_final(struct address_space *);
2657
2658/* generic vm_area_ops exported for stackable file systems */
2659extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2660extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
2661extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2662
2663/* mm/page-writeback.c */
2664int __must_check write_one_page(struct page *page);
2665void task_dirty_inc(struct task_struct *tsk);
2666
2667extern unsigned long stack_guard_gap;
2668/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2669extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2670
2671/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2672extern int expand_downwards(struct vm_area_struct *vma, unsigned long address);
2673#if VM_GROWSUP
2674extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675#else
2676#define expand_upwards(vma, address) (0)
2677#endif
2678
2679/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2680extern struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);
2681extern struct vm_area_struct *find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev);
2682
2683/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2684   NULL if none.  Assume start_addr < end_addr. */
2685static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, unsigned long start_addr,
2686                                                           unsigned long end_addr)
2687{
2688    struct vm_area_struct *vma = find_vma(mm, start_addr);
2689
2690    if (vma && end_addr <= vma->vm_start) {
2691        vma = NULL;
2692    }
2693    return vma;
2694}
2695
2696static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2697{
2698    unsigned long vm_start = vma->vm_start;
2699
2700    if (vma->vm_flags & VM_GROWSDOWN) {
2701        vm_start -= stack_guard_gap;
2702        if (vm_start > vma->vm_start) {
2703            vm_start = 0;
2704        }
2705    }
2706    return vm_start;
2707}
2708
2709static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2710{
2711    unsigned long vm_end = vma->vm_end;
2712
2713    if (vma->vm_flags & VM_GROWSUP) {
2714        vm_end += stack_guard_gap;
2715        if (vm_end < vma->vm_end) {
2716            vm_end = -PAGE_SIZE;
2717        }
2718    }
2719    return vm_end;
2720}
2721
2722static inline unsigned long vma_pages(struct vm_area_struct *vma)
2723{
2724    return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2725}
2726
2727/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2728static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end)
2729{
2730    struct vm_area_struct *vma = find_vma(mm, vm_start);
2731
2732    if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) {
2733        vma = NULL;
2734    }
2735
2736    return vma;
2737}
2738
2739static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end)
2740{
2741    return (vma && vma->vm_start <= start && end <= vma->vm_end);
2742}
2743
2744#ifdef CONFIG_MMU
2745pgprot_t vm_get_page_prot(unsigned long vm_flags);
2746void vma_set_page_prot(struct vm_area_struct *vma);
2747#else
2748static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2749{
2750    return __pgprot(0);
2751}
2752static inline void vma_set_page_prot(struct vm_area_struct *vma)
2753{
2754    vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2755}
2756#endif
2757
2758#ifdef CONFIG_NUMA_BALANCING
2759unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end);
2760#endif
2761
2762struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2763int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t);
2764int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2765int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num);
2766int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2767int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num);
2768vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn);
2769vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot);
2770vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2771vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot);
2772vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn);
2773int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2774
2775static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
2776{
2777    int err = vm_insert_page(vma, addr, page);
2778    if (err == -ENOMEM) {
2779        return VM_FAULT_OOM;
2780    }
2781    if (err < 0 && err != -EBUSY) {
2782        return VM_FAULT_SIGBUS;
2783    }
2784    return VM_FAULT_NOPAGE;
2785}
2786
2787#ifndef io_remap_pfn_range
2788static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn,
2789                                     unsigned long size, pgprot_t prot)
2790{
2791    return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2792}
2793#endif
2794
2795static inline vm_fault_t vmf_error(int err)
2796{
2797    if (err == -ENOMEM) {
2798        return VM_FAULT_OOM;
2799    }
2800    return VM_FAULT_SIGBUS;
2801}
2802
2803struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags);
2804
2805#define FOLL_WRITE 0x01 /* check pte is writable */
2806#define FOLL_TOUCH 0x02 /* mark page accessed */
2807#define FOLL_GET 0x04   /* do get_page on page */
2808#define FOLL_DUMP 0x08  /* give error on hole if it would be zero */
2809#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2810#define FOLL_NOWAIT                                                                                                    \
2811    0x20                       /* if a disk transfer is needed, start the IO                                           \
2812                                * and return without waiting upon it */
2813#define FOLL_POPULATE 0x40     /* fault in page */
2814#define FOLL_SPLIT 0x80        /* don't return transhuge pages, split them */
2815#define FOLL_HWPOISON 0x100    /* check page is hwpoisoned */
2816#define FOLL_NUMA 0x200        /* force NUMA hinting page fault */
2817#define FOLL_MIGRATION 0x400   /* wait for page to replace migration entry */
2818#define FOLL_TRIED 0x800       /* a retry, previous pass started an IO */
2819#define FOLL_MLOCK 0x1000      /* lock present pages */
2820#define FOLL_REMOTE 0x2000     /* we are working on non-current tsk/mm */
2821#define FOLL_COW 0x4000        /* internal GUP flag */
2822#define FOLL_ANON 0x8000       /* don't do file mappings */
2823#define FOLL_LONGTERM 0x10000  /* mapping lifetime is indefinite: see below */
2824#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2825#define FOLL_PIN 0x40000       /* pages must be released via unpin_user_page */
2826#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2827
2828/*
2829 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2830 * other. Here is what they mean, and how to use them:
2831 *
2832 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2833 * period _often_ under userspace control.  This is in contrast to
2834 * iov_iter_get_pages(), whose usages are transient.
