1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_defer.h"
17#include "xfs_inode.h"
18#include "xfs_dir2.h"
19#include "xfs_attr.h"
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
22#include "xfs_buf_item.h"
23#include "xfs_inode_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38
39kmem_zone_t *xfs_inode_zone;
40
41/*
42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49
50/*
51 * helper function to extract extent size hint from inode
52 */
53xfs_extlen_t xfs_get_extsz_hint(struct xfs_inode *ip)
54{
55    /*
56     * No point in aligning allocations if we need to COW to actually
57     * write to them.
58     */
59    if (xfs_is_always_cow_inode(ip)) {
60        return 0;
61    }
62    if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) {
63        return ip->i_d.di_extsize;
64    }
65    if (XFS_IS_REALTIME_INODE(ip)) {
66        return ip->i_mount->m_sb.sb_rextsize;
67    }
68    return 0;
69}
70
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two.  If the value is zero (automatic),
75 * use the default size.
76 */
77xfs_extlen_t xfs_get_cowextsz_hint(struct xfs_inode *ip)
78{
79    xfs_extlen_t a, b;
80
81    a = 0;
82    if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
83        a = ip->i_d.di_cowextsize;
84    }
85    b = xfs_get_extsz_hint(ip);
86
87    a = max(a, b);
88    if (a == 0) {
89        return XFS_DEFAULT_COWEXTSZ_HINT;
90    }
91    return a;
92}
93
94/*
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code.  They are used in places that wish to lock the
97 * inode solely for reading the extents.  The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format.  If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in.  Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though.  What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
105 *
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
108 */
109uint xfs_ilock_data_map_shared(struct xfs_inode *ip)
110{
111    uint lock_mode = XFS_ILOCK_SHARED;
112
113    if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) {
114        lock_mode = XFS_ILOCK_EXCL;
115    }
116    xfs_ilock(ip, lock_mode);
117    return lock_mode;
118}
119
120uint xfs_ilock_attr_map_shared(struct xfs_inode *ip)
121{
122    uint lock_mode = XFS_ILOCK_SHARED;
123
124    if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) {
125        lock_mode = XFS_ILOCK_EXCL;
126    }
127    xfs_ilock(ip, lock_mode);
128    return lock_mode;
129}
130
131/*
132 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
133 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
134 * various combinations of the locks to be obtained.
135 *
136 * The 3 locks should always be ordered so that the IO lock is obtained first,
137 * the mmap lock second and the ilock last in order to prevent deadlock.
138 *
139 * Basic locking order
140 *
141 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
142 *
143 * mmap_lock locking order
144 *
145 * i_rwsem -> page lock -> mmap_lock
146 * mmap_lock -> i_mmap_lock -> page_lock
147 *
148 * The difference in mmap_lock locking order mean that we cannot hold the
149 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
150 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
151 * in get_user_pages() to map the user pages into the kernel address space for
152 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
153 * page faults already hold the mmap_lock.
154 *
155 * Hence to serialise fully against both syscall and mmap based IO, we need to
156 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
157 * taken in places where we need to invalidate the page cache in a race
158 * free manner (e.g. truncate, hole punch and other extent manipulation
159 * functions).
160 */
161void xfs_ilock(xfs_inode_t *ip, uint lock_flags)
162{
163    trace_xfs_ilock(ip, lock_flags, _RET_IP_);
164
165    /*
166     * You can't set both SHARED and EXCL for the same lock,
167     * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
168     * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
169     */
170    ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
171    ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
172    ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
173    ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
174
175    if (lock_flags & XFS_IOLOCK_EXCL) {
176        down_write_nested(&VFS_I(ip)->i_rwsem, XFS_IOLOCK_DEP(lock_flags));
177    } else if (lock_flags & XFS_IOLOCK_SHARED) {
178        down_read_nested(&VFS_I(ip)->i_rwsem, XFS_IOLOCK_DEP(lock_flags));
179    }
180
181    if (lock_flags & XFS_MMAPLOCK_EXCL) {
182        mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
183    } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
184        mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
185    }
186
187    if (lock_flags & XFS_ILOCK_EXCL) {
188        mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
189    } else if (lock_flags & XFS_ILOCK_SHARED) {
190        mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
191    }
192}
193
194/*
195 * This is just like xfs_ilock(), except that the caller
196 * is guaranteed not to sleep.  It returns 1 if it gets
197 * the requested locks and 0 otherwise.  If the IO lock is
198 * obtained but the inode lock cannot be, then the IO lock
199 * is dropped before returning.
200 *
201 * ip -- the inode being locked
202 * lock_flags -- this parameter indicates the inode's locks to be
203 *       to be locked.  See the comment for xfs_ilock() for a list
204 *     of valid values.
205 */
206int xfs_ilock_nowait(xfs_inode_t *ip, uint lock_flags)
207{
208    trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
209
210    /*
211     * You can't set both SHARED and EXCL for the same lock,
212     * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
213     * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
214     */
215    ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
216    ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
217    ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
218    ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
219
220    if (lock_flags & XFS_IOLOCK_EXCL) {
221        if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) {
222            goto out;
223        }
224    } else if (lock_flags & XFS_IOLOCK_SHARED) {
225        if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) {
226            goto out;
227        }
228    }
229
230    if (lock_flags & XFS_MMAPLOCK_EXCL) {
231        if (!mrtryupdate(&ip->i_mmaplock)) {
232            goto out_undo_iolock;
233        }
234    } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
235        if (!mrtryaccess(&ip->i_mmaplock)) {
236            goto out_undo_iolock;
237        }
238    }
239
240    if (lock_flags & XFS_ILOCK_EXCL) {
241        if (!mrtryupdate(&ip->i_lock)) {
242            goto out_undo_mmaplock;
243        }
244    } else if (lock_flags & XFS_ILOCK_SHARED) {
245        if (!mrtryaccess(&ip->i_lock)) {
246            goto out_undo_mmaplock;
247        }
248    }
249    return 1;
250
251out_undo_mmaplock:
252    if (lock_flags & XFS_MMAPLOCK_EXCL) {
253        mrunlock_excl(&ip->i_mmaplock);
254    } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
255        mrunlock_shared(&ip->i_mmaplock);
256    }
257out_undo_iolock:
258    if (lock_flags & XFS_IOLOCK_EXCL) {
259        up_write(&VFS_I(ip)->i_rwsem);
260    } else if (lock_flags & XFS_IOLOCK_SHARED) {
261        up_read(&VFS_I(ip)->i_rwsem);
262    }
263out:
264    return 0;
265}
266
267/*
268 * xfs_iunlock() is used to drop the inode locks acquired with
269 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
270 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
271 * that we know which locks to drop.
272 *
273 * ip -- the inode being unlocked
274 * lock_flags -- this parameter indicates the inode's locks to be
275 *       to be unlocked.  See the comment for xfs_ilock() for a list
276 *     of valid values for this parameter.
277 *
278 */
279void xfs_iunlock(xfs_inode_t *ip, uint lock_flags)
280{
281    /*
282     * You can't set both SHARED and EXCL for the same lock,
283     * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
284     * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
285     */
286    ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
287    ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
288    ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
289    ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
290    ASSERT(lock_flags != 0);
291
292    if (lock_flags & XFS_IOLOCK_EXCL) {
293        up_write(&VFS_I(ip)->i_rwsem);
294    } else if (lock_flags & XFS_IOLOCK_SHARED) {
295        up_read(&VFS_I(ip)->i_rwsem);
296    }
297
298    if (lock_flags & XFS_MMAPLOCK_EXCL) {
299        mrunlock_excl(&ip->i_mmaplock);
300    } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
301        mrunlock_shared(&ip->i_mmaplock);
302    }
303
304    if (lock_flags & XFS_ILOCK_EXCL) {
305        mrunlock_excl(&ip->i_lock);
306    } else if (lock_flags & XFS_ILOCK_SHARED) {
307        mrunlock_shared(&ip->i_lock);
308    }
309
310    trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311}
312
313/*
314 * give up write locks.  the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317void xfs_ilock_demote(xfs_inode_t *ip, uint lock_flags)
318{
319    ASSERT(lock_flags & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL));
320    ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)) == 0);
321
322    if (lock_flags & XFS_ILOCK_EXCL) {
323        mrdemote(&ip->i_lock);
324    }
325    if (lock_flags & XFS_MMAPLOCK_EXCL) {
326        mrdemote(&ip->i_mmaplock);
327    }
328    if (lock_flags & XFS_IOLOCK_EXCL) {
329        downgrade_write(&VFS_I(ip)->i_rwsem);
330    }
331
332    trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
333}
334
335#if defined(DEBUG) || defined(XFS_WARN)
336int xfs_isilocked(xfs_inode_t *ip, uint lock_flags)
337{
338    if (lock_flags & (XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)) {
339        if (!(lock_flags & XFS_ILOCK_SHARED)) {
340            return !!ip->i_lock.mr_writer;
341        }
342        return rwsem_is_locked(&ip->i_lock.mr_lock);
343    }
344
345    if (lock_flags & (XFS_MMAPLOCK_EXCL | XFS_MMAPLOCK_SHARED)) {
346        if (!(lock_flags & XFS_MMAPLOCK_SHARED)) {
347            return !!ip->i_mmaplock.mr_writer;
348        }
349        return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
350    }
351
352    if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
353        if (!(lock_flags & XFS_IOLOCK_SHARED)) {
354            return !debug_locks || lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
355        }
356        return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
357    }
358
359    ASSERT(0);
360    return 0;
361}
362#endif
363
364/*
365 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
366 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
367 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
368 * errors and warnings.
369 */
370#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
371static bool xfs_lockdep_subclass_ok(int subclass)
372{
373    return subclass < MAX_LOCKDEP_SUBCLASSES;
374}
375#else
376#define xfs_lockdep_subclass_ok(subclass) (true)
377#endif
378
379/*
380 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
381 * value. This can be called for any type of inode lock combination, including
382 * parent locking. Care must be taken to ensure we don't overrun the subclass
383 * storage fields in the class mask we build.
384 */
385static inline int xfs_lock_inumorder(int lock_mode, int subclass)
386{
387    int class = 0;
388
389    ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | XFS_ILOCK_RTSUM)));
390    ASSERT(xfs_lockdep_subclass_ok(subclass));
391
392    if (lock_mode & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
393        ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
394        class += subclass << XFS_IOLOCK_SHIFT;
395    }
396
397    if (lock_mode & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) {
398        ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
399        class += subclass << XFS_MMAPLOCK_SHIFT;
400    }
401
402    if (lock_mode & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
403        ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
404        class += subclass << XFS_ILOCK_SHIFT;
405    }
406
407    return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
408}
409
410/*
411 * The following routine will lock n inodes in exclusive mode.  We assume the
412 * caller calls us with the inodes in i_ino order.
413 *
414 * We need to detect deadlock where an inode that we lock is in the AIL and we
415 * start waiting for another inode that is locked by a thread in a long running
416 * transaction (such as truncate). This can result in deadlock since the long
417 * running trans might need to wait for the inode we just locked in order to
418 * push the tail and free space in the log.
419 *
420 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
421 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
422 * lock more than one at a time, lockdep will report false positives saying we
423 * have violated locking orders.
424 */
425static void xfs_lock_inodes(struct xfs_inode **ips, int inodes, uint lock_mode)
426{
427    int attempts = 0, i, j, try_lock;
428    struct xfs_log_item *lp;
429
430    /*
431     * Currently supports between 2 and 5 inodes with exclusive locking.  We
432     * support an arbitrary depth of locking here, but absolute limits on
433     * inodes depend on the type of locking and the limits placed by
434     * lockdep annotations in xfs_lock_inumorder.  These are all checked by
435     * the asserts.
436     */
437    ASSERT(ips && inodes >= 0x2 && inodes <= 0x5);
438    ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL));
439    ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | XFS_ILOCK_SHARED)));
440    ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
441    ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
442
443    if (lock_mode & XFS_IOLOCK_EXCL) {
444        ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
445    } else if (lock_mode & XFS_MMAPLOCK_EXCL) {
446        ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
447    }
448
449    try_lock = 0;
450    i = 0;
451    while (1) {
452        for (; i < inodes; i++) {
453            ASSERT(ips[i]);
454
455            if (i && (ips[i] == ips[i - 1])) { /* Already locked */
456                continue;
457            }
458
459            /*
460             * If try_lock is not set yet, make sure all locked inodes are
461             * not in the AIL.  If any are, set try_lock to be used later.
462             */
463            if (!try_lock) {
464                for (j = (i - 1); j >= 0 && !try_lock; j--) {
465                    lp = &ips[j]->i_itemp->ili_item;
466                    if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
467                        try_lock++;
468                    }
469                }
470            }
471
472            /*
473             * If any of the previous locks we have locked is in the AIL,
474             * we must TRY to get the second and subsequent locks. If
475             * we can't get any, we must release all we have
476             * and try again.
477             */
478            if (!try_lock) {
479                xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
480                continue;
481            }
482
483            /* try_lock means we have an inode locked that is in the AIL. */
484            ASSERT(i != 0);
485            if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
486                continue;
487            }
488
489            /*
490             * Unlock all previous guys and try again.  xfs_iunlock will try
491             * to push the tail if the inode is in the AIL.
492             */
493            attempts++;
494            for (j = i - 1; j >= 0; j--) {
495                /*
496                 * Check to see if we've already unlocked this one.  Not
497                 * the first one going back, and the inode ptr is the
498                 * same.
499                 */
500                if (j != (i - 1) && ips[j] == ips[j + 1]) {
501                    continue;
502                }
503
504                xfs_iunlock(ips[j], lock_mode);
505            }
506
507            if ((attempts % 0x5) == 0) {
508                delay(1); /* Don't just spin the CPU */
509            }
510            i = 0;
511            try_lock = 0;
512            continue;
513        }
514        break;
515    }
516}
517
518/*
519 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
520 * the mmaplock or the ilock, but not more than one type at a time. If we lock
521 * more than one at a time, lockdep will report false positives saying we have
522 * violated locking orders.  The iolock must be double-locked separately since
523 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
524 * SHARED.
