// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_ #define V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_ #include "src/base/logging.h" #include "src/base/macros.h" #include "src/common/globals.h" #include "src/flags/flags.h" // UNIMPLEMENTED_ macro for RISCV. #ifdef DEBUG #define UNIMPLEMENTED_RISCV() \ v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ __FILE__, __LINE__, __func__); #else #define UNIMPLEMENTED_RISCV() #endif #define UNSUPPORTED_RISCV() \ v8::internal::PrintF("Unsupported instruction %d.\n", __LINE__) enum Endianness { kLittle, kBig }; #if defined(V8_TARGET_LITTLE_ENDIAN) static const Endianness kArchEndian = kLittle; #elif defined(V8_TARGET_BIG_ENDIAN) static const Endianness kArchEndian = kBig; #else #error Unknown endianness #endif #if defined(V8_TARGET_LITTLE_ENDIAN) const uint32_t kLeastSignificantByteInInt32Offset = 0; const uint32_t kLessSignificantWordInDoublewordOffset = 0; #elif defined(V8_TARGET_BIG_ENDIAN) const uint32_t kLeastSignificantByteInInt32Offset = 3; const uint32_t kLessSignificantWordInDoublewordOffset = 4; #else #error Unknown endianness #endif #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include // Defines constants and accessor classes to assemble, disassemble and // simulate RISC-V instructions. // // See: The RISC-V Instruction Set Manual // Volume I: User-Level ISA // Try https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf. namespace v8 { namespace internal { constexpr size_t kMaxPCRelativeCodeRangeInMB = 4094; // ----------------------------------------------------------------------------- // Registers and FPURegisters. // Number of general purpose registers. const int kNumRegisters = 32; const int kInvalidRegister = -1; // Number of registers with pc. const int kNumSimuRegisters = 33; // In the simulator, the PC register is simulated as the 34th register. const int kPCRegister = 34; // Number coprocessor registers. const int kNumFPURegisters = 32; const int kInvalidFPURegister = -1; // Number vectotr registers const int kNumVRegisters = 32; const int kInvalidVRegister = -1; // 'pref' instruction hints const int32_t kPrefHintLoad = 0; const int32_t kPrefHintStore = 1; const int32_t kPrefHintLoadStreamed = 4; const int32_t kPrefHintStoreStreamed = 5; const int32_t kPrefHintLoadRetained = 6; const int32_t kPrefHintStoreRetained = 7; const int32_t kPrefHintWritebackInvalidate = 25; const int32_t kPrefHintPrepareForStore = 30; // Actual value of root register is offset from the root array's start // to take advantage of negative displacement values. // TODO(sigurds): Choose best value. constexpr int kRootRegisterBias = 256; // Helper functions for converting between register numbers and names. class Registers { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int reg; const char* name; }; static const int64_t kMaxValue = 0x7fffffffffffffffl; static const int64_t kMinValue = 0x8000000000000000l; private: static const char* names_[kNumSimuRegisters]; static const RegisterAlias aliases_[]; }; // Helper functions for converting between register numbers and names. class FPURegisters { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int creg; const char* name; }; private: static const char* names_[kNumFPURegisters]; static const RegisterAlias aliases_[]; }; class VRegisters { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int creg; const char* name; }; private: static const char* names_[kNumVRegisters]; static const RegisterAlias aliases_[]; }; // ----------------------------------------------------------------------------- // Instructions encoding constants. // On RISCV all instructions are 32 bits, except for RVC. using Instr = int32_t; using ShortInstr = int16_t; // Special Software Interrupt codes when used in the presence of the RISC-V // simulator. enum SoftwareInterruptCodes { // Transition to C code. call_rt_redirected = 0xfffff }; // On RISC-V Simulator breakpoints can have different codes: // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, // the simulator will run through them and print the registers. // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() // instructions (see Assembler::stop()). // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the // debugger. const uint32_t kMaxWatchpointCode = 31; const uint32_t kMaxStopCode = 127; STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode); // ----- Fields offset and length. // RISCV constants const int kBaseOpcodeShift = 0; const int kBaseOpcodeBits = 7; const int kFunct7Shift = 25; const int kFunct7Bits = 7; const int kFunct5Shift = 27; const int kFunct5Bits = 5; const int kFunct3Shift = 12; const int kFunct3Bits = 3; const int kFunct2Shift = 25; const int kFunct2Bits = 2; const int kRs1Shift = 15; const int kRs1Bits = 5; const int kVs1Shift = 15; const int kVs1Bits = 5; const int kVs2Shift = 20; const int kVs2Bits = 5; const int kVdShift = 7; const int kVdBits = 5; const int kRs2Shift = 20; const int kRs2Bits = 5; const int kRs3Shift = 27; const int kRs3Bits = 5; const int kRdShift = 7; const int kRdBits = 5; const int kRlShift = 25; const int kAqShift = 26; const int kImm12Shift = 20; const int kImm12Bits = 12; const int kImm11Shift = 2; const int kImm11Bits = 11; const int kShamtShift = 20; const int kShamtBits = 5; const int kShamtWShift = 20; const int kShamtWBits = 6; const int kArithShiftShift = 30; const int kImm20Shift = 12; const int kImm20Bits = 20; const int kCsrShift = 20; const int kCsrBits = 12; const int kMemOrderBits = 4; const int kPredOrderShift = 24; const int kSuccOrderShift = 20; // for C extension const int kRvcFunct4Shift = 12; const int kRvcFunct4Bits = 4; const int kRvcFunct3Shift = 13; const int kRvcFunct3Bits = 3; const int kRvcRs1Shift = 7; const int kRvcRs1Bits = 5; const int kRvcRs2Shift = 2; const int kRvcRs2Bits = 5; const int kRvcRdShift = 7; const int kRvcRdBits = 5; const int kRvcRs1sShift = 7; const int kRvcRs1sBits = 3; const int kRvcRs2sShift = 2; const int kRvcRs2sBits = 3; const int kRvcFunct2Shift = 5; const int kRvcFunct2BShift = 10; const int kRvcFunct2Bits = 2; const int kRvcFunct6Shift = 10; const int kRvcFunct6Bits = 6; // for RVV extension constexpr int kRvvELEN = 64; constexpr int kRvvVLEN = 128; constexpr int kRvvSLEN = kRvvVLEN; const int kRvvFunct6Shift = 26; const int kRvvFunct6Bits = 6; const uint32_t kRvvFunct6Mask = (((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift); const int kRvvVmBits = 1; const int kRvvVmShift = 25; const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift); const int kRvvVs2Bits = 5; const int kRvvVs2Shift = 20; const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift); const int kRvvVs1Bits = 5; const int kRvvVs1Shift = 15; const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift); const int kRvvRs1Bits = kRvvVs1Bits; const int kRvvRs1Shift = kRvvVs1Shift; const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift); const int kRvvRs2Bits = 5; const int kRvvRs2Shift = 20; const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift); const int kRvvImm5Bits = kRvvVs1Bits; const int kRvvImm5Shift = kRvvVs1Shift; const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift); const int kRvvVdBits = 5; const int kRvvVdShift = 7; const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift); const int kRvvRdBits = kRvvVdBits; const int kRvvRdShift = kRvvVdShift; const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift); const int kRvvZimmBits = 11; const int kRvvZimmShift = 20; const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift); const int kRvvUimmShift = kRvvRs1Shift; const int kRvvUimmBits = kRvvRs1Bits; const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift); const int kRvvWidthBits = 3; const int kRvvWidthShift = 12; const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift); const int kRvvMopBits = 2; const int kRvvMopShift = 26; const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift); const int kRvvMewBits = 1; const int kRvvMewShift = 28; const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift); const int kRvvNfBits = 3; const int