2835 *
2836 * For pages which are part of a filesystem, mappings are subject to the
2837 * lifetime enforced by the filesystem and we need guarantees that longterm
2838 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2839 * the filesystem.  Ideas for this coordination include revoking the longterm
2840 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2841 * added after the problem with filesystems was found FS DAX VMAs are
2842 * specifically failed.  Filesystem pages are still subject to bugs and use of
2843 * FOLL_LONGTERM should be avoided on those pages.
2844 *
2845 * Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2846 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2847 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2848 * is due to an incompatibility with the FS DAX check and
2849 * FAULT_FLAG_ALLOW_RETRY.
2850 *
2851 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2852 * that region.  And so, CMA attempts to migrate the page before pinning, when
2853 * FOLL_LONGTERM is specified.
2854 *
2855 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2856 * but an additional pin counting system) will be invoked. This is intended for
2857 * anything that gets a page reference and then touches page data (for example,
2858 * Direct IO). This lets the filesystem know that some non-file-system entity is
2859 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2860 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2861 * a call to unpin_user_page().
2862 *
2863 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2864 * and separate refcounting mechanisms, however, and that means that each has
2865 * its own acquire and release mechanisms:
2866 *
2867 *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2868 *
2869 *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2870 *
2871 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2872 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2873 * calls applied to them, and that's perfectly OK. This is a constraint on the
2874 * callers, not on the pages.)
2875 *
2876 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2877 * directly by the caller. That's in order to help avoid mismatches when
2878 * releasing pages: get_user_pages*() pages must be released via put_page(),
2879 * while pin_user_pages*() pages must be released via unpin_user_page().
2880 *
2881 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2882 */
2883
2884static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2885{
2886    if (vm_fault & VM_FAULT_OOM) {
2887        return -ENOMEM;
2888    }
2889    if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
2890        return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2891    }
2892    if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) {
2893        return -EFAULT;
2894    }
2895    return 0;
2896}
2897
2898typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2899extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2900                               void *data);
2901extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn,
2902                                        void *data);
2903
2904#ifdef CONFIG_PAGE_POISONING
2905extern bool page_poisoning_enabled(void);
2906extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2907#else
2908static inline bool page_poisoning_enabled(void)
2909{
2910    return false;
2911}
2912static inline bool page_poisoning_enabled_static(void)
2913{
2914    return false;
2915}
2916static inline void _kernel_poison_pages(struct page *page, int nunmpages)
2917{
2918}
2919static inline void kernel_poison_pages(struct page *page, int numpages, int enable)
2920{
2921}
2922#endif
2923
2924#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2925DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2926#else
2927DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2928#endif
2929static inline bool want_init_on_alloc(gfp_t flags)
2930{
2931    if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) {
2932        return true;
2933    }
2934    return flags & __GFP_ZERO;
2935}
2936
2937#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2938DECLARE_STATIC_KEY_TRUE(init_on_free);
2939#else
2940DECLARE_STATIC_KEY_FALSE(init_on_free);
2941#endif
2942static inline bool want_init_on_free(void)
2943{
2944    return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled();
2945}
2946
2947#ifdef CONFIG_DEBUG_PAGEALLOC
2948extern void init_debug_pagealloc(void);
2949#else
2950static inline void init_debug_pagealloc(void)
2951{
2952}
2953#endif
2954extern bool _debug_pagealloc_enabled_early;
2955DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2956
2957static inline bool debug_pagealloc_enabled(void)
2958{
2959    return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early;
2960}
2961
2962/*
2963 * For use in fast paths after init_debug_pagealloc() has run, or when a
2964 * false negative result is not harmful when called too early.