525 */
526void xfs_lock_two_inodes(struct xfs_inode *ip0, uint ip0_mode, struct xfs_inode *ip1, uint ip1_mode)
527{
528    struct xfs_inode *temp;
529    uint mode_temp;
530    int attempts = 0;
531    struct xfs_log_item *lp;
532
533    ASSERT(hweight32(ip0_mode) == 1);
534    ASSERT(hweight32(ip1_mode) == 1);
535    ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)));
536    ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)));
537    ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) ||
538           !(ip0_mode & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)));
539    ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) ||
540           !(ip1_mode & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)));
541    ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) ||
542           !(ip0_mode & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)));
543    ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) ||
544           !(ip1_mode & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)));
545
546    ASSERT(ip0->i_ino != ip1->i_ino);
547
548    if (ip0->i_ino > ip1->i_ino) {
549        temp = ip0;
550        ip0 = ip1;
551        ip1 = temp;
552        mode_temp = ip0_mode;
553        ip0_mode = ip1_mode;
554        ip1_mode = mode_temp;
555    }
556
557again:
558    while (1) {
559        xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
560
561        /*
562         * If the first lock we have locked is in the AIL, we must TRY to get
563         * the second lock. If we can't get it, we must release the first one
564         * and try again.
565         */
566        lp = &ip0->i_itemp->ili_item;
567        if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
568            if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
569                xfs_iunlock(ip0, ip0_mode);
570                if ((++attempts % 0x5) == 0) {
571                    delay(1); /* Don't just spin the CPU */
572                }
573                continue;
574            }
575        } else {
576            xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
577        }
578        break;
579    }
580}
581
582STATIC uint _xfs_dic2xflags(uint16_t di_flags, uint64_t di_flags2, bool has_attr)
583{
584    uint flags = 0;
585
586    if (di_flags & XFS_DIFLAG_ANY) {
587        if (di_flags & XFS_DIFLAG_REALTIME) {
588            flags |= FS_XFLAG_REALTIME;
589        }
590        if (di_flags & XFS_DIFLAG_PREALLOC) {
591            flags |= FS_XFLAG_PREALLOC;
592        }
593        if (di_flags & XFS_DIFLAG_IMMUTABLE) {
594            flags |= FS_XFLAG_IMMUTABLE;
595        }
596        if (di_flags & XFS_DIFLAG_APPEND) {
597            flags |= FS_XFLAG_APPEND;
598        }
599        if (di_flags & XFS_DIFLAG_SYNC) {
600            flags |= FS_XFLAG_SYNC;
601        }
602        if (di_flags & XFS_DIFLAG_NOATIME) {
603            flags |= FS_XFLAG_NOATIME;
604        }
605        if (di_flags & XFS_DIFLAG_NODUMP) {
606            flags |= FS_XFLAG_NODUMP;
607        }
608        if (di_flags & XFS_DIFLAG_RTINHERIT) {
609            flags |= FS_XFLAG_RTINHERIT;
610        }
611        if (di_flags & XFS_DIFLAG_PROJINHERIT) {
612            flags |= FS_XFLAG_PROJINHERIT;
613        }
614        if (di_flags & XFS_DIFLAG_NOSYMLINKS) {
615            flags |= FS_XFLAG_NOSYMLINKS;
616        }
617        if (di_flags & XFS_DIFLAG_EXTSIZE) {
618            flags |= FS_XFLAG_EXTSIZE;
619        }
620        if (di_flags & XFS_DIFLAG_EXTSZINHERIT) {
621            flags |= FS_XFLAG_EXTSZINHERIT;
622        }
623        if (di_flags & XFS_DIFLAG_NODEFRAG) {
624            flags |= FS_XFLAG_NODEFRAG;
625        }
626        if (di_flags & XFS_DIFLAG_FILESTREAM) {
627            flags |= FS_XFLAG_FILESTREAM;
628        }
629    }
630
631    if (di_flags2 & XFS_DIFLAG2_ANY) {
632        if (di_flags2 & XFS_DIFLAG2_DAX) {
633            flags |= FS_XFLAG_DAX;
634        }
635        if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
636            flags |= FS_XFLAG_COWEXTSIZE;
637        }
638    }
639
640    if (has_attr) {
641        flags |= FS_XFLAG_HASATTR;
642    }
643
644    return flags;
645}
646
647uint xfs_ip2xflags(struct xfs_inode *ip)
648{
649    struct xfs_icdinode *dic = &ip->i_d;
650
651    return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
652}
653
654/*
655 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
656 * is allowed, otherwise it has to be an exact match. If a CI match is found,
657 * ci_name->name will point to a the actual name (caller must free) or
658 * will be set to NULL if an exact match is found.
659 */
660int xfs_lookup(xfs_inode_t *dp, struct xfs_name *name, xfs_inode_t **ipp, struct xfs_name *ci_name)
661{
662    xfs_ino_t inum;
663    int error;
664
665    trace_xfs_lookup(dp, name);
666
667    if (XFS_FORCED_SHUTDOWN(dp->i_mount)) {
668        return -EIO;
669    }
670
671    error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
672    if (error) {
673        goto out_unlock;
674    }
675
676    error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
677    if (error) {
678        goto out_free_name;
679    }
680
681    return 0;
682
683out_free_name:
684    if (ci_name) {
685        kmem_free(ci_name->name);
686    }
687out_unlock:
688    *ipp = NULL;
689    return error;
690}
691
692/* Propagate di_flags from a parent inode to a child inode. */
693static void xfs_inode_inherit_flags(struct xfs_inode *ip, const struct xfs_inode *pip)
694{
695    unsigned int di_flags = 0;
696    umode_t mode = VFS_I(ip)->i_mode;
697    if (S_ISDIR(mode)) {
698        if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
699            di_flags |= XFS_DIFLAG_RTINHERIT;
700        }
701        if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
702            di_flags |= XFS_DIFLAG_EXTSZINHERIT;
703            ip->i_d.di_extsize = pip->i_d.di_extsize;
704        }
705        if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) {
706            di_flags |= XFS_DIFLAG_PROJINHERIT;
707        }
708    } else if (S_ISREG(mode)) {
709        if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) && xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) {
710            di_flags |= XFS_DIFLAG_REALTIME;
711        }
712        if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
713            di_flags |= XFS_DIFLAG_EXTSIZE;
714            ip->i_d.di_extsize = pip->i_d.di_extsize;
715        }
716    }
717    if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && xfs_inherit_noatime) {
718        di_flags |= XFS_DIFLAG_NOATIME;
719    }
720    if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && xfs_inherit_nodump) {
721        di_flags |= XFS_DIFLAG_NODUMP;
722    }
723    if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && xfs_inherit_sync) {
724        di_flags |= XFS_DIFLAG_SYNC;
725    }
726    if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && xfs_inherit_nosymlinks) {
727        di_flags |= XFS_DIFLAG_NOSYMLINKS;
728    }
729    if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && xfs_inherit_nodefrag) {
730        di_flags |= XFS_DIFLAG_NODEFRAG;
731    }
732    if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) {
733        di_flags |= XFS_DIFLAG_FILESTREAM;
734    }
735
736    ip->i_d.di_flags |= di_flags;
737}
738
739/* Propagate di_flags2 from a parent inode to a child inode. */
740static void xfs_inode_inherit_flags2(struct xfs_inode *ip, const struct xfs_inode *pip)
741{
742    if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
743        ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
744        ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
745    }
746    if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) {
747        ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
748    }
749}
750
751/*
752 * Allocate an inode on disk and return a copy of its in-core version.
753 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
754 * appropriately within the inode.  The uid and gid for the inode are
755 * set according to the contents of the given cred structure.
756 *
757 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
758 * has a free inode available, call xfs_iget() to obtain the in-core
759 * version of the allocated inode.  Finally, fill in the inode and
760 * log its initial contents.  In this case, ialloc_context would be
761 * set to NULL.
762 *
763 * If xfs_dialloc() does not have an available inode, it will replenish
764 * its supply by doing an allocation. Since we can only do one
765 * allocation within a transaction without deadlocks, we must commit
766 * the current transaction before returning the inode itself.
767 * In this case, therefore, we will set ialloc_context and return.
768 * The caller should then commit the current transaction, start a new
769 * transaction, and call xfs_ialloc() again to actually get the inode.
770 *
771 * To ensure that some other process does not grab the inode that
772 * was allocated during the first call to xfs_ialloc(), this routine
773 * also returns the [locked] bp pointing to the head of the freelist
774 * as ialloc_context.  The caller should hold this buffer across
775 * the commit and pass it back into this routine on the second call.
776 *
777 * If we are allocating quota inodes, we do not have a parent inode
778 * to attach to or associate with (i.e. pip == NULL) because they
779 * are not linked into the directory structure - they are attached
780 * directly to the superblock - and so have no parent.
781 */
782static int xfs_ialloc(xfs_trans_t *tp, xfs_inode_t *pip, umode_t mode, xfs_nlink_t nlink, dev_t rdev, prid_t prid,
783                      xfs_buf_t **ialloc_context, xfs_inode_t **ipp)
784{
785    struct xfs_mount *mp = tp->t_mountp;
786    xfs_ino_t ino;
787    xfs_inode_t *ip;
788    uint flags;
789    int error;
790    struct timespec64 tv;
791    struct inode *inode;
792
793    /*
794     * Call the space management code to pick
795     * the on-disk inode to be allocated.
796     */
797    error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, ialloc_context, &ino);
798    if (error) {
799        return error;
800    }
801    if (*ialloc_context || ino == NULLFSINO) {
802        *ipp = NULL;
803        return 0;
804    }
805    ASSERT(*ialloc_context == NULL);
806
807    /*
808     * Protect against obviously corrupt allocation btree records. Later
809     * xfs_iget checks will catch re-allocation of other active in-memory
810     * and on-disk inodes. If we don't catch reallocating the parent inode
811     * here we will deadlock in xfs_iget() so we have to do these checks
812     * first.
813     */
814    if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
815        xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
816        return -EFSCORRUPTED;
817    }
818
819    /*
820     * Get the in-core inode with the lock held exclusively.
821     * This is because we're setting fields here we need
822     * to prevent others from looking at until we're done.
823     */
824    error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
825    if (error) {
826        return error;
827    }
828    ASSERT(ip != NULL);
829    inode = VFS_I(ip);
830    inode->i_mode = mode;
831    set_nlink(inode, nlink);
832    inode->i_uid = current_fsuid();
833    inode->i_rdev = rdev;
834    ip->i_d.di_projid = prid;
835
836    if (pip && XFS_INHERIT_GID(pip)) {
837        inode->i_gid = VFS_I(pip)->i_gid;
838        if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) {
839            inode->i_mode |= S_ISGID;
840        }
841    } else {
842        inode->i_gid = current_fsgid();
843    }
844
845    /*
846     * If the group ID of the new file does not match the effective group
847     * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
848     * (and only if the irix_sgid_inherit compatibility variable is set).
849     */
850    if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) {
851        inode->i_mode &= ~S_ISGID;
852    }
853
854    ip->i_d.di_size = 0;
855    ip->i_df.if_nextents = 0;
856    ASSERT(ip->i_d.di_nblocks == 0);
857
858    tv = current_time(inode);
859    inode->i_mtime = tv;
860    inode->i_atime = tv;
861    inode->i_ctime = tv;
862
863    ip->i_d.di_extsize = 0;
864    ip->i_d.di_dmevmask = 0;
865    ip->i_d.di_dmstate = 0;
866    ip->i_d.di_flags = 0;
867
868    if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
869        inode_set_iversion(inode, 1);
870        ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
871        ip->i_d.di_cowextsize = 0;
872        ip->i_d.di_crtime = tv;
873    }
874
875    flags = XFS_ILOG_CORE;
876    switch (mode & S_IFMT) {
877        case S_IFIFO:
878        case S_IFCHR:
879        case S_IFBLK:
880        case S_IFSOCK:
881            ip->i_df.if_format = XFS_DINODE_FMT_DEV;
882            ip->i_df.if_flags = 0;
883            flags |= XFS_ILOG_DEV;
884            break;
885        case S_IFREG:
886        case S_IFDIR:
887            if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
888                xfs_inode_inherit_flags(ip, pip);
889            }
890            if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
891                xfs_inode_inherit_flags2(ip, pip);
892            }
893            /* FALLTHROUGH */
894        case S_IFLNK:
895            ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
896            ip->i_df.if_flags = XFS_IFEXTENTS;
897            ip->i_df.if_bytes = 0;
898            ip->i_df.if_u1.if_root = NULL;
899            break;
900        default:
901            ASSERT(0);
902    }
903
904    /*
905     * Log the new values stuffed into the inode.
906     */
907    xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
908    xfs_trans_log_inode(tp, ip, flags);
909
910    /* now that we have an i_mode we can setup the inode structure */
911    xfs_setup_inode(ip);
912
913    *ipp = ip;
914    return 0;
915}
916
917/*
918 * Allocates a new inode from disk and return a pointer to the
919 * incore copy. This routine will internally commit the current
920 * transaction and allocate a new one if the Space Manager needed
921 * to do an allocation to replenish the inode free-list.
922 *
923 * This routine is designed to be called from xfs_create and
924 * xfs_create_dir.
925 *
926 */
927int xfs_dir_ialloc(xfs_trans_t **tpp,                                        /* input: current transaction;
928                                                                   output: may be a new transaction. */
929                   xfs_inode_t *dp,                                          /* directory within whose allocate
930                                                                     the inode. */
931                   umode_t mode, xfs_nlink_t nlink, dev_t rdev, prid_t prid, /* project id */
932                   xfs_inode_t **ipp)                                        /* pointer to inode; it will be
933                                                                   locked. */
934{
935    xfs_trans_t *tp;
936    xfs_inode_t *ip;
937    xfs_buf_t *ialloc_context = NULL;
938    int code;
939    void *dqinfo;
940    uint tflags;
941
942    tp = *tpp;
943    ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
944
945    /*
946     * xfs_ialloc will return a pointer to an incore inode if
947     * the Space Manager has an available inode on the free
948     * list. Otherwise, it will do an allocation and replenish
949     * the freelist.  Since we can only do one allocation per
950     * transaction without deadlocks, we will need to commit the
951     * current transaction and start a new one.  We will then
952     * need to call xfs_ialloc again to get the inode.
953     *
954     * If xfs_ialloc did an allocation to replenish the freelist,
955     * it returns the bp containing the head of the freelist as
956     * ialloc_context. We will hold a lock on it across the
957     * transaction commit so that no other process can steal
958     * the inode(s) that we've just allocated.
959     */
960    code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, &ip);
961    /*
962     * Return an error if we were unable to allocate a new inode.
963     * This should only happen if we run out of space on disk or
964     * encounter a disk error.
965     */
966    if (code) {
967        *ipp = NULL;
968        return code;
969    }
970    if (!ialloc_context && !ip) {
971        *ipp = NULL;
972        return -ENOSPC;
973    }
974
975    /*
976     * If the AGI buffer is non-NULL, then we were unable to get an
977     * inode in one operation.  We need to commit the current
978     * transaction and call xfs_ialloc() again.  It is guaranteed
979     * to succeed the second time.
