/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2019 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Ray Tracing Watertightness tests *//*--------------------------------------------------------------------*/ #include "vktRayTracingWatertightnessTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkTypeUtil.hpp" #include "vkRayTracingUtil.hpp" #include "deRandom.hpp" #include namespace vkt { namespace RayTracing { namespace { using namespace vk; using namespace std; static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; struct CaseDef { deUint32 width; deUint32 height; deUint32 squaresGroupCount; deUint32 geometriesGroupCount; deUint32 instancesGroupCount; deUint32 randomSeed; deUint32 depth; deUint32 useManyGeometries; }; VkFormat getImageFormat (void) { return VK_FORMAT_R32_UINT; } VkImageType getImageType (deUint32 depth) { DE_ASSERT(depth > 0u); return ((depth == 1u) ? VK_IMAGE_TYPE_2D : VK_IMAGE_TYPE_3D); } VkImageTiling getImageTiling (void) { return VK_IMAGE_TILING_OPTIMAL; } VkImageUsageFlags getImageUsage (void) { return (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT); } enum ShaderGroups { FIRST_GROUP = 0, RAYGEN_GROUP = FIRST_GROUP, MISS_GROUP, HIT_GROUP, }; static inline tcu::Vec3 mixVec3(const tcu::Vec3& a, const tcu::Vec3& b, const float alpha) { const tcu::Vec3 result = a * alpha + b * (1.0f - alpha); return result; } static inline double doCrossProduct(tcu::DVec2 a, tcu::DVec2 b) { return a.x() * b.y() - a.y() * b.x(); } static bool pointInTriangle2D(tcu::Vec3 p, tcu::Vec3 a, tcu::Vec3 b, tcu::Vec3 c) { tcu::DVec2 pa = { a.x() - p.x(), a.y() - p.y()} ; tcu::DVec2 pb = { b.x() - p.x(), b.y() - p.y()}; tcu::DVec2 pc = { c.x() - p.x(), c.y() - p.y()}; double v1 = doCrossProduct(pa, pb); double v2 = doCrossProduct(pb, pc); double v3 = doCrossProduct(pc, pa); // The winding of all the triangles in the test on XY plane is the same, so a negative value can be assumed return v1 < 0 && v2 < 0 && v3 < 0; } deUint32 getShaderGroupSize(const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupHandleSize(); } deUint32 getShaderGroupBaseAlignment(const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } Move makePipeline(const DeviceInterface& vkd, const VkDevice device, vk::BinaryCollection& collection, de::MovePtr& rayTracingPipeline, VkPipelineLayout pipelineLayout, const deUint32 raygenGroup, const deUint32 missGroup, const deUint32 hitGroup, const deUint32 hitGroupCount) { Move raygenShader = createShaderModule(vkd, device, collection.get("rgen"), 0); Move hitShader = createShaderModule(vkd, device, collection.get("ahit"), 0); Move missShader = createShaderModule(vkd, device, collection.get("miss"), 0); rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, raygenShader.get(), raygenGroup); rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, missShader.get(), missGroup); for (deUint32 i = 0u; i < hitGroupCount; ++i) rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR, hitShader.get(), hitGroup + i); Move pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout); return pipeline; } VkImageCreateInfo makeImageCreateInfo(deUint32 width, deUint32 height, deUint32 depth, VkFormat format) { const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; 0u, // VkImageCreateFlags flags; getImageType(depth), format, // VkFormat format; makeExtent3D(width, height, depth), // VkExtent3D extent; 1u, // deUint32 mipLevels; 1u, // deUint32 arrayLayers; VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples; getImageTiling(), // VkImageTiling tiling; getImageUsage(), // VkImageUsageFlags usage; VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode; 0u, // deUint32 queueFamilyIndexCount; DE_NULL, // const deUint32* pQueueFamilyIndices; VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout; }; return imageCreateInfo; } class RayTracingWatertightnessTestInstance : public TestInstance { public: RayTracingWatertightnessTestInstance(Context& context, const CaseDef& data, const bool& useClosedFan); ~RayTracingWatertightnessTestInstance(void); tcu::TestStatus iterate(void); protected: void checkSupportInInstance(void) const; de::MovePtr runTest(void); de::MovePtr initTopAccelerationStructure(VkCommandBuffer cmdBuffer, vector >& bottomLevelAccelerationStructures); vector > initBottomAccelerationStructures(VkCommandBuffer cmdBuffer); de::MovePtr initBottomAccelerationStructure(VkCommandBuffer cmdBuffer, bool triangles); private: CaseDef m_data; const bool m_useClosedFan; }; RayTracingWatertightnessTestInstance::RayTracingWatertightnessTestInstance(Context& context, const CaseDef& data, const