2965 */
2966static inline bool debug_pagealloc_enabled_static(void)
2967{
2968    if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
2969        return false;
2970    }
2971
2972    return static_branch_unlikely(&_debug_pagealloc_enabled);
2973}
2974
2975#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2976extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2977
2978/*
2979 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2980 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2981 */
2982static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2983{
2984    __kernel_map_pages(page, numpages, enable);
2985}
2986#ifdef CONFIG_HIBERNATION
2987extern bool kernel_page_present(struct page *page);
2988#endif /* CONFIG_HIBERNATION */
2989#else  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2990static inline void kernel_map_pages(struct page *page, int numpages, int enable)
2991{
2992}
2993#ifdef CONFIG_HIBERNATION
2994static inline bool kernel_page_present(struct page *page)
2995{
2996    return true;
2997}
2998#endif /* CONFIG_HIBERNATION */
2999#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
3000
3001#ifdef __HAVE_ARCH_GATE_AREA
3002extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3003extern int in_gate_area_no_mm(unsigned long addr);
3004extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3005#else
3006static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3007{
3008    return NULL;
3009}
3010static inline int in_gate_area_no_mm(unsigned long addr)
3011{
3012    return 0;
3013}
3014static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3015{
3016    return 0;
3017}
3018#endif /* __HAVE_ARCH_GATE_AREA */
3019
3020extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3021
3022#ifdef CONFIG_SYSCTL
3023extern int sysctl_drop_caches;
3024int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
3025#endif
3026
3027void drop_slab(void);
3028void drop_slab_node(int nid);
3029
3030#ifndef CONFIG_MMU
3031#define randomize_va_space 0
3032#else
3033extern int randomize_va_space;
3034#endif
3035
3036const char *arch_vma_name(struct vm_area_struct *vma);
3037#ifdef CONFIG_MMU
3038void print_vma_addr(char *prefix, unsigned long rip);
3039#else
3040static inline void print_vma_addr(char *prefix, unsigned long rip)
3041{
3042}
3043#endif
3044
3045void *sparse_buffer_alloc(unsigned long size);
3046struct page *__populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3047pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3048p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3049pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3050pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3051pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap);
3052void *vmemmap_alloc_block(unsigned long size, int node);
3053struct vmem_altmap;
3054void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap);
3055void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3056int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3057int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap);
3058void vmemmap_populate_print_last(void);
3059#ifdef CONFIG_MEMORY_HOTPLUG
3060void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap);
3061#endif
3062void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages);
3063
3064enum mf_flags {
3065    MF_COUNT_INCREASED = 1 << 0,
3066    MF_ACTION_REQUIRED = 1 << 1,
3067    MF_MUST_KILL = 1 << 2,
3068    MF_SOFT_OFFLINE = 1 << 3,
3069};
3070extern int memory_failure(unsigned long pfn, int flags);
3071extern void memory_failure_queue(unsigned long pfn, int flags);
3072extern void memory_failure_queue_kick(int cpu);
3073extern int unpoison_memory(unsigned long pfn);
3074extern int sysctl_memory_failure_early_kill;
3075extern int sysctl_memory_failure_recovery;
3076extern void shake_page(struct page *p, int access);
3077extern atomic_long_t num_poisoned_pages __read_mostly;
3078extern int soft_offline_page(unsigned long pfn, int flags);
3079
3080/*
3081 * Error handlers for various types of pages.