980     */
981    if (ialloc_context) {
982        /*
983         * Normally, xfs_trans_commit releases all the locks.
984         * We call bhold to hang on to the ialloc_context across
985         * the commit.  Holding this buffer prevents any other
986         * processes from doing any allocations in this
987         * allocation group.
988         */
989        xfs_trans_bhold(tp, ialloc_context);
990
991        /*
992         * We want the quota changes to be associated with the next
993         * transaction, NOT this one. So, detach the dqinfo from this
994         * and attach it to the next transaction.
995         */
996        dqinfo = NULL;
997        tflags = 0;
998        if (tp->t_dqinfo) {
999            dqinfo = (void *)tp->t_dqinfo;
1000            tp->t_dqinfo = NULL;
1001            tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1002            tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1003        }
1004
1005        code = xfs_trans_roll(&tp);
1006
1007        /*
1008         * Re-attach the quota info that we detached from prev trx.
1009         */
1010        if (dqinfo) {
1011            tp->t_dqinfo = dqinfo;
1012            tp->t_flags |= tflags;
1013        }
1014
1015        if (code) {
1016            xfs_buf_relse(ialloc_context);
1017            *tpp = tp;
1018            *ipp = NULL;
1019            return code;
1020        }
1021        xfs_trans_bjoin(tp, ialloc_context);
1022
1023        /*
1024         * Call ialloc again. Since we've locked out all
1025         * other allocations in this allocation group,
1026         * this call should always succeed.
1027         */
1028        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, &ip);
1029        /*
1030         * If we get an error at this point, return to the caller
1031         * so that the current transaction can be aborted.
1032         */
1033        if (code) {
1034            *tpp = tp;
1035            *ipp = NULL;
1036            return code;
1037        }
1038        ASSERT(!ialloc_context && ip);
1039    }
1040
1041    *ipp = ip;
1042    *tpp = tp;
1043
1044    return 0;
1045}
1046
1047/*
1048 * Decrement the link count on an inode & log the change.  If this causes the
1049 * link count to go to zero, move the inode to AGI unlinked list so that it can
1050 * be freed when the last active reference goes away via xfs_inactive().
1051 */
1052static int xfs_droplink(xfs_trans_t *tp, xfs_inode_t *ip)
1053{
1054    xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1055
1056    drop_nlink(VFS_I(ip));
1057    xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1058
1059    if (VFS_I(ip)->i_nlink) {
1060        return 0;
1061    }
1062
1063    return xfs_iunlink(tp, ip);
1064}
1065
1066/*
1067 * Increment the link count on an inode & log the change.
1068 */
1069static void xfs_bumplink(xfs_trans_t *tp, xfs_inode_t *ip)
1070{
1071    xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1072
1073    inc_nlink(VFS_I(ip));
1074    xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1075}
1076
1077int xfs_create(xfs_inode_t *dp, struct xfs_name *name, umode_t mode, dev_t rdev, xfs_inode_t **ipp)
1078{
1079    int is_dir = S_ISDIR(mode);
1080    struct xfs_mount *mp = dp->i_mount;
1081    struct xfs_inode *ip = NULL;
1082    struct xfs_trans *tp = NULL;
1083    int error;
1084    bool unlock_dp_on_error = false;
1085    prid_t prid;
1086    struct xfs_dquot *udqp = NULL;
1087    struct xfs_dquot *gdqp = NULL;
1088    struct xfs_dquot *pdqp = NULL;
1089    struct xfs_trans_res *tres;
1090    uint resblks;
1091
1092    trace_xfs_create(dp, name);
1093
1094    if (XFS_FORCED_SHUTDOWN(mp)) {
1095        return -EIO;
1096    }
1097
1098    prid = xfs_get_initial_prid(dp);
1099
1100    /*
1101     * Make sure that we have allocated dquot(s) on disk.
1102     */
1103    error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, &udqp,
1104                               &gdqp, &pdqp);
1105    if (error) {
1106        return error;
1107    }
1108
1109    if (is_dir) {
1110        resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1111        tres = &M_RES(mp)->tr_mkdir;
1112    } else {
1113        resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1114        tres = &M_RES(mp)->tr_create;
1115    }
1116
1117    /*
1118     * Initially assume that the file does not exist and
1119     * reserve the resources for that case.  If that is not
1120     * the case we'll drop the one we have and get a more
1121     * appropriate transaction later.
1122     */
1123    error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1124    if (error == -ENOSPC) {
1125        /* flush outstanding delalloc blocks and retry */
1126        xfs_flush_inodes(mp);
1127        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1128    }
1129    if (error) {
1130        goto out_release_inode;
1131    }
1132
1133    xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1134    unlock_dp_on_error = true;
1135
1136    /*
1137     * Reserve disk quota and the inode.
1138     */
1139    error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, pdqp, resblks, 1, 0);
1140    if (error) {
1141        goto out_trans_cancel;
1142    }
1143
1144    /*
1145     * A newly created regular or special file just has one directory
1146     * entry pointing to them, but a directory also the "." entry
1147     * pointing to itself.
1148     */
1149    error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 0x2 : 1, rdev, prid, &ip);
1150    if (error) {
1151        goto out_trans_cancel;
1152    }
1153
1154    /*
1155     * Now we join the directory inode to the transaction.  We do not do it
1156     * earlier because xfs_dir_ialloc might commit the previous transaction
1157     * (and release all the locks).  An error from here on will result in
1158     * the transaction cancel unlocking dp so don't do it explicitly in the
1159     * error path.
1160     */
1161    xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1162    unlock_dp_on_error = false;
1163
1164    error = xfs_dir_createname(tp, dp, name, ip->i_ino, resblks - XFS_IALLOC_SPACE_RES(mp));
1165    if (error) {
1166        ASSERT(error != -ENOSPC);
1167        goto out_trans_cancel;
1168    }
1169    xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1170    xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1171
1172    if (is_dir) {
1173        error = xfs_dir_init(tp, ip, dp);
1174        if (error) {
1175            goto out_trans_cancel;
1176        }
1177
1178        xfs_bumplink(tp, dp);
1179    }
1180
1181    /*
1182     * If this is a synchronous mount, make sure that the
1183     * create transaction goes to disk before returning to
1184     * the user.
1185     */
1186    if (mp->m_flags & (XFS_MOUNT_WSYNC | XFS_MOUNT_DIRSYNC)) {
1187        xfs_trans_set_sync(tp);
1188    }
1189
1190    /*
1191     * Attach the dquot(s) to the inodes and modify them incore.
1192     * These ids of the inode couldn't have changed since the new
1193     * inode has been locked ever since it was created.
1194     */
1195    xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1196
1197    error = xfs_trans_commit(tp);
1198    if (error) {
1199        goto out_release_inode;
1200    }
1201
1202    xfs_qm_dqrele(udqp);
1203    xfs_qm_dqrele(gdqp);
1204    xfs_qm_dqrele(pdqp);
1205
1206    *ipp = ip;
1207    return 0;
1208
1209out_trans_cancel:
1210    xfs_trans_cancel(tp);
1211out_release_inode:
1212    /*
1213     * Wait until after the current transaction is aborted to finish the
1214     * setup of the inode and release the inode.  This prevents recursive
1215     * transactions and deadlocks from xfs_inactive.
1216     */
1217    if (ip) {
1218        xfs_finish_inode_setup(ip);
1219        xfs_irele(ip);
1220    }
1221
1222    xfs_qm_dqrele(udqp);
1223    xfs_qm_dqrele(gdqp);
1224    xfs_qm_dqrele(pdqp);
1225
1226    if (unlock_dp_on_error) {
1227        xfs_iunlock(dp, XFS_ILOCK_EXCL);
1228    }
1229    return error;
1230}
1231
1232int xfs_create_tmpfile(struct xfs_inode *dp, umode_t mode, struct xfs_inode **ipp)
1233{
1234    struct xfs_mount *mp = dp->i_mount;
1235    struct xfs_inode *ip = NULL;
1236    struct xfs_trans *tp = NULL;
1237    int error;
1238    prid_t prid;
1239    struct xfs_dquot *udqp = NULL;
1240    struct xfs_dquot *gdqp = NULL;
1241    struct xfs_dquot *pdqp = NULL;
1242    struct xfs_trans_res *tres;
1243    uint resblks;
1244
1245    if (XFS_FORCED_SHUTDOWN(mp)) {
1246        return -EIO;
1247    }
1248
1249    prid = xfs_get_initial_prid(dp);
1250
1251    /*
1252     * Make sure that we have allocated dquot(s) on disk.
1253     */
1254    error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, &udqp,
1255                               &gdqp, &pdqp);
1256    if (error) {
1257        return error;
1258    }
1259
1260    resblks = XFS_IALLOC_SPACE_RES(mp);
1261    tres = &M_RES(mp)->tr_create_tmpfile;
1262
1263    error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1264    if (error) {
1265        goto out_release_inode;
1266    }
1267
1268    error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, pdqp, resblks, 1, 0);
1269    if (error) {
1270        goto out_trans_cancel;
1271    }
1272
1273    error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1274    if (error) {
1275        goto out_trans_cancel;
1276    }
1277
1278    if (mp->m_flags & XFS_MOUNT_WSYNC) {
1279        xfs_trans_set_sync(tp);
1280    }
1281
1282    /*
1283     * Attach the dquot(s) to the inodes and modify them incore.
1284     * These ids of the inode couldn't have changed since the new
1285     * inode has been locked ever since it was created.
1286     */
1287    xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1288
1289    error = xfs_iunlink(tp, ip);
1290    if (error) {
1291        goto out_trans_cancel;
1292    }
1293
1294    error = xfs_trans_commit(tp);
1295    if (error) {
1296        goto out_release_inode;
1297    }
1298
1299    xfs_qm_dqrele(udqp);
1300    xfs_qm_dqrele(gdqp);
1301    xfs_qm_dqrele(pdqp);
1302
1303    *ipp = ip;
1304    return 0;
1305
1306out_trans_cancel:
1307    xfs_trans_cancel(tp);
1308out_release_inode:
1309    /*
1310     * Wait until after the current transaction is aborted to finish the
1311     * setup of the inode and release the inode.  This prevents recursive
1312     * transactions and deadlocks from xfs_inactive.
1313     */
1314    if (ip) {
1315        xfs_finish_inode_setup(ip);
1316        xfs_irele(ip);
1317    }
1318
1319    xfs_qm_dqrele(udqp);
1320    xfs_qm_dqrele(gdqp);
1321    xfs_qm_dqrele(pdqp);
1322
1323    return error;
1324}
1325
1326int xfs_link(xfs_inode_t *tdp, xfs_inode_t *sip, struct xfs_name *target_name)
1327{
1328    xfs_mount_t *mp = tdp->i_mount;
1329    xfs_trans_t *tp;
1330    int error;
1331    int resblks;
1332
1333    trace_xfs_link(tdp, target_name);
1334
1335    ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1336
1337    if (XFS_FORCED_SHUTDOWN(mp)) {
1338        return -EIO;
1339    }
1340
1341    error = xfs_qm_dqattach(sip);
1342    if (error) {
1343        goto std_return;
1344    }
1345
1346    error = xfs_qm_dqattach(tdp);
1347    if (error) {
1348        goto std_return;
1349    }
1350
1351    resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1352    error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1353    if (error == -ENOSPC) {
1354        resblks = 0;
1355        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1356    }
1357    if (error) {
1358        goto std_return;
1359    }
1360
1361    xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1362
1363    xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1364    xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1365
1366    /*
1367     * If we are using project inheritance, we only allow hard link
1368     * creation in our tree when the project IDs are the same; else
1369     * the tree quota mechanism could be circumvented.
1370     */
1371    if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && tdp->i_d.di_projid != sip->i_d.di_projid)) {
1372        error = -EXDEV;
1373        goto error_return;
1374    }
1375
1376    if (!resblks) {
1377        error = xfs_dir_canenter(tp, tdp, target_name);
1378        if (error) {
1379            goto error_return;
1380        }
1381    }
1382
1383    /*
1384     * Handle initial link state of O_TMPFILE inode
1385     */
1386    if (VFS_I(sip)->i_nlink == 0) {
1387        error = xfs_iunlink_remove(tp, sip);
1388        if (error) {
1389            goto error_return;
1390        }
1391    }
1392
1393    error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, resblks);
1394    if (error) {
1395        goto error_return;
1396    }
1397    xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1398    xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1399
1400    xfs_bumplink(tp, sip);
1401
1402    /*
1403     * If this is a synchronous mount, make sure that the
1404     * link transaction goes to disk before returning to
1405     * the user.
1406     */
1407    if (mp->m_flags & (XFS_MOUNT_WSYNC | XFS_MOUNT_DIRSYNC)) {
1408        xfs_trans_set_sync(tp);
1409    }
1410
1411    return xfs_trans_commit(tp);
1412
1413error_return:
1414    xfs_trans_cancel(tp);
1415std_return:
1416    return error;
1417}
1418
1419/* Clear the reflink flag and the cowblocks tag if possible. */
1420static void xfs_itruncate_clear_reflink_flags(struct xfs_inode *ip)
1421{
1422    struct xfs_ifork *dfork;
1423    struct xfs_ifork *cfork;
1424
1425    if (!xfs_is_reflink_inode(ip)) {
1426        return;
1427    }
1428    dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1429    cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1430    if (dfork->if_bytes == 0 && cfork->if_bytes == 0) {
1431        ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1432    }
1433    if (cfork->if_bytes == 0) {
1434        xfs_inode_clear_cowblocks_tag(ip);
1435    }
1436}
1437
1438/*
1439 * Free up the underlying blocks past new_size.  The new size must be smaller
1440 * than the current size.  This routine can be used both for the attribute and
1441 * data fork, and does not modify the inode size, which is left to the caller.
1442 *
1443 * The transaction passed to this routine must have made a permanent log
1444 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1445 * given transaction and start new ones, so make sure everything involved in
1446 * the transaction is tidy before calling here.  Some transaction will be
1447 * returned to the caller to be committed.  The incoming transaction must
1448 * already include the inode, and both inode locks must be held exclusively.
1449 * The inode must also be "held" within the transaction.  On return the inode
1450 * will be "held" within the returned transaction.  This routine does NOT
1451 * require any disk space to be reserved for it within the transaction.
1452 *
1453 * If we get an error, we must return with the inode locked and linked into the
1454 * current transaction. This keeps things simple for the higher level code,
1455 * because it always knows that the inode is locked and held in the transaction
1456 * that returns to it whether errors occur or not.  We don't mark the inode
1457 * dirty on error so that transactions can be easily aborted if possible.
