1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_DMA_MAPPING_H
3#define _LINUX_DMA_MAPPING_H
4
5#include <linux/sizes.h>
6#include <linux/string.h>
7#include <linux/device.h>
8#include <linux/err.h>
9#include <linux/dma-direction.h>
10#include <linux/scatterlist.h>
11#include <linux/bug.h>
12#include <linux/mem_encrypt.h>
13
14/**
15 * List of possible attributes associated with a DMA mapping. The semantics
16 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17 */
18
19/*
20 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21 * may be weakly ordered, that is that reads and writes may pass each other.
22 */
23#define DMA_ATTR_WEAK_ORDERING (1UL << 1)
24/*
25 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26 * buffered to improve performance.
27 */
28#define DMA_ATTR_WRITE_COMBINE (1UL << 2)
29/*
30 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31 * virtual mapping for the allocated buffer.
32 */
33#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
34/*
35 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36 * the CPU cache for the given buffer assuming that it has been already
37 * transferred to 'device' domain.
38 */
39#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
40/*
41 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42 * in physical memory.
43 */
44#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
45/*
46 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47 * that it's probably not worth the time to try to allocate memory to in a way
48 * that gives better TLB efficiency.
49 */
50#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
51/*
52 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53 * allocation failure reports (similarly to __GFP_NOWARN).
54 */
55#define DMA_ATTR_NO_WARN (1UL << 8)
56
57/*
58 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59 * accessible at an elevated privilege level (and ideally inaccessible or
60 * at least read-only at lesser-privileged levels).
61 */
62#define DMA_ATTR_PRIVILEGED (1UL << 9)
63
64/*
65 * DMA_ATTR_SYS_CACHE_ONLY: used to indicate that the buffer should be mapped
66 * with the correct memory attributes so that it can be cached in the system
67 * or last level cache. This is useful for buffers that are being mapped for
68 * devices that are non-coherent, but can use the system cache.
69 */
70#define DMA_ATTR_SYS_CACHE_ONLY (1UL << 10)
71
72/*
73 * DMA_ATTR_SYS_CACHE_ONLY_NWA: used to indicate that the buffer should be
74 * mapped with the correct memory attributes so that it can be cached in the
75 * system or last level cache, with a no write allocate cache policy. This is
76 * useful for buffers that are being mapped for devices that are non-coherent,
77 * but can use the system cache.
78 */
79#define DMA_ATTR_SYS_CACHE_ONLY_NWA (1UL << 11)
80
81/*
82 * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
83 * be given to a device to use as a DMA source or target.  It is specific to a
84 * given device and there may be a translation between the CPU physical address
85 * space and the bus address space.
86 *
87 * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
88 * be used directly in drivers, but checked for using dma_mapping_error()
89 * instead.