bool& useClosedFan) : vkt::TestInstance(context) , m_data(data) , m_useClosedFan(useClosedFan) { } RayTracingWatertightnessTestInstance::~RayTracingWatertightnessTestInstance(void) { } class RayTracingTestCase : public TestCase { public: RayTracingTestCase(tcu::TestContext& context, const char* name, const char* desc, const CaseDef data, const bool& useClosedFan); ~RayTracingTestCase(void); virtual void initPrograms(SourceCollections& programCollection) const; virtual TestInstance* createInstance(Context& context) const; virtual void checkSupport(Context& context) const; private: CaseDef m_data; const bool m_useClosedFan; }; RayTracingTestCase::RayTracingTestCase(tcu::TestContext& context, const char* name, const char* desc, const CaseDef data, const bool& useClosedFan) : vkt::TestCase(context, name, desc) , m_data(data) , m_useClosedFan(useClosedFan) { } RayTracingTestCase::~RayTracingTestCase(void) { } void RayTracingTestCase::checkSupport(Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures(); if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline"); const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures(); if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE) TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); const auto& vki = context.getInstanceInterface(); const auto physDev = context.getPhysicalDevice(); const auto format = getImageFormat(); const auto formatProps = getPhysicalDeviceImageFormatProperties(vki, physDev, format, getImageType(m_data.depth), getImageTiling(), getImageUsage(), 0u); const auto& maxExtent = formatProps.maxExtent; if (m_data.width > maxExtent.width || m_data.height > maxExtent.height || m_data.depth > maxExtent.depth) { std::ostringstream msg; msg << "Result image dimensions not supported (" << getFormatName(format) << " " << m_data.width << "x" << m_data.height << "x" << m_data.depth << ")"; TCU_THROW(NotSupportedError, msg.str()); } } void RayTracingTestCase::initPrograms(SourceCollections& programCollection) const { const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); { std::stringstream css; if (!m_useClosedFan) { css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" "hitAttributeEXT vec3 attribs;\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n" "void main()\n" "{\n" " uvec4 color = uvec4(1,0,0,1);\n" " imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n" "}\n"; } else { const char* zCoord = (m_data.useManyGeometries ? "gl_GeometryIndexEXT" : "gl_PrimitiveID"); css << "#version 460 core\n" "\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" "layout(r32ui, set = 0, binding = 0) uniform uimage3D result;\n" "\n" "hitAttributeEXT vec3 attribs;\n" "\n" "void main()\n" "{\n" " imageAtomicAdd(result, ivec3(gl_LaunchIDEXT.xy, " << zCoord << "), 1);\n" "}\n"; } programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; if (!m_useClosedFan) { css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT dummyPayload { vec4 dummy; };\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n" "void main()\n" "{\n" " uvec4 color = uvec4(2,0,0,1);\n" " imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n" "}\n"; } else { css << "#version 460 core\n" "\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(location = 0) rayPayloadInEXT dummyPayload { vec4 dummy; };\n" "layout(r32ui, set = 0, binding = 0) uniform uimage3D result;\n" "\n" "void main()\n" "{\n" " imageAtomicAdd(result, ivec3(gl_LaunchIDEXT.xy, 0), 10000);\n" "}\n"; } programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions; } if (!m_useClosedFan) { programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions; } else { std::stringstream css; const auto& nSharedEdges = m_data.squaresGroupCount; // NOTE: Zeroth invocation fires at the center of the closed fan. Subsequent invocations trace rays against center of shared edges. css << "#version 460 core\n" "\n" "#extension GL_EXT_ray_tracing : require\n" "\n" "layout(location = 0) rayPayloadEXT vec3 hitValue;\n" "layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n" "\n" "void main()\n" "{\n" " uint rayFlags = 0;\n" " uint cullMask = 0xFF;\n" " float tmin = 0.01;\n" " float tmax = 9.0;\n" " uint nRay = gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x;\n" " vec3 origin = vec3(0.0, 0.0, -1.0);\n" "\n" " if (nRay > "<< de::toString(nSharedEdges + 1) << ")\n" " {\n" " return;\n" " }\n" "\n" " float kPi = 3.141592653589;\n" " float angleDiff = 2.0 * kPi / " << de::toString(nSharedEdges) << ";\n" " float angle = ((nRay == 0) ? 