/*** This file is part of PulseAudio. Copyright 2010 Intel Corporation Contributor: Pierre-Louis Bossart Copyright 2012 Niels Ole Salscheider Contributor: Alexander E. Patrakov Copyright 2020 Christopher Snowhill PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include PA_MODULE_AUTHOR("Christopher Snowhill"); PA_MODULE_DESCRIPTION(_("Virtual surround sink")); PA_MODULE_VERSION(PACKAGE_VERSION); PA_MODULE_LOAD_ONCE(false); PA_MODULE_USAGE( _("sink_name= " "sink_properties= " "master= " "sink_master= " "format= " "rate= " "channels= " "channel_map= " "use_volume_sharing= " "force_flat_volume= " "hrir=/path/to/left_hrir.wav " "hrir_left=/path/to/left_hrir.wav " "hrir_right=/path/to/optional/right_hrir.wav " "autoloaded= " )); #define MEMBLOCKQ_MAXLENGTH (16*1024*1024) #define DEFAULT_AUTOLOADED false struct userdata { pa_module *module; bool autoloaded; pa_sink *sink; pa_sink_input *sink_input; pa_memblockq *memblockq_sink; bool auto_desc; size_t fftlen; size_t hrir_samples; size_t inputs; fftwf_plan *p_fw, p_bw; fftwf_complex *f_in, *f_out, **f_ir; float *revspace, *outspace[2], **inspace; }; #define BLOCK_SIZE (512) static const char* const valid_modargs[] = { "sink_name", "sink_properties", "master", /* Will be deprecated. */ "sink_master", "format", "rate", "channels", "channel_map", "use_volume_sharing", "force_flat_volume", "autoloaded", "hrir", "hrir_left", "hrir_right", NULL }; /* Vector size of 4 floats */ #define v_size 4 static void * alloc(size_t x, size_t s) { size_t f; float *t; f = PA_ROUND_UP(x*s, sizeof(float)*v_size); pa_assert_se(t = fftwf_malloc(f)); pa_memzero(t, f); return t; } static size_t sink_input_samples(size_t nbytes) { return nbytes / 8; } static size_t sink_input_bytes(size_t nsamples) { return nsamples * 8; } static size_t sink_samples(const struct userdata *u, size_t nbytes) { return nbytes / (u->inputs * 4); } static size_t sink_bytes(const struct userdata *u, size_t nsamples) { return nsamples * (u->inputs * 4); } /* Mirror channels for symmetrical impulse */ static pa_channel_position_t mirror_channel(pa_channel_position_t channel) { switch (channel) { case PA_CHANNEL_POSITION_FRONT_LEFT: return PA_CHANNEL_POSITION_FRONT_RIGHT; case PA_CHANNEL_POSITION_FRONT_RIGHT: return PA_CHANNEL_POSITION_FRONT_LEFT; case PA_CHANNEL_POSITION_REAR_LEFT: return PA_CHANNEL_POSITION_REAR_RIGHT; case PA_CHANNEL_POSITION_REAR_RIGHT: return PA_CHANNEL_POSITION_REAR_LEFT; case PA_CHANNEL_POSITION_SIDE_LEFT: return PA_CHANNEL_POSITION_SIDE_RIGHT; case PA_CHANNEL_POSITION_SIDE_RIGHT: return PA_CHANNEL_POSITION_SIDE_LEFT; case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER; case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER; case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT; case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: return PA_CHANNEL_POSITION_TOP_FRONT_LEFT; case PA_CHANNEL_POSITION_TOP_REAR_LEFT: return PA_CHANNEL_POSITION_TOP_REAR_RIGHT; case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: return PA_CHANNEL_POSITION_TOP_REAR_LEFT; default: return channel; } } /* Normalize the hrir */ static void normalize_hrir(float * hrir_data, unsigned hrir_samples, unsigned hrir_channels) { /* normalize hrir to avoid audible clipping * * The following heuristic tries to avoid audible clipping. It cannot avoid * clipping in the worst case though, because the scaling factor would * become too large resulting in a too quiet signal. * The idea of the heuristic is to avoid clipping when a single click is * played back on all channels. The scaling factor describes the additional * factor that is necessary to avoid clipping for "normal" signals. * * This algorithm doesn't pretend to be perfect, it's just something that * appears to work (not too quiet, no audible clipping) on the material that * it has been tested on. If you find a real-world example where