kRvvNfShift = 29; const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift); // RISCV Instruction bit masks const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1) << kBaseOpcodeShift; const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift; const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift; const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift; const uint32_t kFunct2Mask = 0b11 << kFunct7Shift; const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask; const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask; const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask; const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask; const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask; const uint32_t kUTypeMask = kBaseOpcodeMask; const uint32_t kJTypeMask = kBaseOpcodeMask; const uint32_t kVTypeMask = kRvvFunct6Mask | kFunct3Mask | kBaseOpcodeMask; const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift; const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift; const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift; const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask; const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift; const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift; const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift; const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12; const uint32_t kImm19_0Mask = ((1 << 20) - 1); const uint32_t kRvcOpcodeMask = 0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); const uint32_t kRvcFunct3Mask = (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); const uint32_t kRvcFunct4Mask = (((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift); const uint32_t kRvcFunct6Mask = (((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift); const uint32_t kRvcFunct2Mask = (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift); const uint32_t kRvcFunct2BMask = (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift); const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask; const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask; const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask; const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10); // RISCV CSR related bit mask and shift const int kFcsrFlagsBits = 5; const uint32_t kFcsrFlagsMask = (1 << kFcsrFlagsBits) - 1; const int kFcsrFrmBits = 3; const int kFcsrFrmShift = kFcsrFlagsBits; const uint32_t kFcsrFrmMask = ((1 << kFcsrFrmBits) - 1) << kFcsrFrmShift; const int kFcsrBits = kFcsrFlagsBits + kFcsrFrmBits; const uint32_t kFcsrMask = kFcsrFlagsMask | kFcsrFrmMask; const int kNopByte = 0x00000013; // Original MIPS constants // TODO(RISCV): to be cleaned up const int kImm16Shift = 0; const int kImm16Bits = 16; const uint32_t kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift; // end of TODO(RISCV): to be cleaned up // ----- RISCV Base Opcodes enum BaseOpcode : uint32_t {}; // ----- RISC-V Opcodes and Function Fields. enum Opcode : uint32_t { LOAD = 0b0000011, // I form: LB LH LW LBU LHU LOAD_FP = 0b0000111, // I form: FLW FLD FLQ MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SARI // Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type AUIPC = 0b0010111, // U form: AUIPC OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW // Note: SRLIW SRAIW I form first, then func3 101 special shift encoding STORE = 0b0100011, // S form: SB SH SW SD STORE_FP = 0b0100111, // S form: FSW FSD FSQ AMO = 0b0101111, // R form: All A instructions OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set LUI = 0b0110111, // U form: LUI OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q OP_FP = 0b1010011, // R type: Q ext BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU JALR = 0b1100111, // I form: JALR JAL = 0b1101111, // J form: JAL SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext // C extension C0 = 0b00, C1 = 0b01, C2 = 0b10, FUNCT2_0 = 0b00, FUNCT2_1 = 0b01, FUNCT2_2 = 0b10, FUNCT2_3 = 0b11, // Note use RO (RiscV Opcode) prefix // RV32I Base Instruction Set RO_LUI = LUI, RO_AUIPC = AUIPC, RO_JAL = JAL, RO_JALR = JALR | (0b000 << kFunct3Shift), RO_BEQ = BRANCH | (0b000 << kFunct3Shift), RO_BNE = BRANCH | (0b001 << kFunct3Shift), RO_BLT = BRANCH | (0b100 << kFunct3Shift), RO_BGE = BRANCH | (0b101 << kFunct3Shift), RO_BLTU = BRANCH | (0b110 << kFunct3Shift), RO_BGEU = BRANCH | (0b111 << kFunct3Shift), RO_LB = LOAD | (0b000 << kFunct3Shift), RO_LH = LOAD | (0b001 << kFunct3Shift), RO_LW = LOAD | (0b010 << kFunct3Shift), RO_LBU = LOAD | (0b100 << kFunct3Shift), RO_LHU = LOAD | (0b101 << kFunct3Shift), RO_SB = STORE | (0b000 << kFunct3Shift), RO_SH = STORE | (0b001 << kFunct3Shift), RO_SW = STORE | (0b010 << kFunct3Shift), RO_ADDI = OP_IMM | (0b000 << kFunct3Shift), RO_SLTI = OP_IMM | (0b010 << kFunct3Shift), RO_SLTIU = OP_IMM | (0b011 << kFunct3Shift), RO_XORI = OP_IMM | (0b100 << kFunct3Shift), RO_ORI = OP_IMM | (0b110 << kFunct3Shift), RO_ANDI = OP_IMM | (0b111 << kFunct3Shift), RO_SLLI = OP_IMM | (0b001 << kFunct3Shift), RO_SRLI = OP_IMM | (0b101 << kFunct3Shift), // RO_SRAI = OP_IMM | (0b101 << kFunct3Shift), // Same as SRLI, use func7 RO_ADD = OP | (0b000 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SUB = OP | (0b000 << kFunct3Shift) | (0b0100000 << kFunct7Shift), RO_SLL = OP | (0b001 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SLT = OP | (0b010 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SLTU = OP | (0b011 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_XOR = OP | (0b100 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SRL = OP | (0b101 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SRA = OP | (0b101 << kFunct3Shift) | (0b0100000 << kFunct7Shift), RO_OR = OP | (0b110 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_AND = OP | (0b111 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_FENCE = MISC_MEM | (0b000 << kFunct3Shift), RO_ECALL = SYSTEM | (0b000 << kFunct3Shift), // RO_EBREAK = SYSTEM | (0b000 << kFunct3Shift), // Same as ECALL, use imm12 // RV64I Base Instruction Set (in addition to RV32I) RO_LWU = LOAD | (0b110 << kFunct3Shift), RO_LD = LOAD | (0b011 << kFunct3Shift), RO_SD = STORE | (0b011 << kFunct3Shift), RO_ADDIW = OP_IMM_32 | (0b000 << kFunct3Shift), RO_SLLIW = OP_IMM_32 | (0b001 << kFunct3Shift), RO_SRLIW = OP_IMM_32 | (0b101 << kFunct3Shift), // RO_SRAIW = OP_IMM_32 | (0b101 << kFunct3Shift), // Same as SRLIW, use func7 RO_ADDW = OP_32 | (0b000 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SUBW = OP_32 | (0b000 << kFunct3Shift) | (0b0100000 << kFunct7Shift), RO_SLLW = OP_32 | (0b001 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SRLW = OP_32 | (0b101 << kFunct3Shift) | (0b0000000 << kFunct7Shift), RO_SRAW = OP_32 | (0b101 << kFunct3Shift) | (0b0100000 << kFunct7Shift), // RV32/RV64 Zifencei Standard Extension RO_FENCE_I = MISC_MEM | (0b001 << kFunct3Shift), // RV32/RV64 Zicsr Standard Extension RO_CSRRW = SYSTEM | (0b001 << kFunct3Shift), RO_CSRRS = SYSTEM | (0b010 << kFunct3Shift), RO_CSRRC = SYSTEM | (0b011 << kFunct3Shift), RO_CSRRWI = SYSTEM | (0b101 << kFunct3Shift), RO_CSRRSI = SYSTEM | (0b110 << kFunct3Shift), RO_CSRRCI = SYSTEM | (0b111 << kFunct3Shift), // RV32M Standard Extension RO_MUL = OP | (0b000 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_MULH = OP | (0b001 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_MULHSU = OP | (0b010 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_MULHU = OP | (0b011 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_DIV = OP | (0b100 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_DIVU = OP | (0b101 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_REM = OP | (0b110 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_REMU = OP | (0b111 << kFunct3Shift) | (0b0000001 << kFunct7Shift), // RV64M Standard Extension (in addition to RV32M) RO_MULW = OP_32 | (0b000 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_DIVW = OP_32 | (0b100 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_DIVUW = OP_32 | (0b101 