1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/anon_inodes.h>
19#include <linux/export.h>
20#include <linux/debugfs.h>
21#include <linux/module.h>
22#include <linux/seq_file.h>
23#include <linux/poll.h>
24#include <linux/dma-resv.h>
25#include <linux/mm.h>
26#include <linux/mount.h>
27#include <linux/pseudo_fs.h>
28
29#include <uapi/linux/dma-buf.h>
30#include <uapi/linux/magic.h>
31
32#include "dma-buf-sysfs-stats.h"
33#include "dma-buf-process-info.h"
34
35struct dma_buf_list {
36    struct list_head head;
37    struct mutex lock;
38};
39
40static struct dma_buf_list db_list;
41
42/*
43 * This function helps in traversing the db_list and calls the
44 * callback function which can extract required info out of each
45 * dmabuf.
46 */
47int get_each_dmabuf(int (*callback)(const struct dma_buf *dmabuf, void *private), void *private)
48{
49    struct dma_buf *buf;
50    int ret = mutex_lock_interruptible(&db_list.lock);
51    if (ret) {
52        return ret;
53    }
54
55    list_for_each_entry(buf, &db_list.head, list_node)
56    {
57        ret = callback(buf, private);
58        if (ret) {
59            break;
60        }
61    }
62    mutex_unlock(&db_list.lock);
63    return ret;
64}
65EXPORT_SYMBOL_GPL(get_each_dmabuf);
66
67static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
68{
69    struct dma_buf *dmabuf;
70    char name[DMA_BUF_NAME_LEN];
71    size_t ret = 0;
72
73    dmabuf = dentry->d_fsdata;
74    spin_lock(&dmabuf->name_lock);
75    if (dmabuf->name) {
76        ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
77    }
78    spin_unlock(&dmabuf->name_lock);
79
80    return dynamic_dname(dentry, buffer, buflen, "/%s:%s", dentry->d_name.name, ret > 0 ? name : "");
81}
82
83static void dma_buf_release(struct dentry *dentry)
84{
85    struct dma_buf *dmabuf;
86
87    dmabuf = dentry->d_fsdata;
88    if (unlikely(!dmabuf)) {
89        return;
90    }
91
92    BUG_ON(dmabuf->vmapping_counter);
93
94    /*
95     * Any fences that a dma-buf poll can wait on should be signaled
96     * before releasing dma-buf. This is the responsibility of each
97     * driver that uses the reservation objects.
98     *
99     * If you hit this BUG() it means someone dropped their ref to the
100     * dma-buf while still having pending operation to the buffer.
101     */
102    BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
103
104    dmabuf->ops->release(dmabuf);
105
106    if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) {
107        dma_resv_fini(dmabuf->resv);
108    }
109
110    WARN_ON(!list_empty(&dmabuf->attachments));
111    dma_buf_stats_teardown(dmabuf);
112    module_put(dmabuf->owner);
113    kfree(dmabuf->name);
114    kfree(dmabuf);
115}
116
117static int dma_buf_file_release(struct inode *inode, struct file *file)
118{
119    struct dma_buf *dmabuf;
120
121    if (!is_dma_buf_file(file)) {
122        return -EINVAL;
123    }
124
125    dmabuf = file->private_data;
126
127    mutex_lock(&db_list.lock);
128    list_del(&dmabuf->list_node);
129    mutex_unlock(&db_list.lock);
130
131    return 0;
132}
133
134static const struct dentry_operations dma_buf_dentry_ops = {
135    .d_dname = dmabuffs_dname,
136    .d_release = dma_buf_release,
137};
138
139static struct vfsmount *dma_buf_mnt;
140
141static int dma_buf_fs_init_context(struct fs_context *fc)
142{
143    struct pseudo_fs_context *ctx;
144
145    ctx = init_pseudo(fc, DMA_BUF_MAGIC);
146    if (!ctx) {
147        return -ENOMEM;
148    }
149    ctx->dops = &dma_buf_dentry_ops;
150    return 0;
151}
152
153static struct file_system_type dma_buf_fs_type = {
154    .name = "dmabuf",
155    .init_fs_context = dma_buf_fs_init_context,
156    .kill_sb = kill_anon_super,
157};
158
159#ifdef CONFIG_DMABUF_SYSFS_STATS
160static void dma_buf_vma_open(struct vm_area_struct *vma)
161{
162    struct dma_buf *dmabuf = vma->vm_file->private_data;
163
164    dmabuf->mmap_count++;
165    /* call the heap provided vma open() op */
166    if (dmabuf->exp_vm_ops->open) {
167        dmabuf->exp_vm_ops->open(vma);
168    }
169}
170
171static void dma_buf_vma_close(struct vm_area_struct *vma)
172{
173    struct dma_buf *dmabuf = vma->vm_file->private_data;
174
175    if (dmabuf->mmap_count) {
176        dmabuf->mmap_count--;
177    }
178    /* call the heap provided vma close() op */
179    if (dmabuf->exp_vm_ops->close) {
180        dmabuf->exp_vm_ops->close(vma);
181    }
182}
183
184static int dma_buf_do_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
185{
186    /* call this first because the exporter might override vma->vm_ops */
187    int ret = dmabuf->ops->mmap(dmabuf, vma);
188    if (ret) {
189        return ret;
190    }
191
192    /* save the exporter provided vm_ops */
193    dmabuf->exp_vm_ops = vma->vm_ops;
194    dmabuf->vm_ops = *(dmabuf->exp_vm_ops);
195    /* override open() and close() to provide buffer mmap count */
196    dmabuf->vm_ops.open = dma_buf_vma_open;
197    dmabuf->vm_ops.close = dma_buf_vma_close;
198    vma->vm_ops = &dmabuf->vm_ops;
199    dmabuf->mmap_count++;
200
201    return ret;
202}
203#else  /* CONFIG_DMABUF_SYSFS_STATS */
204static int dma_buf_do_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
205{
206    return dmabuf->ops->mmap(dmabuf, vma);
207}
208#endif /* CONFIG_DMABUF_SYSFS_STATS */
209
210static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
211{
212    struct dma_buf *dmabuf;
213
214    if (!is_dma_buf_file(file)) {
215        return -EINVAL;
216    }
217
218    dmabuf = file->private_data;
219
220    /* check if buffer supports mmap */
221    if (!dmabuf->ops->mmap) {
222        return -EINVAL;
223    }
224
225    /* check for overflowing the buffer's size */
226    if ((vma->vm_pgoff + vma_pages(vma)) > (dmabuf->size >> PAGE_SHIFT)) {
227        return -EINVAL;
228    }
229
230    return dma_buf_do_mmap(dmabuf, vma);
231}
232
233static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
234{
235    struct dma_buf *dmabuf;
236    loff_t base;
237
238    if (!is_dma_buf_file(file)) {
239        return -EBADF;
240    }
241
242    dmabuf = file->private_data;
243
244    /* only support discovering the end of the buffer,
245       but also allow SEEK_SET to maintain the idiomatic
246       SEEK_END(0), SEEK_CUR(0) pattern */
247    if (whence == SEEK_END) {
248        base = dmabuf->size;
249    } else if (whence == SEEK_SET) {
250        base = 0;
251    } else {
252        return -EINVAL;
253    }
254
255    if (offset != 0) {
256        return -EINVAL;
257    }
258
259    return base + offset;
260}
261
262/**
263 * DOC: implicit fence polling
264 *
265 * To support cross-device and cross-driver synchronization of buffer access
266 * implicit fences (represented internally in the kernel with &struct dma_fence)
267 * can be attached to a &dma_buf. The glue for that and a few related things are
268 * provided in the &dma_resv structure.