this * algorithm results in audible clipping, please write a patch that adjusts * the scaling factor constants or improves the algorithm (or if you can't * write a patch, at least report the problem to the PulseAudio mailing list * or bug tracker). */ const float scaling_factor = 2.5; float hrir_sum, hrir_max; unsigned i, j; hrir_max = 0; for (i = 0; i < hrir_samples; i++) { hrir_sum = 0; for (j = 0; j < hrir_channels; j++) hrir_sum += fabs(hrir_data[i * hrir_channels + j]); if (hrir_sum > hrir_max) hrir_max = hrir_sum; } for (i = 0; i < hrir_samples; i++) { for (j = 0; j < hrir_channels; j++) hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor; } } /* Normalize a stereo hrir */ static void normalize_hrir_stereo(float * hrir_data, float * hrir_right_data, unsigned hrir_samples, unsigned hrir_channels) { const float scaling_factor = 2.5; float hrir_sum, hrir_max; unsigned i, j; hrir_max = 0; for (i = 0; i < hrir_samples; i++) { hrir_sum = 0; for (j = 0; j < hrir_channels; j++) { hrir_sum += fabs(hrir_data[i * hrir_channels + j]); hrir_sum += fabs(hrir_right_data[i * hrir_channels + j]); } if (hrir_sum > hrir_max) hrir_max = hrir_sum; } for (i = 0; i < hrir_samples; i++) { for (j = 0; j < hrir_channels; j++) { hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor; hrir_right_data[i * hrir_channels + j] /= hrir_max * scaling_factor; } } } /* Called from I/O thread context */ static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) { struct userdata *u = PA_SINK(o)->userdata; switch (code) { case PA_SINK_MESSAGE_GET_LATENCY: /* The sink is _put() before the sink input is, so let's * make sure we don't access it in that time. Also, the * sink input is first shut down, the sink second. */ if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) { *((pa_usec_t*) data) = 0; return 0; } *((pa_usec_t*) data) = /* Get the latency of the master sink */ pa_sink_get_latency_within_thread(u->sink_input->sink, true) + /* Add the latency internal to our sink input on top */ pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec); /* Add resampler latency */ *((int64_t*) data) += pa_resampler_get_delay_usec(u->sink_input->thread_info.resampler); return 0; } return pa_sink_process_msg(o, code, data, offset, chunk); } /* Called from main context */ static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return 0; pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED); return 0; } /* Called from the IO thread. */ static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) { struct userdata *u; pa_assert(s); pa_assert_se(u = s->userdata); /* When set to running or idle for the first time, request a rewind * of the master sink to make sure we are heard immediately */ if (PA_SINK_IS_OPENED(new_state) && s->thread_info.state == PA_SINK_INIT) { pa_log_debug("Requesting rewind due to state change."); pa_sink_input_request_rewind(u->sink_input, 0, false, true, true); } return 0; } /* Called from I/O thread context */ static void sink_request_rewind_cb(pa_sink *s) { struct userdata *u; size_t nbytes_sink, nbytes_input; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; nbytes_sink = s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq_sink); nbytes_input = sink_input_bytes(sink_samples(u, nbytes_sink)); /* Just hand this one over to the master sink */ pa_sink_input_request_rewind(u->sink_input, nbytes_input, true, false, false); } /* Called from I/O thread context */ static void sink_update_requested_latency_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) return; /* Just hand this one over to the master sink */ pa_sink_input_set_requested_latency_within_thread( u->sink_input, pa_sink_get_requested_latency_within_thread(s)); } /* Called from main context */ static void sink_set_volume_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, true); } /* Called from main context */ static void