1458 */
1459int xfs_itruncate_extents_flags(struct xfs_trans **tpp, struct xfs_inode *ip, int whichfork, xfs_fsize_t new_size,
1460                                int flags)
1461{
1462    struct xfs_mount *mp = ip->i_mount;
1463    struct xfs_trans *tp = *tpp;
1464    xfs_fileoff_t first_unmap_block;
1465    xfs_filblks_t unmap_len;
1466    int error = 0;
1467
1468    ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1469    ASSERT(!atomic_read(&VFS_I(ip)->i_count) || xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1470    ASSERT(new_size <= XFS_ISIZE(ip));
1471    ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1472    ASSERT(ip->i_itemp != NULL);
1473    ASSERT(ip->i_itemp->ili_lock_flags == 0);
1474    ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1475
1476    trace_xfs_itruncate_extents_start(ip, new_size);
1477
1478    flags |= xfs_bmapi_aflag(whichfork);
1479
1480    /*
1481     * Since it is possible for space to become allocated beyond
1482     * the end of the file (in a crash where the space is allocated
1483     * but the inode size is not yet updated), simply remove any
1484     * blocks which show up between the new EOF and the maximum
1485     * possible file size.
1486     *
1487     * We have to free all the blocks to the bmbt maximum offset, even if
1488     * the page cache can't scale that far.
1489     */
1490    first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1491    if (first_unmap_block >= XFS_MAX_FILEOFF) {
1492        WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1493        return 0;
1494    }
1495
1496    unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1497    while (unmap_len > 0) {
1498        ASSERT(tp->t_firstblock == NULLFSBLOCK);
1499        error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, flags, XFS_ITRUNC_MAX_EXTENTS);
1500        if (error) {
1501            goto out;
1502        }
1503
1504        /* free the just unmapped extents */
1505        error = xfs_defer_finish(&tp);
1506        if (error) {
1507            goto out;
1508        }
1509    }
1510
1511    if (whichfork == XFS_DATA_FORK) {
1512        /* Remove all pending CoW reservations. */
1513        error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, XFS_MAX_FILEOFF, true);
1514        if (error) {
1515            goto out;
1516        }
1517
1518        xfs_itruncate_clear_reflink_flags(ip);
1519    }
1520
1521    /*
1522     * Always re-log the inode so that our permanent transaction can keep
1523     * on rolling it forward in the log.
1524     */
1525    xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1526
1527    trace_xfs_itruncate_extents_end(ip, new_size);
1528
1529out:
1530    *tpp = tp;
1531    return error;
1532}
1533
1534int xfs_release(xfs_inode_t *ip)
1535{
1536    xfs_mount_t *mp = ip->i_mount;
1537    int error;
1538
1539    if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) {
1540        return 0;
1541    }
1542
1543    /* If this is a read-only mount, don't do this (would generate I/O) */
1544    if (mp->m_flags & XFS_MOUNT_RDONLY) {
1545        return 0;
1546    }
1547
1548    if (!XFS_FORCED_SHUTDOWN(mp)) {
1549        int truncated;
1550
1551        /*
1552         * If we previously truncated this file and removed old data
1553         * in the process, we want to initiate "early" writeout on
1554         * the last close.  This is an attempt to combat the notorious
1555         * NULL files problem which is particularly noticeable from a
1556         * truncate down, buffered (re-)write (delalloc), followed by
1557         * a crash.  What we are effectively doing here is
1558         * significantly reducing the time window where we'd otherwise
1559         * be exposed to that problem.
1560         */
1561        truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1562        if (truncated) {
1563            xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1564            if (ip->i_delayed_blks > 0) {
1565                error = filemap_flush(VFS_I(ip)->i_mapping);
1566                if (error) {
1567                    return error;
1568                }
1569            }
1570        }
1571    }
1572
1573    if (VFS_I(ip)->i_nlink == 0) {
1574        return 0;
1575    }
1576
1577    if (xfs_can_free_eofblocks(ip, false)) {
1578        /*
1579         * Check if the inode is being opened, written and closed
1580         * frequently and we have delayed allocation blocks outstanding
1581         * (e.g. streaming writes from the NFS server), truncating the
1582         * blocks past EOF will cause fragmentation to occur.
1583         *
1584         * In this case don't do the truncation, but we have to be
1585         * careful how we detect this case. Blocks beyond EOF show up as
1586         * i_delayed_blks even when the inode is clean, so we need to
1587         * truncate them away first before checking for a dirty release.
1588         * Hence on the first dirty close we will still remove the
1589         * speculative allocation, but after that we will leave it in
1590         * place.
1591         */
1592        if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) {
1593            return 0;
1594        }
1595        /*
1596         * If we can't get the iolock just skip truncating the blocks
1597         * past EOF because we could deadlock with the mmap_lock
1598         * otherwise. We'll get another chance to drop them once the
1599         * last reference to the inode is dropped, so we'll never leak
1600         * blocks permanently.
1601         */
1602        if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1603            error = xfs_free_eofblocks(ip);
1604            xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1605            if (error) {
1606                return error;
1607            }
1608        }
1609
1610        /* delalloc blocks after truncation means it really is dirty */
1611        if (ip->i_delayed_blks) {
1612            xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1613        }
1614    }
1615    return 0;
1616}
1617
1618/*
1619 * xfs_inactive_truncate
1620 *
1621 * Called to perform a truncate when an inode becomes unlinked.
1622 */
1623STATIC int xfs_inactive_truncate(struct xfs_inode *ip)
1624{
1625    struct xfs_mount *mp = ip->i_mount;
1626    struct xfs_trans *tp;
1627    int error;
1628
1629    error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1630    if (error) {
1631        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1632        return error;
1633    }
1634    xfs_ilock(ip, XFS_ILOCK_EXCL);
1635    xfs_trans_ijoin(tp, ip, 0);
1636
1637    /*
1638     * Log the inode size first to prevent stale data exposure in the event
1639     * of a system crash before the truncate completes. See the related
1640     * comment in xfs_vn_setattr_size() for details.
1641     */
1642    ip->i_d.di_size = 0;
1643    xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1644
1645    error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1646    if (error) {
1647        goto error_trans_cancel;
1648    }
1649
1650    ASSERT(ip->i_df.if_nextents == 0);
1651
1652    error = xfs_trans_commit(tp);
1653    if (error) {
1654        goto error_unlock;
1655    }
1656
1657    xfs_iunlock(ip, XFS_ILOCK_EXCL);
1658    return 0;
1659
1660error_trans_cancel:
1661    xfs_trans_cancel(tp);
1662error_unlock:
1663    xfs_iunlock(ip, XFS_ILOCK_EXCL);
1664    return error;
1665}
1666
1667/*
1668 * xfs_inactive_ifree()
1669 *
1670 * Perform the inode free when an inode is unlinked.
1671 */
1672STATIC int xfs_inactive_ifree(struct xfs_inode *ip)
1673{
1674    struct xfs_mount *mp = ip->i_mount;
1675    struct xfs_trans *tp;
1676    int error;
1677
1678    /*
1679     * We try to use a per-AG reservation for any block needed by the finobt
1680     * tree, but as the finobt feature predates the per-AG reservation
1681     * support a degraded file system might not have enough space for the
1682     * reservation at mount time.  In that case try to dip into the reserved
1683     * pool and pray.
1684     *
1685     * Send a warning if the reservation does happen to fail, as the inode
1686     * now remains allocated and sits on the unlinked list until the fs is
1687     * repaired.
1688     */
1689    if (unlikely(mp->m_finobt_nores)) {
1690        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1691    } else {
1692        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1693    }
1694    if (error) {
1695        if (error == -ENOSPC) {
1696            xfs_warn_ratelimited(mp, "Failed to remove inode(s) from unlinked list. "
1697                                     "Please free space, unmount and run xfs_repair.");
1698        } else {
1699            ASSERT(XFS_FORCED_SHUTDOWN(mp));
1700        }
1701        return error;
1702    }
1703
1704    /*
1705     * We do not hold the inode locked across the entire rolling transaction
1706     * here. We only need to hold it for the first transaction that
1707     * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1708     * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1709     * here breaks the relationship between cluster buffer invalidation and
1710     * stale inode invalidation on cluster buffer item journal commit
1711     * completion, and can result in leaving dirty stale inodes hanging
1712     * around in memory.
1713     *
1714     * We have no need for serialising this inode operation against other
1715     * operations - we freed the inode and hence reallocation is required
1716     * and that will serialise on reallocating the space the deferops need
1717     * to free. Hence we can unlock the inode on the first commit of
1718     * the transaction rather than roll it right through the deferops. This
1719     * avoids relogging the XFS_ISTALE inode.
1720     *
1721     * We check that xfs_ifree() hasn't grown an internal transaction roll
1722     * by asserting that the inode is still locked when it returns.
1723     */
1724    xfs_ilock(ip, XFS_ILOCK_EXCL);
1725    xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1726
1727    error = xfs_ifree(tp, ip);
1728    ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1729    if (error) {
1730        /*
1731         * If we fail to free the inode, shut down.  The cancel
1732         * might do that, we need to make sure.  Otherwise the
1733         * inode might be lost for a long time or forever.
1734         */
1735        if (!XFS_FORCED_SHUTDOWN(mp)) {
1736            xfs_notice(mp, "%s: xfs_ifree returned error %d", __func__, error);
1737            xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1738        }
1739        xfs_trans_cancel(tp);
1740        return error;
1741    }
1742
1743    /*
1744     * Credit the quota account(s). The inode is gone.
1745     */
1746    xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1747
1748    /*
1749     * Just ignore errors at this point.  There is nothing we can do except
1750     * to try to keep going. Make sure it's not a silent error.
1751     */
1752    error = xfs_trans_commit(tp);
1753    if (error) {
1754        xfs_notice(mp, "%s: xfs_trans_commit returned error %d", __func__, error);
1755    }
1756
1757    return 0;
1758}
1759
1760/*
1761 * xfs_inactive
1762 *
1763 * This is called when the vnode reference count for the vnode
1764 * goes to zero.  If the file has been unlinked, then it must
1765 * now be truncated.  Also, we clear all of the read-ahead state
1766 * kept for the inode here since the file is now closed.
1767 */
1768void xfs_inactive(xfs_inode_t *ip)
1769{
1770    struct xfs_mount *mp;
1771    int error;
1772    int truncate = 0;
1773
1774    /*
1775     * If the inode is already free, then there can be nothing
1776     * to clean up here.
1777     */
1778    if (VFS_I(ip)->i_mode == 0) {
1779        ASSERT(ip->i_df.if_broot_bytes == 0);
1780        return;
1781    }
1782
1783    mp = ip->i_mount;
1784    ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1785
1786    /* If this is a read-only mount, don't do this (would generate I/O) */
1787    if (mp->m_flags & XFS_MOUNT_RDONLY) {
1788        return;
1789    }
1790
1791    /* Try to clean out the cow blocks if there are any. */
1792    if (xfs_inode_has_cow_data(ip)) {
1793        xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1794    }
1795
1796    if (VFS_I(ip)->i_nlink != 0) {
1797        /*
1798         * force is true because we are evicting an inode from the
1799         * cache. Post-eof blocks must be freed, lest we end up with
1800         * broken free space accounting.
1801         *
1802         * Note: don't bother with iolock here since lockdep complains
1803         * about acquiring it in reclaim context. We have the only
1804         * reference to the inode at this point anyways.
1805         */
1806        if (xfs_can_free_eofblocks(ip, true)) {
1807            xfs_free_eofblocks(ip);
1808        }
1809
1810        return;
1811    }
1812
1813    if (S_ISREG(VFS_I(ip)->i_mode) &&
1814        (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) {
1815        truncate = 1;
1816    }
1817
1818    error = xfs_qm_dqattach(ip);
1819    if (error) {
1820        return;
1821    }
1822
1823    if (S_ISLNK(VFS_I(ip)->i_mode)) {
1824        error = xfs_inactive_symlink(ip);
1825    } else if (truncate) {
1826        error = xfs_inactive_truncate(ip);
1827    }
1828    if (error) {
1829        return;
1830    }
1831
1832    /*
1833     * If there are attributes associated with the file then blow them away
1834     * now.  The code calls a routine that recursively deconstructs the
1835     * attribute fork. If also blows away the in-core attribute fork.
1836     */
1837    if (XFS_IFORK_Q(ip)) {
1838        error = xfs_attr_inactive(ip);
1839        if (error) {
1840            return;
1841        }
1842    }
1843
1844    ASSERT(!ip->i_afp);
1845    ASSERT(ip->i_d.di_forkoff == 0);
1846
1847    /*
1848     * Free the inode.
1849     */
1850    error = xfs_inactive_ifree(ip);
1851    if (error) {
1852        return;
1853    }
1854
1855    /*
1856     * Release the dquots held by inode, if any.
1857     */
1858    xfs_qm_dqdetach(ip);
1859}
1860
1861/*
1862 * In-Core Unlinked List Lookups
1863 * =============================
1864 *
1865 * Every inode is supposed to be reachable from some other piece of metadata
1866 * with the exception of the root directory.  Inodes with a connection to a
1867 * file descriptor but not linked from anywhere in the on-disk directory tree
1868 * are collectively known as unlinked inodes, though the filesystem itself
1869 * maintains links to these inodes so that on-disk metadata are consistent.
1870 *
1871 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1872 * header contains a number of buckets that point to an inode, and each inode
1873 * record has a pointer to the next inode in the hash chain.  This
1874 * singly-linked list causes scaling problems in the iunlink remove function
1875 * because we must walk that list to find the inode that points to the inode
1876 * being removed from the unlinked hash bucket list.
1877 *
1878 * What if we modelled the unlinked list as a collection of records capturing
1879 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1880 * have a fast way to look up unlinked list predecessors, which avoids the
1881 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1882 * rhashtable.
1883 *
1884 * Because this is a backref cache, we ignore operational failures since the
1885 * iunlink code can fall back to the slow bucket walk.  The only errors that
1886 * should bubble out are for obviously incorrect situations.
1887 *
1888 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1889 * access or have otherwise provided for concurrency control.