90 */
91#define DMA_MAPPING_ERROR (~(dma_addr_t)0)
92
93#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL << (n)) - 1))
94
95#ifdef CONFIG_DMA_API_DEBUG
96void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
97void debug_dma_map_single(struct device *dev, const void *addr, unsigned long len);
98#else
99static inline void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
100{
101}
102static inline void debug_dma_map_single(struct device *dev, const void *addr, unsigned long len)
103{
104}
105#endif /* CONFIG_DMA_API_DEBUG */
106
107#ifdef CONFIG_HAS_DMA
108static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
109{
110    debug_dma_mapping_error(dev, dma_addr);
111
112    if (dma_addr == DMA_MAPPING_ERROR) {
113        return -ENOMEM;
114    }
115    return 0;
116}
117
118dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, size_t offset, size_t size,
119                              enum dma_data_direction dir, unsigned long attrs);
120void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir,
121                          unsigned long attrs);
122int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir,
123                     unsigned long attrs);
124void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir,
125                        unsigned long attrs);
126dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
127                            unsigned long attrs);
128void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir,
129                        unsigned long attrs);
130void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir);
131void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir);
132void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir);
133void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir);
134void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs);
135void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs);
136void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs);
137void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle);
138int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size,
139                          unsigned long attrs);
140int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size,
141                   unsigned long attrs);
142bool dma_can_mmap(struct device *dev);
143int dma_supported(struct device *dev, u64 mask);
144int dma_set_mask(struct device *dev, u64 mask);
145int dma_set_coherent_mask(struct device *dev, u64 mask);
146u64 dma_get_required_mask(struct device *dev);
147size_t dma_max_mapping_size(struct device *dev);
148bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
149unsigned long dma_get_merge_boundary(struct device *dev);
150#else  /* CONFIG_HAS_DMA */
151static inline dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, size_t offset, size_t size,
152                                            enum dma_data_direction dir, unsigned long attrs)
153{
154    return DMA_MAPPING_ERROR;
155}
156static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir,
157                                        unsigned long attrs)
158{
159}
160static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir,
161                                   unsigned long attrs)
162{
163    return 0;
164}
165static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
166                                      enum dma_data_direction dir, unsigned long attrs)
167{
168}
169static inline dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
170                                          enum dma_data_direction dir, unsigned long attrs)
171{
172    return DMA_MAPPING_ERROR;
173}
174static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir,
175                                      unsigned long attrs)
176{
177}
178static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
179                                           enum dma_data_direction dir)
180{
181}
182static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
183                                              enum dma_data_direction dir)
184{
185}
186static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
187                                       enum dma_data_direction dir)
188{
189}
190static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
191                                          enum dma_data_direction dir)
192{
193}
194static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
195{
196    return -ENOMEM;
197}
198static inline void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
199                                    unsigned long attrs)
200{
201    return NULL;
202}
203static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs)
204{
205}
206static inline void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp,
207                                     unsigned long attrs)
208{
209    return NULL;
210}
211static inline void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
212{
213}
214static inline int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
215                                        size_t size, unsigned long attrs)
216{
217    return -ENXIO;
218}
219static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr,
220                                 size_t size, unsigned long attrs)
221{
222    return -ENXIO;
223}
224static inline bool dma_can_mmap(struct device *dev)
225{
226    return false;
227}
228static inline int dma_supported(struct device *dev, u64 mask)
229{
230    return 0;
231}
232static inline int dma_set_mask(struct device *dev, u64 mask)
233{
234    return -EIO;
235}
236static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
237{
238    return -EIO;
239}
240static inline u64 dma_get_required_mask(struct device *dev)
241{
242    return 0;
243}
244static inline size_t dma_max_mapping_size(struct device *dev)
245{
246    return 0;
247}
248static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
249{
250    return false;
251}
252static inline unsigned long dma_get_merge_boundary(struct device *dev)
253{
254    return 0;
255}
256#endif /* CONFIG_HAS_DMA */
257
258struct page *dma_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir,
259                             gfp_t gfp);
260void dma_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_handle,
261                    enum dma_data_direction dir);
262void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir,
263                            gfp_t gfp);
264void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle,
265                          enum dma_data_direction dir);
266
267static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir,
268                                              unsigned long attrs)
269{
270    /* DMA must never operate on areas that might be remapped. */
271    if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), "rejecting DMA map of vmalloc memory\n")) {
272        return DMA_MAPPING_ERROR;
273    }
274    debug_dma_map_single(dev, ptr, size);
275    return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), size, dir, attrs);
276}
277
278static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir,
279                                          unsigned long attrs)
280{
281    return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
282}
283
284static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size,
285                                                 enum dma_data_direction dir)
286{
287    return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
288}
289
290static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t addr, unsigned long offset,
291                                                    size_t size, enum dma_data_direction dir)
292{
293    return dma_sync_single_for_device(dev, addr + offset, size, dir);
294}
295
296/**
297 * dma_map_sgtable - Map the given buffer for DMA
298 * @dev:    The device for which to perform the DMA operation
299 * @sgt:    The sg_table object describing the buffer
300 * @dir:    DMA direction
301 * @attrs:    Optional DMA attributes for the map operation
302 *
303 * Maps a buffer described by a scatterlist stored in the given sg_table
304 * object for the @dir DMA operation by the @dev device. After success the
305 * ownership for the buffer is transferred to the DMA domain.  One has to
306 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
307 * ownership of the buffer back to the CPU domain before touching the
308 * buffer by the CPU.