269 *
270 * Userspace can query the state of these implicitly tracked fences using poll()
271 * and related system calls
272 *
273 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
274 *   most recent write or exclusive fence.
275 *
276 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
277 *   all attached fences, shared and exclusive ones.
278 *
279 * Note that this only signals the completion of the respective fences, i.e. the
280 * DMA transfers are complete. Cache flushing and any other necessary
281 * preparations before CPU access can begin still need to happen.
282 */
283
284static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
285{
286    struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
287    unsigned long flags;
288
289    spin_lock_irqsave(&dcb->poll->lock, flags);
290    wake_up_locked_poll(dcb->poll, dcb->active);
291    dcb->active = 0;
292    spin_unlock_irqrestore(&dcb->poll->lock, flags);
293}
294
295static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
296{
297    struct dma_buf *dmabuf;
298    struct dma_resv *resv;
299    struct dma_resv_list *fobj;
300    struct dma_fence *fence_excl;
301    __poll_t events;
302    unsigned shared_count, seq;
303
304    dmabuf = file->private_data;
305    if (!dmabuf || !dmabuf->resv) {
306        return EPOLLERR;
307    }
308
309    resv = dmabuf->resv;
310
311    poll_wait(file, &dmabuf->poll, poll);
312
313    events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
314    if (!events) {
315        return 0;
316    }
317
318    while (1) {
319        seq = read_seqcount_begin(&resv->seq);
320        rcu_read_lock();
321
322        fobj = rcu_dereference(resv->fence);
323        if (fobj) {
324            shared_count = fobj->shared_count;
325        } else {
326            shared_count = 0;
327        }
328        fence_excl = rcu_dereference(resv->fence_excl);
329        if (read_seqcount_retry(&resv->seq, seq)) {
330            rcu_read_unlock();
331            continue;
332        }
333        break;
334    }
335    if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
336        struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
337        __poll_t pevents = EPOLLIN;
338
339        if (shared_count == 0) {
340            pevents |= EPOLLOUT;
341        }
342
343        spin_lock_irq(&dmabuf->poll.lock);
344        if (dcb->active) {
345            dcb->active |= pevents;
346            events &= ~pevents;
347        } else {
348            dcb->active = pevents;
349        }
350        spin_unlock_irq(&dmabuf->poll.lock);
351
352        if (events & pevents) {
353            if (!dma_fence_get_rcu(fence_excl)) {
354                /* force a recheck */
355                events &= ~pevents;
356                dma_buf_poll_cb(NULL, &dcb->cb);
357            } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, dma_buf_poll_cb)) {
358                events &= ~pevents;
359                dma_fence_put(fence_excl);
360            } else {
361                /*
362                 * No callback queued, wake up any additional
363                 * waiters.
364                 */
365                dma_fence_put(fence_excl);
366                dma_buf_poll_cb(NULL, &dcb->cb);
367            }
368        }
369    }
370
371    if ((events & EPOLLOUT) && shared_count > 0) {
372        struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
373        int i;
374
375        /* Only queue a new callback if no event has fired yet */
376        spin_lock_irq(&dmabuf->poll.lock);
377        if (dcb->active) {
378            events &= ~EPOLLOUT;
379        } else {
380            dcb->active = EPOLLOUT;
381        }
382        spin_unlock_irq(&dmabuf->poll.lock);
383
384        if (!(events & EPOLLOUT)) {
385            goto out;
386        }
387
388        for (i = 0; i < shared_count; ++i) {
389            struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
390
391            if (!dma_fence_get_rcu(fence)) {
392                /*
393                 * fence refcount dropped to zero, this means
394                 * that fobj has been freed
395                 *
396                 * call dma_buf_poll_cb and force a recheck!
397                 */
398                events &= ~EPOLLOUT;
399                dma_buf_poll_cb(NULL, &dcb->cb);
400                break;
401            }
402            if (!dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb)) {
403                dma_fence_put(fence);
404                events &= ~EPOLLOUT;
405                break;
406            }
407            dma_fence_put(fence);
408        }
409
410        /* No callback queued, wake up any additional waiters. */
411        if (i == shared_count) {
412            dma_buf_poll_cb(NULL, &dcb->cb);
413        }
414    }
415
416out:
417    rcu_read_unlock();
418    return events;
419}
420
421/**
422 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
423 * The name of the dma-buf buffer can only be set when the dma-buf is not
424 * attached to any devices. It could theoritically support changing the
425 * name of the dma-buf if the same piece of memory is used for multiple
426 * purpose between different devices.
427 *
428 * @dmabuf: [in]     dmabuf buffer that will be renamed.
429 * @buf:    [in]     A piece of userspace memory that contains the name of
430 *                   the dma-buf.
431 *
432 * Returns 0 on success. If the dma-buf buffer is already attached to
433 * devices, return -EBUSY.