sink_set_mute_cb(pa_sink *s) { struct userdata *u; pa_sink_assert_ref(s); pa_assert_se(u = s->userdata); if (!PA_SINK_IS_LINKED(s->state) || !PA_SINK_INPUT_IS_LINKED(u->sink_input->state)) return; pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted); } static size_t memblockq_missing(pa_memblockq *bq) { size_t l, tlength; pa_assert(bq); tlength = pa_memblockq_get_tlength(bq); if ((l = pa_memblockq_get_length(bq)) >= tlength) return 0; l = tlength - l; return l >= pa_memblockq_get_minreq(bq) ? l : 0; } /* Called from I/O thread context */ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes_input, pa_memchunk *chunk) { struct userdata *u; float *src, *dst; int c, ear; size_t s, bytes_missing, fftlen; pa_memchunk tchunk; float fftlen_if, *revspace; pa_sink_input_assert_ref(i); pa_assert(chunk); pa_assert_se(u = i->userdata); /* Hmm, process any rewind request that might be queued up */ pa_sink_process_rewind(u->sink, 0); while ((bytes_missing = memblockq_missing(u->memblockq_sink)) != 0) { pa_memchunk nchunk; pa_sink_render(u->sink, bytes_missing, &nchunk); pa_memblockq_push(u->memblockq_sink, &nchunk); pa_memblock_unref(nchunk.memblock); } pa_memblockq_rewind(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE)); pa_memblockq_peek_fixed_size(u->memblockq_sink, sink_bytes(u, u->fftlen), &tchunk); pa_memblockq_drop(u->memblockq_sink, tchunk.length); /* Now tchunk contains enough data to perform the FFT * This should be equal to u->fftlen */ chunk->index = 0; chunk->length = sink_input_bytes(BLOCK_SIZE); chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length); src = pa_memblock_acquire_chunk(&tchunk); for (c = 0; c < u->inputs; c++) { for (s = 0, fftlen = u->fftlen; s < fftlen; s++) { u->inspace[c][s] = src[s * u->inputs + c]; } } pa_memblock_release(tchunk.memblock); pa_memblock_unref(tchunk.memblock); fftlen_if = 1.0f / (float)u->fftlen; revspace = u->revspace + u->fftlen - BLOCK_SIZE; pa_memzero(u->outspace[0], BLOCK_SIZE * 4); pa_memzero(u->outspace[1], BLOCK_SIZE * 4); for (c = 0; c < u->inputs; c++) { fftwf_complex *f_in = u->f_in; fftwf_complex *f_out = u->f_out; fftwf_execute(u->p_fw[c]); for (ear = 0; ear < 2; ear++) { fftwf_complex *f_ir = u->f_ir[c * 2 + ear]; float *outspace = u->outspace[ear]; for (s = 0, fftlen = u->fftlen / 2 + 1; s < fftlen; s++) { float re = f_ir[s][0] * f_in[s][0] - f_ir[s][1] * f_in[s][1]; float im = f_ir[s][1] * f_in[s][0] + f_ir[s][0] * f_in[s][1]; f_out[s][0] = re; f_out[s][1] = im; } fftwf_execute(u->p_bw); for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; ++s) outspace[s] += revspace[s] * fftlen_if; } } dst = pa_memblock_acquire_chunk(chunk); for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; s++) { float output; float *outspace = u->outspace[0]; output = outspace[s]; if (output < -1.0) output = -1.0; if (output > 1.0) output = 1.0; dst[s * 2 + 0] = output; outspace = u->outspace[1]; output = outspace[s]; if (output < -1.0) output = -1.0; if (output > 1.0) output = 1.0; dst[s * 2 + 1] = output; } pa_memblock_release(chunk->memblock); return 0; } /* Called from I/O thread context */ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes_input) { struct userdata *u; size_t amount = 0; size_t nbytes_sink; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input)); if (u->sink->thread_info.rewind_nbytes > 0) { size_t max_rewrite; max_rewrite = nbytes_sink + pa_memblockq_get_length(u->memblockq_sink); amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite); u->sink->thread_info.rewind_nbytes = 0; if (amount > 0) { pa_memblockq_seek(u->memblockq_sink, - (int64_t) amount, PA_SEEK_RELATIVE, true); } } pa_sink_process_rewind(u->sink, amount); pa_memblockq_rewind(u->memblockq_sink, nbytes_sink); } /* Called from I/O thread context */ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes_input) { struct userdata *u; size_t