309 *
310 * Returns 0 on success or -EINVAL on error during mapping the buffer.
311 */
312static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir,
313                                  unsigned long attrs)
314{
315    int nents;
316
317    nents = dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
318    if (nents <= 0) {
319        return -EINVAL;
320    }
321    sgt->nents = nents;
322    return 0;
323}
324
325/**
326 * dma_unmap_sgtable - Unmap the given buffer for DMA
327 * @dev:    The device for which to perform the DMA operation
328 * @sgt:    The sg_table object describing the buffer
329 * @dir:    DMA direction
330 * @attrs:    Optional DMA attributes for the unmap operation
331 *
332 * Unmaps a buffer described by a scatterlist stored in the given sg_table
333 * object for the @dir DMA operation by the @dev device. After this function
334 * the ownership of the buffer is transferred back to the CPU domain.
335 */
336static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir,
337                                     unsigned long attrs)
338{
339    dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
340}
341
342/**
343 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
344 * @dev:    The device for which to perform the DMA operation
345 * @sgt:    The sg_table object describing the buffer
346 * @dir:    DMA direction
347 *
348 * Performs the needed cache synchronization and moves the ownership of the
349 * buffer back to the CPU domain, so it is safe to perform any access to it
350 * by the CPU. Before doing any further DMA operations, one has to transfer
351 * the ownership of the buffer back to the DMA domain by calling the
352 * dma_sync_sgtable_for_device().
353 */
354static inline void dma_sync_sgtable_for_cpu(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir)
355{
356    dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
357}
358
359/**
360 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
361 * @dev:    The device for which to perform the DMA operation
362 * @sgt:    The sg_table object describing the buffer
363 * @dir:    DMA direction
364 *
365 * Performs the needed cache synchronization and moves the ownership of the
366 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
367 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
368 * dma_unmap_sgtable().
369 */
370static inline void dma_sync_sgtable_for_device(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir)
371{
372    dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
373}
374
375#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
376#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
377#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
378#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
379#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
380#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
381#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
382#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
383
384static inline void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp)
385{
386    return dma_alloc_attrs(dev, size, dma_handle, gfp, (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
387}
388
389static inline void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle)
390{
391    return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
392}
393
394static inline u64 dma_get_mask(struct device *dev)
395{
396    if (dev->dma_mask && *dev->dma_mask) {
397        return *dev->dma_mask;
398    }
399    return DMA_BIT_MASK(32);
400}
401
402/*
403 * Set both the DMA mask and the coherent DMA mask to the same thing.
404 * Note that we don't check the return value from dma_set_coherent_mask()
405 * as the DMA API guarantees that the coherent DMA mask can be set to
406 * the same or smaller than the streaming DMA mask.
407 */
408static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
409{
410    int rc = dma_set_mask(dev, mask);
411    if (rc == 0) {
412        dma_set_coherent_mask(dev, mask);
413    }
414    return rc;
415}
416
417/*
418 * Similar to the above, except it deals with the case where the device
419 * does not have dev->dma_mask appropriately setup.
420 */
421static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
422{
423    dev->dma_mask = &dev->coherent_dma_mask;
424    return dma_set_mask_and_coherent(dev, mask);
425}
426
427/**
428 * dma_addressing_limited - return if the device is addressing limited
429 * @dev:    device to check
430 *
431 * Return %true if the devices DMA mask is too small to address all memory in
432 * the system, else %false.  Lack of addressing bits is the prime reason for
433 * bounce buffering, but might not be the only one.