434 *
435 */
436static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
437{
438    char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
439    long ret = 0;
440
441    if (IS_ERR(name)) {
442        return PTR_ERR(name);
443    }
444
445    dma_resv_lock(dmabuf->resv, NULL);
446    if (!list_empty(&dmabuf->attachments)) {
447        ret = -EBUSY;
448        kfree(name);
449        goto out_unlock;
450    }
451    spin_lock(&dmabuf->name_lock);
452    kfree(dmabuf->name);
453    dmabuf->name = name;
454    spin_unlock(&dmabuf->name_lock);
455
456out_unlock:
457    dma_resv_unlock(dmabuf->resv);
458    return ret;
459}
460
461static long dma_buf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
462{
463    struct dma_buf *dmabuf;
464    struct dma_buf_sync sync;
465    enum dma_data_direction direction;
466    int ret;
467
468    dmabuf = file->private_data;
469
470    switch (cmd) {
471        case DMA_BUF_IOCTL_SYNC:
472            if (copy_from_user(&sync, (void __user *)arg, sizeof(sync))) {
473                return -EFAULT;
474            }
475
476            if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) {
477                return -EINVAL;
478            }
479
480            switch (sync.flags & DMA_BUF_SYNC_RW) {
481                case DMA_BUF_SYNC_READ:
482                    direction = DMA_FROM_DEVICE;
483                    break;
484                case DMA_BUF_SYNC_WRITE:
485                    direction = DMA_TO_DEVICE;
486                    break;
487                case DMA_BUF_SYNC_RW:
488                    direction = DMA_BIDIRECTIONAL;
489                    break;
490                default:
491                    return -EINVAL;
492            }
493
494            if (sync.flags & DMA_BUF_SYNC_END) {
495                ret = dma_buf_end_cpu_access(dmabuf, direction);
496            } else {
497                ret = dma_buf_begin_cpu_access(dmabuf, direction);
498            }
499
500            return ret;
501
502        case DMA_BUF_SET_NAME_A:
503        case DMA_BUF_SET_NAME_B:
504            return dma_buf_set_name(dmabuf, (const char __user *)arg);
505
506        default:
507            return -ENOTTY;
508    }
509}
510
511static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
512{
513    struct dma_buf *dmabuf = file->private_data;
514
515    seq_printf(m, "size:\t%zu\n", dmabuf->size);
516    /* Don't count the temporary reference taken inside procfs seq_show */
517    seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
518    seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
519    spin_lock(&dmabuf->name_lock);
520    if (dmabuf->name) {
521        seq_printf(m, "name:\t%s\n", dmabuf->name);
522    }
523    spin_unlock(&dmabuf->name_lock);
524}
525
526static const struct file_operations dma_buf_fops = {
527    .release = dma_buf_file_release,
528    .mmap = dma_buf_mmap_internal,
529    .llseek = dma_buf_llseek,
530    .poll = dma_buf_poll,
531    .unlocked_ioctl = dma_buf_ioctl,
532    .compat_ioctl = compat_ptr_ioctl,
533    .show_fdinfo = dma_buf_show_fdinfo,
534};
535
536/*
537 * is_dma_buf_file - Check if struct file* is associated with dma_buf
538 */
539int is_dma_buf_file(struct file *file)
540{
541    return file->f_op == &dma_buf_fops;
542}
543EXPORT_SYMBOL_GPL(is_dma_buf_file);
544
545static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
546{
547    struct file *file;
548    struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
549
550    if (IS_ERR(inode)) {
551        return ERR_CAST(inode);
552    }
553
554    inode->i_size = dmabuf->size;
555    inode_set_bytes(inode, dmabuf->size);
556
557    file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", flags, &dma_buf_fops);
558    if (IS_ERR(file)) {
559        goto err_alloc_file;
560    }
561    file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
562    file->private_data = dmabuf;
563    file->f_path.dentry->d_fsdata = dmabuf;
564
565    return file;
566
567err_alloc_file:
568    iput(inode);
569    return file;
570}
571
572/**
573 * DOC: dma buf device access
574 *
575 * For device DMA access to a shared DMA buffer the usual sequence of operations
576 * is fairly simple
577 *
578 * 1. The exporter defines his exporter instance using
579 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
580 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
581 *    as a file descriptor by calling dma_buf_fd().
582 *
583 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
584 *    to share with: First the filedescriptor is converted to a &dma_buf using
585 *    dma_buf_get(). Then the buffer is attached to the device using
586 *    dma_buf_attach().
587 *
588 *    Up to this stage the exporter is still free to migrate or reallocate the
589 *    backing storage.
590 *
591 * 3. Once the buffer is attached to all devices userspace can initiate DMA
592 *    access to the shared buffer. In the kernel this is done by calling
593 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
594 *
595 * 4. Once a driver is done with a shared buffer it needs to call
596 *    dma_buf_detach() (after cleaning up any mappings) and then release the
597 *    reference acquired with dma_buf_get by calling dma_buf_put().
598 *
599 * For the detailed semantics exporters are expected to implement see
600 * &dma_buf_ops.
601 */
602
603/**
604 * dma_buf_export - Creates a new dma_buf, and associates an anon file
605 * with this buffer, so it can be exported.
606 * Also connect the allocator specific data and ops to the buffer.
607 * Additionally, provide a name string for exporter; useful in debugging.
608 *
609 * @exp_info:    [in]    holds all the export related information provided
610 *            by the exporter. see &struct dma_buf_export_info
611 *            for further details.
612 *
613 * Returns, on success, a newly created dma_buf object, which wraps the
614 * supplied private data and operations for dma_buf_ops. On either missing
615 * ops, or error in allocating struct dma_buf, will return negative error.