3082 */
3083enum mf_result {
3084    MF_IGNORED,   /* Error: cannot be handled */
3085    MF_FAILED,    /* Error: handling failed */
3086    MF_DELAYED,   /* Will be handled later */
3087    MF_RECOVERED, /* Successfully recovered */
3088};
3089
3090enum mf_action_page_type {
3091    MF_MSG_KERNEL,
3092    MF_MSG_KERNEL_HIGH_ORDER,
3093    MF_MSG_SLAB,
3094    MF_MSG_DIFFERENT_COMPOUND,
3095    MF_MSG_POISONED_HUGE,
3096    MF_MSG_HUGE,
3097    MF_MSG_FREE_HUGE,
3098    MF_MSG_NON_PMD_HUGE,
3099    MF_MSG_UNMAP_FAILED,
3100    MF_MSG_DIRTY_SWAPCACHE,
3101    MF_MSG_CLEAN_SWAPCACHE,
3102    MF_MSG_DIRTY_MLOCKED_LRU,
3103    MF_MSG_CLEAN_MLOCKED_LRU,
3104    MF_MSG_DIRTY_UNEVICTABLE_LRU,
3105    MF_MSG_CLEAN_UNEVICTABLE_LRU,
3106    MF_MSG_DIRTY_LRU,
3107    MF_MSG_CLEAN_LRU,
3108    MF_MSG_TRUNCATED_LRU,
3109    MF_MSG_BUDDY,
3110    MF_MSG_BUDDY_2ND,
3111    MF_MSG_DAX,
3112    MF_MSG_UNSPLIT_THP,
3113    MF_MSG_UNKNOWN,
3114};
3115
3116#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3117extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page);
3118extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma,
3119                                unsigned int pages_per_huge_page);
3120extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src,
3121                                     unsigned int pages_per_huge_page, bool allow_pagefault);
3122
3123/**
3124 * vma_is_special_huge - Are transhuge page-table entries considered special?
3125 * @vma: Pointer to the struct vm_area_struct to consider
3126 *
3127 * Whether transhuge page-table entries are considered "special" following
3128 * the definition in vm_normal_page().
3129 *
3130 * Return: true if transhuge page-table entries should be considered special,
3131 * false otherwise.
3132 */
3133static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3134{
3135    return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3136}
3137
3138#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3139
3140#ifdef CONFIG_DEBUG_PAGEALLOC
3141extern unsigned int _debug_guardpage_minorder;
3142DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3143
3144static inline unsigned int debug_guardpage_minorder(void)
3145{
3146    return _debug_guardpage_minorder;
3147}
3148
3149static inline bool debug_guardpage_enabled(void)
3150{
3151    return static_branch_unlikely(&_debug_guardpage_enabled);
3152}
3153
3154static inline bool page_is_guard(struct page *page)
3155{
3156    if (!debug_guardpage_enabled()) {
3157        return false;
3158    }
3159
3160    return PageGuard(page);
3161}
3162#else
3163static inline unsigned int debug_guardpage_minorder(void)
3164{
3165    return 0;
3166}
3167static inline bool debug_guardpage_enabled(void)
3168{
3169    return false;
3170}
3171static inline bool page_is_guard(struct page *page)
3172{
3173    return false;
3174}
3175#endif /* CONFIG_DEBUG_PAGEALLOC */
3176
3177#if MAX_NUMNODES > 1
3178void __init setup_nr_node_ids(void);
3179#else
3180static inline void setup_nr_node_ids(void)
3181{
3182}
3183#endif
3184
3185extern int memcmp_pages(struct page *page1, struct page *page2);
3186
3187static inline int pages_identical(struct page *page1, struct page *page2)
3188{
3189    return !memcmp_pages(page1, page2);
3190}
3191
3192#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3193unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr,
3194                                                pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start,
3195                                                pgoff_t *end);
3196
3197unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr);
3198#endif
3199
3200extern int sysctl_nr_trim_pages;
3201
3202/**
3203 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3204 * @seals: the seals to check
3205 * @vma: the vma to operate on
3206 *
3207 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3208 * the vma flags.  Return 0 if check pass, or <0 for errors.
3209 */
3210static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3211{
3212    if (seals & F_SEAL_FUTURE_WRITE) {
3213        /*
3214         * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3215         * "future write" seal active.
3216         */
3217        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) {
3218            return -EPERM;
3219        }
3220
3221        /*
3222         * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3223         * MAP_SHARED and read-only, take care to not allow mprotect to
3224         * revert protections on such mappings. Do this only for shared
3225         * mappings. For private mappings, don't need to mask
3226         * VM_MAYWRITE as we still want them to be COW-writable.
3227         */
3228        if (vma->vm_flags & VM_SHARED) {
3229            vma->vm_flags &= ~(VM_MAYWRITE);
3230        }
3231    }
3232
3233    return 0;
3234}
3235
3236#ifdef CONFIG_ANON_VMA_NAME
3237int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3238                          struct anon_vma_name *anon_name);
3239#else
3240static inline int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in,
3241                                        struct anon_vma_name *anon_name)
3242{
3243    return 0;
3244}
3245#endif
3246
3247#endif /* __KERNEL__ */
3248#endif /* _LINUX_MM_H */
3249