13d0407baSopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
23d0407baSopenharmony_ci#ifndef _LINUX_ENERGY_MODEL_H
33d0407baSopenharmony_ci#define _LINUX_ENERGY_MODEL_H
43d0407baSopenharmony_ci#include <linux/cpumask.h>
53d0407baSopenharmony_ci#include <linux/device.h>
63d0407baSopenharmony_ci#include <linux/jump_label.h>
73d0407baSopenharmony_ci#include <linux/kobject.h>
83d0407baSopenharmony_ci#include <linux/rcupdate.h>
93d0407baSopenharmony_ci#include <linux/sched/cpufreq.h>
103d0407baSopenharmony_ci#include <linux/sched/topology.h>
113d0407baSopenharmony_ci#include <linux/types.h>
123d0407baSopenharmony_ci
133d0407baSopenharmony_ci/**
143d0407baSopenharmony_ci * em_perf_state - Performance state of a performance domain
153d0407baSopenharmony_ci * @frequency:    The frequency in KHz, for consistency with CPUFreq
163d0407baSopenharmony_ci * @power:    The power consumed at this level, in milli-watts (by 1 CPU or
173d0407baSopenharmony_ci        by a registered device). It can be a total power: static and
183d0407baSopenharmony_ci        dynamic.
193d0407baSopenharmony_ci * @cost:    The cost coefficient associated with this level, used during
203d0407baSopenharmony_ci *        energy calculation. Equal to: power * max_frequency / frequency
213d0407baSopenharmony_ci */
223d0407baSopenharmony_cistruct em_perf_state {
233d0407baSopenharmony_ci    unsigned long frequency;
243d0407baSopenharmony_ci    unsigned long power;
253d0407baSopenharmony_ci    unsigned long cost;
263d0407baSopenharmony_ci};
273d0407baSopenharmony_ci
283d0407baSopenharmony_ci/**
293d0407baSopenharmony_ci * em_perf_domain - Performance domain
303d0407baSopenharmony_ci * @table:        List of performance states, in ascending order
313d0407baSopenharmony_ci * @nr_perf_states:    Number of performance states
323d0407baSopenharmony_ci * @milliwatts:        Flag indicating the power values are in milli-Watts
333d0407baSopenharmony_ci *            or some other scale.
343d0407baSopenharmony_ci * @cpus:        Cpumask covering the CPUs of the domain. It's here
353d0407baSopenharmony_ci *            for performance reasons to avoid potential cache
363d0407baSopenharmony_ci *            misses during energy calculations in the scheduler
373d0407baSopenharmony_ci *            and simplifies allocating/freeing that memory region.
383d0407baSopenharmony_ci *
393d0407baSopenharmony_ci * In case of CPU device, a "performance domain" represents a group of CPUs
403d0407baSopenharmony_ci * whose performance is scaled together. All CPUs of a performance domain
413d0407baSopenharmony_ci * must have the same micro-architecture. Performance domains often have
423d0407baSopenharmony_ci * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
433d0407baSopenharmony_ci * field is unused.
443d0407baSopenharmony_ci */
453d0407baSopenharmony_cistruct em_perf_domain {
463d0407baSopenharmony_ci    struct em_perf_state *table;
473d0407baSopenharmony_ci    int nr_perf_states;
483d0407baSopenharmony_ci    int milliwatts;
493d0407baSopenharmony_ci    unsigned long cpus[];
503d0407baSopenharmony_ci};
513d0407baSopenharmony_ci
523d0407baSopenharmony_ci#define em_span_cpus(em) (to_cpumask((em)->cpus))
533d0407baSopenharmony_ci
543d0407baSopenharmony_ci#ifdef CONFIG_ENERGY_MODEL
553d0407baSopenharmony_ci#define EM_MAX_POWER 0xFFFF
563d0407baSopenharmony_ci
573d0407baSopenharmony_ci/*
583d0407baSopenharmony_ci * Increase resolution of energy estimation calculations for 64-bit
593d0407baSopenharmony_ci * architectures. The extra resolution improves decision made by EAS for the
603d0407baSopenharmony_ci * task placement when two Performance Domains might provide similar energy
613d0407baSopenharmony_ci * estimation values (w/o better resolution the values could be equal).