0.0\n" " : (angleDiff * (nRay - 1) - kPi));\n" " vec2 sharedEdgeP1 = vec2(0, 0);\n" " vec2 sharedEdgeP2 = ((nRay == 0) ? vec2 (0, 0)\n" " : vec2 (sin(angle), cos(angle)));\n" " vec3 target = vec3 (mix(sharedEdgeP1, sharedEdgeP2, vec2(0.5)), 0.0);\n" " vec3 direct = normalize(target - origin);\n" "\n" " traceRayEXT(topLevelAS, rayFlags, cullMask, 0, 0, 0, origin, tmin, direct, tmax, 0);\n" "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions; } } TestInstance* RayTracingTestCase::createInstance(Context& context) const { return new RayTracingWatertightnessTestInstance(context, m_data, m_useClosedFan); } de::MovePtr RayTracingWatertightnessTestInstance::initTopAccelerationStructure(VkCommandBuffer cmdBuffer, vector >& bottomLevelAccelerationStructures) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::MovePtr result = makeTopLevelAccelerationStructure(); result->setInstanceCount(bottomLevelAccelerationStructures.size()); for (size_t structNdx = 0; structNdx < bottomLevelAccelerationStructures.size(); ++structNdx) result->addInstance(bottomLevelAccelerationStructures[structNdx]); result->createAndBuild(vkd, device, cmdBuffer, allocator); return result; } de::MovePtr RayTracingWatertightnessTestInstance::initBottomAccelerationStructure(VkCommandBuffer cmdBuffer, bool triangle) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::MovePtr result = makeBottomLevelAccelerationStructure(); de::Random rng(m_data.randomSeed); std::vector vertices; std::vector triangles; std::vector geometryData; result->setGeometryCount(1u); DE_ASSERT(!m_useClosedFan); vertices.reserve(3u * m_data.squaresGroupCount); vertices.push_back(tcu::Vec3(0.0f, 0.0f, -1.0f)); vertices.push_back(tcu::Vec3(0.0f, 1.0f, -1.0f)); vertices.push_back(tcu::Vec3(1.0f, 0.0f, -1.0f)); vertices.push_back(tcu::Vec3(1.0f, 1.0f, -1.0f)); triangles.reserve(m_data.squaresGroupCount); triangles.push_back(tcu::UVec3(0, 1, 2)); triangles.push_back(tcu::UVec3(3, 2, 1)); while (triangles.size() < m_data.squaresGroupCount) { const deUint32 n = (deUint32)rng.getInt(0, (deUint32)triangles.size() - 1); tcu::UVec3& t = triangles[n]; const tcu::Vec3& a = vertices[t.x()]; const tcu::Vec3& b = vertices[t.y()]; const tcu::Vec3& c = vertices[t.z()]; const float alfa = rng.getFloat(0.01f, 0.99f); const float beta = rng.getFloat(0.01f, 0.99f); const tcu::Vec3 mixed = mixVec3(mixVec3(a, b, alfa), c, beta); const float z = -rng.getFloat(0.01f, 0.99f); const tcu::Vec3 d = tcu::Vec3(mixed.x(), mixed.y(), z); // A check to avoid vertices that are outside the triangle in the XY plane due to floating-point precision, // resulting in inconsistent winding order if(!pointInTriangle2D(d, a, b, c)) continue; const deUint32& p = t.x(); const deUint32& q = t.y(); deUint32& r = t.z(); const deUint32 R = (deUint32)vertices.size(); vertices.push_back(d); triangles.push_back(tcu::UVec3(q, r, R)); triangles.push_back(tcu::UVec3(p, R, r)); r = R; } geometryData.reserve(3u * triangles.size()); for (size_t i = 0; i < triangles.size(); ++i) { geometryData.push_back(vertices[triangles[i].x()]); geometryData.push_back(vertices[triangles[i].y()]); geometryData.push_back(vertices[triangles[i].z()]); } result->addGeometry(geometryData, triangle); result->createAndBuild(vkd, device, cmdBuffer, allocator); return result; } vector > RayTracingWatertightnessTestInstance::initBottomAccelerationStructures(VkCommandBuffer cmdBuffer) { vector > result; if (!m_useClosedFan) { for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx) { de::MovePtr bottomLevelAccelerationStructure = initBottomAccelerationStructure(cmdBuffer, true); result.push_back(de::SharedPtr(bottomLevelAccelerationStructure.release())); } } else { // Build a closed fan. std::vector vertices; std::vector triangles; const float angleDiff = 2.0f * DE_PI / static_cast(m_data.squaresGroupCount); vertices.push_back(tcu::Vec3(0.0f, 0.0f, 0.0f)); for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge) { const auto angle = static_cast(nSharedEdge) * angleDiff - DE_PI; const auto newVertex = tcu::Vec3(deFloatSin(angle), deFloatCos(angle), 0.0f); vertices.push_back(newVertex); } for (deUint32 nSharedEdge = 0; nSharedEdge < m_data.squaresGroupCount; ++nSharedEdge) { const auto newTri = tcu::UVec3( 0, 1 + nSharedEdge, (nSharedEdge != m_data.squaresGroupCount - 1) ? (2 + nSharedEdge) : 1 ); triangles.push_back(newTri); } { Allocator& allocator = m_context.getDefaultAllocator (); const VkDevice device = m_context.getDevice (); const DeviceInterface& vkd = m_context.getDeviceInterface (); if (!m_data.useManyGeometries) { de::MovePtr resultBLAS = makeBottomLevelAccelerationStructure(); for (size_t i = 0; i < triangles.size(); ++i) { std::vector geometryData; geometryData.reserve(3u); geometryData.push_back(vertices[triangles[i].x()]); geometryData.push_back(vertices[triangles[i].y()]); geometryData.push_back(vertices[triangles[i].z()]); resultBLAS->addGeometry(geometryData, true /* triangles */, VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR); } resultBLAS->createAndBuild (vkd, device, cmdBuffer, allocator); result.push_back(de::SharedPtr(resultBLAS.release())); } else { for (size_t i = 0; i < triangles.size(); ++i) { std::vector geometryData; de::MovePtr resultBLAS = makeBottomLevelAccelerationStructure(); geometryData.push_back(vertices[triangles[i].x()]); geometryData.push_back(vertices[triangles[i].y()]); geometryData.push_back(vertices[triangles[i].z()]); resultBLAS->addGeometry (geometryData, true /* triangles */, VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR); resultBLAS->createAndBuild (vkd, device, cmdBuffer, allocator); result.push_back(de::SharedPtr(resultBLAS.release())); } } } } return result; } de::MovePtr RayTracingWatertightnessTestInstance::runTest(void) { const InstanceInterface& vki = m_context.getInstanceInterface(); const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const VkFormat format = getImageFormat(); const deUint32 pixelCount = m_data.width * m_data.height * m_data.depth; const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice); const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice); const Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) .build(vkd, device); const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const Move descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get()); const Move cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); de::MovePtr rayTracingPipeline = de::newMovePtr(); const auto hitGroupCount = (m_data.useManyGeometries ? m_data.squaresGroupCount : 1u); const Move pipeline = makePipeline(vkd, device, m_context.getBinaryCollection(), rayTracingPipeline, *pipelineLayout, RAYGEN_GROUP, MISS_GROUP, HIT_GROUP, hitGroupCount); const de::MovePtr raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, RAYGEN_GROUP, 1u); const de::MovePtr missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, MISS_GROUP, 1u); const de::MovePtr hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, HIT_GROUP, hitGroupCount); const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize * hitGroupCount); const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, m_data.depth, format); const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u); const de::MovePtr image = de::MovePtr(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any)); const Move imageView = makeImageView(vkd, device, **image, (m_data.depth != 1) ? VK_IMAGE_VIEW_TYPE_3D : VK_IMAGE_VIEW_TYPE_2D, format, imageSubresourceRange); const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount * sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT); const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1); const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, m_data.depth), bufferImageSubresourceLayers); de::MovePtr buffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible)); const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL); const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange); const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); const VkClearValue clearValue = (!m_useClosedFan) ? makeClearValueColorU32(5u, 5u, 5u, 255u) : makeClearValueColorU32(0u, 0u, 0u, 0u); vector > bottomLevelAccelerationStructures; de::MovePtr topLevelAccelerationStructure; beginCommandBuffer(vkd, *cmdBuffer, 0u); { cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier); vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier); bottomLevelAccelerationStructures = initBottomAccelerationStructures(*cmdBuffer); topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructures); const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get(); VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType; DE_NULL, // const void* pNext; 1u, // deUint32 accelerationStructureCount; topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures; }; DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet) .update(vkd, device); vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL); vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline); if (!m_useClosedFan) { cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, m_data.width, m_data.height, 1); } else { cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, 1 + m_data.width, m_data.height, 1); } cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier); } endCommandBuffer(vkd, *cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer.get()); invalidateAlloc(vkd, device, buffer->getAllocation()); return