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_REMW = OP_32 | (0b110 << kFunct3Shift) | (0b0000001 << kFunct7Shift), RO_REMUW = OP_32 | (0b111 << kFunct3Shift) | (0b0000001 << kFunct7Shift), // RV32A Standard Extension RO_LR_W = AMO | (0b010 << kFunct3Shift) | (0b00010 << kFunct5Shift), RO_SC_W = AMO | (0b010 << kFunct3Shift) | (0b00011 << kFunct5Shift), RO_AMOSWAP_W = AMO | (0b010 << kFunct3Shift) | (0b00001 << kFunct5Shift), RO_AMOADD_W = AMO | (0b010 << kFunct3Shift) | (0b00000 << kFunct5Shift), RO_AMOXOR_W = AMO | (0b010 << kFunct3Shift) | (0b00100 << kFunct5Shift), RO_AMOAND_W = AMO | (0b010 << kFunct3Shift) | (0b01100 << kFunct5Shift), RO_AMOOR_W = AMO | (0b010 << kFunct3Shift) | (0b01000 << kFunct5Shift), RO_AMOMIN_W = AMO | (0b010 << kFunct3Shift) | (0b10000 << kFunct5Shift), RO_AMOMAX_W = AMO | (0b010 << kFunct3Shift) | (0b10100 << kFunct5Shift), RO_AMOMINU_W = AMO | (0b010 << kFunct3Shift) | (0b11000 << kFunct5Shift), RO_AMOMAXU_W = AMO | (0b010 << kFunct3Shift) | (0b11100 << kFunct5Shift), // RV64A Standard Extension (in addition to RV32A) RO_LR_D = AMO | (0b011 << kFunct3Shift) | (0b00010 << kFunct5Shift), RO_SC_D = AMO | (0b011 << kFunct3Shift) | (0b00011 << kFunct5Shift), RO_AMOSWAP_D = AMO | (0b011 << kFunct3Shift) | (0b00001 << kFunct5Shift), RO_AMOADD_D = AMO | (0b011 << kFunct3Shift) | (0b00000 << kFunct5Shift), RO_AMOXOR_D = AMO | (0b011 << kFunct3Shift) | (0b00100 << kFunct5Shift), RO_AMOAND_D = AMO | (0b011 << kFunct3Shift) | (0b01100 << kFunct5Shift), RO_AMOOR_D = AMO | (0b011 << kFunct3Shift) | (0b01000 << kFunct5Shift), RO_AMOMIN_D = AMO | (0b011 << kFunct3Shift) | (0b10000 << kFunct5Shift), RO_AMOMAX_D = AMO | (0b011 << kFunct3Shift) | (0b10100 << kFunct5Shift), RO_AMOMINU_D = AMO | (0b011 << kFunct3Shift) | (0b11000 << kFunct5Shift), RO_AMOMAXU_D = AMO | (0b011 << kFunct3Shift) | (0b11100 << kFunct5Shift), // RV32F Standard Extension RO_FLW = LOAD_FP | (0b010 << kFunct3Shift), RO_FSW = STORE_FP | (0b010 << kFunct3Shift), RO_FMADD_S = MADD | (0b00 << kFunct2Shift), RO_FMSUB_S = MSUB | (0b00 << kFunct2Shift), RO_FNMSUB_S = NMSUB | (0b00 << kFunct2Shift), RO_FNMADD_S = NMADD | (0b00 << kFunct2Shift), RO_FADD_S = OP_FP | (0b0000000 << kFunct7Shift), RO_FSUB_S = OP_FP | (0b0000100 << kFunct7Shift), RO_FMUL_S = OP_FP | (0b0001000 << kFunct7Shift), RO_FDIV_S = OP_FP | (0b0001100 << kFunct7Shift), RO_FSQRT_S = OP_FP | (0b0101100 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FSGNJ_S = OP_FP | (0b000 << kFunct3Shift) | (0b0010000 << kFunct7Shift), RO_FSGNJN_S = OP_FP | (0b001 << kFunct3Shift) | (0b0010000 << kFunct7Shift), RO_FSQNJX_S = OP_FP | (0b010 << kFunct3Shift) | (0b0010000 << kFunct7Shift), RO_FMIN_S = OP_FP | (0b000 << kFunct3Shift) | (0b0010100 << kFunct7Shift), RO_FMAX_S = OP_FP | (0b001 << kFunct3Shift) | (0b0010100 << kFunct7Shift), RO_FCVT_W_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_WU_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00001 << kRs2Shift), RO_FMV = OP_FP | (0b1110000 << kFunct7Shift) | (0b000 << kFunct3Shift) | (0b00000 << kRs2Shift), RO_FEQ_S = OP_FP | (0b010 << kFunct3Shift) | (0b1010000 << kFunct7Shift), RO_FLT_S = OP_FP | (0b001 << kFunct3Shift) | (0b1010000 << kFunct7Shift), RO_FLE_S = OP_FP | (0b000 << kFunct3Shift) | (0b1010000 << kFunct7Shift), RO_FCLASS_S = OP_FP | (0b001 << kFunct3Shift) | (0b1110000 << kFunct7Shift), RO_FCVT_S_W = OP_FP | (0b1101000 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_S_WU = OP_FP | (0b1101000 << kFunct7Shift) | (0b00001 << kRs2Shift), RO_FMV_W_X = OP_FP | (0b000 << kFunct3Shift) | (0b1111000 << kFunct7Shift), // RV64F Standard Extension (in addition to RV32F) RO_FCVT_L_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00010 << kRs2Shift), RO_FCVT_LU_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00011 << kRs2Shift), RO_FCVT_S_L = OP_FP | (0b1101000 << kFunct7Shift) | (0b00010 << kRs2Shift), RO_FCVT_S_LU = OP_FP | (0b1101000 << kFunct7Shift) | (0b00011 << kRs2Shift), // RV32D Standard Extension RO_FLD = LOAD_FP | (0b011 << kFunct3Shift), RO_FSD = STORE_FP | (0b011 << kFunct3Shift), RO_FMADD_D = MADD | (0b01 << kFunct2Shift), RO_FMSUB_D = MSUB | (0b01 << kFunct2Shift), RO_FNMSUB_D = NMSUB | (0b01 << kFunct2Shift), RO_FNMADD_D = NMADD | (0b01 << kFunct2Shift), RO_FADD_D = OP_FP | (0b0000001 << kFunct7Shift), RO_FSUB_D = OP_FP | (0b0000101 << kFunct7Shift), RO_FMUL_D = OP_FP | (0b0001001 << kFunct7Shift), RO_FDIV_D = OP_FP | (0b0001101 << kFunct7Shift), RO_FSQRT_D = OP_FP | (0b0101101 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FSGNJ_D = OP_FP | (0b000 << kFunct3Shift) | (0b0010001 << kFunct7Shift), RO_FSGNJN_D = OP_FP | (0b001 << kFunct3Shift) | (0b0010001 << kFunct7Shift), RO_FSQNJX_D = OP_FP | (0b010 << kFunct3Shift) | (0b0010001 << kFunct7Shift), RO_FMIN_D = OP_FP | (0b000 << kFunct3Shift) | (0b0010101 << kFunct7Shift), RO_FMAX_D = OP_FP | (0b001 << kFunct3Shift) | (0b0010101 << kFunct7Shift), RO_FCVT_S_D = OP_FP | (0b0100000 << kFunct7Shift) | (0b00001 << kRs2Shift), RO_FCVT_D_S = OP_FP | (0b0100001 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FEQ_D = OP_FP | (0b010 << kFunct3Shift) | (0b1010001 << kFunct7Shift), RO_FLT_D = OP_FP | (0b001 << kFunct3Shift) | (0b1010001 << kFunct7Shift), RO_FLE_D = OP_FP | (0b000 << kFunct3Shift) | (0b1010001 << kFunct7Shift), RO_FCLASS_D = OP_FP | (0b001 << kFunct3Shift) | (0b1110001 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_W_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_WU_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00001 << kRs2Shift), RO_FCVT_D_W = OP_FP | (0b1101001 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_D_WU = OP_FP | (0b1101001 << kFunct7Shift) | (0b00001 << kRs2Shift), // RV64D Standard Extension (in addition to RV32D) RO_FCVT_L_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00010 << kRs2Shift), RO_FCVT_LU_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00011 << kRs2Shift), RO_FMV_X_D = OP_FP | (0b000 << kFunct3Shift) | (0b1110001 << kFunct7Shift) | (0b00000 << kRs2Shift), RO_FCVT_D_L = OP_FP | (0b1101001 << kFunct7Shift) | (0b00010 << kRs2Shift), RO_FCVT_D_LU = OP_FP | (0b1101001 << kFunct7Shift) | (0b00011 << kRs2Shift), RO_FMV_D_X = OP_FP | (0b000 << kFunct3Shift) | (0b1111001 << kFunct7Shift) | (0b00000 << kRs2Shift), // RV64C Standard Extension RO_C_ADDI4SPN = C0 | (0b000 << kRvcFunct3Shift), RO_C_FLD = C0 | (0b001 << kRvcFunct3Shift), RO_C_LW = C0 | (0b010 << kRvcFunct3Shift), RO_C_LD = C0 | (0b011 << kRvcFunct3Shift), RO_C_FSD = C0 | (0b101 << kRvcFunct3Shift), RO_C_SW = C0 | (0b110 << kRvcFunct3Shift), RO_C_SD = C0 | (0b111 << kRvcFunct3Shift), RO_C_NOP_ADDI = C1 | (0b000 << kRvcFunct3Shift), RO_C_ADDIW = C1 | (0b001 << kRvcFunct3Shift), RO_C_LI = C1 | (0b010 << kRvcFunct3Shift), RO_C_SUB = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_0 << kRvcFunct2Shift), RO_C_XOR = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_1 << kRvcFunct2Shift), RO_C_OR = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_2 << kRvcFunct2Shift), RO_C_AND = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_3 << kRvcFunct2Shift), RO_C_SUBW = C1 | (0b100111 << kRvcFunct6Shift) | (FUNCT2_0 << kRvcFunct2Shift), RO_C_ADDW = C1 | (0b100111 << kRvcFunct6Shift) | (FUNCT2_1 << kRvcFunct2Shift), RO_C_LUI_ADD = C1 | (0b011 << kRvcFunct3Shift), RO_C_MISC_ALU = C1 | (0b100 << kRvcFunct3Shift), RO_C_J = C1 | (0b101 << kRvcFunct3Shift), RO_C_BEQZ = C1 | (0b110 << kRvcFunct3Shift), RO_C_BNEZ = C1 | (0b111 << kRvcFunct3Shift), RO_C_SLLI = C2 | (0b000 << kRvcFunct3Shift), RO_C_FLDSP = C2 | (0b001 << kRvcFunct3Shift), RO_C_LWSP = C2 | (0b010 << kRvcFunct3Shift), RO_C_LDSP = C2 | (0b011 << kRvcFunct3Shift), RO_C_JR_MV_ADD = C2 | (0b100 << kRvcFunct3Shift), RO_C_JR = C2 | (0b1000 << kRvcFunct4Shift), RO_C_MV = C2 | (0b1000 << kRvcFunct4Shift), RO_C_EBREAK = C2 | (0b1001 << kRvcFunct4Shift), RO_C_JALR = C2 | (0b1001 << kRvcFunct4Shift), RO_C_ADD = C2 | (0b1001 << kRvcFunct4Shift), RO_C_FSDSP = C2 | (0b101 << kRvcFunct3Shift), RO_C_SWSP = C2 | (0b110 << kRvcFunct3Shift), RO_C_SDSP = C2 | (0b111 << kRvcFunct3Shift), // RVV Extension OP_V = 0b1010111, OP_IVV = OP_V | (0b000 << kFunct3Shift), OP_FVV = OP_V | (0b001 << kFunct3Shift), OP_MVV = OP_V | (0b010 << kFunct3Shift), OP_IVI = OP_V | (0b011 << kFunct3Shift), OP_IVX = OP_V | (0b100 << kFunct3Shift), OP_FVF = OP_V | (0b101 << kFunct3Shift), OP_MVX = OP_V | (0b110 << kFunct3Shift), RO_V_VSETVLI = OP_V | (0b111 << kFunct3Shift) | 0b0 << 31, RO_V_VSETIVLI = OP_V | (0b111 << kFunct3Shift) | 0b11 << 30, RO_V_VSETVL = OP_V | (0b111 << kFunct3Shift) | 0b1 << 31, // RVV LOAD/STORE RO_V_VL = LOAD_FP | (0b00 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VLS = LOAD_FP | (0b10 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VLX = LOAD_FP | (0b11 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VS = STORE_FP | (0b00 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VSS = STORE_FP | (0b10 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VSX = STORE_FP | (0b11 << kRvvMopShift) | (0b000 << kRvvNfShift), RO_V_VSU = STORE_FP | (0b01 << kRvvMopShift) | (0b000 << kRvvNfShift), // THE kFunct6Shift is mop RO_V_VLSEG2 = LOAD_FP | (0b00 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VLSEG3 = LOAD_FP | (0b00 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VLSEG4 = LOAD_FP | (0b00 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VLSEG5 = LOAD_FP | (0b00 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VLSEG6 = LOAD_FP | (0b00 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VLSEG7 = LOAD_FP | (0b00 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VLSEG8 = LOAD_FP | (0b00 << kRvvMopShift) | (0b111 << kRvvNfShift), RO_V_VSSEG2 = STORE_FP | (0b00 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VSSEG3 = STORE_FP | (0b00 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VSSEG4 = STORE_FP | (0b00 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VSSEG5 = STORE_FP | (0b00 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VSSEG6 = STORE_FP | (0b00 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VSSEG7 = STORE_FP | (0b00 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VSSEG8 = STORE_FP | (0b00 << kRvvMopShift) | (0b111 << kRvvNfShift), RO_V_VLSSEG2 = LOAD_FP | (0b10 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VLSSEG3 = LOAD_FP | (0b10 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VLSSEG4 = LOAD_FP | (0b10 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VLSSEG5 = LOAD_FP | (0b10 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VLSSEG6 = LOAD_FP | (0b10 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VLSSEG7 = LOAD_FP | (0b10 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VLSSEG8 = LOAD_FP | (0b10 << kRvvMopShift) | (0b111 << kRvvNfShift), RO_V_VSSSEG2 = STORE_FP | (0b10 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VSSSEG3 = STORE_FP | (0b10 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VSSSEG4 = STORE_FP | (0b10 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VSSSEG5 = STORE_FP | (0b10 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VSSSEG6 = STORE_FP | (0b10 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VSSSEG7 = STORE_FP | (0b10 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VSSSEG8 = STORE_FP | (0b10 << kRvvMopShift) | (0b111 << kRvvNfShift), RO_V_VLXSEG2 = LOAD_FP | (0b11 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VLXSEG3 = LOAD_FP | (0b11 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VLXSEG4 = LOAD_FP | (0b11 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VLXSEG5 = LOAD_FP | (0b11 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VLXSEG6 = LOAD_FP | (0b11 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VLXSEG7 = LOAD_FP | (0b11 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VLXSEG8 = LOAD_FP | (0b11 << kRvvMopShift) | (0b111 << kRvvNfShift), RO_V_VSXSEG2 = STORE_FP | (0b11 << kRvvMopShift) | (0b001 << kRvvNfShift), RO_V_VSXSEG3 = STORE_FP | (0b11 << kRvvMopShift) | (0b010 << kRvvNfShift), RO_V_VSXSEG4 = STORE_FP | (0b11 << kRvvMopShift) | (0b011 << kRvvNfShift), RO_V_VSXSEG5 = STORE_FP | (0b11 << kRvvMopShift) | (0b100 << kRvvNfShift), RO_V_VSXSEG6 = STORE_FP | (0b11 << kRvvMopShift) | (0b101 << kRvvNfShift), RO_V_VSXSEG7 = STORE_FP | (0b11 << kRvvMopShift) | (0b110 << kRvvNfShift), RO_V_VSXSEG8 = STORE_FP | (0b11 << kRvvMopShift) | (0b111 << kRvvNfShift), // RVV Vector Arithmetic Instruction VADD_FUNCT6 = 0b000000, RO_V_VADD_VI = OP_IVI | (VADD_FUNCT6 << kRvvFunct6Shift), RO_V_VADD_VV = OP_IVV | (VADD_FUNCT6 << kRvvFunct6Shift), RO_V_VADD_VX = OP_IVX | (VADD_FUNCT6 << kRvvFunct6Shift), VSUB_FUNCT6 = 0b000010, RO_V_VSUB_VX = OP_IVX | (VSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VSUB_VV = OP_IVV | (VSUB_FUNCT6 << kRvvFunct6Shift), VDIVU_FUNCT6 = 0b100000, RO_V_VDIVU_VX = OP_MVX | (VDIVU_FUNCT6 << kRvvFunct6Shift), RO_V_VDIVU_VV = OP_MVV | (VDIVU_FUNCT6 << kRvvFunct6Shift), VDIV_FUNCT6 = 0b100001, RO_V_VDIV_VX = OP_MVX | (VDIV_FUNCT6 << kRvvFunct6Shift), RO_V_VDIV_VV = OP_MVV | (VDIV_FUNCT6 << kRvvFunct6Shift), VREMU_FUNCT6 = 0b100010, RO_V_VREMU_VX = OP_MVX | (VREMU_FUNCT6 << kRvvFunct6Shift), RO_V_VREMU_VV = OP_MVV | (VREMU_FUNCT6 << kRvvFunct6Shift), VREM_FUNCT6 = 0b100011, RO_V_VREM_VX = OP_MVX | (VREM_FUNCT6 << kRvvFunct6Shift), RO_V_VREM_VV = OP_MVV | (VREM_FUNCT6 << kRvvFunct6Shift), VMULHU_FUNCT6 = 0b100100, RO_V_VMULHU_VX = OP_MVX | (VMULHU_FUNCT6 << kRvvFunct6Shift), RO_V_VMULHU_VV = OP_MVV | (VMULHU_FUNCT6 << kRvvFunct6Shift), VMUL_FUNCT6 = 0b100101, RO_V_VMUL_VX = OP_MVX | (VMUL_FUNCT6 << kRvvFunct6Shift), RO_V_VMUL_VV = OP_MVV | (VMUL_FUNCT6 << kRvvFunct6Shift), VWMUL_FUNCT6 = 0b111011, RO_V_VWMUL_VX = OP_MVX | (VWMUL_FUNCT6 << kRvvFunct6Shift), RO_V_VWMUL_VV = OP_MVV | (VWMUL_FUNCT6 << kRvvFunct6Shift), VWMULU_FUNCT6 = 0b111000, RO_V_VWMULU_VX = OP_MVX | (VWMULU_FUNCT6 << kRvvFunct6Shift), RO_V_VWMULU_VV = OP_MVV | (VWMULU_FUNCT6 << kRvvFunct6Shift), VMULHSU_FUNCT6 = 0b100110, RO_V_VMULHSU_VX = OP_MVX | (VMULHSU_FUNCT6 << kRvvFunct6Shift), RO_V_VMULHSU_VV = OP_MVV | (VMULHSU_FUNCT6 << kRvvFunct6Shift), VMULH_FUNCT6 = 0b100111, RO_V_VMULH_VX = OP_MVX | (VMULH_FUNCT6 << kRvvFunct6Shift), RO_V_VMULH_VV = OP_MVV | (VMULH_FUNCT6 << kRvvFunct6Shift), VWADD_FUNCT6 = 0b110001, RO_V_VWADD_VV = OP_MVV | (VWADD_FUNCT6 << kRvvFunct6Shift), RO_V_VWADD_VX = OP_MVX | (VWADD_FUNCT6 << kRvvFunct6Shift), VWADDU_FUNCT6 = 0b110000, RO_V_VWADDU_VV = OP_MVV | (VWADDU_FUNCT6 << kRvvFunct6Shift), RO_V_VWADDU_VX = OP_MVX | (VWADDU_FUNCT6 << kRvvFunct6Shift), VWADDUW_FUNCT6 = 0b110101, RO_V_VWADDUW_VX = OP_MVX | (VWADDUW_FUNCT6 << kRvvFunct6Shift), RO_V_VWADDUW_VV = OP_MVV | (VWADDUW_FUNCT6 << kRvvFunct6Shift), VCOMPRESS_FUNCT6 = 0b010111, RO_V_VCOMPRESS_VV = OP_MVV | (VCOMPRESS_FUNCT6 << kRvvFunct6Shift), VSADDU_FUNCT6 = 0b100000, RO_V_VSADDU_VI = OP_IVI | (VSADDU_FUNCT6 << kRvvFunct6Shift), RO_V_VSADDU_VV = OP_IVV | (VSADDU_FUNCT6 << kRvvFunct6Shift), RO_V_VSADDU_VX = OP_IVX | (VSADDU_FUNCT6 << kRvvFunct6Shift), VSADD_FUNCT6 = 0b100001, RO_V_VSADD_VI = OP_IVI | (VSADD_FUNCT6 << kRvvFunct6Shift), RO_V_VSADD_VV = OP_IVV | (VSADD_FUNCT6 << kRvvFunct6Shift), RO_V_VSADD_VX = OP_IVX | (VSADD_FUNCT6 << kRvvFunct6Shift), VSSUB_FUNCT6 = 0b100011, RO_V_VSSUB_VV = OP_IVV | (VSSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VSSUB_VX = OP_IVX | (VSSUB_FUNCT6 << kRvvFunct6Shift), VSSUBU_FUNCT6 = 0b100010, RO_V_VSSUBU_VV = OP_IVV | (VSSUBU_FUNCT6 << kRvvFunct6Shift), RO_V_VSSUBU_VX = OP_IVX | (VSSUBU_FUNCT6 << kRvvFunct6Shift), VRSUB_FUNCT6 = 0b000011, RO_V_VRSUB_VX = OP_IVX | (VRSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VRSUB_VI = OP_IVI | (VRSUB_FUNCT6 << kRvvFunct6Shift), VMINU_FUNCT6 = 0b000100, RO_V_VMINU_VX = OP_IVX | (VMINU_FUNCT6 << kRvvFunct6Shift), RO_V_VMINU_VV = OP_IVV | (VMINU_FUNCT6 << kRvvFunct6Shift), VMIN_FUNCT6 = 0b000101, RO_V_VMIN_VX = OP_IVX | (VMIN_FUNCT6 << kRvvFunct6Shift), RO_V_VMIN_VV = OP_IVV | (VMIN_FUNCT6 << kRvvFunct6Shift), VMAXU_FUNCT6 = 0b000110, RO_V_VMAXU_VX = OP_IVX | (VMAXU_FUNCT6 << kRvvFunct6Shift), RO_V_VMAXU_VV = OP_IVV | (VMAXU_FUNCT6 << kRvvFunct6Shift), VMAX_FUNCT6 = 0b000111, RO_V_VMAX_VX = OP_IVX | (VMAX_FUNCT6 << kRvvFunct6Shift), RO_V_VMAX_VV = OP_IVV | (VMAX_FUNCT6 << kRvvFunct6Shift), VAND_FUNCT6 = 0b001001, RO_V_VAND_VI = OP_IVI | (VAND_FUNCT6 << kRvvFunct6Shift), RO_V_VAND_VV = OP_IVV | (VAND_FUNCT6 << kRvvFunct6Shift), RO_V_VAND_VX = OP_IVX | (VAND_FUNCT6 << kRvvFunct6Shift), VOR_FUNCT6 = 0b001010, RO_V_VOR_VI = OP_IVI | (VOR_FUNCT6 << kRvvFunct6Shift), RO_V_VOR_VV = OP_IVV | (VOR_FUNCT6 << kRvvFunct6Shift), RO_V_VOR_VX = OP_IVX | (VOR_FUNCT6 << kRvvFunct6Shift), VXOR_FUNCT6 = 0b001011, RO_V_VXOR_VI = OP_IVI | (VXOR_FUNCT6 << kRvvFunct6Shift), RO_V_VXOR_VV = OP_IVV | (VXOR_FUNCT6 << kRvvFunct6Shift), RO_V_VXOR_VX = OP_IVX | (VXOR_FUNCT6 << kRvvFunct6Shift), VRGATHER_FUNCT6 = 0b001100, RO_V_VRGATHER_VI = OP_IVI | (VRGATHER_FUNCT6 << kRvvFunct6Shift), RO_V_VRGATHER_VV = OP_IVV | (VRGATHER_FUNCT6 << kRvvFunct6Shift), RO_V_VRGATHER_VX = OP_IVX | (VRGATHER_FUNCT6 << kRvvFunct6Shift), VMV_FUNCT6 = 0b010111, RO_V_VMV_VI = OP_IVI | (VMV_FUNCT6 << kRvvFunct6Shift), RO_V_VMV_VV = OP_IVV | (VMV_FUNCT6 << kRvvFunct6Shift), RO_V_VMV_VX = OP_IVX | (VMV_FUNCT6 << kRvvFunct6Shift), RO_V_VFMV_VF = OP_FVF | (VMV_FUNCT6 << kRvvFunct6Shift), RO_V_VMERGE_VI = RO_V_VMV_VI, RO_V_VMERGE_VV = RO_V_VMV_VV, RO_V_VMERGE_VX = RO_V_VMV_VX, VMSEQ_FUNCT6 = 0b011000, RO_V_VMSEQ_VI = OP_IVI | (VMSEQ_FUNCT6 << kRvvFunct6Shift), RO_V_VMSEQ_VV = OP_IVV | (VMSEQ_FUNCT6 << kRvvFunct6Shift), RO_V_VMSEQ_VX = OP_IVX | (VMSEQ_FUNCT6 << kRvvFunct6Shift), VMSNE_FUNCT6 = 0b011001, RO_V_VMSNE_VI = OP_IVI | (VMSNE_FUNCT6 << kRvvFunct6Shift), RO_V_VMSNE_VV = OP_IVV | (VMSNE_FUNCT6 << kRvvFunct6Shift), RO_V_VMSNE_VX = OP_IVX | (VMSNE_FUNCT6 << kRvvFunct6Shift), VMSLTU_FUNCT6 = 0b011010, RO_V_VMSLTU_VV = OP_IVV | (VMSLTU_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLTU_VX = OP_IVX | (VMSLTU_FUNCT6 << kRvvFunct6Shift), VMSLT_FUNCT6 = 0b011011, RO_V_VMSLT_VV = OP_IVV | (VMSLT_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLT_VX = OP_IVX | (VMSLT_FUNCT6 << kRvvFunct6Shift), VMSLE_FUNCT6 = 0b011101, RO_V_VMSLE_VI = OP_IVI | (VMSLE_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLE_VV = OP_IVV | (VMSLE_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLE_VX = OP_IVX | (VMSLE_FUNCT6 << kRvvFunct6Shift), VMSLEU_FUNCT6 = 0b011100, RO_V_VMSLEU_VI = OP_IVI | (VMSLEU_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLEU_VV = OP_IVV | (VMSLEU_FUNCT6 << kRvvFunct6Shift), RO_V_VMSLEU_VX = OP_IVX | (VMSLEU_FUNCT6 << kRvvFunct6Shift), VMSGTU_FUNCT6 = 0b011110, RO_V_VMSGTU_VI = OP_IVI | (VMSGTU_FUNCT6 << kRvvFunct6Shift), RO_V_VMSGTU_VX = OP_IVX | (VMSGTU_FUNCT6 << kRvvFunct6Shift), VMSGT_FUNCT6 = 0b011111, RO_V_VMSGT_VI = OP_IVI | (VMSGT_FUNCT6 << kRvvFunct6Shift), RO_V_VMSGT_VX = OP_IVX | (VMSGT_FUNCT6 << kRvvFunct6Shift), VSLIDEUP_FUNCT6 = 0b001110, RO_V_VSLIDEUP_VI = OP_IVI | (VSLIDEUP_FUNCT6 << kRvvFunct6Shift), RO_V_VSLIDEUP_VX = OP_IVX | (VSLIDEUP_FUNCT6 << kRvvFunct6Shift), VSLIDEDOWN_FUNCT6 = 0b001111, RO_V_VSLIDEDOWN_VI = OP_IVI | (VSLIDEDOWN_FUNCT6 << kRvvFunct6Shift), RO_V_VSLIDEDOWN_VX = OP_IVX | (VSLIDEDOWN_FUNCT6 << kRvvFunct6Shift), VSRL_FUNCT6 = 0b101000, RO_V_VSRL_VI = OP_IVI | (VSRL_FUNCT6 << kRvvFunct6Shift), RO_V_VSRL_VV = OP_IVV | (VSRL_FUNCT6 << kRvvFunct6Shift), RO_V_VSRL_VX = OP_IVX | (VSRL_FUNCT6 << kRvvFunct6Shift), VSRA_FUNCT6 = 0b101001, RO_V_VSRA_VI = OP_IVI | (VSRA_FUNCT6 << kRvvFunct6Shift), RO_V_VSRA_VV = OP_IVV | (VSRA_FUNCT6 << kRvvFunct6Shift), RO_V_VSRA_VX = OP_IVX | (VSRA_FUNCT6 << kRvvFunct6Shift), VSLL_FUNCT6 = 0b100101, RO_V_VSLL_VI = OP_IVI | (VSLL_FUNCT6 << kRvvFunct6Shift), RO_V_VSLL_VV = OP_IVV | (VSLL_FUNCT6 << kRvvFunct6Shift), RO_V_VSLL_VX = OP_IVX | (VSLL_FUNCT6 << kRvvFunct6Shift), VSMUL_FUNCT6 = 0b100111, RO_V_VSMUL_VV = OP_IVV | (VSMUL_FUNCT6 << kRvvFunct6Shift), RO_V_VSMUL_VX = OP_IVX | (VSMUL_FUNCT6 << kRvvFunct6Shift), VADC_FUNCT6 = 0b010000, RO_V_VADC_VI = OP_IVI | (VADC_FUNCT6 << kRvvFunct6Shift), RO_V_VADC_VV = OP_IVV | (VADC_FUNCT6 << kRvvFunct6Shift), RO_V_VADC_VX = OP_IVX | (VADC_FUNCT6 << kRvvFunct6Shift), VMADC_FUNCT6 = 0b010001, RO_V_VMADC_VI = OP_IVI | (VMADC_FUNCT6 << kRvvFunct6Shift), RO_V_VMADC_VV = OP_IVV | (VMADC_FUNCT6 << kRvvFunct6Shift), RO_V_VMADC_VX = OP_IVX | (VMADC_FUNCT6 << kRvvFunct6Shift), VWXUNARY0_FUNCT6 = 0b010000, VRXUNARY0_FUNCT6 = 0b010000, VMUNARY0_FUNCT6 = 0b010100, RO_V_VWXUNARY0 = OP_MVV | (VWXUNARY0_FUNCT6 << kRvvFunct6Shift), RO_V_VRXUNARY0 = OP_MVX | (VRXUNARY0_FUNCT6 << kRvvFunct6Shift), RO_V_VMUNARY0 = OP_MVV | (VMUNARY0_FUNCT6 << kRvvFunct6Shift), VID_V = 0b10001, VXUNARY0_FUNCT6 = 0b010010, RO_V_VXUNARY0 = OP_MVV | (VXUNARY0_FUNCT6 << kRvvFunct6Shift), VWFUNARY0_FUNCT6 = 0b010000, RO_V_VFMV_FS = OP_FVV | (VWFUNARY0_FUNCT6 << kRvvFunct6Shift), VRFUNARY0_FUNCT6 = 0b010000, RO_V_VFMV_SF = OP_FVF | (VRFUNARY0_FUNCT6 << kRvvFunct6Shift), VREDMAXU_FUNCT6 = 0b000110, RO_V_VREDMAXU = OP_MVV | (VREDMAXU_FUNCT6 << kRvvFunct6Shift), VREDMAX_FUNCT6 = 0b000111, RO_V_VREDMAX = OP_MVV | (VREDMAX_FUNCT6 << kRvvFunct6Shift), VREDMINU_FUNCT6 = 0b000100, RO_V_VREDMINU = OP_MVV | (VREDMINU_FUNCT6 << kRvvFunct6Shift), VREDMIN_FUNCT6 = 0b000101, RO_V_VREDMIN = OP_MVV | (VREDMIN_FUNCT6 << kRvvFunct6Shift), VFUNARY0_FUNCT6 = 0b010010, RO_V_VFUNARY0 = OP_FVV | (VFUNARY0_FUNCT6 << kRvvFunct6Shift), VFUNARY1_FUNCT6 = 0b010011, RO_V_VFUNARY1 = OP_FVV | (VFUNARY1_FUNCT6 << kRvvFunct6Shift), VFCVT_XU_F_V = 0b00000, VFCVT_X_F_V = 0b00001, VFCVT_F_XU_V = 0b00010, VFCVT_F_X_V = 0b00011, VFWCVT_XU_F_V = 0b01000, VFWCVT_X_F_V = 0b01001, VFWCVT_F_XU_V = 0b01010, VFWCVT_F_X_V = 0b01011, VFWCVT_F_F_V = 0b01100, VFNCVT_F_F_W = 0b10100, VFNCVT_X_F_W = 0b10001, VFNCVT_XU_F_W = 0b10000, VFCLASS_V = 0b10000, VFSQRT_V = 0b00000, VFRSQRT7_V = 0b00100, VFREC7_V = 0b00101, VFADD_FUNCT6 = 0b000000, RO_V_VFADD_VV = OP_FVV | (VFADD_FUNCT6 << kRvvFunct6Shift), RO_V_VFADD_VF = OP_FVF | (VFADD_FUNCT6 << kRvvFunct6Shift), VFSUB_FUNCT6 = 0b000010, RO_V_VFSUB_VV = OP_FVV | (VFSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VFSUB_VF = OP_FVF | (VFSUB_FUNCT6 << kRvvFunct6Shift), VFDIV_FUNCT6 = 0b100000, RO_V_VFDIV_VV = OP_FVV | (VFDIV_FUNCT6 << kRvvFunct6Shift), RO_V_VFDIV_VF = OP_FVF | (VFDIV_FUNCT6 << kRvvFunct6Shift), VFMUL_FUNCT6 = 0b100100, RO_V_VFMUL_VV = OP_FVV | (VFMUL_FUNCT6 << kRvvFunct6Shift), RO_V_VFMUL_VF = OP_FVF | (VFMUL_FUNCT6 << kRvvFunct6Shift), // Vector Widening Floating-Point Add/Subtract Instructions VFWADD_FUNCT6 = 0b110000, RO_V_VFWADD_VV = OP_FVV | (VFWADD_FUNCT6 << kRvvFunct6Shift), RO_V_VFWADD_VF = OP_FVF | (VFWADD_FUNCT6 << kRvvFunct6Shift), VFWSUB_FUNCT6 = 0b110010, RO_V_VFWSUB_VV = OP_FVV | (VFWSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VFWSUB_VF = OP_FVF | (VFWSUB_FUNCT6 << kRvvFunct6Shift), VFWADD_W_FUNCT6 = 0b110100, RO_V_VFWADD_W_VV = OP_FVV | (VFWADD_W_FUNCT6 << kRvvFunct6Shift), RO_V_VFWADD_W_VF = OP_FVF | (VFWADD_W_FUNCT6 << kRvvFunct6Shift), VFWSUB_W_FUNCT6 = 0b110110, RO_V_VFWSUB_W_VV = OP_FVV | (VFWSUB_W_FUNCT6 << kRvvFunct6Shift), RO_V_VFWSUB_W_VF = OP_FVF | (VFWSUB_W_FUNCT6 << kRvvFunct6Shift), // Vector Widening Floating-Point Reduction Instructions VFWREDUSUM_FUNCT6 = 0b110001, RO_V_VFWREDUSUM_VV = OP_FVV | (VFWREDUSUM_FUNCT6 << kRvvFunct6Shift), VFWREDOSUM_FUNCT6 = 0b110011, RO_V_VFWREDOSUM_VV = OP_FVV | (VFWREDOSUM_FUNCT6 << kRvvFunct6Shift), // Vector Widening Floating-Point Multiply VFWMUL_FUNCT6 = 0b111000, RO_V_VFWMUL_VV = OP_FVV | (VFWMUL_FUNCT6 << kRvvFunct6Shift), RO_V_VFWMUL_VF = OP_FVF | (VFWMUL_FUNCT6 << kRvvFunct6Shift), VMFEQ_FUNCT6 = 0b011000, RO_V_VMFEQ_VV = OP_FVV | (VMFEQ_FUNCT6 << kRvvFunct6Shift), RO_V_VMFEQ_VF = OP_FVF | (VMFEQ_FUNCT6 << kRvvFunct6Shift), VMFNE_FUNCT6 = 0b011100, RO_V_VMFNE_VV = OP_FVV | (VMFNE_FUNCT6 << kRvvFunct6Shift), RO_V_VMFNE_VF = OP_FVF | (VMFNE_FUNCT6 << kRvvFunct6Shift), VMFLT_FUNCT6 = 0b011011, RO_V_VMFLT_VV = OP_FVV | (VMFLT_FUNCT6 << kRvvFunct6Shift), RO_V_VMFLT_VF = OP_FVF | (VMFLT_FUNCT6 << kRvvFunct6Shift), VMFLE_FUNCT6 = 0b011001, RO_V_VMFLE_VV = OP_FVV | (VMFLE_FUNCT6 << kRvvFunct6Shift), RO_V_VMFLE_VF = OP_FVF | (VMFLE_FUNCT6 << kRvvFunct6Shift), VMFGE_FUNCT6 = 0b011111, RO_V_VMFGE_VF = OP_FVF | (VMFGE_FUNCT6 << kRvvFunct6Shift), VMFGT_FUNCT6 = 0b011101, RO_V_VMFGT_VF = OP_FVF | (VMFGT_FUNCT6 << kRvvFunct6Shift), VFMAX_FUNCT6 = 0b000110, RO_V_VFMAX_VV = OP_FVV | (VFMAX_FUNCT6 << kRvvFunct6Shift), RO_V_VFMAX_VF = OP_FVF | (VFMAX_FUNCT6 << kRvvFunct6Shift), VFREDMAX_FUNCT6 = 0b0001111, RO_V_VFREDMAX_VV = OP_FVV | (VFREDMAX_FUNCT6 << kRvvFunct6Shift), VFMIN_FUNCT6 = 0b000100, RO_V_VFMIN_VV = OP_FVV | (VFMIN_FUNCT6 << kRvvFunct6Shift), RO_V_VFMIN_VF = OP_FVF | (VFMIN_FUNCT6 << kRvvFunct6Shift), VFSGNJ_FUNCT6 = 0b001000, RO_V_VFSGNJ_VV = OP_FVV | (VFSGNJ_FUNCT6 << kRvvFunct6Shift), RO_V_VFSGNJ_VF = OP_FVF | (VFSGNJ_FUNCT6 << kRvvFunct6Shift), VFSGNJN_FUNCT6 = 0b001001, RO_V_VFSGNJN_VV = OP_FVV | (VFSGNJN_FUNCT6 << kRvvFunct6Shift), RO_V_VFSGNJN_VF = OP_FVF | (VFSGNJN_FUNCT6 << kRvvFunct6Shift), VFSGNJX_FUNCT6 = 0b001010, RO_V_VFSGNJX_VV = OP_FVV | (VFSGNJX_FUNCT6 << kRvvFunct6Shift), RO_V_VFSGNJX_VF = OP_FVF | (VFSGNJX_FUNCT6 << kRvvFunct6Shift), VFMADD_FUNCT6 = 0b101000, RO_V_VFMADD_VV = OP_FVV | (VFMADD_FUNCT6 << kRvvFunct6Shift), RO_V_VFMADD_VF = OP_FVF | (VFMADD_FUNCT6 << kRvvFunct6Shift), VFNMADD_FUNCT6 = 0b101001, RO_V_VFNMADD_VV = OP_FVV | (VFNMADD_FUNCT6 << kRvvFunct6Shift), RO_V_VFNMADD_VF = OP_FVF | (VFNMADD_FUNCT6 << kRvvFunct6Shift), VFMSUB_FUNCT6 = 0b101010, RO_V_VFMSUB_VV = OP_FVV | (VFMSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VFMSUB_VF = OP_FVF | (VFMSUB_FUNCT6 << kRvvFunct6Shift), VFNMSUB_FUNCT6 = 0b101011, RO_V_VFNMSUB_VV = OP_FVV | (VFNMSUB_FUNCT6 << kRvvFunct6Shift), RO_V_VFNMSUB_VF = OP_FVF | (VFNMSUB_FUNCT6 << kRvvFunct6Shift), VFMACC_FUNCT6 = 0b101100, RO_V_VFMACC_VV = OP_FVV | (VFMACC_FUNCT6 << kRvvFunct6Shift), RO_V_VFMACC_VF = OP_FVF | (VFMACC_FUNCT6 << kRvvFunct6Shift), VFNMACC_FUNCT6 = 0b101101, RO_V_VFNMACC_VV = OP_FVV | (VFNMACC_FUNCT6 << kRvvFunct6Shift), RO_V_VFNMACC_VF = OP_FVF | (VFNMACC_FUNCT6 << kRvvFunct6Shift), VFMSAC_FUNCT6 = 0b101110, RO_V_VFMSAC_VV = OP_FVV | (VFMSAC_FUNCT6 << kRvvFunct6Shift), RO_V_VFMSAC_VF = OP_FVF | (VFMSAC_FUNCT6 << kRvvFunct6Shift), VFNMSAC_FUNCT6 = 0b101111, RO_V_VFNMSAC_VV = OP_FVV | (VFNMSAC_FUNCT6 << kRvvFunct6Shift), RO_V_VFNMSAC_VF = OP_FVF | (VFNMSAC_FUNCT6 << kRvvFunct6Shift), // Vector Widening Floating-Point Fused Multiply-Add Instructions VFWMACC_FUNCT6 = 0b111100, RO_V_VFWMACC_VV = OP_FVV | (VFWMACC_FUNCT6 << kRvvFunct6Shift), RO_V_VFWMACC_VF = OP_FVF | (VFWMACC_FUNCT6 << kRvvFunct6Shift), VFWNMACC_FUNCT6 = 0b111101, RO_V_VFWNMACC_VV = OP_FVV | (VFWNMACC_FUNCT6 << kRvvFunct6Shift), RO_V_VFWNMACC_VF = OP_FVF | (VFWNMACC_FUNCT6 << kRvvFunct6Shift), VFWMSAC_FUNCT6 = 0b111110, RO_V_VFWMSAC_VV = OP_FVV | (VFWMSAC_FUNCT6 << kRvvFunct6Shift), RO_V_VFWMSAC_VF = OP_FVF | (VFWMSAC_FUNCT6 << kRvvFunct6Shift), VFWNMSAC_FUNCT6 = 0b111111, RO_V_VFWNMSAC_VV = OP_FVV | (VFWNMSAC_FUNCT6 << kRvvFunct6Shift), RO_V_VFWNMSAC_VF = OP_FVF | (VFWNMSAC_FUNCT6 << kRvvFunct6Shift), VNCLIP_FUNCT6 = 0b101111, RO_V_VNCLIP_WV = OP_IVV | (VNCLIP_FUNCT6 << kRvvFunct6Shift), RO_V_VNCLIP_WX = OP_IVX | (VNCLIP_FUNCT6 << kRvvFunct6Shift), RO_V_VNCLIP_WI = OP_IVI | (VNCLIP_FUNCT6 << kRvvFunct6Shift), VNCLIPU_FUNCT6 = 0b101110, RO_V_VNCLIPU_WV = OP_IVV | (VNCLIPU_FUNCT6 << kRvvFunct6Shift), RO_V_VNCLIPU_WX = OP_IVX | (VNCLIPU_FUNCT6 << kRvvFunct6Shift), RO_V_VNCLIPU_WI = OP_IVI | (VNCLIPU_FUNCT6 << kRvvFunct6Shift), }; // ----- Emulated conditions. // On RISC-V we use this enum to abstract from conditional branch instructions. // The 'U' prefix is used to specify unsigned comparisons. // Opposite conditions must be paired as odd/even numbers // because 'NegateCondition' function flips LSB to negate condition. enum Condition { // Any value < 0 is considered no_condition. kNoCondition = -1, overflow = 0, no_overflow = 1, Uless = 2, Ugreater_equal = 3, Uless_equal = 4, Ugreater = 5, equal = 6, not_equal = 7, // Unordered or Not Equal. less = 8, greater_equal = 9, less_equal = 10, greater = 11, cc_always = 12, // Aliases. eq = equal, ne = not_equal, ge = greater_equal, lt = less, gt = greater, le = less_equal, al = cc_always, ult = Uless, uge = Ugreater_equal, ule = Uless_equal, ugt = Ugreater, }; // Returns the equivalent of !cc. // Negation of the default kNoCondition (-1) results in a non-default // no_condition value (-2). As long as tests for no_condition check // for condition < 0, this will work as expected. inline Condition NegateCondition(Condition cc) { DCHECK(cc != cc_always); return static_cast(cc ^ 1); } inline Condition NegateFpuCondition(Condition cc) { DCHECK(cc != cc_always); switch (cc) { case ult: return ge; case ugt: return le; case uge: return lt; case ule: return gt; case lt: return uge; case gt: return ule; case ge: return ult; case le: return ugt; case eq: return ne; case ne: return eq; default: return cc; } } // ----- Coprocessor conditions. enum FPUCondition { kNoFPUCondition = -1, EQ = 0x02, // Ordered and Equal NE = 0x03, // Unordered or Not Equal LT = 0x04, // Ordered and Less Than GE = 0x05, // Ordered and Greater Than or Equal LE = 0x06, // Ordered and Less Than or Equal GT = 0x07, // Ordered and Greater Than }; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; enum class MaxMinKind : int { kMin = 0, kMax = 1 }; // ---------------------------------------------------------------------------- // RISCV flags enum ControlStatusReg { csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW) csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW) csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW) csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO) csr_time = 0xc01, // Timer for RDTIME instruction (RO) csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO) csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO) csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO) csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO) }; enum FFlagsMask { kInvalidOperation = 0b10000, // NV: Invalid kDivideByZero = 0b1000, // DZ: Divide by Zero kOverflow = 0b100, // OF: Overflow kUnderflow = 0b10, // UF: Underflow kInexact = 0b1 // NX: Inexact }; enum RoundingMode { RNE = 0b000, // Round to Nearest, ties to Even RTZ = 0b001, // Round towards Zero RDN = 0b010, // Round Down (towards -infinity) RUP = 0b011, // Round Up (towards +infinity) RMM = 0b100, // Round to Nearest, tiest to Max Magnitude DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode; // In Rounding Mode register, Invalid }; enum MemoryOdering { PSI = 0b1000, // PI or SI PSO = 0b0100, // PO or SO PSR = 0b0010, // PR or SR PSW = 0b0001, // PW or SW PSIORW = PSI | PSO | PSR | PSW }; const int kFloat32ExponentBias = 127; const int kFloat32MantissaBits = 23; const int kFloat32ExponentBits = 8; const int kFloat64ExponentBias = 1023; const int kFloat64MantissaBits = 52; const int kFloat64ExponentBits = 11; enum FClassFlag { kNegativeInfinity = 1, kNegativeNormalNumber = 1 << 1, kNegativeSubnormalNumber = 1 << 2, kNegativeZero = 1 << 3, kPositiveZero = 1 << 4, kPositiveSubnormalNumber = 1 << 5, kPositiveNormalNumber = 1 << 6, kPositiveInfinity = 1 << 7, kSignalingNaN = 1 << 8, kQuietNaN = 1 << 9 }; #define RVV_SEW(V) \ V(E8) \ V(E16) \ V(E32) \ V(E64) #define DEFINE_FLAG(name) name, enum VSew { RVV_SEW(DEFINE_FLAG) #undef DEFINE_FLAG }; #define RVV_LMUL(V) \ V(m1) \ V(m2) \ V(m4) \ V(m8) \ V(RESERVERD) \ V(mf8) \ V(mf4) \ V(mf2) enum Vlmul { #define DEFINE_FLAG(name) name, RVV_LMUL(DEFINE_FLAG) #undef DEFINE_FLAG }; enum TailAgnosticType { ta = 0x1, // Tail agnostic tu = 0x0, // Tail undisturbed }; enum MaskAgnosticType { ma = 0x1, // Mask agnostic mu = 0x0, // Mask undisturbed }; enum MaskType { Mask = 0x0, // use the mask NoMask = 0x1, }; // ----------------------------------------------------------------------------- // Hints. // Branch hints are not used on RISC-V. They are defined so that they can // appear in shared function signatures, but will be ignored in RISC-V // implementations. enum Hint { no_hint = 0 }; inline Hint NegateHint(Hint hint) { return no_hint; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // These constants are declared in assembler-riscv64.cc, as they use named // registers and other constants. // An Illegal instruction