1890 */
1891
1892/* Capture a "X.next_unlinked = Y" relationship. */
1893struct xfs_iunlink {
1894    struct rhash_head iu_rhash_head;
1895    xfs_agino_t iu_agino;         /* X */
1896    xfs_agino_t iu_next_unlinked; /* Y */
1897};
1898
1899/* Unlinked list predecessor lookup hashtable construction */
1900static int xfs_iunlink_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *obj)
1901{
1902    const xfs_agino_t *key = arg->key;
1903    const struct xfs_iunlink *iu = obj;
1904
1905    if (iu->iu_next_unlinked != *key) {
1906        return 1;
1907    }
1908    return 0;
1909}
1910
1911static const struct rhashtable_params xfs_iunlink_hash_params = {
1912    .min_size = XFS_AGI_UNLINKED_BUCKETS,
1913    .key_len = sizeof(xfs_agino_t),
1914    .key_offset = offsetof(struct xfs_iunlink, iu_next_unlinked),
1915    .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1916    .automatic_shrinking = true,
1917    .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1918};
1919
1920/*
1921 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1922 * relation is found.
1923 */
1924static xfs_agino_t xfs_iunlink_lookup_backref(struct xfs_perag *pag, xfs_agino_t agino)
1925{
1926    struct xfs_iunlink *iu;
1927
1928    iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, xfs_iunlink_hash_params);
1929    return iu ? iu->iu_agino : NULLAGINO;
1930}
1931
1932/*
1933 * Take ownership of an iunlink cache entry and insert it into the hash table.
1934 * If successful, the entry will be owned by the cache; if not, it is freed.
1935 * Either way, the caller does not own @iu after this call.
1936 */
1937static int xfs_iunlink_insert_backref(struct xfs_perag *pag, struct xfs_iunlink *iu)
1938{
1939    int error;
1940
1941    error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, &iu->iu_rhash_head, xfs_iunlink_hash_params);
1942    /*
1943     * Fail loudly if there already was an entry because that's a sign of
1944     * corruption of in-memory data.  Also fail loudly if we see an error
1945     * code we didn't anticipate from the rhashtable code.  Currently we
1946     * only anticipate ENOMEM.
1947     */
1948    if (error) {
1949        WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1950        kmem_free(iu);
1951    }
1952    /*
1953     * Absorb any runtime errors that aren't a result of corruption because
1954     * this is a cache and we can always fall back to bucket list scanning.
1955     */
1956    if (error != 0 && error != -EEXIST) {
1957        error = 0;
1958    }
1959    return error;
1960}
1961
1962/* Remember that @prev_agino.next_unlinked = @this_agino. */
1963static int xfs_iunlink_add_backref(struct xfs_perag *pag, xfs_agino_t prev_agino, xfs_agino_t this_agino)
1964{
1965    struct xfs_iunlink *iu;
1966
1967    if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) {
1968        return 0;
1969    }
1970
1971    iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1972    iu->iu_agino = prev_agino;
1973    iu->iu_next_unlinked = this_agino;
1974
1975    return xfs_iunlink_insert_backref(pag, iu);
1976}
1977
1978/*
1979 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1980 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1981 * wasn't any such entry then we don't bother.
1982 */
1983static int xfs_iunlink_change_backref(struct xfs_perag *pag, xfs_agino_t agino, xfs_agino_t next_unlinked)
1984{
1985    struct xfs_iunlink *iu;
1986    int error;
1987
1988    /* Look up the old entry; if there wasn't one then exit. */
1989    iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, xfs_iunlink_hash_params);
1990    if (!iu) {
1991        return 0;
1992    }
1993
1994    /*
1995     * Remove the entry.  This shouldn't ever return an error, but if we
1996     * couldn't remove the old entry we don't want to add it again to the
1997     * hash table, and if the entry disappeared on us then someone's
1998     * violated the locking rules and we need to fail loudly.  Either way
1999     * we cannot remove the inode because internal state is or would have
2000     * been corrupt.
2001     */
2002    error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, &iu->iu_rhash_head, xfs_iunlink_hash_params);
2003    if (error) {
2004        return error;
2005    }
2006
2007    /* If there is no new next entry just free our item and return. */
2008    if (next_unlinked == NULLAGINO) {
2009        kmem_free(iu);
2010        return 0;
2011    }
2012
2013    /* Update the entry and re-add it to the hash table. */
2014    iu->iu_next_unlinked = next_unlinked;
2015    return xfs_iunlink_insert_backref(pag, iu);
2016}
2017
2018/* Set up the in-core predecessor structures. */
2019int xfs_iunlink_init(struct xfs_perag *pag)
2020{
2021    return rhashtable_init(&pag->pagi_unlinked_hash, &xfs_iunlink_hash_params);
2022}
2023
2024/* Free the in-core predecessor structures. */
2025static void xfs_iunlink_free_item(void *ptr, void *arg)
2026{
2027    struct xfs_iunlink *iu = ptr;
2028    bool *freed_anything = arg;
2029
2030    *freed_anything = true;
2031    kmem_free(iu);
2032}
2033
2034void xfs_iunlink_destroy(struct xfs_perag *pag)
2035{
2036    bool freed_anything = false;
2037
2038    rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, xfs_iunlink_free_item, &freed_anything);
2039
2040    ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2041}
2042
2043/*
2044 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2045 * is responsible for validating the old value.
2046 */
2047STATIC int xfs_iunlink_update_bucket(struct xfs_trans *tp, xfs_agnumber_t agno, struct xfs_buf *agibp,
2048                                     unsigned int bucket_index, xfs_agino_t new_agino)
2049{
2050    struct xfs_agi *agi = agibp->b_addr;
2051    xfs_agino_t old_value;
2052    int offset;
2053
2054    ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2055
2056    old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2057    trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, old_value, new_agino);
2058
2059    /*
2060     * We should never find the head of the list already set to the value
2061     * passed in because either we're adding or removing ourselves from the
2062     * head of the list.
2063     */
2064    if (old_value == new_agino) {
2065        xfs_buf_mark_corrupt(agibp);
2066        return -EFSCORRUPTED;
2067    }
2068
2069    agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2070    offset = offsetof(struct xfs_agi, agi_unlinked) + (sizeof(xfs_agino_t) * bucket_index);
2071    xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2072    return 0;
2073}
2074
2075/* Set an on-disk inode's next_unlinked pointer. */
2076STATIC void xfs_iunlink_update_dinode(struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agino_t agino, struct xfs_buf *ibp,
2077                                      struct xfs_dinode *dip, struct xfs_imap *imap, xfs_agino_t next_agino)
2078{
2079    struct xfs_mount *mp = tp->t_mountp;
2080    int offset;
2081
2082    ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2083
2084    trace_xfs_iunlink_update_dinode(mp, agno, agino, be32_to_cpu(dip->di_next_unlinked), next_agino);
2085
2086    dip->di_next_unlinked = cpu_to_be32(next_agino);
2087    offset = imap->im_boffset + offsetof(struct xfs_dinode, di_next_unlinked);
2088
2089    /* need to recalc the inode CRC if appropriate */
2090    xfs_dinode_calc_crc(mp, dip);
2091    xfs_trans_inode_buf(tp, ibp);
2092    xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2093}
2094
2095/* Set an in-core inode's unlinked pointer and return the old value. */
2096STATIC int xfs_iunlink_update_inode(struct xfs_trans *tp, struct xfs_inode *ip, xfs_agnumber_t agno,
2097                                    xfs_agino_t next_agino, xfs_agino_t *old_next_agino)
2098{
2099    struct xfs_mount *mp = tp->t_mountp;
2100    struct xfs_dinode *dip;
2101    struct xfs_buf *ibp;
2102    xfs_agino_t old_value;
2103    int error;
2104
2105    ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2106
2107    error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2108    if (error) {
2109        return error;
2110    }
2111
2112    /* Make sure the old pointer isn't garbage. */
2113    old_value = be32_to_cpu(dip->di_next_unlinked);
2114    if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2115        xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, sizeof(*dip), __this_address);
2116        error = -EFSCORRUPTED;
2117        goto out;
2118    }
2119
2120    /*
2121     * Since we're updating a linked list, we should never find that the
2122     * current pointer is the same as the new value, unless we're
2123     * terminating the list.
2124     */
2125    *old_next_agino = old_value;
2126    if (old_value == next_agino) {
2127        if (next_agino != NULLAGINO) {
2128            xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, sizeof(*dip), __this_address);
2129            error = -EFSCORRUPTED;
2130        }
2131        goto out;
2132    }
2133
2134    /* Ok, update the new pointer. */
2135    xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), ibp, dip, &ip->i_imap, next_agino);
2136    return 0;
2137out:
2138    xfs_trans_brelse(tp, ibp);
2139    return error;
2140}
2141
2142/*
2143 * This is called when the inode's link count has gone to 0 or we are creating
2144 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2145 *
2146 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2147 * list when the inode is freed.
2148 */
2149STATIC int xfs_iunlink(struct xfs_trans *tp, struct xfs_inode *ip)
2150{
2151    struct xfs_mount *mp = tp->t_mountp;
2152    struct xfs_agi *agi;
2153    struct xfs_buf *agibp;
2154    xfs_agino_t next_agino;
2155    xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2156    xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2157    short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2158    int error;
2159
2160    ASSERT(VFS_I(ip)->i_nlink == 0);
2161    ASSERT(VFS_I(ip)->i_mode != 0);
2162    trace_xfs_iunlink(ip);
2163
2164    /* Get the agi buffer first.  It ensures lock ordering on the list. */
2165    error = xfs_read_agi(mp, tp, agno, &agibp);
2166    if (error) {
2167        return error;
2168    }
2169    agi = agibp->b_addr;
2170
2171    /*
2172     * Get the index into the agi hash table for the list this inode will
2173     * go on.  Make sure the pointer isn't garbage and that this inode
2174     * isn't already on the list.
2175     */
2176    next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2177    if (next_agino == agino || !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2178        xfs_buf_mark_corrupt(agibp);
2179        return -EFSCORRUPTED;
2180    }
2181
2182    if (next_agino != NULLAGINO) {
2183        xfs_agino_t old_agino;
2184
2185        /*
2186         * There is already another inode in the bucket, so point this
2187         * inode to the current head of the list.
2188         */
2189        error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, &old_agino);
2190        if (error) {
2191            return error;
2192        }
2193        ASSERT(old_agino == NULLAGINO);
2194
2195        /*
2196         * agino has been unlinked, add a backref from the next inode
2197         * back to agino.
2198         */
2199        error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2200        if (error) {
2201            return error;
2202        }
2203    }
2204
2205    /* Point the head of the list to point to this inode. */
2206    return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2207}
2208
2209/* Return the imap, dinode pointer, and buffer for an inode. */
2210STATIC int xfs_iunlink_map_ino(struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agino_t agino, struct xfs_imap *imap,
2211                               struct xfs_dinode **dipp, struct xfs_buf **bpp)
2212{
2213    struct xfs_mount *mp = tp->t_mountp;
2214    int error;
2215
2216    imap->im_blkno = 0;
2217    error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2218    if (error) {
2219        xfs_warn(mp, "%s: xfs_imap returned error %d.", __func__, error);
2220        return error;
2221    }
2222
2223    error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2224    if (error) {
2225        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", __func__, error);
2226        return error;
2227    }
2228
2229    return 0;
2230}
2231
2232/*
2233 * Walk the unlinked chain from @head_agino until we find the inode that
2234 * points to @target_agino.  Return the inode number, map, dinode pointer,
2235 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2236 *
2237 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2238 * @agino, @imap, @dipp, and @bpp are all output parameters.
2239 *
2240 * Do not call this function if @target_agino is the head of the list.
2241 */
2242STATIC int xfs_iunlink_map_prev(struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agino_t head_agino,
2243                                xfs_agino_t target_agino, xfs_agino_t *agino, struct xfs_imap *imap,
2244                                struct xfs_dinode **dipp, struct xfs_buf **bpp, struct xfs_perag *pag)
2245{
2246    struct xfs_mount *mp = tp->t_mountp;
2247    xfs_agino_t next_agino;
2248    int error;
2249
2250    ASSERT(head_agino != target_agino);
2251    *bpp = NULL;
2252
2253    /* See if our backref cache can find it faster. */
2254    *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2255    if (*agino != NULLAGINO) {
2256        error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2257        if (error) {
2258            return error;
2259        }
2260
2261        if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) {
2262            return 0;
2263        }
2264
2265        /*
2266         * If we get here the cache contents were corrupt, so drop the
2267         * buffer and fall back to walking the bucket list.
2268         */
2269        xfs_trans_brelse(tp, *bpp);
2270        *bpp = NULL;
2271        WARN_ON_ONCE(1);
2272    }
2273
2274    trace_xfs_iunlink_map_prev_fallback(mp, agno);
2275
2276    /* Otherwise, walk the entire bucket until we find it. */
2277    next_agino = head_agino;
2278    while (next_agino != target_agino) {
2279        xfs_agino_t unlinked_agino;
2280
2281        if (*bpp) {
2282            xfs_trans_brelse(tp, *bpp);
2283        }
2284
2285        *agino = next_agino;
2286        error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, bpp);
2287        if (error) {
2288            return error;
2289        }
2290
2291        unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2292        /*
2293         * Make sure this pointer is valid and isn't an obvious
2294         * infinite loop.
2295         */
2296        if (!xfs_verify_agino(mp, agno, unlinked_agino) || next_agino == unlinked_agino) {
2297            XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, *dipp, sizeof(**dipp));
2298            error = -EFSCORRUPTED;
2299            return error;
2300        }
2301        next_agino = unlinked_agino;
2302    }
2303
2304    return 0;
2305}
2306
2307/*
2308 * Pull the on-disk inode from the AGI unlinked list.
2309 */
2310STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_inode *ip)
2311{
2312    struct xfs_mount *mp = tp->t_mountp;
2313    struct xfs_agi *agi;
2314    struct xfs_buf *agibp;
2315    struct xfs_buf *last_ibp;
2316    struct xfs_dinode *last_dip = NULL;
2317    xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2318    xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2319    xfs_agino_t next_agino;
2320    xfs_agino_t head_agino;
2321    short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2322    int error;
2323
2324    trace_xfs_iunlink_remove(ip);
2325
2326    /* Get the agi buffer first.  It ensures lock ordering on the list. */
2327    error = xfs_read_agi(mp, tp, agno, &agibp);
2328    if (error) {
2329        return error;
2330    }
2331    agi = agibp->b_addr;
2332
2333    /*
2334     * Get the index into the agi hash table for the list this inode will
2335     * go on.  Make sure the head pointer isn't garbage.
2336     */
2337    head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2338    if (!xfs_verify_agino(mp, agno, head_agino)) {
2339        XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, agi, sizeof(*agi));
2340        return -EFSCORRUPTED;
2341    }
2342
2343    /*
2344     * Set our inode's next_unlinked pointer to NULL and then return
2345     * the old pointer value so that we can update whatever was previous
2346     * to us in the list to point to whatever was next in the list.