616 *
617 * For most cases the easiest way to create @exp_info is through the
618 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
619 */
620struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
621{
622    struct dma_buf *dmabuf;
623    struct dma_resv *resv = exp_info->resv;
624    struct file *file;
625    size_t alloc_size = sizeof(struct dma_buf);
626    int ret;
627
628    if (!exp_info->resv) {
629        alloc_size += sizeof(struct dma_resv);
630    } else {
631        /* prevent &dma_buf[1] == dma_buf->resv */
632        alloc_size += 1;
633    }
634
635    if (WARN_ON(!exp_info->priv || !exp_info->ops || !exp_info->ops->map_dma_buf || !exp_info->ops->unmap_dma_buf ||
636                !exp_info->ops->release)) {
637        return ERR_PTR(-EINVAL);
638    }
639
640    if (WARN_ON(exp_info->ops->cache_sgt_mapping && (exp_info->ops->pin || exp_info->ops->unpin))) {
641        return ERR_PTR(-EINVAL);
642    }
643
644    if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) {
645        return ERR_PTR(-EINVAL);
646    }
647
648    if (!try_module_get(exp_info->owner)) {
649        return ERR_PTR(-ENOENT);
650    }
651
652    dmabuf = kzalloc(alloc_size, GFP_KERNEL);
653    if (!dmabuf) {
654        ret = -ENOMEM;
655        goto err_module;
656    }
657
658    dmabuf->priv = exp_info->priv;
659    dmabuf->ops = exp_info->ops;
660    dmabuf->size = exp_info->size;
661    dmabuf->exp_name = exp_info->exp_name;
662    dmabuf->owner = exp_info->owner;
663    spin_lock_init(&dmabuf->name_lock);
664    init_waitqueue_head(&dmabuf->poll);
665    dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
666    dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
667
668    if (!resv) {
669        resv = (struct dma_resv *)&dmabuf[1];
670        dma_resv_init(resv);
671    }
672    dmabuf->resv = resv;
673
674    file = dma_buf_getfile(dmabuf, exp_info->flags);
675    if (IS_ERR(file)) {
676        ret = PTR_ERR(file);
677        goto err_dmabuf;
678    }
679
680    file->f_mode |= FMODE_LSEEK;
681    dmabuf->file = file;
682
683    ret = dma_buf_stats_setup(dmabuf);
684    if (ret) {
685        goto err_sysfs;
686    }
687
688    mutex_init(&dmabuf->lock);
689    INIT_LIST_HEAD(&dmabuf->attachments);
690
691    mutex_lock(&db_list.lock);
692    list_add(&dmabuf->list_node, &db_list.head);
693    mutex_unlock(&db_list.lock);
694
695    init_dma_buf_task_info(dmabuf);
696    return dmabuf;
697
698err_sysfs:
699    /*
700     * Set file->f_path.dentry->d_fsdata to NULL so that when
701     * dma_buf_release() gets invoked by dentry_ops, it exits
702     * early before calling the release() dma_buf op.
703     */
704    file->f_path.dentry->d_fsdata = NULL;
705    fput(file);
706err_dmabuf:
707    kfree(dmabuf);
708err_module:
709    module_put(exp_info->owner);
710    return ERR_PTR(ret);
711}
712EXPORT_SYMBOL_GPL(dma_buf_export);
713
714/**
715 * dma_buf_fd - returns a file descriptor for the given dma_buf
716 * @dmabuf:    [in]    pointer to dma_buf for which fd is required.
717 * @flags:      [in]    flags to give to fd
718 *
719 * On success, returns an associated 'fd'. Else, returns error.
720 */
721int dma_buf_fd(struct dma_buf *dmabuf, int flags)
722{
723    int fd;
724
725    if (!dmabuf || !dmabuf->file) {
726        return -EINVAL;
727    }
728
729    fd = get_unused_fd_flags(flags);
730    if (fd < 0) {
731        return fd;
732    }
733
734    fd_install(fd, dmabuf->file);
735
736    return fd;
737}
738EXPORT_SYMBOL_GPL(dma_buf_fd);
739
740/**
741 * dma_buf_get - returns the dma_buf structure related to an fd
742 * @fd:    [in]    fd associated with the dma_buf to be returned
743 *
744 * On success, returns the dma_buf structure associated with an fd; uses
745 * file's refcounting done by fget to increase refcount. returns ERR_PTR
746 * otherwise.
747 */
748struct dma_buf *dma_buf_get(int fd)
749{
750    struct file *file;
751
752    file = fget(fd);
753    if (!file) {
754        return ERR_PTR(-EBADF);
755    }
756
757    if (!is_dma_buf_file(file)) {
758        fput(file);
759        return ERR_PTR(-EINVAL);
760    }
761
762    return file->private_data;
763}
764EXPORT_SYMBOL_GPL(dma_buf_get);
765
766/**
767 * dma_buf_put - decreases refcount of the buffer
768 * @dmabuf:    [in]    buffer to reduce refcount of
769 *
770 * Uses file's refcounting done implicitly by fput().
771 *
772 * If, as a result of this call, the refcount becomes 0, the 'release' file
773 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
774 * in turn, and frees the memory allocated for dmabuf when exported.
775 */
776void dma_buf_put(struct dma_buf *dmabuf)
777{
778    if (WARN_ON(!dmabuf || !dmabuf->file)) {
779        return;
780    }
781
782    fput(dmabuf->file);
783}
784EXPORT_SYMBOL_GPL(dma_buf_put);
785
786/**
787 * dma_buf_pin - Lock down the DMA-buf
788 *
789 * @attach:    [in]    attachment which should be pinned
790 *
791 * Returns:
792 * 0 on success, negative error code on failure.
793 */
794int dma_buf_pin(struct dma_buf_attachment *attach)
795{
796    struct dma_buf *dmabuf = attach->dmabuf;
797    int ret = 0;
798
799    dma_resv_assert_held(dmabuf->resv);
800
801    if (dmabuf->ops->pin) {
802        ret = dmabuf->ops->pin(attach);
803    }
804
805    return ret;
806}
807EXPORT_SYMBOL_GPL(dma_buf_pin);
808
809/**
810 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
811 * calls attach() of dma_buf_ops to allow device-specific attach functionality
812 * @dmabuf:        [in]    buffer to attach device to.
813 * @dev:        [in]    device to be attached.
814 * @importer_ops:    [in]    importer operations for the attachment
815 * @importer_priv:    [in]    importer private pointer for the attachment
816 *
817 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
818 * must be cleaned up by calling dma_buf_detach().
819 *
820 * Returns
821 *
822 * A pointer to newly created &dma_buf_attachment on success, or a negative
823 * error code wrapped into a pointer on failure.
824 *
825 * Note that this can fail if the backing storage of @dmabuf is in a place not
826 * accessible to @dev, and cannot be moved to a more suitable place. This is
827 * indicated with the error code -EBUSY.
828 */
829struct dma_buf_attachment *dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
830                                                  const struct dma_buf_attach_ops *importer_ops, void *importer_priv)
831{
832    struct dma_buf_attachment *attach;
833    int ret;
834
835    if (WARN_ON(!dmabuf || !dev)) {
836        return ERR_PTR(-EINVAL);
837    }
838
839    if (WARN_ON(importer_ops && !importer_ops->move_notify)) {
840        return ERR_PTR(-EINVAL);
841    }
842
843    attach = kzalloc(sizeof(*attach), GFP_KERNEL);
844    if (!attach) {
845        return ERR_PTR(-ENOMEM);
846    }
847
848    attach->dev = dev;
849    attach->dmabuf = dmabuf;
850    if (importer_ops) {
851        attach->peer2peer = importer_ops->allow_peer2peer;
852    }
853    attach->importer_ops = importer_ops;
854    attach->importer_priv = importer_priv;
855
856    if (dmabuf->ops->attach) {
857        ret = dmabuf->ops->attach(dmabuf, attach);
858        if (ret) {
859            goto err_attach;
860        }
861    }
862    dma_resv_lock(dmabuf->resv, NULL);
863    list_add(&attach->node, &dmabuf->attachments);
864    dma_resv_unlock(dmabuf->resv);
865
866    /* When either the importer or the exporter can't handle dynamic
867     * mappings we cache the mapping here to avoid issues with the
868     * reservation object lock.