623d0407baSopenharmony_ci *
633d0407baSopenharmony_ci * We increase resolution only if we have enough bits to allow this increased
643d0407baSopenharmony_ci * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
653d0407baSopenharmony_ci * are pretty high and the returns do not justify the increased costs.
663d0407baSopenharmony_ci */
673d0407baSopenharmony_ci#ifdef CONFIG_64BIT
683d0407baSopenharmony_ci#define em_scale_power(p) ((p)*1000)
693d0407baSopenharmony_ci#else
703d0407baSopenharmony_ci#define em_scale_power(p) (p)
713d0407baSopenharmony_ci#endif
723d0407baSopenharmony_ci
733d0407baSopenharmony_cistruct em_data_callback {
743d0407baSopenharmony_ci    /**
753d0407baSopenharmony_ci     * active_power() - Provide power at the next performance state of
763d0407baSopenharmony_ci     *        a device
773d0407baSopenharmony_ci     * @power    : Active power at the performance state in mW
783d0407baSopenharmony_ci     *        (modified)
793d0407baSopenharmony_ci     * @freq    : Frequency at the performance state in kHz
803d0407baSopenharmony_ci     *        (modified)
813d0407baSopenharmony_ci     * @dev        : Device for which we do this operation (can be a CPU)
823d0407baSopenharmony_ci     *
833d0407baSopenharmony_ci     * active_power() must find the lowest performance state of 'dev' above
843d0407baSopenharmony_ci     * 'freq' and update 'power' and 'freq' to the matching active power
853d0407baSopenharmony_ci     * and frequency.
863d0407baSopenharmony_ci     *
873d0407baSopenharmony_ci     * In case of CPUs, the power is the one of a single CPU in the domain,
883d0407baSopenharmony_ci     * expressed in milli-watts. It is expected to fit in the
893d0407baSopenharmony_ci     * [0, EM_MAX_POWER] range.
903d0407baSopenharmony_ci     *
913d0407baSopenharmony_ci     * Return 0 on success.
923d0407baSopenharmony_ci     */
933d0407baSopenharmony_ci    int (*active_power)(unsigned long *power, unsigned long *freq, struct device *dev);
943d0407baSopenharmony_ci};
953d0407baSopenharmony_ci#define EM_DATA_CB(_active_power_cb)                                                                                   \
963d0407baSopenharmony_ci    {                                                                                                                  \
973d0407baSopenharmony_ci        .active_power = &_active_power_cb                                                                              \
983d0407baSopenharmony_ci    }
993d0407baSopenharmony_ci
1003d0407baSopenharmony_cistruct em_perf_domain *em_cpu_get(int cpu);
1013d0407baSopenharmony_cistruct em_perf_domain *em_pd_get(struct device *dev);
1023d0407baSopenharmony_ciint em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, struct em_data_callback *cb,
1033d0407baSopenharmony_ci                                cpumask_t *span, bool milliwatts);
1043d0407baSopenharmony_civoid em_dev_unregister_perf_domain(struct device *dev);
1053d0407baSopenharmony_ci
1063d0407baSopenharmony_ci/**
1073d0407baSopenharmony_ci * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
1083d0407baSopenharmony_ci        performance domain
1093d0407baSopenharmony_ci * @pd        : performance domain for which energy has to be estimated
1103d0407baSopenharmony_ci * @max_util    : highest utilization among CPUs of the domain
1113d0407baSopenharmony_ci * @sum_util    : sum of the utilization of all CPUs in the domain
1123d0407baSopenharmony_ci *
1133d0407baSopenharmony_ci * This function must be used only for CPU devices. There is no validation,
1143d0407baSopenharmony_ci * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
1153d0407baSopenharmony_ci * the scheduler code quite frequently and that is why there is not checks.
1163d0407baSopenharmony_ci *
1173d0407baSopenharmony_ci * Return: the sum of the energy consumed by the CPUs of the domain assuming
1183d0407baSopenharmony_ci * a capacity state satisfying the max utilization of the domain.