nbytes_sink, nbytes_memblockq; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input)); nbytes_memblockq = sink_bytes(u, sink_input_samples(nbytes_input) + u->fftlen); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_memblockq_set_maxrewind(u->memblockq_sink, nbytes_memblockq); pa_sink_set_max_rewind_within_thread(u->sink, nbytes_sink); } /* Called from I/O thread context */ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes_input) { struct userdata *u; size_t nbytes_sink; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input)); nbytes_sink = PA_ROUND_UP(nbytes_sink, sink_bytes(u, BLOCK_SIZE)); pa_sink_set_max_request_within_thread(u->sink, nbytes_sink); } /* Called from I/O thread context */ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); } /* Called from I/O thread context */ static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); } /* Called from I/O thread context */ static void sink_input_detach_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (PA_SINK_IS_LINKED(u->sink->thread_info.state)) pa_sink_detach_within_thread(u->sink); pa_sink_set_rtpoll(u->sink, NULL); } /* Called from I/O thread context */ static void sink_input_attach_cb(pa_sink_input *i) { struct userdata *u; size_t max_request; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll); pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency); pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency); max_request = sink_bytes(u, sink_input_samples(pa_sink_input_get_max_request(i))); max_request = PA_ROUND_UP(max_request, sink_bytes(u, BLOCK_SIZE)); pa_sink_set_max_request_within_thread(u->sink, max_request); /* FIXME: Too small max_rewind: * https://bugs.freedesktop.org/show_bug.cgi?id=53709 */ pa_sink_set_max_rewind_within_thread(u->sink, sink_bytes(u, sink_input_samples(pa_sink_input_get_max_rewind(i)))); pa_sink_attach_within_thread(u->sink); } /* Called from main context */ static void sink_input_kill_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); /* The order here matters! We first kill the sink input, followed * by the sink. That means the sink callbacks must be protected * against an unconnected sink input! */ pa_sink_input_cork(u->sink_input, true); pa_sink_input_unlink(u->sink_input); pa_sink_unlink(u->sink); pa_sink_input_unref(u->sink_input); u->sink_input = NULL; pa_sink_unref(u->sink); u->sink = NULL; pa_module_unload_request(u->module, true); } /* Called from main context */ static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (u->autoloaded) return false; return u->sink != dest; } /* Called from main context */ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); if (dest) { pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq); pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags); } else pa_sink_set_asyncmsgq(u->sink, NULL); if (u->auto_desc && dest) { const char *z; pa_proplist *pl; pl = pa_proplist_new(); z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s", pa_proplist_gets(u->sink->proplist, "device.vsurroundsink.name"), z ? z : dest->name); pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl); pa_proplist_free(pl); } } /* Called from main context */ static void sink_input_volume_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_volume_changed(u->sink, &i->volume); } /* Called from main context */ static void sink_input_mute_changed_cb(pa_sink_input *i) { struct userdata *u; pa_sink_input_assert_ref(i); pa_assert_se(u = i->userdata); pa_sink_mute_changed(u->sink, i->muted); } int pa__init(pa_module*m) { struct userdata *u; pa_sample_spec ss_input, ss_output; pa_channel_map map_output; pa_modargs *ma; const char *master_name; const char *hrir_left_file; const char *hrir_right_file; pa_sink *master=NULL; pa_sink_input_new_data sink_input_data; pa_sink_new_data sink_data; bool use_volume_sharing = true; bool force_flat_volume = false; pa_memchunk