869     */
870    if (dma_buf_attachment_is_dynamic(attach) != dma_buf_is_dynamic(dmabuf)) {
871        struct sg_table *sgt;
872
873        if (dma_buf_is_dynamic(attach->dmabuf)) {
874            dma_resv_lock(attach->dmabuf->resv, NULL);
875            ret = dma_buf_pin(attach);
876            if (ret) {
877                goto err_unlock;
878            }
879        }
880
881        sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
882        if (!sgt) {
883            sgt = ERR_PTR(-ENOMEM);
884        }
885        if (IS_ERR(sgt)) {
886            ret = PTR_ERR(sgt);
887            goto err_unpin;
888        }
889        if (dma_buf_is_dynamic(attach->dmabuf)) {
890            dma_resv_unlock(attach->dmabuf->resv);
891        }
892        attach->sgt = sgt;
893        attach->dir = DMA_BIDIRECTIONAL;
894    }
895
896    return attach;
897
898err_attach:
899    kfree(attach);
900    return ERR_PTR(ret);
901
902err_unpin:
903    if (dma_buf_is_dynamic(attach->dmabuf)) {
904        dma_buf_unpin(attach);
905    }
906
907err_unlock:
908    if (dma_buf_is_dynamic(attach->dmabuf)) {
909        dma_resv_unlock(attach->dmabuf->resv);
910    }
911
912    dma_buf_detach(dmabuf, attach);
913    return ERR_PTR(ret);
914}
915EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
916
917/**
918 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
919 * @dmabuf:    [in]    buffer to attach device to.
920 * @dev:    [in]    device to be attached.
921 *
922 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
923 * mapping.
924 */
925struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, struct device *dev)
926{
927    return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
928}
929EXPORT_SYMBOL_GPL(dma_buf_attach);
930
931/**
932 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
933 * optionally calls detach() of dma_buf_ops for device-specific detach
934 * @dmabuf:    [in]    buffer to detach from.
935 * @attach:    [in]    attachment to be detached; is free'd after this call.
936 *
937 * Clean up a device attachment obtained by calling dma_buf_attach().
938 */
939void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
940{
941    if (WARN_ON(!dmabuf || !attach)) {
942        return;
943    }
944
945    if (attach->sgt) {
946        if (dma_buf_is_dynamic(attach->dmabuf)) {
947            dma_resv_lock(attach->dmabuf->resv, NULL);
948        }
949
950        dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
951
952        if (dma_buf_is_dynamic(attach->dmabuf)) {
953            dma_buf_unpin(attach);
954            dma_resv_unlock(attach->dmabuf->resv);
955        }
956    }
957
958    dma_resv_lock(dmabuf->resv, NULL);
959    list_del(&attach->node);
960    dma_resv_unlock(dmabuf->resv);
961    if (dmabuf->ops->detach) {
962        dmabuf->ops->detach(dmabuf, attach);
963    }
964
965    kfree(attach);
966}
967EXPORT_SYMBOL_GPL(dma_buf_detach);
968
969/**
970 * dma_buf_unpin - Remove lock from DMA-buf
971 *
972 * @attach:    [in]    attachment which should be unpinned
973 */
974void dma_buf_unpin(struct dma_buf_attachment *attach)
975{
976    struct dma_buf *dmabuf = attach->dmabuf;
977
978    dma_resv_assert_held(dmabuf->resv);
979
980    if (dmabuf->ops->unpin) {
981        dmabuf->ops->unpin(attach);
982    }
983}
984EXPORT_SYMBOL_GPL(dma_buf_unpin);
985
986/**
987 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
988 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
989 * dma_buf_ops.
990 * @attach:    [in]    attachment whose scatterlist is to be returned
991 * @direction:    [in]    direction of DMA transfer
992 *
993 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
994 * on error. May return -EINTR if it is interrupted by a signal.
995 *
996 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
997 * the underlying backing storage is pinned for as long as a mapping exists,
998 * therefore users/importers should not hold onto a mapping for undue amounts of
999 * time.
1000 */
1001struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, enum dma_data_direction direction)
1002{
1003    struct sg_table *sg_table;
1004    int r;
1005
1006    might_sleep();
1007
1008    if (WARN_ON(!attach || !attach->dmabuf)) {
1009        return ERR_PTR(-EINVAL);
1010    }
1011
1012    if (dma_buf_attachment_is_dynamic(attach)) {
1013        dma_resv_assert_held(attach->dmabuf->resv);
1014    }
1015
1016    if (attach->sgt) {
1017        /*
1018         * Two mappings with different directions for the same
1019         * attachment are not allowed.
1020         */
1021        if (attach->dir != direction && attach->dir != DMA_BIDIRECTIONAL) {
1022            return ERR_PTR(-EBUSY);
1023        }
1024
1025        return attach->sgt;
1026    }
1027
1028    if (dma_buf_is_dynamic(attach->dmabuf)) {
1029        dma_resv_assert_held(attach->dmabuf->resv);
1030        if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1031            r = dma_buf_pin(attach);
1032            if (r) {
1033                return ERR_PTR(r);
1034            }
1035        }
1036    }
1037
1038    sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
1039    if (!sg_table) {
1040        sg_table = ERR_PTR(-ENOMEM);
1041    }
1042
1043    if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1044        dma_buf_unpin(attach);
1045    }
1046
1047    if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1048        attach->sgt = sg_table;
1049        attach->dir = direction;
1050    }
1051
1052    return sg_table;
1053}
1054EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
1055
1056/**
1057 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1058 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1059 * dma_buf_ops.