2347     */
2348    error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2349    if (error) {
2350        return error;
2351    }
2352
2353    /*
2354     * If there was a backref pointing from the next inode back to this
2355     * one, remove it because we've removed this inode from the list.
2356     *
2357     * Later, if this inode was in the middle of the list we'll update
2358     * this inode's backref to point from the next inode.
2359     */
2360    if (next_agino != NULLAGINO) {
2361        error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, NULLAGINO);
2362        if (error) {
2363            return error;
2364        }
2365    }
2366
2367    if (head_agino != agino) {
2368        struct xfs_imap imap;
2369        xfs_agino_t prev_agino;
2370
2371        /* We need to search the list for the inode being freed. */
2372        error =
2373            xfs_iunlink_map_prev(tp, agno, head_agino, agino, &prev_agino, &imap, &last_dip, &last_ibp, agibp->b_pag);
2374        if (error) {
2375            return error;
2376        }
2377
2378        /* Point the previous inode on the list to the next inode. */
2379        xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, last_dip, &imap, next_agino);
2380
2381        /*
2382         * Now we deal with the backref for this inode.  If this inode
2383         * pointed at a real inode, change the backref that pointed to
2384         * us to point to our old next.  If this inode was the end of
2385         * the list, delete the backref that pointed to us.  Note that
2386         * change_backref takes care of deleting the backref if
2387         * next_agino is NULLAGINO.
2388         */
2389        return xfs_iunlink_change_backref(agibp->b_pag, agino, next_agino);
2390    }
2391
2392    /* Point the head of the list to the next unlinked inode. */
2393    return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, next_agino);
2394}
2395
2396/*
2397 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2398 * mark it stale. We should only find clean inodes in this lookup that aren't
2399 * already stale.
2400 */
2401static void xfs_ifree_mark_inode_stale(struct xfs_buf *bp, struct xfs_inode *free_ip, xfs_ino_t inum)
2402{
2403    struct xfs_mount *mp = bp->b_mount;
2404    struct xfs_perag *pag = bp->b_pag;
2405    struct xfs_inode_log_item *iip;
2406    struct xfs_inode *ip;
2407
2408retry:
2409    rcu_read_lock();
2410    ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2411    /* Inode not in memory, nothing to do */
2412    if (!ip) {
2413        rcu_read_unlock();
2414        return;
2415    }
2416
2417    /*
2418     * because this is an RCU protected lookup, we could find a recently
2419     * freed or even reallocated inode during the lookup. We need to check
2420     * under the i_flags_lock for a valid inode here. Skip it if it is not
2421     * valid, the wrong inode or stale.
2422     */
2423    spin_lock(&ip->i_flags_lock);
2424    if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2425        goto out_iflags_unlock;
2426    }
2427
2428    /*
2429     * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2430     * other inodes that we did not find in the list attached to the buffer
2431     * and are not already marked stale. If we can't lock it, back off and
2432     * retry.
2433     */
2434    if (ip != free_ip) {
2435        if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2436            spin_unlock(&ip->i_flags_lock);
2437            rcu_read_unlock();
2438            delay(1);
2439            goto retry;
2440        }
2441    }
2442    ip->i_flags |= XFS_ISTALE;
2443
2444    /*
2445     * If the inode is flushing, it is already attached to the buffer.  All
2446     * we needed to do here is mark the inode stale so buffer IO completion
2447     * will remove it from the AIL.
2448     */
2449    iip = ip->i_itemp;
2450    if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2451        ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2452        ASSERT(iip->ili_last_fields);
2453        goto out_iunlock;
2454    }
2455
2456    /*
2457     * Inodes not attached to the buffer can be released immediately.
2458     * Everything else has to go through xfs_iflush_abort() on journal
2459     * commit as the flock synchronises removal of the inode from the
2460     * cluster buffer against inode reclaim.
2461     */
2462    if (!iip || list_empty(&iip->ili_item.li_bio_list)) {
2463        goto out_iunlock;
2464    }
2465
2466    __xfs_iflags_set(ip, XFS_IFLUSHING);
2467    spin_unlock(&ip->i_flags_lock);
2468    rcu_read_unlock();
2469
2470    /* we have a dirty inode in memory that has not yet been flushed. */
2471    spin_lock(&iip->ili_lock);
2472    iip->ili_last_fields = iip->ili_fields;
2473    iip->ili_fields = 0;
2474    iip->ili_fsync_fields = 0;
2475    spin_unlock(&iip->ili_lock);
2476    ASSERT(iip->ili_last_fields);
2477
2478    if (ip != free_ip) {
2479        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2480    }
2481    return;
2482
2483out_iunlock:
2484    if (ip != free_ip) {
2485        xfs_iunlock(ip, XFS_ILOCK_EXCL);
2486    }
2487out_iflags_unlock:
2488    spin_unlock(&ip->i_flags_lock);
2489    rcu_read_unlock();
2490}
2491
2492/*
2493 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2494 * inodes that are in memory - they all must be marked stale and attached to
2495 * the cluster buffer.
2496 */
2497STATIC int xfs_ifree_cluster(struct xfs_inode *free_ip, struct xfs_trans *tp, struct xfs_icluster *xic)
2498{
2499    struct xfs_mount *mp = free_ip->i_mount;
2500    struct xfs_ino_geometry *igeo = M_IGEO(mp);
2501    struct xfs_buf *bp;
2502    xfs_daddr_t blkno;
2503    xfs_ino_t inum = xic->first_ino;
2504    int nbufs;
2505    int i, j;
2506    int ioffset;
2507    int error;
2508
2509    nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2510
2511    for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2512        /*
2513         * The allocation bitmap tells us which inodes of the chunk were
2514         * physically allocated. Skip the cluster if an inode falls into
2515         * a sparse region.
2516         */
2517        ioffset = inum - xic->first_ino;
2518        if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2519            ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2520            continue;
2521        }
2522
2523        blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), XFS_INO_TO_AGBNO(mp, inum));
2524
2525        /*
2526         * We obtain and lock the backing buffer first in the process
2527         * here to ensure dirty inodes attached to the buffer remain in
2528         * the flushing state while we mark them stale.
2529         *
2530         * If we scan the in-memory inodes first, then buffer IO can
2531         * complete before we get a lock on it, and hence we may fail
2532         * to mark all the active inodes on the buffer stale.
2533         */
2534        error =
2535            xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, mp->m_bsize * igeo->blocks_per_cluster, XBF_UNMAPPED, &bp);
2536        if (error) {
2537            return error;
2538        }
2539
2540        /*
2541         * This buffer may not have been correctly initialised as we
2542         * didn't read it from disk. That's not important because we are
2543         * only using to mark the buffer as stale in the log, and to
2544         * attach stale cached inodes on it. That means it will never be
2545         * dispatched for IO. If it is, we want to know about it, and we
2546         * want it to fail. We can acheive this by adding a write
2547         * verifier to the buffer.
2548         */
2549        bp->b_ops = &xfs_inode_buf_ops;
2550
2551        /*
2552         * Now we need to set all the cached clean inodes as XFS_ISTALE,
2553         * too. This requires lookups, and will skip inodes that we've
2554         * already marked XFS_ISTALE.
2555         */
2556        for (i = 0; i < igeo->inodes_per_cluster; i++) {
2557            xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2558        }
2559
2560        xfs_trans_stale_inode_buf(tp, bp);
2561        xfs_trans_binval(tp, bp);
2562    }
2563    return 0;
2564}
2565
2566/*
2567 * This is called to return an inode to the inode free list.
2568 * The inode should already be truncated to 0 length and have
2569 * no pages associated with it.  This routine also assumes that
2570 * the inode is already a part of the transaction.
2571 *
2572 * The on-disk copy of the inode will have been added to the list
2573 * of unlinked inodes in the AGI. We need to remove the inode from
2574 * that list atomically with respect to freeing it here.
2575 */
2576int xfs_ifree(struct xfs_trans *tp, struct xfs_inode *ip)
2577{
2578    int error;
2579    struct xfs_icluster xic = {0};
2580    struct xfs_inode_log_item *iip = ip->i_itemp;
2581
2582    ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2583    ASSERT(VFS_I(ip)->i_nlink == 0);
2584    ASSERT(ip->i_df.if_nextents == 0);
2585    ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2586    ASSERT(ip->i_d.di_nblocks == 0);
2587
2588    /*
2589     * Pull the on-disk inode from the AGI unlinked list.
2590     */
2591    error = xfs_iunlink_remove(tp, ip);
2592    if (error) {
2593        return error;
2594    }
2595
2596    error = xfs_difree(tp, ip->i_ino, &xic);
2597    if (error) {
2598        return error;
2599    }
2600
2601    /*
2602     * Free any local-format data sitting around before we reset the
2603     * data fork to extents format.  Note that the attr fork data has
2604     * already been freed by xfs_attr_inactive.
2605     */
2606    if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2607        kmem_free(ip->i_df.if_u1.if_data);
2608        ip->i_df.if_u1.if_data = NULL;
2609        ip->i_df.if_bytes = 0;
2610    }
2611
2612    VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2613    ip->i_d.di_flags = 0;
2614    ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2615    ip->i_d.di_dmevmask = 0;
2616    ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2617    ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2618
2619    /* Don't attempt to replay owner changes for a deleted inode */
2620    spin_lock(&iip->ili_lock);
2621    iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2622    spin_unlock(&iip->ili_lock);
2623
2624    /*
2625     * Bump the generation count so no one will be confused
2626     * by reincarnations of this inode.
2627     */
2628    VFS_I(ip)->i_generation++;
2629    xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2630
2631    if (xic.deleted) {
2632        error = xfs_ifree_cluster(ip, tp, &xic);
2633    }
2634
2635    return error;
2636}
2637
2638/*
2639 * This is called to unpin an inode.  The caller must have the inode locked
2640 * in at least shared mode so that the buffer cannot be subsequently pinned
2641 * once someone is waiting for it to be unpinned.
2642 */
2643static void xfs_iunpin(struct xfs_inode *ip)
2644{
2645    ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
2646
2647    trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2648
2649    /* Give the log a push to start the unpinning I/O */
2650    xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2651}
2652
2653static void _xfs_iunpin_wait(struct xfs_inode *ip)
2654{
2655    wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2656    DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2657
2658    xfs_iunpin(ip);
2659
2660    do {
2661        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2662        if (xfs_ipincount(ip)) {
2663            io_schedule();
2664        }
2665    } while (xfs_ipincount(ip));
2666    finish_wait(wq, &wait.wq_entry);
2667}
2668
2669void xfs_iunpin_wait(struct xfs_inode *ip)
2670{
2671    if (xfs_ipincount(ip)) {
2672        _xfs_iunpin_wait(ip);
2673    }
2674}
2675
2676/*
2677 * Removing an inode from the namespace involves removing the directory entry
2678 * and dropping the link count on the inode. Removing the directory entry can
2679 * result in locking an AGF (directory blocks were freed) and removing a link
2680 * count can result in placing the inode on an unlinked list which results in
2681 * locking an AGI.
2682 *
2683 * The big problem here is that we have an ordering constraint on AGF and AGI
2684 * locking - inode allocation locks the AGI, then can allocate a new extent for
2685 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2686 * removes the inode from the unlinked list, requiring that we lock the AGI
2687 * first, and then freeing the inode can result in an inode chunk being freed
2688 * and hence freeing disk space requiring that we lock an AGF.
2689 *
2690 * Hence the ordering that is imposed by other parts of the code is AGI before
2691 * AGF. This means we cannot remove the directory entry before we drop the inode
2692 * reference count and put it on the unlinked list as this results in a lock
2693 * order of AGF then AGI, and this can deadlock against inode allocation and
2694 * freeing. Therefore we must drop the link counts before we remove the
2695 * directory entry.
2696 *
2697 * This is still safe from a transactional point of view - it is not until we
2698 * get to xfs_defer_finish() that we have the possibility of multiple
2699 * transactions in this operation. Hence as long as we remove the directory
2700 * entry and drop the link count in the first transaction of the remove
2701 * operation, there are no transactional constraints on the ordering here.
2702 */
2703int xfs_remove(xfs_inode_t *dp, struct xfs_name *name, xfs_inode_t *ip)
2704{
2705    xfs_mount_t *mp = dp->i_mount;
2706    xfs_trans_t *tp = NULL;
2707    int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2708    int error = 0;
2709    uint resblks;
2710
2711    trace_xfs_remove(dp, name);
2712
2713    if (XFS_FORCED_SHUTDOWN(mp)) {
2714        return -EIO;
2715    }
2716
2717    error = xfs_qm_dqattach(dp);
2718    if (error) {
2719        goto std_return;
2720    }
2721
2722    error = xfs_qm_dqattach(ip);
2723    if (error) {
2724        goto std_return;
2725    }
2726
2727    /*
2728     * We try to get the real space reservation first,
2729     * allowing for directory btree deletion(s) implying
2730     * possible bmap insert(s).  If we can't get the space
2731     * reservation then we use 0 instead, and avoid the bmap
2732     * btree insert(s) in the directory code by, if the bmap
2733     * insert tries to happen, instead trimming the LAST
2734     * block from the directory.
2735     */
2736    resblks = XFS_REMOVE_SPACE_RES(mp);
2737    error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2738    if (error == -ENOSPC) {
2739        resblks = 0;
2740        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, &tp);
2741    }
2742    if (error) {
2743        ASSERT(error != -ENOSPC);
2744        goto std_return;
2745    }
2746
2747    xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2748
2749    xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2750    xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2751
2752    /*
2753     * If we're removing a directory perform some additional validation.
2754     */
2755    if (is_dir) {
2756        ASSERT(VFS_I(ip)->i_nlink >= 0x2);
2757        if (VFS_I(ip)->i_nlink != 0x2) {
2758            error = -ENOTEMPTY;
2759            goto out_trans_cancel;
2760        }
2761        if (!xfs_dir_isempty(ip)) {
2762            error = -ENOTEMPTY;
2763            goto out_trans_cancel;
2764        }
2765
2766        /* Drop the link from ip's "..".  */
2767        error = xfs_droplink(tp, dp);
2768        if (error) {
2769            goto out_trans_cancel;
2770        }
2771
2772        /* Drop the "." link from ip to self.  */
2773        error = xfs_droplink(tp, ip);
2774        if (error) {
2775            goto out_trans_cancel;
2776        }
2777    } else {
2778        /*
2779         * When removing a non-directory we need to log the parent
2780         * inode here.  For a directory this is done implicitly
2781         * by the xfs_droplink call for the ".." entry.