434 */
435static inline bool dma_addressing_limited(struct device *dev)
436{
437    return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < dma_get_required_mask(dev);
438}
439
440static inline unsigned int dma_get_max_seg_size(struct device *dev)
441{
442    if (dev->dma_parms && dev->dma_parms->max_segment_size) {
443        return dev->dma_parms->max_segment_size;
444    }
445    return SZ_64K;
446}
447
448static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
449{
450    if (dev->dma_parms) {
451        dev->dma_parms->max_segment_size = size;
452        return 0;
453    }
454    return -EIO;
455}
456
457static inline unsigned long dma_get_seg_boundary(struct device *dev)
458{
459    if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) {
460        return dev->dma_parms->segment_boundary_mask;
461    }
462    return ULONG_MAX;
463}
464
465/**
466 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
467 * @dev: device to guery the boundary for
468 * @page_shift: ilog() of the IOMMU page size
469 *
470 * Return the segment boundary in IOMMU page units (which may be different from
471 * the CPU page size) for the passed in device.
472 *
473 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
474 * non-DMA API callers.
475 */
476static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, unsigned int page_shift)
477{
478    if (!dev) {
479        return (U32_MAX >> page_shift) + 1;
480    }
481    return (dma_get_seg_boundary(dev) >> page_shift) + 1;
482}
483
484static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
485{
486    if (dev->dma_parms) {
487        dev->dma_parms->segment_boundary_mask = mask;
488        return 0;
489    }
490    return -EIO;
491}
492
493static inline unsigned int dma_get_min_align_mask(struct device *dev)
494{
495    if (dev->dma_parms) {
496        return dev->dma_parms->min_align_mask;
497    }
498    return 0;
499}
500
501static inline int dma_set_min_align_mask(struct device *dev, unsigned int min_align_mask)
502{
503    if (WARN_ON_ONCE(!dev->dma_parms)) {
504        return -EIO;
505    }
506    dev->dma_parms->min_align_mask = min_align_mask;
507    return 0;
508}
509
510static inline int dma_get_cache_alignment(void)
511{
512#ifdef ARCH_DMA_MINALIGN
513    return ARCH_DMA_MINALIGN;
514#endif
515    return 1;
516}
517
518static inline void *dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp)
519{
520    return dmam_alloc_attrs(dev, size, dma_handle, gfp, (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
521}
522
523static inline void *dma_alloc_wc(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t gfp)
524{
525    unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
526
527    if (gfp & __GFP_NOWARN) {
528        attrs |= DMA_ATTR_NO_WARN;
529    }
530
531    return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
532}
533
534static inline void dma_free_wc(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr)
535{
536    return dma_free_attrs(dev, size, cpu_addr, dma_addr, DMA_ATTR_WRITE_COMBINE);
537}
538
539static inline int dma_mmap_wc(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr,
540                              size_t size)
541{
542    return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, DMA_ATTR_WRITE_COMBINE);
543}
544
545#ifdef CONFIG_NEED_DMA_MAP_STATE
546#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
547#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
548#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
549#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
550#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
551#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
552#else
553#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
554#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
555#define dma_unmap_addr(PTR, ADDR_NAME) (0)
556#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)                                                                        \
557    do {                                                                                                               \
558    } while (0)
559#define dma_unmap_len(PTR, LEN_NAME) (0)
560#define dma_unmap_len_set(PTR, LEN_NAME, VAL)                                                                          \
561    do {                                                                                                               \
562    } while (0)
563#endif
564
565/*
566 * Legacy interface to set up the dma offset map.  Drivers really should not
567 * actually use it, but we have a few legacy cases left.
568 */
569int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, dma_addr_t dma_start, u64 size);
570
571extern const struct dma_map_ops dma_virt_ops;
572
573#endif /* _LINUX_DMA_MAPPING_H */
574