const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall) // An ECALL instruction, used for redirected real time call const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall) // An EBreak instruction, used for debugging and semi-hosting const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak constexpr uint8_t kInstrSize = 4; constexpr uint8_t kShortInstrSize = 2; constexpr uint8_t kInstrSizeLog2 = 2; class InstructionBase { public: enum { // On RISC-V, PC cannot actually be directly accessed. We behave as if PC // was always the value of the current instruction being executed. kPCReadOffset = 0 }; // Instruction type. enum Type { kRType, kR4Type, // Special R4 for Q extension kIType, kSType, kBType, kUType, kJType, // C extension kCRType, kCIType, kCSSType, kCIWType, kCLType, kCSType, kCAType, kCBType, kCJType, // V extension kVType, kVLType, kVSType, kVAMOType, kVIVVType, kVFVVType, kVMVVType, kVIVIType, kVIVXType, kVFVFType, kVMVXType, kVSETType, kUnsupported = -1 }; inline bool IsIllegalInstruction() const { uint16_t FirstHalfWord = *reinterpret_cast(this); return FirstHalfWord == 0; } inline bool IsShortInstruction() const { uint8_t FirstByte = *reinterpret_cast(this); return (FirstByte & 0x03) <= C2; } inline uint8_t InstructionSize() const { return (FLAG_riscv_c_extension && this->IsShortInstruction()) ? kShortInstrSize : kInstrSize; } // Get the raw instruction bits. inline Instr InstructionBits() const { if (FLAG_riscv_c_extension && this->IsShortInstruction()) { return 0x0000FFFF & (*reinterpret_cast(this)); } return *reinterpret_cast(this); } // Set the raw instruction bits to value. inline void SetInstructionBits(Instr value) { *reinterpret_cast(this) = value; } // Read one particular bit out of the instruction bits. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Read a bit field out of the instruction bits. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); } // Accessors for the different named fields used in the RISC-V encoding. inline Opcode BaseOpcodeValue() const { return static_cast( Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift)); } // Return the fields at their original place in the instruction encoding. inline Opcode BaseOpcodeFieldRaw() const { return static_cast(InstructionBits() & kBaseOpcodeMask); } // Safe to call within R-type instructions inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; } // Safe to call within R-, I-, S-, or B-type instructions inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; } // Safe to call within R-, I-, S-, or B-type instructions inline int Rs1FieldRawNoAssert() const { return InstructionBits() & kRs1FieldMask; } // Safe to call within R-, S-, or B-type instructions inline int Rs2FieldRawNoAssert() const { return InstructionBits() & kRs2FieldMask; } // Safe to call within R4-type instructions inline int Rs3FieldRawNoAssert() const { return InstructionBits() & kRs3FieldMask; } inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; } inline int32_t InstructionOpcodeType() const { if (IsShortInstruction()) { return InstructionBits() & kRvcOpcodeMask; } else { return InstructionBits() & kBaseOpcodeMask; } } // Get the encoding type of the instruction. Type InstructionType() const; protected: InstructionBase() {} }; template class InstructionGetters : public T { public: inline int BaseOpcode() const { return this->InstructionBits() & kBaseOpcodeMask; } inline int RvcOpcode() const { DCHECK(this->IsShortInstruction()); return this->InstructionBits() & kRvcOpcodeMask; } inline int Rs1Value() const { DCHECK(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift); } inline int Rs2Value() const { DCHECK(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift); } inline int Rs3Value() const { DCHECK(this->InstructionType() == InstructionBase::kR4Type); return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift); } inline int Vs1Value() const { DCHECK(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift); } inline int Vs2Value() const { DCHECK(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift); } inline int VdValue() const { DCHECK(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kVdShift + kVdBits - 1, kVdShift); } inline int RdValue() const { DCHECK(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kUType || this->InstructionType() == InstructionBase::kJType || this->InstructionType() == InstructionBase::kVType); return this->Bits(kRdShift + kRdBits - 1, kRdShift); } inline int RvcRdValue() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcRdShift + kRvcRdBits - 1, kRvcRdShift); } inline int RvcRs1Value() const { return this->RvcRdValue(); } inline int RvcRs2Value() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcRs2Shift + kRvcRs2Bits - 1, kRvcRs2Shift); } inline int RvcRs1sValue() const { DCHECK(this->IsShortInstruction()); return 0b1000 + this->Bits(kRvcRs1sShift + kRvcRs1sBits - 1, kRvcRs1sShift); } inline int RvcRs2sValue() const { DCHECK(this->IsShortInstruction()); return 0b1000 + this->Bits(kRvcRs2sShift + kRvcRs2sBits - 1, kRvcRs2sShift); } inline int Funct7Value() const { DCHECK(this->InstructionType() == InstructionBase::kRType); return this->Bits(kFunct7Shift + kFunct7Bits - 1, kFunct7Shift); } inline int Funct3Value() const { DCHECK(this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType || this->InstructionType() == InstructionBase::kBType); return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); } inline int Funct5Value() const { DCHECK(this->InstructionType() == InstructionBase::kRType && this->BaseOpcode() == OP_FP); return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift); } inline int RvcFunct6Value() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcFunct6Shift + kRvcFunct6Bits - 1, kRvcFunct6Shift); } inline int RvcFunct4Value() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcFunct4Shift + kRvcFunct4Bits - 1, kRvcFunct4Shift); } inline int RvcFunct3Value() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcFunct3Shift + kRvcFunct3Bits - 1, kRvcFunct3Shift); } inline int RvcFunct2Value() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcFunct2Shift + kRvcFunct2Bits - 1, kRvcFunct2Shift); } inline int RvcFunct2BValue() const { DCHECK(this->IsShortInstruction()); return this->Bits(kRvcFunct2BShift + kRvcFunct2Bits - 1, kRvcFunct2BShift); } inline int CsrValue() const { DCHECK(this->InstructionType() == InstructionBase::kIType && this->BaseOpcode() == SYSTEM); return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift)); } inline int RoundMode() const { DCHECK((this->InstructionType() == InstructionBase::kRType || this->InstructionType() == InstructionBase::kR4Type) && this->BaseOpcode() == OP_FP); return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); } inline int MemoryOrder(bool is_pred) const { DCHECK((this->InstructionType() == InstructionBase::kIType && this->BaseOpcode() == MISC_MEM)); if (is_pred) { return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift); } else { return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift); } } inline int Imm12Value() const { DCHECK(this->InstructionType() == InstructionBase::kIType); int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift); return Value << 20 >> 20; } inline int32_t Imm12SExtValue() const { int32_t Value = this->Imm12Value() << 20 >> 20; return Value; } inline int BranchOffset() const { DCHECK(this->InstructionType() == InstructionBase::kBType); // | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | // 31 25 11 7 uint32_t Bits = this->InstructionBits(); int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) | ((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19); return imm13 << 19 >> 19; } inline int StoreOffset() const { DCHECK(this->InstructionType() == InstructionBase::kSType); // | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode | // 31 25 11 7 uint32_t Bits = this->InstructionBits(); int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20); return imm12 << 20 >> 20; } inline int Imm20UValue() const { DCHECK(this->InstructionType() == InstructionBase::kUType); // | imm[31:12] | rd | opcode | // 31 12 int32_t Bits = this->InstructionBits(); return Bits >> 12; } inline int Imm20JValue() const { DCHECK(this->InstructionType() == InstructionBase::kJType); // | imm[20|10:1|11|19:12] | rd | opcode | // 31 12 uint32_t Bits = this->InstructionBits(); int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) | (Bits & 0xff000) | ((Bits & 0x80000000) >> 11); return imm20 << 11 >> 11; } inline bool IsArithShift() const { // Valid only for right shift operations DCHECK((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 || this->BaseOpcode() == OP_IMM || this->BaseOpcode() == OP_IMM_32) && this->Funct3Value() == 0b101); return this->InstructionBits() & 0x40000000; } inline int Shamt() const { // Valid only for shift instructions (SLLI, SRLI, SRAI) DCHECK((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM && (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); // | 0A0000 | shamt | rs1 | funct3 | rd | opcode | // 31 25 20 return this->Bits(kImm12Shift + 5, kImm12Shift); } inline int Shamt32() const { // Valid only for shift instructions (SLLIW, SRLIW, SRAIW) DCHECK((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 && (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); // | 0A00000 | shamt | rs1 | funct3 | rd | opcode | // 31 24 20 return this->Bits(kImm12Shift + 4, kImm12Shift); } inline int RvcImm6Value() const { DCHECK(this->IsShortInstruction()); // | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2); return imm6 << 26 >> 26; } inline int RvcImm6Addi16spValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) | ((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) | ((Bits & 0x4) << 3); DCHECK_NE(imm10, 0); return imm10 << 22 >> 22; } inline int RvcImm8Addi4spnValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | nzimm[11] | rd' | opcode | // 15 13 5 2 uint32_t Bits = this->InstructionBits(); int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) | ((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7); DCHECK_NE(uimm10, 0); return uimm10; } inline int RvcShamt6() const { DCHECK(this->IsShortInstruction()); // | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode | // 15 12 6 2 int32_t imm6 = this->RvcImm6Value(); return imm6 & 0x3f; } inline int RvcImm6LwspValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4); return imm8; } inline int RvcImm6LdspValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode | // 15 12 6 2 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4); return imm9; } inline int RvcImm6SwspValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | uimm[5:2|7:6] | rs2 | opcode | // 15 12 7 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1); return imm8; } inline int RvcImm6SdspValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | uimm[5:3|8:6] | rs2 | opcode | // 15 12 7 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1); return imm9; } inline int RvcImm5WValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode | // 15 12 10 6 4 2 uint32_t Bits = this->InstructionBits(); int32_t imm7 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1); return imm7; } inline int RvcImm5DValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode | // 15 12 10 6 4 2 uint32_t Bits = this->InstructionBits(); int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1); return imm8; } inline int RvcImm11CJValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode | // 15 12 2 uint32_t Bits = this->InstructionBits(); int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) | ((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) | ((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) | ((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1); return imm12 << 20 >> 20; } inline int RvcImm8BValue() const { DCHECK(this->IsShortInstruction()); // | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode | // 15 12 10 7 2 uint32_t Bits = this->InstructionBits(); int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) | ((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) | ((Bits & 0x1000) >> 4); return imm9 << 23 >> 23; } inline int vl_vs_width() { int width = 0; if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP && (this->InstructionBits() & kBaseOpcodeMask) != STORE_FP) return -1; switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) { case 0x0: width = 8; break; case 0x00005000: width = 16; break; case 0x00006000: width = 32; break; case 0x00007000: width = 64; break; case 0x10000000: width = 128; break; case 0x10005000: width = 256; break; case 0x10006000: width = 512; break; case 0x10007000: width = 1024; break; default: width = -1; break; } return width; } inline uint32_t Rvvzimm() const { if ((this->InstructionBits() & (kBaseOpcodeMask | kFunct3Mask | 0x80000000)) == RO_V_VSETVLI) { uint32_t Bits = this->InstructionBits(); uint32_t zimm = Bits & kRvvZimmMask; return zimm >> kRvvZimmShift; } else { DCHECK_EQ(this->InstructionBits() & (kBaseOpcodeMask | kFunct3Mask | 0xC0000000), RO_V_VSETIVLI); uint32_t Bits = this->InstructionBits(); uint32_t zimm = Bits & kRvvZimmMask; return (zimm >> kRvvZimmShift) & 0x3FF; } } inline uint32_t Rvvuimm() const { DCHECK_EQ( this->InstructionBits() & (kBaseOpcodeMask | kFunct3Mask | 0xC0000000), RO_V_VSETIVLI); uint32_t Bits = this->InstructionBits(); uint32_t uimm = Bits & kRvvUimmMask; return uimm >> kRvvUimmShift; } inline uint32_t RvvVsew() const { uint32_t zimm = this->Rvvzimm(); uint32_t vsew = (zimm >> 3) & 0x7; return vsew; } inline uint32_t RvvVlmul() const { uint32_t zimm = this->Rvvzimm(); uint32_t vlmul = zimm & 0x7; return vlmul; } inline uint8_t RvvVM() const { DCHECK(this->InstructionType() == InstructionBase::kVType || this->InstructionType() == InstructionBase::kIType || this->InstructionType() == InstructionBase::kSType); return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift); } inline const char* RvvSEW() const { uint32_t vsew = this->RvvVsew(); switch (vsew) { #define CAST_VSEW(name) \ case name: \ return #name; RVV_SEW(CAST_VSEW) default: return "unknown"; #undef CAST_VSEW } } inline const char* RvvLMUL() const { uint32_t vlmul = this->RvvVlmul(); switch (vlmul) { #define CAST_VLMUL(name) \ case name: \ return #name; RVV_LMUL(CAST_VLMUL) default: return "unknown"; #undef CAST_VLMUL } } #define sext(x, len) (((int32_t)(x) << (32 - len)) >> (32 - len)) #define zext(x, len) (((uint32_t)(x) << (32 - len)) >> (32 - len)) inline int32_t RvvSimm5() const { DCHECK(this->InstructionType() == InstructionBase::kVType); return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift), kRvvImm5Bits); } inline uint32_t RvvUimm5() const { DCHECK(this->InstructionType() == InstructionBase::kVType); uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift); return zext(imm, kRvvImm5Bits); } #undef sext #undef zext inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); } inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); } // Say if the instruction is a break or a trap. bool IsTrap() const; }; class Instruction : public InstructionGetters { public: // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(byte* pc) { return reinterpret_cast(pc); } private: // We need to prevent the creation of instances of class Instruction. DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); }; // ----------------------------------------------------------------------------- // RISC-V assembly various constants. // C/C++ argument slots size. const int kCArgSlotCount = 0; // TODO(plind): below should be based on kSystemPointerSize // TODO(plind): find all usages and remove the needless instructions for n64. const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2; const int kInvalidStackOffset = -1; const int kBranchReturnOffset = 2 * kInstrSize; static const int kNegOffset = 0x00008000; // ----------------------------------------------------------------------------- // Instructions. template bool InstructionGetters

::IsTrap() const { return (this->InstructionBits() == kBreakInstr); } } // namespace internal } // namespace v8 #endif // V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_