2782         */
2783        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2784    }
2785    xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2786
2787    /* Drop the link from dp to ip. */
2788    error = xfs_droplink(tp, ip);
2789    if (error) {
2790        goto out_trans_cancel;
2791    }
2792
2793    error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2794    if (error) {
2795        ASSERT(error != -ENOENT);
2796        goto out_trans_cancel;
2797    }
2798
2799    /*
2800     * If this is a synchronous mount, make sure that the
2801     * remove transaction goes to disk before returning to
2802     * the user.
2803     */
2804    if (mp->m_flags & (XFS_MOUNT_WSYNC | XFS_MOUNT_DIRSYNC)) {
2805        xfs_trans_set_sync(tp);
2806    }
2807
2808    error = xfs_trans_commit(tp);
2809    if (error) {
2810        goto std_return;
2811    }
2812
2813    if (is_dir && xfs_inode_is_filestream(ip)) {
2814        xfs_filestream_deassociate(ip);
2815    }
2816
2817    return 0;
2818
2819out_trans_cancel:
2820    xfs_trans_cancel(tp);
2821std_return:
2822    return error;
2823}
2824
2825/*
2826 * Enter all inodes for a rename transaction into a sorted array.
2827 */
2828#define _XFS_SORT_INODES 5
2829STATIC void xfs_sort_for_rename(struct xfs_inode *dp1,    /* in: old (source) directory inode */
2830                                struct xfs_inode *dp2,    /* in: new (target) directory inode */
2831                                struct xfs_inode *ip1,    /* in: inode of old entry */
2832                                struct xfs_inode *ip2,    /* in: inode of new entry */
2833                                struct xfs_inode *wip,    /* in: whiteout inode */
2834                                struct xfs_inode **i_tab, /* out: sorted array of inodes */
2835                                int *num_inodes)          /* in/out: inodes in array */
2836{
2837    int i, j;
2838
2839    ASSERT(*num_inodes == _XFS_SORT_INODES);
2840    memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842    /*
2843     * i_tab contains a list of pointers to inodes.  We initialize
2844     * the table here & we'll sort it.  We will then use it to
2845     * order the acquisition of the inode locks.
2846     *
2847     * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2848     */
2849    i = 0;
2850    i_tab[i++] = dp1;
2851    i_tab[i++] = dp2;
2852    i_tab[i++] = ip1;
2853    if (ip2) {
2854        i_tab[i++] = ip2;
2855    }
2856    if (wip) {
2857        i_tab[i++] = wip;
2858    }
2859    *num_inodes = i;
2860
2861    /*
2862     * Sort the elements via bubble sort.  (Remember, there are at
2863     * most 5 elements to sort, so this is adequate.)
2864     */
2865    for (i = 0; i < *num_inodes; i++) {
2866        for (j = 1; j < *num_inodes; j++) {
2867            if (i_tab[j]->i_ino < i_tab[j - 1]->i_ino) {
2868                struct xfs_inode *temp = i_tab[j];
2869                i_tab[j] = i_tab[j - 1];
2870                i_tab[j - 1] = temp;
2871            }
2872        }
2873    }
2874}
2875
2876static int xfs_finish_rename(struct xfs_trans *tp)
2877{
2878    /*
2879     * If this is a synchronous mount, make sure that the rename transaction
2880     * goes to disk before returning to the user.
2881     */
2882    if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC | XFS_MOUNT_DIRSYNC)) {
2883        xfs_trans_set_sync(tp);
2884    }
2885
2886    return xfs_trans_commit(tp);
2887}
2888
2889/*
2890 * xfs_cross_rename()
2891 *
2892 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2893 */
2894STATIC int xfs_cross_rename(struct xfs_trans *tp, struct xfs_inode *dp1, struct xfs_name *name1, struct xfs_inode *ip1,
2895                            struct xfs_inode *dp2, struct xfs_name *name2, struct xfs_inode *ip2, int spaceres)
2896{
2897    int error = 0;
2898    int ip1_flags = 0;
2899    int ip2_flags = 0;
2900    int dp2_flags = 0;
2901
2902    /* Swap inode number for dirent in first parent */
2903    error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2904    if (error) {
2905        goto out_trans_abort;
2906    }
2907
2908    /* Swap inode number for dirent in second parent */
2909    error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2910    if (error) {
2911        goto out_trans_abort;
2912    }
2913
2914    /*
2915     * If we're renaming one or more directories across different parents,
2916     * update the respective ".." entries (and link counts) to match the new
2917     * parents.
2918     */
2919    if (dp1 != dp2) {
2920        dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2921
2922        if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2923            error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, dp1->i_ino, spaceres);
2924            if (error) {
2925                goto out_trans_abort;
2926            }
2927
2928            /* transfer ip2 ".." reference to dp1 */
2929            if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2930                error = xfs_droplink(tp, dp2);
2931                if (error) {
2932                    goto out_trans_abort;
2933                }
2934                xfs_bumplink(tp, dp1);
2935            }
2936
2937            /*
2938             * Although ip1 isn't changed here, userspace needs
2939             * to be warned about the change, so that applications
2940             * relying on it (like backup ones), will properly
2941             * notify the change
2942             */
2943            ip1_flags |= XFS_ICHGTIME_CHG;
2944            ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2945        }
2946
2947        if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2948            error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, dp2->i_ino, spaceres);
2949            if (error) {
2950                goto out_trans_abort;
2951            }
2952
2953            /* transfer ip1 ".." reference to dp2 */
2954            if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2955                error = xfs_droplink(tp, dp1);
2956                if (error) {
2957                    goto out_trans_abort;
2958                }
2959                xfs_bumplink(tp, dp2);
2960            }
2961
2962            /*
2963             * Although ip2 isn't changed here, userspace needs
2964             * to be warned about the change, so that applications
2965             * relying on it (like backup ones), will properly
2966             * notify the change
2967             */
2968            ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2969            ip2_flags |= XFS_ICHGTIME_CHG;
2970        }
2971    }
2972
2973    if (ip1_flags) {
2974        xfs_trans_ichgtime(tp, ip1, ip1_flags);
2975        xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2976    }
2977    if (ip2_flags) {
2978        xfs_trans_ichgtime(tp, ip2, ip2_flags);
2979        xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2980    }
2981    if (dp2_flags) {
2982        xfs_trans_ichgtime(tp, dp2, dp2_flags);
2983        xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2984    }
2985    xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2986    xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2987    return xfs_finish_rename(tp);
2988
2989out_trans_abort:
2990    xfs_trans_cancel(tp);
2991    return error;
2992}
2993
2994/*
2995 * xfs_rename_alloc_whiteout()
2996 *
2997 * Return a referenced, unlinked, unlocked inode that can be used as a
2998 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2999 * crash between allocating the inode and linking it into the rename transaction
3000 * recovery will free the inode and we won't leak it.
3001 */
3002static int xfs_rename_alloc_whiteout(struct xfs_inode *dp, struct xfs_inode **wip)
3003{
3004    struct xfs_inode *tmpfile;
3005    int error;
3006
3007    error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3008    if (error) {
3009        return error;
3010    }
3011
3012    /*
3013     * Prepare the tmpfile inode as if it were created through the VFS.
3014     * Complete the inode setup and flag it as linkable.  nlink is already
3015     * zero, so we can skip the drop_nlink.
3016     */
3017    xfs_setup_iops(tmpfile);
3018    xfs_finish_inode_setup(tmpfile);
3019    VFS_I(tmpfile)->i_state |= I_LINKABLE;
3020
3021    *wip = tmpfile;
3022    return 0;
3023}
3024
3025/*
3026 * xfs_rename
3027 */
3028int xfs_rename(struct xfs_inode *src_dp, struct xfs_name *src_name, struct xfs_inode *src_ip,
3029               struct xfs_inode *target_dp, struct xfs_name *target_name, struct xfs_inode *target_ip,
3030               unsigned int flags)
3031{
3032    struct xfs_mount *mp = src_dp->i_mount;
3033    struct xfs_trans *tp;
3034    struct xfs_inode *wip = NULL; /* whiteout inode */
3035    struct xfs_inode *inodes[_XFS_SORT_INODES];
3036    int i;
3037    int num_inodes = _XFS_SORT_INODES;
3038    bool new_parent = (src_dp != target_dp);
3039    bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3040    int spaceres;
3041    int error;
3042
3043    trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3044
3045    if ((flags & RENAME_EXCHANGE) && !target_ip) {
3046        return -EINVAL;
3047    }
3048
3049    /*
3050     * If we are doing a whiteout operation, allocate the whiteout inode
3051     * we will be placing at the target and ensure the type is set
3052     * appropriately.
3053     */
3054    if (flags & RENAME_WHITEOUT) {
3055        error = xfs_rename_alloc_whiteout(target_dp, &wip);
3056        if (error) {
3057            return error;
3058        }
3059
3060        /* setup target dirent info as whiteout */
3061        src_name->type = XFS_DIR3_FT_CHRDEV;
3062    }
3063
3064    xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, inodes, &num_inodes);
3065
3066    spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3067    error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3068    if (error == -ENOSPC) {
3069        spaceres = 0;
3070        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, &tp);
3071    }
3072    if (error) {
3073        goto out_release_wip;
3074    }
3075
3076    /*
3077     * Attach the dquots to the inodes
3078     */
3079    error = xfs_qm_vop_rename_dqattach(inodes);
3080    if (error) {
3081        goto out_trans_cancel;
3082    }
3083
3084    /*
3085     * Lock all the participating inodes. Depending upon whether
3086     * the target_name exists in the target directory, and
3087     * whether the target directory is the same as the source
3088     * directory, we can lock from 2 to 4 inodes.
3089     */
3090    xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3091
3092    /*
3093     * Join all the inodes to the transaction. From this point on,
3094     * we can rely on either trans_commit or trans_cancel to unlock
3095     * them.
3096     */
3097    xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3098    if (new_parent) {
3099        xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3100    }
3101    xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3102    if (target_ip) {
3103        xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3104    }
3105    if (wip) {
3106        xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3107    }
3108
3109    /*
3110     * If we are using project inheritance, we only allow renames
3111     * into our tree when the project IDs are the same; else the
3112     * tree quota mechanism would be circumvented.
3113     */
3114    if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3115                 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3116        error = -EXDEV;
3117        goto out_trans_cancel;
3118    }
3119
3120    /* RENAME_EXCHANGE is unique from here on. */
3121    if (flags & RENAME_EXCHANGE) {
3122        return xfs_cross_rename(tp, src_dp, src_name, src_ip, target_dp, target_name, target_ip, spaceres);
3123    }
3124
3125    /*
3126     * Check for expected errors before we dirty the transaction
3127     * so we can return an error without a transaction abort.
3128     */
3129    if (target_ip == NULL) {
3130        /*
3131         * If there's no space reservation, check the entry will
3132         * fit before actually inserting it.
3133         */
3134        if (!spaceres) {
3135            error = xfs_dir_canenter(tp, target_dp, target_name);
3136            if (error) {
3137                goto out_trans_cancel;
3138            }
3139        }
3140    } else {
3141        /*
3142         * If target exists and it's a directory, check that whether
3143         * it can be destroyed.
3144         */
3145        if (S_ISDIR(VFS_I(target_ip)->i_mode) && (!xfs_dir_isempty(target_ip) || (VFS_I(target_ip)->i_nlink > 0x2))) {
3146            error = -EEXIST;
3147            goto out_trans_cancel;
3148        }
3149    }
3150
3151    /*
3152     * Lock the AGI buffers we need to handle bumping the nlink of the
3153     * whiteout inode off the unlinked list and to handle dropping the
3154     * nlink of the target inode.  Per locking order rules, do this in
3155     * increasing AG order and before directory block allocation tries to
3156     * grab AGFs because we grab AGIs before AGFs.
3157     *
3158     * The (vfs) caller must ensure that if src is a directory then
3159     * target_ip is either null or an empty directory.
3160     */
3161    for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3162        if (inodes[i] == wip ||
3163            (inodes[i] == target_ip &&
3164             (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3165            struct xfs_buf *bp;
3166            xfs_agnumber_t agno;
3167
3168            agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3169            error = xfs_read_agi(mp, tp, agno, &bp);
3170            if (error)
3171                goto out_trans_cancel;
3172        }
3173    }
3174
3175    /*
3176     * Directory entry creation below may acquire the AGF. Remove
3177     * the whiteout from the unlinked list first to preserve correct
3178     * AGI/AGF locking order. This dirties the transaction so failures
3179     * after this point will abort and log recovery will clean up the
3180     * mess.
3181     *
3182     * For whiteouts, we need to bump the link count on the whiteout
3183     * inode. After this point, we have a real link, clear the tmpfile
3184     * state flag from the inode so it doesn't accidentally get misused
3185     * in future.
3186     */
3187    if (wip) {
3188        ASSERT(VFS_I(wip)->i_nlink == 0);
3189        error = xfs_iunlink_remove(tp, wip);
3190        if (error) {
3191            goto out_trans_cancel;
3192        }
3193
3194        xfs_bumplink(tp, wip);
3195        VFS_I(wip)->i_state &= ~I_LINKABLE;
3196    }
3197
3198    /*
3199     * Set up the target.
3200     */
3201    if (target_ip == NULL) {
3202        /*
3203         * If target does not exist and the rename crosses
3204         * directories, adjust the target directory link count
3205         * to account for the ".." reference from the new entry.
3206         */
3207        error = xfs_dir_createname(tp, target_dp, target_name, src_ip->i_ino, spaceres);
3208        if (error) {
3209            goto out_trans_cancel;
3210        }
3211
3212        xfs_trans_ichgtime(tp, target_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3213
3214        if (new_parent && src_is_directory) {
3215            xfs_bumplink(tp, target_dp);
3216        }
3217    } else { /* target_ip != NULL */
3218        /*
3219         * Link the source inode under the target name.
3220         * If the source inode is a directory and we are moving
3221         * it across directories, its ".." entry will be
3222         * inconsistent until we replace that down below.
3223         *
3224         * In case there is already an entry with the same
3225         * name at the destination directory, remove it first.
3226         */
3227
3228        error = xfs_dir_replace(tp, target_dp, target_name, src_ip->i_ino, spaceres);
3229        if (error) {
3230            goto out_trans_cancel;
3231        }
3232
3233        xfs_trans_ichgtime(tp, target_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3234
3235        /*
3236         * Decrement the link count on the target since the target
3237         * dir no longer points to it.
3238         */
3239        error = xfs_droplink(tp, target_ip);
3240        if (error) {
3241            goto out_trans_cancel;
3242        }
3243
3244        if (src_is_directory) {
3245            /*
3246             * Drop the link from the old "." entry.