1060 * @attach:    [in]    attachment to unmap buffer from
1061 * @sg_table:    [in]    scatterlist info of the buffer to unmap
1062 * @direction:  [in]    direction of DMA transfer
1063 *
1064 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1065 */
1066void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, struct sg_table *sg_table,
1067                              enum dma_data_direction direction)
1068{
1069    might_sleep();
1070
1071    if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) {
1072        return;
1073    }
1074
1075    if (dma_buf_attachment_is_dynamic(attach)) {
1076        dma_resv_assert_held(attach->dmabuf->resv);
1077    }
1078
1079    if (attach->sgt == sg_table) {
1080        return;
1081    }
1082
1083    if (dma_buf_is_dynamic(attach->dmabuf)) {
1084        dma_resv_assert_held(attach->dmabuf->resv);
1085    }
1086
1087    attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1088
1089    if (dma_buf_is_dynamic(attach->dmabuf) && !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1090        dma_buf_unpin(attach);
1091    }
1092}
1093EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
1094
1095/**
1096 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1097 *
1098 * @dmabuf:    [in]    buffer which is moving
1099 *
1100 * Informs all attachmenst that they need to destroy and recreated all their
1101 * mappings.
1102 */
1103void dma_buf_move_notify(struct dma_buf *dmabuf)
1104{
1105    struct dma_buf_attachment *attach;
1106
1107    dma_resv_assert_held(dmabuf->resv);
1108
1109    list_for_each_entry(attach, &dmabuf->attachments, node) if (attach->importer_ops)
1110        attach->importer_ops->move_notify(attach);
1111}
1112EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1113
1114/**
1115 * DOC: cpu access
1116 *
1117 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1118 *
1119 * - Fallback operations in the kernel, for example when a device is connected
1120 *   over USB and the kernel needs to shuffle the data around first before
1121 *   sending it away. Cache coherency is handled by braketing any transactions
1122 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1123 *   access.
1124 *
1125 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1126 *   vmap interface is introduced. Note that on very old 32-bit architectures
1127 *   vmalloc space might be limited and result in vmap calls failing.
1128 *
1129 *   Interfaces::
1130 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1131 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1132 *
1133 *   The vmap call can fail if there is no vmap support in the exporter, or if
1134 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1135 *   that the dma-buf layer keeps a reference count for all vmap access and
1136 *   calls down into the exporter's vmap function only when no vmapping exists,
1137 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1138 *   provided by taking the dma_buf->lock mutex.
1139 *
1140 * - For full compatibility on the importer side with existing userspace
1141 *   interfaces, which might already support mmap'ing buffers. This is needed in
1142 *   many processing pipelines (e.g. feeding a software rendered image into a
1143 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1144 *   framework already supported this and for DMA buffer file descriptors to
1145 *   replace ION buffers mmap support was needed.
1146 *
1147 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1148 *   fd. But like for CPU access there's a need to braket the actual access,
1149 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1150 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1151 *   be restarted.
1152 *
1153 *   Some systems might need some sort of cache coherency management e.g. when
1154 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1155 *   To circumvent this problem there are begin/end coherency markers, that
1156 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1157 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1158 *   sequence would be used like following:
1159 *
1160 *     - mmap dma-buf fd
1161 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1162 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1163 *       want (with the new data being consumed by say the GPU or the scanout
1164 *       device)
1165 *     - munmap once you don't need the buffer any more
1166 *
1167 *    For correctness and optimal performance, it is always required to use
1168 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1169 *    mapped address. Userspace cannot rely on coherent access, even when there
1170 *    are systems where it just works without calling these ioctls.
1171 *
1172 * - And as a CPU fallback in userspace processing pipelines.
1173 *
1174 *   Similar to the motivation for kernel cpu access it is again important that
1175 *   the userspace code of a given importing subsystem can use the same
1176 *   interfaces with a imported dma-buf buffer object as with a native buffer
1177 *   object. This is especially important for drm where the userspace part of
1178 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1179 *   use a different way to mmap a buffer rather invasive.
1180 *
1181 *   The assumption in the current dma-buf interfaces is that redirecting the
1182 *   initial mmap is all that's needed. A survey of some of the existing
1183 *   subsystems shows that no driver seems to do any nefarious thing like
1184 *   syncing up with outstanding asynchronous processing on the device or
1185 *   allocating special resources at fault time. So hopefully this is good
1186 *   enough, since adding interfaces to intercept pagefaults and allow pte
1187 *   shootdowns would increase the complexity quite a bit.
1188 *
1189 *   Interface::
1190 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1191 *               unsigned long);
1192 *
1193 *   If the importing subsystem simply provides a special-purpose mmap call to
1194 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1195 *   equally achieve that for a dma-buf object.
1196 */
1197
1198static int _dma_buf_begin_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction)
1199{
1200    bool write = (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE);
1201    struct dma_resv *resv = dmabuf->resv;
1202    long ret;
1203
1204    /* Wait on any implicit rendering fences */
1205    ret = dma_resv_wait_timeout_rcu(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1206    if (ret < 0) {
1207        return ret;
1208    }
1209
1210    return 0;
1211}
1212
1213/**
1214 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1215 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1216 * preparations. Coherency is only guaranteed in the specified range for the
1217 * specified access direction.
1218 * @dmabuf:    [in]    buffer to prepare cpu access for.
1219 * @direction:    [in]    length of range for cpu access.
1220 *
1221 * After the cpu access is complete the caller should call
1222 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1223 * it guaranteed to be coherent with other DMA access.
1224 *
1225 * Can return negative error values, returns 0 on success.
1226 */
1227int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction)
1228{
1229    int ret = 0;
1230
1231    if (WARN_ON(!dmabuf)) {
1232        return -EINVAL;
1233    }
1234
1235    if (dmabuf->ops->begin_cpu_access) {
1236        ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1237    }
1238
1239    /* Ensure that all fences are waited upon - but we first allow
1240     * the native handler the chance to do so more efficiently if it
1241     * chooses. A double invocation here will be reasonably cheap no-op.
1242     */
1243    if (ret == 0) {
1244        ret = _dma_buf_begin_cpu_access(dmabuf, direction);
1245    }
1246
1247    return ret;
1248}
1249EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1250
1251int dma_buf_begin_cpu_access_partial(struct dma_buf *dmabuf, enum dma_data_direction direction, unsigned int offset,
1252                                     unsigned int len)
1253{
1254    int ret = 0;
1255
1256    if (WARN_ON(!dmabuf)) {
1257        return -EINVAL;
1258    }
1259
1260    if (dmabuf->ops->begin_cpu_access_partial) {
1261        ret = dmabuf->ops->begin_cpu_access_partial(dmabuf, direction, offset, len);
1262    }
1263
1264    /* Ensure that all fences are waited upon - but we first allow
1265     * the native handler the chance to do so more efficiently if it
1266     * chooses. A double invocation here will be reasonably cheap no-op.