silence; const char* z; unsigned i, j, ear, found_channel_left, found_channel_right; pa_sample_spec ss; pa_channel_map map; float *hrir_data=NULL, *hrir_right_data=NULL; float *hrir_temp_data; size_t hrir_samples; size_t hrir_copied_length, hrir_total_length; int hrir_channels; int fftlen; float *impulse_temp=NULL; unsigned *mapping_left=NULL; unsigned *mapping_right=NULL; fftwf_plan p; pa_channel_map hrir_map, hrir_right_map; pa_sample_spec hrir_left_temp_ss; pa_memchunk hrir_left_temp_chunk, hrir_left_temp_chunk_resampled; pa_resampler *resampler; pa_sample_spec hrir_right_temp_ss; pa_memchunk hrir_right_temp_chunk, hrir_right_temp_chunk_resampled; pa_assert(m); hrir_left_temp_chunk.memblock = NULL; hrir_left_temp_chunk_resampled.memblock = NULL; hrir_right_temp_chunk.memblock = NULL; hrir_right_temp_chunk_resampled.memblock = NULL; if (!(ma = pa_modargs_new(m->argument, valid_modargs))) { pa_log("Failed to parse module arguments."); goto fail; } master_name = pa_modargs_get_value(ma, "sink_master", NULL); if (!master_name) { master_name = pa_modargs_get_value(ma, "master", NULL); if (master_name) pa_log_warn("The 'master' module argument is deprecated and may be removed in the future, " "please use the 'sink_master' argument instead."); } if (!(master = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK))) { pa_log("Master sink not found"); goto fail; } hrir_left_file = pa_modargs_get_value(ma, "hrir_left", NULL); if (!hrir_left_file) { hrir_left_file = pa_modargs_get_value(ma, "hrir", NULL); if (!hrir_left_file) { pa_log("Either the 'hrir' or 'hrir_left' module arguments are required."); goto fail; } } hrir_right_file = pa_modargs_get_value(ma, "hrir_right", NULL); pa_assert(master); if (pa_sound_file_load(master->core->mempool, hrir_left_file, &hrir_left_temp_ss, &hrir_map, &hrir_left_temp_chunk, NULL) < 0) { pa_log("Cannot load hrir file."); goto fail; } if (hrir_right_file) { if (pa_sound_file_load(master->core->mempool, hrir_right_file, &hrir_right_temp_ss, &hrir_right_map, &hrir_right_temp_chunk, NULL) < 0) { pa_log("Cannot load hrir_right file."); goto fail; } if (!pa_sample_spec_equal(&hrir_left_temp_ss, &hrir_right_temp_ss)) { pa_log("Both hrir_left and hrir_right must have the same sample format"); goto fail; } if (!pa_channel_map_equal(&hrir_map, &hrir_right_map)) { pa_log("Both hrir_left and hrir_right must have the same channel layout"); goto fail; } } ss_input.format = PA_SAMPLE_FLOAT32NE; ss_input.rate = master->sample_spec.rate; ss_input.channels = hrir_left_temp_ss.channels; ss = ss_input; map = hrir_map; if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) { pa_log("Invalid sample format specification or channel map"); goto fail; } ss.format = PA_SAMPLE_FLOAT32NE; ss_input.rate = ss.rate; ss_input.channels = ss.channels; ss_output = ss_input; ss_output.channels = 2; if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) { pa_log("use_volume_sharing= expects a boolean argument"); goto fail; } if (pa_modargs_get_value_boolean(ma, "force_flat_volume", &force_flat_volume) < 0) { pa_log("force_flat_volume= expects a boolean argument"); goto fail; } if (use_volume_sharing && force_flat_volume) { pa_log("Flat volume can't be forced when using volume sharing."); goto fail; } pa_channel_map_init_stereo(&map_output); u = pa_xnew0(struct userdata, 1); u->module = m; m->userdata = u; /* Create sink */ pa_sink_new_data_init(&sink_data); sink_data.driver = __FILE__; sink_data.module = m; if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL)))) sink_data.name = pa_sprintf_malloc("%s.vsurroundsink", master->name); pa_sink_new_data_set_sample_spec(&sink_data, &ss_input); pa_sink_new_data_set_channel_map(&sink_data, &map); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name); pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter"); pa_proplist_sets(sink_data.proplist, "device.vsurroundsink.name", sink_data.name); if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) { pa_log("Invalid