1193d0407baSopenharmony_ci */
1203d0407baSopenharmony_cistatic inline unsigned long em_cpu_energy(struct em_perf_domain *pd, unsigned long max_util, unsigned long sum_util)
1213d0407baSopenharmony_ci{
1223d0407baSopenharmony_ci    unsigned long freq, scale_cpu;
1233d0407baSopenharmony_ci    struct em_perf_state *ps;
1243d0407baSopenharmony_ci    int i, cpu;
1253d0407baSopenharmony_ci
1263d0407baSopenharmony_ci    if (!sum_util) {
1273d0407baSopenharmony_ci        return 0;
1283d0407baSopenharmony_ci    }
1293d0407baSopenharmony_ci
1303d0407baSopenharmony_ci    /*
1313d0407baSopenharmony_ci     * In order to predict the performance state, map the utilization of
1323d0407baSopenharmony_ci     * the most utilized CPU of the performance domain to a requested
1333d0407baSopenharmony_ci     * frequency, like schedutil.
1343d0407baSopenharmony_ci     */
1353d0407baSopenharmony_ci    cpu = cpumask_first(to_cpumask(pd->cpus));
1363d0407baSopenharmony_ci    scale_cpu = arch_scale_cpu_capacity(cpu);
1373d0407baSopenharmony_ci    ps = &pd->table[pd->nr_perf_states - 1];
1383d0407baSopenharmony_ci    freq = map_util_freq(max_util, ps->frequency, scale_cpu);
1393d0407baSopenharmony_ci
1403d0407baSopenharmony_ci    /*
1413d0407baSopenharmony_ci     * Find the lowest performance state of the Energy Model above the
1423d0407baSopenharmony_ci     * requested frequency.
1433d0407baSopenharmony_ci     */
1443d0407baSopenharmony_ci    for (i = 0; i < pd->nr_perf_states; i++) {
1453d0407baSopenharmony_ci        ps = &pd->table[i];
1463d0407baSopenharmony_ci        if (ps->frequency >= freq) {
1473d0407baSopenharmony_ci            break;
1483d0407baSopenharmony_ci        }
1493d0407baSopenharmony_ci    }
1503d0407baSopenharmony_ci
1513d0407baSopenharmony_ci    /*
1523d0407baSopenharmony_ci     * The capacity of a CPU in the domain at the performance state (ps)
1533d0407baSopenharmony_ci     * can be computed as:
1543d0407baSopenharmony_ci     *
1553d0407baSopenharmony_ci     *             ps->freq * scale_cpu
1563d0407baSopenharmony_ci     *   ps->cap = --------------------                          (1)
1573d0407baSopenharmony_ci     *                 cpu_max_freq
1583d0407baSopenharmony_ci     *
1593d0407baSopenharmony_ci     * So, ignoring the costs of idle states (which are not available in
1603d0407baSopenharmony_ci     * the EM), the energy consumed by this CPU at that performance state
1613d0407baSopenharmony_ci     * is estimated as:
1623d0407baSopenharmony_ci     *
1633d0407baSopenharmony_ci     *             ps->power * cpu_util
1643d0407baSopenharmony_ci     *   cpu_nrg = --------------------                          (2)
1653d0407baSopenharmony_ci     *                   ps->cap
1663d0407baSopenharmony_ci     *
1673d0407baSopenharmony_ci     * since 'cpu_util / ps->cap' represents its percentage of busy time.
1683d0407baSopenharmony_ci     *
1693d0407baSopenharmony_ci     *   NOTE: Although the result of this computation actually is in
1703d0407baSopenharmony_ci     *         units of power, it can be manipulated as an energy value
1713d0407baSopenharmony_ci     *         over a scheduling period, since it is assumed to be
1723d0407baSopenharmony_ci     *         constant during that interval.