3247             */
3248            error = xfs_droplink(tp, target_ip);
3249            if (error) {
3250                goto out_trans_cancel;
3251            }
3252        }
3253    } /* target_ip != NULL */
3254
3255    /*
3256     * Remove the source.
3257     */
3258    if (new_parent && src_is_directory) {
3259        /*
3260         * Rewrite the ".." entry to point to the new
3261         * directory.
3262         */
3263        error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, target_dp->i_ino, spaceres);
3264        ASSERT(error != -EEXIST);
3265        if (error) {
3266            goto out_trans_cancel;
3267        }
3268    }
3269
3270    /*
3271     * We always want to hit the ctime on the source inode.
3272     *
3273     * This isn't strictly required by the standards since the source
3274     * inode isn't really being changed, but old unix file systems did
3275     * it and some incremental backup programs won't work without it.
3276     */
3277    xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3278    xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3279
3280    /*
3281     * Adjust the link count on src_dp.  This is necessary when
3282     * renaming a directory, either within one parent when
3283     * the target existed, or across two parent directories.
3284     */
3285    if (src_is_directory && (new_parent || target_ip != NULL)) {
3286        /*
3287         * Decrement link count on src_directory since the
3288         * entry that's moved no longer points to it.
3289         */
3290        error = xfs_droplink(tp, src_dp);
3291        if (error) {
3292            goto out_trans_cancel;
3293        }
3294    }
3295
3296    /*
3297     * For whiteouts, we only need to update the source dirent with the
3298     * inode number of the whiteout inode rather than removing it
3299     * altogether.
3300     */
3301    if (wip) {
3302        error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, spaceres);
3303    } else {
3304        error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, spaceres);
3305    }
3306    if (error) {
3307        goto out_trans_cancel;
3308    }
3309
3310    xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3311    xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3312    if (new_parent) {
3313        xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3314    }
3315
3316    error = xfs_finish_rename(tp);
3317    if (wip) {
3318        xfs_irele(wip);
3319    }
3320    return error;
3321
3322out_trans_cancel:
3323    xfs_trans_cancel(tp);
3324out_release_wip:
3325    if (wip) {
3326        xfs_irele(wip);
3327    }
3328    return error;
3329}
3330
3331static int xfs_iflush(struct xfs_inode *ip, struct xfs_buf *bp)
3332{
3333    struct xfs_inode_log_item *iip = ip->i_itemp;
3334    struct xfs_dinode *dip;
3335    struct xfs_mount *mp = ip->i_mount;
3336    int error;
3337
3338    ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
3339    ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3340    ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3341    ASSERT(iip->ili_item.li_buf == bp);
3342
3343    dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3344
3345    /*
3346     * We don't flush the inode if any of the following checks fail, but we
3347     * do still update the log item and attach to the backing buffer as if
3348     * the flush happened. This is a formality to facilitate predictable
3349     * error handling as the caller will shutdown and fail the buffer.
3350     */
3351    error = -EFSCORRUPTED;
3352    if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), mp, XFS_ERRTAG_IFLUSH_1)) {
3353        xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad inode %Lu magic number 0x%x, ptr " PTR_FMT, __func__, ip->i_ino,
3354                      be16_to_cpu(dip->di_magic), dip);
3355        goto flush_out;
3356    }
3357    if (S_ISREG(VFS_I(ip)->i_mode)) {
3358        if (XFS_TEST_ERROR(ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3359                           mp, XFS_ERRTAG_IFLUSH_3)) {
3360            xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad regular inode %Lu, ptr " PTR_FMT, __func__, ip->i_ino, ip);
3361            goto flush_out;
3362        }
3363    } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3364        if (XFS_TEST_ERROR(ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3365                               ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3366                           mp, XFS_ERRTAG_IFLUSH_4)) {
3367            xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: Bad directory inode %Lu, ptr " PTR_FMT, __func__, ip->i_ino, ip);
3368            goto flush_out;
3369        }
3370    }
3371    if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > ip->i_d.di_nblocks, mp,
3372                       XFS_ERRTAG_IFLUSH_5)) {
3373        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3374                      "%s: detected corrupt incore inode %Lu, "
3375                      "total extents = %d, nblocks = %Ld, ptr " PTR_FMT,
3376                      __func__, ip->i_ino, ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), ip->i_d.di_nblocks,
3377                      ip);
3378        goto flush_out;
3379    }
3380    if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, mp, XFS_ERRTAG_IFLUSH_6)) {
3381        xfs_alert_tag(mp, XFS_PTAG_IFLUSH, "%s: bad inode %Lu, forkoff 0x%x, ptr " PTR_FMT, __func__, ip->i_ino,
3382                      ip->i_d.di_forkoff, ip);
3383        goto flush_out;
3384    }
3385
3386    /*
3387     * Inode item log recovery for v2 inodes are dependent on the
3388     * di_flushiter count for correct sequencing. We bump the flush
3389     * iteration count so we can detect flushes which postdate a log record
3390     * during recovery. This is redundant as we now log every change and
3391     * hence this can't happen but we need to still do it to ensure
3392     * backwards compatibility with old kernels that predate logging all
3393     * inode changes.
3394     */
3395    if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3396        ip->i_d.di_flushiter++;
3397    }
3398
3399    /*
3400     * If there are inline format data / attr forks attached to this inode,
3401     * make sure they are not corrupt.
3402     */
3403    if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && xfs_ifork_verify_local_data(ip)) {
3404        goto flush_out;
3405    }
3406    if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && xfs_ifork_verify_local_attr(ip)) {
3407        goto flush_out;
3408    }
3409
3410    /*
3411     * Copy the dirty parts of the inode into the on-disk inode.  We always
3412     * copy out the core of the inode, because if the inode is dirty at all
3413     * the core must be.
3414     */
3415    xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3416
3417    /* Wrap, we never let the log put out DI_MAX_FLUSH */
3418    if (ip->i_d.di_flushiter == DI_MAX_FLUSH) {
3419        ip->i_d.di_flushiter = 0;
3420    }
3421
3422    xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3423    if (XFS_IFORK_Q(ip)) {
3424        xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3425    }
3426
3427    /*
3428     * We've recorded everything logged in the inode, so we'd like to clear
3429     * the ili_fields bits so we don't log and flush things unnecessarily.
3430     * However, we can't stop logging all this information until the data
3431     * we've copied into the disk buffer is written to disk.  If we did we
3432     * might overwrite the copy of the inode in the log with all the data
3433     * after re-logging only part of it, and in the face of a crash we
3434     * wouldn't have all the data we need to recover.
3435     *
3436     * What we do is move the bits to the ili_last_fields field.  When
3437     * logging the inode, these bits are moved back to the ili_fields field.
3438     * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3439     * we know that the information those bits represent is permanently on
3440     * disk.  As long as the flush completes before the inode is logged
3441     * again, then both ili_fields and ili_last_fields will be cleared.
3442     */
3443    error = 0;
3444flush_out:
3445    spin_lock(&iip->ili_lock);
3446    iip->ili_last_fields = iip->ili_fields;
3447    iip->ili_fields = 0;
3448    iip->ili_fsync_fields = 0;
3449    spin_unlock(&iip->ili_lock);
3450
3451    /*
3452     * Store the current LSN of the inode so that we can tell whether the
3453     * item has moved in the AIL from xfs_buf_inode_iodone().
3454     */
3455    xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, &iip->ili_item.li_lsn);
3456
3457    /* generate the checksum. */
3458    xfs_dinode_calc_crc(mp, dip);
3459    return error;
3460}
3461
3462/*
3463 * Non-blocking flush of dirty inode metadata into the backing buffer.
3464 *
3465 * The caller must have a reference to the inode and hold the cluster buffer
3466 * locked. The function will walk across all the inodes on the cluster buffer it
3467 * can find and lock without blocking, and flush them to the cluster buffer.
3468 *
3469 * On successful flushing of at least one inode, the caller must write out the
3470 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3471 * the caller needs to release the buffer. On failure, the filesystem will be
3472 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3473 * will be returned.
3474 */
3475int xfs_iflush_cluster(struct xfs_buf *bp)
3476{
3477    struct xfs_mount *mp = bp->b_mount;
3478    struct xfs_log_item *lip, *n;
3479    struct xfs_inode *ip;
3480    struct xfs_inode_log_item *iip;
3481    int clcount = 0;
3482    int error = 0;
3483
3484    /*
3485     * We must use the safe variant here as on shutdown xfs_iflush_abort()
3486     * can remove itself from the list.
3487     */
3488    list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list)
3489    {
3490        iip = (struct xfs_inode_log_item *)lip;
3491        ip = iip->ili_inode;
3492
3493        /*
3494         * Quick and dirty check to avoid locks if possible.
3495         */
3496        if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3497            continue;
3498        }
3499        if (xfs_ipincount(ip)) {
3500            continue;
3501        }
3502
3503        /*
3504         * The inode is still attached to the buffer, which means it is
3505         * dirty but reclaim might try to grab it. Check carefully for
3506         * that, and grab the ilock while still holding the i_flags_lock
3507         * to guarantee reclaim will not be able to reclaim this inode
3508         * once we drop the i_flags_lock.
3509         */
3510        spin_lock(&ip->i_flags_lock);
3511        ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3512        if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3513            spin_unlock(&ip->i_flags_lock);
3514            continue;
3515        }
3516
3517        /*
3518         * ILOCK will pin the inode against reclaim and prevent
3519         * concurrent transactions modifying the inode while we are
3520         * flushing the inode. If we get the lock, set the flushing
3521         * state before we drop the i_flags_lock.
3522         */
3523        if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3524            spin_unlock(&ip->i_flags_lock);
3525            continue;
3526        }
3527        __xfs_iflags_set(ip, XFS_IFLUSHING);
3528        spin_unlock(&ip->i_flags_lock);
3529
3530        /*
3531         * Abort flushing this inode if we are shut down because the
3532         * inode may not currently be in the AIL. This can occur when
3533         * log I/O failure unpins the inode without inserting into the
3534         * AIL, leaving a dirty/unpinned inode attached to the buffer
3535         * that otherwise looks like it should be flushed.
3536         */
3537        if (XFS_FORCED_SHUTDOWN(mp)) {
3538            xfs_iunpin_wait(ip);
3539            xfs_iflush_abort(ip);
3540            xfs_iunlock(ip, XFS_ILOCK_SHARED);
3541            error = -EIO;
3542            continue;
3543        }
3544
3545        /* don't block waiting on a log force to unpin dirty inodes */
3546        if (xfs_ipincount(ip)) {
3547            xfs_iflags_clear(ip, XFS_IFLUSHING);
3548            xfs_iunlock(ip, XFS_ILOCK_SHARED);
3549            continue;
3550        }
3551
3552        if (!xfs_inode_clean(ip)) {
3553            error = xfs_iflush(ip, bp);
3554        } else {
3555            xfs_iflags_clear(ip, XFS_IFLUSHING);
3556        }
3557        xfs_iunlock(ip, XFS_ILOCK_SHARED);
3558        if (error) {
3559            break;
3560        }
3561        clcount++;
3562    }
3563
3564    if (error) {
3565        bp->b_flags |= XBF_ASYNC;
3566        xfs_buf_ioend_fail(bp);
3567        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3568        return error;
3569    }
3570
3571    if (!clcount) {
3572        return -EAGAIN;
3573    }
3574
3575    XFS_STATS_INC(mp, xs_icluster_flushcnt);
3576    XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3577    return 0;
3578}
3579
3580/* Release an inode. */
3581void xfs_irele(struct xfs_inode *ip)
3582{
3583    trace_xfs_irele(ip, _RET_IP_);
3584    iput(VFS_I(ip));
3585}
3586
3587/*
3588 * Ensure all commited transactions touching the inode are written to the log.
3589 */
3590int xfs_log_force_inode(struct xfs_inode *ip)
3591{
3592    xfs_csn_t seq = 0;
3593
3594    xfs_ilock(ip, XFS_ILOCK_SHARED);
3595    if (xfs_ipincount(ip)) {
3596        seq = ip->i_itemp->ili_commit_seq;
3597    }
3598    xfs_iunlock(ip, XFS_ILOCK_SHARED);
3599
3600    if (!seq) {
3601        return 0;
3602    }
3603    return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3604}
3605
3606/*
3607 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3608 * abide vfs locking order (lowest pointer value goes first) and breaking the
3609 * layout leases before proceeding.  The loop is needed because we cannot call
3610 * the blocking break_layout() with the iolocks held, and therefore have to
3611 * back out both locks.
3612 */
3613static int xfs_iolock_two_inodes_and_break_layout(struct inode *src, struct inode *dest)
3614{
3615    int error;
3616
3617    if (src > dest) {
3618        swap(src, dest);
3619    }
3620
3621    while (1) {
3622        /* Wait to break both inodes' layouts before we start locking. */
3623        error = break_layout(src, true);
3624        if (error) {
3625            return error;
3626        }
3627        if (src != dest) {
3628            error = break_layout(dest, true);
3629            if (error) {
3630                return error;
3631            }
3632        }
3633
3634        /* Lock one inode and make sure nobody got in and leased it. */
3635        inode_lock(src);
3636        error = break_layout(src, false);
3637        if (error) {
3638            inode_unlock(src);
3639            if (error == -EWOULDBLOCK) {
3640                continue;
3641            }
3642            return error;
3643        }
3644
3645        if (src == dest) {
3646            return 0;
3647        }
3648
3649        /* Lock the other inode and make sure nobody got in and leased it. */
3650        inode_lock_nested(dest, I_MUTEX_NONDIR2);
3651        error = break_layout(dest, false);
3652        if (error) {
3653            inode_unlock(src);
3654            inode_unlock(dest);
3655            if (error == -EWOULDBLOCK) {
3656                continue;
3657            }
3658            return error;
3659        }
3660        break;
3661    }
3662
3663    return 0;
3664}
3665
3666/*
3667 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3668 * mmap activity.
3669 */
3670int xfs_ilock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2)
3671{
3672    int ret;
3673
3674    ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3675    if (ret) {
3676        return ret;
3677    }
3678    if (ip1 == ip2) {
3679        xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3680    } else {
3681        xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, ip2, XFS_MMAPLOCK_EXCL);
3682    }
3683    return 0;
3684}
3685
3686/* Unlock both inodes to allow IO and mmap activity. */
3687void xfs_iunlock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2)
3688{
3689    bool same_inode = (ip1 == ip2);
3690
3691    xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3692    if (!same_inode) {
3693        xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3694    }
3695    inode_unlock(VFS_I(ip2));
3696    if (!same_inode) {
3697        inode_unlock(VFS_I(ip1));
3698    }
3699}
3700