1267     */
1268    if (ret == 0) {
1269        ret = _dma_buf_begin_cpu_access(dmabuf, direction);
1270    }
1271
1272    return ret;
1273}
1274EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access_partial);
1275
1276/**
1277 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1278 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1279 * actions. Coherency is only guaranteed in the specified range for the
1280 * specified access direction.
1281 * @dmabuf:    [in]    buffer to complete cpu access for.
1282 * @direction:    [in]    length of range for cpu access.
1283 *
1284 * This terminates CPU access started with dma_buf_begin_cpu_access().
1285 *
1286 * Can return negative error values, returns 0 on success.
1287 */
1288int dma_buf_end_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction)
1289{
1290    int ret = 0;
1291
1292    WARN_ON(!dmabuf);
1293
1294    if (dmabuf->ops->end_cpu_access) {
1295        ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1296    }
1297
1298    return ret;
1299}
1300EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1301
1302int dma_buf_end_cpu_access_partial(struct dma_buf *dmabuf, enum dma_data_direction direction, unsigned int offset,
1303                                   unsigned int len)
1304{
1305    int ret = 0;
1306
1307    WARN_ON(!dmabuf);
1308
1309    if (dmabuf->ops->end_cpu_access_partial) {
1310        ret = dmabuf->ops->end_cpu_access_partial(dmabuf, direction, offset, len);
1311    }
1312
1313    return ret;
1314}
1315EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access_partial);
1316
1317/**
1318 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1319 * @dmabuf:    [in]    buffer that should back the vma
1320 * @vma:    [in]    vma for the mmap
1321 * @pgoff:    [in]    offset in pages where this mmap should start within the
1322 *            dma-buf buffer.
1323 *
1324 * This function adjusts the passed in vma so that it points at the file of the
1325 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1326 * checking on the size of the vma. Then it calls the exporters mmap function to
1327 * set up the mapping.
1328 *
1329 * Can return negative error values, returns 0 on success.
1330 */
1331int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, unsigned long pgoff)
1332{
1333    struct file *oldfile;
1334    int ret;
1335
1336    if (WARN_ON(!dmabuf || !vma)) {
1337        return -EINVAL;
1338    }
1339
1340    /* check if buffer supports mmap */
1341    if (!dmabuf->ops->mmap) {
1342        return -EINVAL;
1343    }
1344
1345    /* check for offset overflow */
1346    if (pgoff + vma_pages(vma) < pgoff) {
1347        return -EOVERFLOW;
1348    }
1349
1350    /* check for overflowing the buffer's size */
1351    if ((pgoff + vma_pages(vma)) > (dmabuf->size >> PAGE_SHIFT)) {
1352        return -EINVAL;
1353    }
1354
1355    /* readjust the vma */
1356    get_file(dmabuf->file);
1357    oldfile = vma->vm_file;
1358    vma->vm_file = dmabuf->file;
1359    vma->vm_pgoff = pgoff;
1360
1361    ret = dmabuf->ops->mmap(dmabuf, vma);
1362    if (ret) {
1363        /* restore old parameters on failure */
1364        vma->vm_file = oldfile;
1365        fput(dmabuf->file);
1366    } else {
1367        if (oldfile) {
1368            fput(oldfile);
1369        }
1370    }
1371    return ret;
1372}
1373EXPORT_SYMBOL_GPL(dma_buf_mmap);
1374
1375/**
1376 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1377 * address space. Same restrictions as for vmap and friends apply.
1378 * @dmabuf:    [in]    buffer to vmap
1379 *
1380 * This call may fail due to lack of virtual mapping address space.
1381 * These calls are optional in drivers. The intended use for them
1382 * is for mapping objects linear in kernel space for high use objects.
1383 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1384 *
1385 * Returns NULL on error.
1386 */
1387void *dma_buf_vmap(struct dma_buf *dmabuf)
1388{
1389    void *ptr;
1390
1391    if (WARN_ON(!dmabuf)) {
1392        return NULL;
1393    }
1394
1395    if (!dmabuf->ops->vmap) {
1396        return NULL;
1397    }
1398
1399    mutex_lock(&dmabuf->lock);
1400    if (dmabuf->vmapping_counter) {
1401        dmabuf->vmapping_counter++;
1402        BUG_ON(!dmabuf->vmap_ptr);
1403        ptr = dmabuf->vmap_ptr;
1404        goto out_unlock;
1405    }
1406
1407    BUG_ON(dmabuf->vmap_ptr);
1408
1409    ptr = dmabuf->ops->vmap(dmabuf);
1410    if (WARN_ON_ONCE(IS_ERR(ptr))) {
1411        ptr = NULL;
1412    }
1413    if (!ptr) {
1414        goto out_unlock;
1415    }
1416
1417    dmabuf->vmap_ptr = ptr;
1418    dmabuf->vmapping_counter = 1;
1419
1420out_unlock:
1421    mutex_unlock(&dmabuf->lock);
1422    return ptr;
1423}
1424EXPORT_SYMBOL_GPL(dma_buf_vmap);
1425
1426/**
1427 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1428 * @dmabuf:    [in]    buffer to vunmap
1429 * @vaddr:    [in]    vmap to vunmap
1430 */
1431void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1432{
1433    if (WARN_ON(!dmabuf)) {
1434        return;
1435    }
1436
1437    BUG_ON(!dmabuf->vmap_ptr);
1438    BUG_ON(dmabuf->vmapping_counter == 0);
1439    BUG_ON(dmabuf->vmap_ptr != vaddr);
1440
1441    mutex_lock(&dmabuf->lock);
1442    if (--dmabuf->vmapping_counter == 0) {
1443        if (dmabuf->ops->vunmap) {
1444            dmabuf->ops->vunmap(dmabuf, vaddr);
1445        }
1446        dmabuf->vmap_ptr = NULL;
1447    }
1448    mutex_unlock(&dmabuf->lock);
1449}
1450EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1451
1452int dma_buf_get_flags(struct dma_buf *dmabuf, unsigned long *flags)
1453{
1454    int ret = 0;
1455
1456    if (WARN_ON(!dmabuf) || !flags) {
1457        return -EINVAL;
1458    }
1459
1460    if (dmabuf->ops->get_flags) {
1461        ret = dmabuf->ops->get_flags(dmabuf, flags);
1462    }
1463
1464    return ret;
1465}
1466EXPORT_SYMBOL_GPL(dma_buf_get_flags);
1467
1468int dma_buf_get_uuid(struct dma_buf *dmabuf, uuid_t *uuid)