1733d0407baSopenharmony_ci     *
1743d0407baSopenharmony_ci     * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
1753d0407baSopenharmony_ci     * of two terms:
1763d0407baSopenharmony_ci     *
1773d0407baSopenharmony_ci     *             ps->power * cpu_max_freq   cpu_util
1783d0407baSopenharmony_ci     *   cpu_nrg = ------------------------ * ---------          (3)
1793d0407baSopenharmony_ci     *                    ps->freq            scale_cpu
1803d0407baSopenharmony_ci     *
1813d0407baSopenharmony_ci     * The first term is static, and is stored in the em_perf_state struct
1823d0407baSopenharmony_ci     * as 'ps->cost'.
1833d0407baSopenharmony_ci     *
1843d0407baSopenharmony_ci     * Since all CPUs of the domain have the same micro-architecture, they
1853d0407baSopenharmony_ci     * share the same 'ps->cost', and the same CPU capacity. Hence, the
1863d0407baSopenharmony_ci     * total energy of the domain (which is the simple sum of the energy of
1873d0407baSopenharmony_ci     * all of its CPUs) can be factorized as:
1883d0407baSopenharmony_ci     *
1893d0407baSopenharmony_ci     *            ps->cost * \Sum cpu_util
1903d0407baSopenharmony_ci     *   pd_nrg = ------------------------                       (4)
1913d0407baSopenharmony_ci     *                  scale_cpu
1923d0407baSopenharmony_ci     */
1933d0407baSopenharmony_ci    return ps->cost * sum_util / scale_cpu;
1943d0407baSopenharmony_ci}
1953d0407baSopenharmony_ci
1963d0407baSopenharmony_ci/**
1973d0407baSopenharmony_ci * em_pd_nr_perf_states() - Get the number of performance states of a perf.
1983d0407baSopenharmony_ci *                domain
1993d0407baSopenharmony_ci * @pd        : performance domain for which this must be done
2003d0407baSopenharmony_ci *
2013d0407baSopenharmony_ci * Return: the number of performance states in the performance domain table
2023d0407baSopenharmony_ci */
2033d0407baSopenharmony_cistatic inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
2043d0407baSopenharmony_ci{
2053d0407baSopenharmony_ci    return pd->nr_perf_states;
2063d0407baSopenharmony_ci}
2073d0407baSopenharmony_ci
2083d0407baSopenharmony_ci#else
2093d0407baSopenharmony_cistruct em_data_callback {
2103d0407baSopenharmony_ci};
2113d0407baSopenharmony_ci#define EM_DATA_CB(_active_power_cb)                                                                                   \
2123d0407baSopenharmony_ci    {                                                                                                                  \
2133d0407baSopenharmony_ci    }
2143d0407baSopenharmony_ci
2153d0407baSopenharmony_cistatic inline int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, struct em_data_callback *cb,
2163d0407baSopenharmony_ci                                              cpumask_t *span, bool milliwatts)
2173d0407baSopenharmony_ci{
2183d0407baSopenharmony_ci    return -EINVAL;
2193d0407baSopenharmony_ci}
2203d0407baSopenharmony_cistatic inline void em_dev_unregister_perf_domain(struct device *dev)
2213d0407baSopenharmony_ci{
2223d0407baSopenharmony_ci}
2233d0407baSopenharmony_cistatic inline struct em_perf_domain *em_cpu_get(int cpu)
2243d0407baSopenharmony_ci{
2253d0407baSopenharmony_ci    return NULL;
2263d0407baSopenharmony_ci}
2273d0407baSopenharmony_cistatic inline struct em_perf_domain *em_pd_get(struct device *dev)
2283d0407baSopenharmony_ci{
2293d0407baSopenharmony_ci    return NULL;
2303d0407baSopenharmony_ci}
2313d0407baSopenharmony_cistatic inline unsigned long em_cpu_energy(struct em_perf_domain *pd, unsigned long max_util, unsigned long sum_util)
2323d0407baSopenharmony_ci{
2333d0407baSopenharmony_ci    return 0;
2343d0407baSopenharmony_ci}
2353d0407baSopenharmony_cistatic inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
2363d0407baSopenharmony_ci{
2373d0407baSopenharmony_ci    return 0;
2383d0407baSopenharmony_ci}
2393d0407baSopenharmony_ci#endif
2403d0407baSopenharmony_ci
2413d0407baSopenharmony_ci#endif
242