buffer; } void RayTracingWatertightnessTestInstance::checkSupportInInstance(void) const { const InstanceInterface& vki = m_context.getInstanceInterface(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const vk::VkPhysicalDeviceProperties& properties = m_context.getDeviceProperties(); const deUint32 requiredAllocations = 8u + TopLevelAccelerationStructure::getRequiredAllocationCount() + m_data.instancesGroupCount * BottomLevelAccelerationStructure::getRequiredAllocationCount(); de::MovePtr rayTracingProperties = makeRayTracingProperties(vki, physicalDevice); if (rayTracingProperties->getMaxPrimitiveCount() < m_data.squaresGroupCount) TCU_THROW(NotSupportedError, "Triangles required more than supported"); if (rayTracingProperties->getMaxGeometryCount() < m_data.geometriesGroupCount) TCU_THROW(NotSupportedError, "Geometries required more than supported"); if (rayTracingProperties->getMaxInstanceCount() < m_data.instancesGroupCount) TCU_THROW(NotSupportedError, "Instances required more than supported"); if (properties.limits.maxMemoryAllocationCount < requiredAllocations) TCU_THROW(NotSupportedError, "Test requires more allocations allowed"); } tcu::TestStatus RayTracingWatertightnessTestInstance::iterate(void) { checkSupportInInstance(); const de::MovePtr bufferGPU = runTest(); const deUint32* bufferPtrGPU = (deUint32*)bufferGPU->getAllocation().getHostPtr(); deUint32 failures = 0u; deUint32 qualityWarningIssued = 0u; if (!m_useClosedFan) { deUint32 pos = 0; for (deUint32 nIntersection = 0; nIntersection < m_data.squaresGroupCount; ++nIntersection) { if (bufferPtrGPU[pos] != 1) failures++; ++pos; } } else { // Values larger than 1, excl. 10000 raise a failure since they indicate the impl ignored the VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR flag. // A value of 10000 triggers a quality warning, as this indicates a miss which, per spec language, is discouraged but not forbidden. // // See the miss shader for explanation of the magic number. for (deUint32 pos = 0; pos < m_data.width * m_data.height * m_data.depth; ++pos) { if (bufferPtrGPU[pos] == 10000u) { qualityWarningIssued = 1u; } else if (bufferPtrGPU[pos] > 1u) { failures ++; } } } if (failures == 0u) { if (qualityWarningIssued) return tcu::TestStatus(QP_TEST_RESULT_QUALITY_WARNING, "Miss shader invoked for a shared edge/vertex."); else return tcu::TestStatus::pass("Pass"); } else return tcu::TestStatus::fail("failures=" + de::toString(failures)); } } // anonymous tcu::TestCaseGroup* createWatertightnessTests(tcu::TestContext& testCtx) { de::MovePtr watertightnessGroup(new tcu::TestCaseGroup(testCtx, "watertightness", "Ray watertightness tests")); const size_t numTests = 10; for (size_t testNdx = 0; testNdx < numTests; ++testNdx) { de::MovePtr group(new tcu::TestCaseGroup(testCtx, de::toString(testNdx).c_str(), "")); const deUint32 sizes[] = { 4, 16, 64, 256, 1024, 4096, 16384, 65536 }; // Legacy tests for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 squaresGroupCount = sizes[sizesNdx]; const deUint32 geometriesGroupCount = 1; const deUint32 instancesGroupCount = 1; const deUint32 randomSeed = (deUint32)(5 * testNdx + 11 * sizes[sizesNdx]); const CaseDef caseDef = { 256u, 256u, squaresGroupCount, geometriesGroupCount, instancesGroupCount, randomSeed, 1, /* depth - irrelevant */ 0 /* useManyBottomASes - irrelevant */ }; const std::string testName = de::toString(caseDef.squaresGroupCount); group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef, false /* useClosedFan */)); } watertightnessGroup->addChild(group.release()); } // Closed fan tests { const deUint32 sizes[] = { 4, 16, 64, 256, 1024 }; for (deUint32 nBottomASConfig = 0; nBottomASConfig < 2; ++nBottomASConfig) { const auto groupName = (nBottomASConfig == 0) ? "closedFan" : "closedFan2"; de::MovePtr group(new tcu::TestCaseGroup(testCtx, groupName, "")); for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 sharedEdgeCount = sizes[sizesNdx]; const CaseDef caseDef = { // The extra item in is required to accomodate the extra center vertex, against which the test also shoots rays. 1 + static_cast(deSqrt(sharedEdgeCount)), /* width */ static_cast(deSqrt(sharedEdgeCount)), /* height */ sharedEdgeCount, 1, /* geometriesGroupCount - irrelevant */ 1, /* instancesGroupCount - irrelevant */ 1, /* randomSeed - irrelevant */ sharedEdgeCount, /* depth */ nBottomASConfig }; const std::string testName = de::toString(sharedEdgeCount); group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef, true /* useClosedFan */)); } watertightnessGroup->addChild(group.release()); } } return watertightnessGroup.release(); } } // RayTracing } // vkt