1469{
1470    if (WARN_ON(!dmabuf) || !uuid) {
1471        return -EINVAL;
1472    }
1473
1474    if (!dmabuf->ops->get_uuid) {
1475        return -ENODEV;
1476    }
1477
1478    return dmabuf->ops->get_uuid(dmabuf, uuid);
1479}
1480EXPORT_SYMBOL_GPL(dma_buf_get_uuid);
1481
1482#ifdef CONFIG_DEBUG_FS
1483static int dma_buf_debug_show(struct seq_file *s, void *unused)
1484{
1485    int ret;
1486    struct dma_buf *buf_obj;
1487    struct dma_buf_attachment *attach_obj;
1488    struct dma_resv *robj;
1489    struct dma_resv_list *fobj;
1490    struct dma_fence *fence;
1491    unsigned seq;
1492    int count = 0, attach_count, shared_count, i;
1493    size_t size = 0;
1494
1495    ret = mutex_lock_interruptible(&db_list.lock);
1496    if (ret) {
1497        return ret;
1498    }
1499
1500    seq_puts(s, "\nDma-buf Objects:\n");
1501    seq_printf(s,
1502               "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\t"
1503               "%-16s\t%-16s\t%-16s\n",
1504               "size", "flags", "mode", "count", "ino", "buf_name", "exp_pid", "exp_task_comm");
1505
1506    list_for_each_entry(buf_obj, &db_list.head, list_node)
1507    {
1508        ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1509        if (ret) {
1510            goto error_unlock;
1511        }
1512
1513        seq_printf(s,
1514                   "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\t"
1515                   "%-16d\t%-16s\n",
1516                   buf_obj->size, buf_obj->file->f_flags, buf_obj->file->f_mode, file_count(buf_obj->file),
1517                   buf_obj->exp_name, file_inode(buf_obj->file)->i_ino, buf_obj->name ?: "NULL",
1518                   dma_buf_exp_pid(buf_obj), dma_buf_exp_task_comm(buf_obj) ?: "NULL");
1519
1520        robj = buf_obj->resv;
1521        while (true) {
1522            seq = read_seqcount_begin(&robj->seq);
1523            rcu_read_lock();
1524            fobj = rcu_dereference(robj->fence);
1525            shared_count = fobj ? fobj->shared_count : 0;
1526            fence = rcu_dereference(robj->fence_excl);
1527            if (!read_seqcount_retry(&robj->seq, seq)) {
1528                break;
1529            }
1530            rcu_read_unlock();
1531        }
1532
1533        if (fence) {
1534            seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", fence->ops->get_driver_name(fence),
1535                       fence->ops->get_timeline_name(fence), dma_fence_is_signaled(fence) ? "" : "un");
1536        }
1537        for (i = 0; i < shared_count; i++) {
1538            fence = rcu_dereference(fobj->shared[i]);
1539            if (!dma_fence_get_rcu(fence)) {
1540                continue;
1541            }
1542            seq_printf(s, "\tShared fence: %s %s %ssignalled\n", fence->ops->get_driver_name(fence),
1543                       fence->ops->get_timeline_name(fence), dma_fence_is_signaled(fence) ? "" : "un");
1544            dma_fence_put(fence);
1545        }
1546        rcu_read_unlock();
1547
1548        seq_puts(s, "\tAttached Devices:\n");
1549        attach_count = 0;
1550
1551        list_for_each_entry(attach_obj, &buf_obj->attachments, node)
1552        {
1553            seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1554            attach_count++;
1555        }
1556        dma_resv_unlock(buf_obj->resv);
1557
1558        seq_printf(s, "Total %d devices attached\n\n", attach_count);
1559
1560        count++;
1561        size += buf_obj->size;
1562    }
1563
1564    seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1565
1566    mutex_unlock(&db_list.lock);
1567    return 0;
1568
1569error_unlock:
1570    mutex_unlock(&db_list.lock);
1571    return ret;
1572}
1573
1574DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1575
1576static struct dentry *dma_buf_debugfs_dir;
1577
1578static int dma_buf_init_debugfs(void)
1579{
1580    struct dentry *d;
1581    int err = 0;
1582
1583    d = debugfs_create_dir("dma_buf", NULL);
1584    if (IS_ERR(d)) {
1585        return PTR_ERR(d);
1586    }
1587
1588    dma_buf_debugfs_dir = d;
1589
1590    d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, NULL, &dma_buf_debug_fops);
1591    if (IS_ERR(d)) {
1592        pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1593        debugfs_remove_recursive(dma_buf_debugfs_dir);
1594        dma_buf_debugfs_dir = NULL;
1595        err = PTR_ERR(d);
1596    }
1597
1598    dma_buf_process_info_init_debugfs(dma_buf_debugfs_dir);
1599    return err;
1600}
1601
1602static void dma_buf_uninit_debugfs(void)
1603{
1604    debugfs_remove_recursive(dma_buf_debugfs_dir);
1605}
1606#else
1607static inline int dma_buf_init_debugfs(void)
1608{
1609    return 0;
1610}
1611static inline void dma_buf_uninit_debugfs(void)
1612{
1613}
1614#endif
1615
1616#ifdef CONFIG_DMABUF_PROCESS_INFO
1617struct dma_buf *get_dma_buf_from_file(struct file *f)
1618{
1619    if (IS_ERR_OR_NULL(f)) {
1620        return NULL;
1621    }
1622
1623    if (!is_dma_buf_file(f)) {
1624        return NULL;
1625    }
1626
1627    return f->private_data;
1628}
1629#endif /* CONFIG_DMABUF_PROCESS_INFO */
1630
1631static int __init dma_buf_init(void)
1632{
1633    int ret;
1634
1635    ret = dma_buf_init_sysfs_statistics();
1636    if (ret) {
1637        return ret;
1638    }
1639
1640    dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1641    if (IS_ERR(dma_buf_mnt)) {
1642        return PTR_ERR(dma_buf_mnt);
1643    }
1644
1645    mutex_init(&db_list.lock);
1646    INIT_LIST_HEAD(&db_list.head);
1647    dma_buf_init_debugfs();
1648    dma_buf_process_info_init_procfs();
1649    return 0;
1650}
1651subsys_initcall(dma_buf_init);
1652
1653static void __exit dma_buf_deinit(void)
1654{
1655    dma_buf_uninit_debugfs();
1656    kern_unmount(dma_buf_mnt);
1657    dma_buf_uninit_sysfs_statistics();
1658    dma_buf_process_info_uninit_procfs();
1659}
1660__exitcall(dma_buf_deinit);
1661