properties"); pa_sink_new_data_done(&sink_data); goto fail; } u->autoloaded = DEFAULT_AUTOLOADED; if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) { pa_log("Failed to parse autoloaded value"); goto fail; } if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) { z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION); pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s", sink_data.name, z ? z : master->name); } u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY)) | (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0)); pa_sink_new_data_done(&sink_data); if (!u->sink) { pa_log("Failed to create sink."); goto fail; } u->sink->parent.process_msg = sink_process_msg_cb; u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb; u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb; u->sink->update_requested_latency = sink_update_requested_latency_cb; u->sink->request_rewind = sink_request_rewind_cb; pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb); if (!use_volume_sharing) { pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb); pa_sink_enable_decibel_volume(u->sink, true); } /* Normally this flag would be enabled automatically but we can force it. */ if (force_flat_volume) u->sink->flags |= PA_SINK_FLAT_VOLUME; u->sink->userdata = u; pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq); /* Create sink input */ pa_sink_input_new_data_init(&sink_input_data); sink_input_data.driver = __FILE__; sink_input_data.module = m; pa_sink_input_new_data_set_sink(&sink_input_data, master, false, true); sink_input_data.origin_sink = u->sink; pa_proplist_setf(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Virtual Surround Sink Stream from %s", pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)); pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter"); pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss_output); pa_sink_input_new_data_set_channel_map(&sink_input_data, &map_output); pa_sink_input_new(&u->sink_input, m->core, &sink_input_data); pa_sink_input_new_data_done(&sink_input_data); if (!u->sink_input) goto fail; u->sink_input->pop = sink_input_pop_cb; u->sink_input->process_rewind = sink_input_process_rewind_cb; u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb; u->sink_input->update_max_request = sink_input_update_max_request_cb; u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb; u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb; u->sink_input->kill = sink_input_kill_cb; u->sink_input->attach = sink_input_attach_cb; u->sink_input->detach = sink_input_detach_cb; u->sink_input->may_move_to = sink_input_may_move_to_cb; u->sink_input->moving = sink_input_moving_cb; u->sink_input->volume_changed = use_volume_sharing ? NULL : sink_input_volume_changed_cb; u->sink_input->mute_changed = sink_input_mute_changed_cb; u->sink_input->userdata = u; u->sink->input_to_master = u->sink_input; pa_sink_input_get_silence(u->sink_input, &silence); resampler = pa_resampler_new(u->sink->core->mempool, &hrir_left_temp_ss, &hrir_map, &ss_input, &hrir_map, u->sink->core->lfe_crossover_freq, PA_RESAMPLER_SRC_SINC_BEST_QUALITY, PA_RESAMPLER_NO_REMAP); hrir_samples = hrir_left_temp_chunk.length / pa_frame_size(&hrir_left_temp_ss) * ss_input.rate / hrir_left_temp_ss.rate; hrir_total_length = hrir_samples * pa_frame_size(&ss_input); hrir_channels = ss_input.channels; hrir_data = (float *) pa_xmalloc(hrir_total_length); hrir_copied_length = 0; u->hrir_samples = hrir_samples; u->inputs = hrir_channels; /* add silence to the hrir until we get enough samples out of the resampler */ while (hrir_copied_length < hrir_total_length) { pa_resampler_run(resampler, &hrir_left_temp_chunk, &hrir_left_temp_chunk_resampled); if (hrir_left_temp_chunk.memblock != hrir_left_temp_chunk_resampled.memblock) { /* Silence input block */ pa_silence_memblock(hrir_left_temp_chunk.memblock, &hrir_left_temp_ss); } if (hrir_left_temp_chunk_resampled.memblock) { /* Copy hrir data */ hrir_temp_data = (float *) pa_memblock_acquire(hrir_left_temp_chunk_resampled.memblock); if (hrir_total_length - hrir_copied_length >= hrir_left_temp_chunk_resampled.length) { memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_left_temp_chunk_resampled.length); hrir_copied_length += hrir_left_temp_chunk_resampled.length; } else { memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length); hrir_copied_length = hrir_total_length; } pa_memblock_release(hrir_left_temp_chunk_resampled.memblock); pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock); hrir_left_temp_chunk_resampled.memblock = NULL; } } pa_memblock_unref(hrir_left_temp_chunk.memblock); hrir_left_temp_chunk.memblock = NULL; if (hrir_right_file) { pa_resampler_reset(resampler); hrir_right_data = (float *) pa_xmalloc(hrir_total_length); hrir_copied_length = 0; while (hrir_copied_length < hrir_total_length) { pa_resampler_run(resampler, &hrir_right_temp_chunk, &hrir_right_temp_chunk_resampled); if (hrir_right_temp_chunk.memblock != hrir_right_temp_chunk_resampled.memblock) { /* Silence input block */ pa_silence_memblock(hrir_right_temp_chunk.memblock, &hrir_right_temp_ss); } if (hrir_right_temp_chunk_resampled.memblock) { /* Copy hrir data */ hrir_temp_data = (float *) pa_memblock_acquire(hrir_right_temp_chunk_resampled.memblock); if (hrir_total_length - hrir_copied_length >= hrir_right_temp_chunk_resampled.length) { memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_right_temp_chunk_resampled.length); hrir_copied_length += hrir_right_temp_chunk_resampled.length; } else { memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length); hrir_copied_length = hrir_total_length; } pa_memblock_release(hrir_right_temp_chunk_resampled.memblock); pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock); hrir_right_temp_chunk_resampled.memblock = NULL; } } pa_memblock_unref(hrir_right_temp_chunk.memblock); hrir_right_temp_chunk.memblock = NULL; } pa_resampler_free(resampler); if (hrir_right_data) normalize_hrir_stereo(hrir_data, hrir_right_data, hrir_samples, hrir_channels); else normalize_hrir(hrir_data, hrir_samples, hrir_channels); /* create mapping between hrir and input */ mapping_left = (unsigned *) pa_xnew0(unsigned, hrir_channels); mapping_right = (unsigned *) pa_xnew0(unsigned, hrir_channels); for (i = 0; i < map.channels; i++) { found_channel_left = 0; found_channel_right = 0; for (j = 0; j < hrir_map.channels; j++) { if (hrir_map.map[j] == map.map[i]) { mapping_left[i] = j; found_channel_left = 1; } if (hrir_map.map[j] == mirror_channel(map.map[i])) { mapping_right[i] = j; found_channel_right = 1; } } if (!found_channel_left) { pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(map.map[i])); goto fail; } if (!found_channel_right) { pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(mirror_channel(map.map[i]))); goto fail; } } fftlen = (hrir_samples + BLOCK_SIZE + 1); /* Grow a bit for overlap */ { /* Round up to a power of two */ int pow = 1; while (fftlen > 2) { pow++; fftlen /= 2; } fftlen = 2 << pow; } u->fftlen = fftlen; u->f_in = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1)); u->f_out = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1)); u->f_ir = (fftwf_complex**) alloc(sizeof(fftwf_complex*), (hrir_channels*2)); for (i = 0, j = hrir_channels*2; i < j; i++) u->f_ir[i] = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1)); u->revspace = (float*) alloc(sizeof(float), fftlen); u->outspace[0] = (float*) alloc(sizeof(float), BLOCK_SIZE); u->outspace[1] = (float*) alloc(sizeof(float), BLOCK_SIZE); u->inspace = (float**) alloc(sizeof(float*), hrir_channels); for (i = 0; i < hrir_channels; i++) u->inspace[i] = (float*) alloc(sizeof(float), fftlen); u->p_fw = (fftwf_plan*) alloc(sizeof(fftwf_plan), hrir_channels); for (i = 0; i < hrir_channels; i++) pa_assert_se(u->p_fw[i] = fftwf_plan_dft_r2c_1d(fftlen, u->inspace[i], u->f_in, FFTW_ESTIMATE)); pa_assert_se(u->p_bw = fftwf_plan_dft_c2r_1d(fftlen, u->f_out, u->revspace, FFTW_ESTIMATE)); impulse_temp = (float*) alloc(sizeof(float), fftlen); if (hrir_right_data) { for (i = 0; i < hrir_channels; i++) { for (ear = 0; ear < 2; ear++) { size_t index = i * 2 + ear; size_t impulse_index = mapping_left[i]; float *impulse = (ear == 0) ? hrir_data : hrir_right_data; for (j = 0; j < hrir_samples; j++) { impulse_temp[j] = impulse[j * hrir_channels + impulse_index]; } p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE); if (p) { fftwf_execute(p); fftwf_destroy_plan(p); } else { pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i); goto fail; } } } } else { for (i = 0; i < hrir_channels; i++) { for (ear = 0; ear < 2; ear++) { size_t index = i * 2 + ear; size_t impulse_index = (ear == 0) ? mapping_left[i] : mapping_right[i]; for (j = 0; j < hrir_samples; j++) { impulse_temp[j] = hrir_data[j * hrir_channels + impulse_index]; } p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE); if (p) { fftwf_execute(p); fftwf_destroy_plan(p); } else { pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i); goto fail; } } } } pa_xfree(impulse_temp); pa_xfree(hrir_data); if (hrir_right_data) pa_xfree(hrir_right_data); pa_xfree(mapping_left); pa_xfree(mapping_right); u->memblockq_sink = pa_memblockq_new("module-virtual-surround-sink memblockq (input)", 0, MEMBLOCKQ_MAXLENGTH, sink_bytes(u, BLOCK_SIZE), &ss_input, 0, 0, sink_bytes(u, u->fftlen), &silence); pa_memblock_unref(silence.memblock); pa_memblockq_seek(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE), PA_SEEK_RELATIVE, false); pa_memblockq_flush_read(u->memblockq_sink); pa_sink_put(u->sink); pa_sink_input_put(u->sink_input); pa_modargs_free(ma); return 0; fail: if (impulse_temp) pa_xfree(impulse_temp); if (mapping_left) pa_xfree(mapping_left); if (mapping_right) pa_xfree(mapping_right); if (hrir_data) pa_xfree(hrir_data); if (hrir_right_data) pa_xfree(hrir_right_data); if (hrir_left_temp_chunk.memblock) pa_memblock_unref(hrir_left_temp_chunk.memblock); if (hrir_left_temp_chunk_resampled.memblock) pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock); if (hrir_right_temp_chunk.memblock) pa_memblock_unref(hrir_right_temp_chunk.memblock); if (hrir_right_temp_chunk_resampled.memblock) pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock); if (ma) pa_modargs_free(ma); pa__done(m); return -1; } int pa__get_n_used(pa_module *m) { struct userdata *u; pa_assert(m); pa_assert_se(u = m->userdata); return pa_sink_linked_by(u->sink); } void pa__done(pa_module*m) { size_t i, j; struct userdata *u; pa_assert(m); if (!(u = m->userdata)) return; /* See comments in sink_input_kill_cb() above regarding * destruction order! */ if (u->sink_input) pa_sink_input_unlink(u->sink_input); if (u->sink) pa_sink_unlink(u->sink); if (u->sink_input) pa_sink_input_unref(u->sink_input); if (u->sink) pa_sink_unref(u->sink); if (u->memblockq_sink) pa_memblockq_free(u->memblockq_sink); if (u->p_fw) { for (i = 0, j = u->inputs; i < j; i++) { if (u->p_fw[i]) fftwf_destroy_plan(u->p_fw[i]); } fftwf_free(u->p_fw); } if (u->p_bw) fftwf_destroy_plan(u->p_bw); if (u->f_ir) { for (i = 0, j = u->inputs * 2; i < j; i++) { if (u->f_ir[i]) fftwf_free(u->f_ir[i]); } fftwf_free(u->f_ir); } if (u->f_out) fftwf_free(u->f_out); if (u->f_in) fftwf_free(u->f_in); if (u->revspace) fftwf_free(u->revspace); if (u->outspace[0]) fftwf_free(u->outspace[0]); if (u->outspace[1]) fftwf_free(u->outspace[1]); if (u->inspace) { for (i = 0, j = u->inputs; i < j; i++) { if (u->inspace[i]) fftwf_free(u->inspace[i]); } fftwf_free(u->inspace); } pa_xfree(u); }