/* -*- mesa-c++ -*- * * Copyright (c) 2022 Collabora LTD * * Author: Gert Wollny * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "sfn_assembler.h" #include "sfn_debug.h" #include "sfn_instr_alugroup.h" #include "sfn_instr_controlflow.h" #include "sfn_instr_fetch.h" #include "sfn_instr_export.h" #include "sfn_instr_mem.h" #include "sfn_instr_tex.h" #include "sfn_conditionaljumptracker.h" #include "sfn_callstack.h" #include "../eg_sq.h" namespace r600 { Assembler::Assembler(r600_shader *sh, const r600_shader_key& key): m_sh(sh), m_key(key) { } extern const std::map ds_opcode_map; class AssamblerVisitor : public ConstInstrVisitor { public: AssamblerVisitor(r600_shader *sh, const r600_shader_key& key); void visit(const AluInstr& instr) override; void visit(const AluGroup& instr) override; void visit(const TexInstr& instr) override; void visit(const ExportInstr& instr) override; void visit(const FetchInstr& instr) override; void visit(const Block& instr) override; void visit(const IfInstr& instr) override; void visit(const ControlFlowInstr& instr) override; void visit(const ScratchIOInstr& instr) override; void visit(const StreamOutInstr& instr) override; void visit(const MemRingOutInstr& instr) override; void visit(const EmitVertexInstr& instr) override; void visit(const GDSInstr& instr) override; void visit(const WriteTFInstr& instr) override; void visit(const LDSAtomicInstr& instr) override; void visit(const LDSReadInstr& instr) override; void visit(const RatInstr& instr) override; void finalize(); const uint32_t sf_vtx = 1; const uint32_t sf_tex = 2; const uint32_t sf_alu = 4; const uint32_t sf_addr_register = 8; const uint32_t sf_all = 0xf; void clear_states(const uint32_t& states); bool copy_dst(r600_bytecode_alu_dst& dst, const Register& d, bool write); PVirtualValue copy_src(r600_bytecode_alu_src& src, const VirtualValue& s); EBufferIndexMode emit_index_reg(const VirtualValue& addr, unsigned idx); void emit_endif(); void emit_else(); void emit_loop_begin(bool vpm); void emit_loop_end(); void emit_loop_break(); void emit_loop_cont(); void emit_alu_op(const AluInstr& ai); void emit_lds_op(const AluInstr& lds); void emit_wait_ack(); /* Start initialized in constructor */ const r600_shader_key& m_key; r600_shader *m_shader; r600_bytecode *m_bc; ConditionalJumpTracker m_jump_tracker; CallStack m_callstack; bool ps_alpha_to_one; /* End initialized in constructor */ std::set m_nliterals_in_group; std::set vtx_fetch_results; std::set tex_fetch_results; PRegister m_last_addr{nullptr}; unsigned m_max_color_exports{0}; int m_loop_nesting{0}; bool m_ack_suggested{false}; bool m_has_param_output{false}; bool m_has_pos_output{false}; bool m_last_op_was_barrier{false}; bool m_result{true}; }; bool Assembler::lower(Shader *shader) { AssamblerVisitor ass(m_sh, m_key); auto& blocks = shader->func(); for (auto b : blocks) { b->accept(ass); if (!ass.m_result) return false; } ass.finalize(); return ass.m_result; } AssamblerVisitor::AssamblerVisitor(r600_shader *sh, const r600_shader_key& key): m_key(key), m_shader(sh), m_bc(&sh->bc), m_callstack(sh->bc), ps_alpha_to_one(key.ps.alpha_to_one) { if (m_shader->processor_type == PIPE_SHADER_FRAGMENT) m_max_color_exports = MAX2(m_key.ps.nr_cbufs, 1); if (m_shader->processor_type == PIPE_SHADER_VERTEX && m_shader->ninput > 0) r600_bytecode_add_cfinst(m_bc, CF_OP_CALL_FS); } void AssamblerVisitor::finalize() { const struct cf_op_info *last = nullptr; if (m_bc->cf_last) last = r600_isa_cf(m_bc->cf_last->op); /* alu clause instructions don't have EOP bit, so add NOP */ if (m_shader->bc.gfx_level < CAYMAN && (!last || last->flags & CF_ALU || m_bc->cf_last->op == CF_OP_LOOP_END || m_bc->cf_last->op == CF_OP_POP)) r600_bytecode_add_cfinst(m_bc, CF_OP_NOP); /* A fetch shader only can't be EOP (results in hang), but we can replace it * by a NOP */ else if (last && m_bc->cf_last->op == CF_OP_CALL_FS) m_bc->cf_last->op = CF_OP_NOP; if (m_shader->bc.gfx_level != CAYMAN) m_bc->cf_last->end_of_program = 1; else cm_bytecode_add_cf_end(m_bc); } extern const std::map opcode_map; void AssamblerVisitor::visit(const AluInstr& ai) { assert(vtx_fetch_results.empty()); assert(tex_fetch_results.empty()); if (unlikely(ai.has_alu_flag(alu_is_lds))) emit_lds_op(ai); else emit_alu_op(ai); } void AssamblerVisitor::emit_lds_op(const AluInstr& lds) { struct r600_bytecode_alu alu; memset(&alu, 0, sizeof(alu)); alu.is_lds_idx_op = true; alu.op = lds.lds_opcode(); bool has_lds_fetch = false; switch (alu.op) { case LDS_WRITE: alu.op =LDS_OP2_LDS_WRITE; break; case LDS_WRITE_REL: alu.op = LDS_OP3_LDS_WRITE_REL; alu.lds_idx = 1; break; case DS_OP_READ_RET: alu.op = LDS_OP1_LDS_READ_RET; FALLTHROUGH; case LDS_ADD_RET: case LDS_AND_RET: case LDS_OR_RET: case LDS_MAX_INT_RET: case LDS_MAX_UINT_RET: case LDS_MIN_INT_RET: case LDS_MIN_UINT_RET: case LDS_XOR_RET: case LDS_XCHG_RET: case LDS_CMP_XCHG_RET: has_lds_fetch = true; break; case LDS_ADD: case LDS_AND: case LDS_OR: case LDS_MAX_INT: case LDS_MAX_UINT: case LDS_MIN_INT: case LDS_MIN_UINT: case LDS_XOR: break; default: std::cerr << "\n R600: error op: " << lds << "\n"; unreachable("Unhandled LDS op"); } copy_src(alu.src[0], lds.src(0)); if (lds.n_sources() > 1) copy_src(alu.src[1], lds.src(1)); else alu.src[1].sel = V_SQ_ALU_SRC_0; if (lds.n_sources() > 2) copy_src(alu.src[2], lds.src(2)); else alu.src[2].sel = V_SQ_ALU_SRC_0; alu.last = lds.has_alu_flag(alu_last_instr); int r = r600_bytecode_add_alu(m_bc, &alu); if (has_lds_fetch) m_bc->cf_last->nlds_read++; if (r) m_result = false; } void AssamblerVisitor::emit_alu_op(const AluInstr& ai) { struct r600_bytecode_alu alu; memset(&alu, 0, sizeof(alu)); if (opcode_map.find(ai.opcode()) == opcode_map.end()) { std::cerr << "Opcode not handled for " << ai <<"\n"; m_result = false; return; } // skip multiple barriers if (m_last_op_was_barrier && ai.opcode() == op0_group_barrier) return; m_last_op_was_barrier = ai.opcode() == op0_group_barrier; alu.op = opcode_map.at(ai.opcode()); auto dst = ai.dest(); if (dst) { if (!copy_dst(alu.dst, *dst, ai.has_alu_flag(alu_write))) { m_result = false; return; } alu.dst.write = ai.has_alu_flag(alu_write); alu.dst.clamp = ai.has_alu_flag(alu_dst_clamp); alu.dst.rel = dst->addr() ? 1 : 0; } else { alu.dst.chan = ai.dest_chan(); } alu.is_op3 = ai.n_sources() == 3; EBufferIndexMode kcache_index_mode = bim_none; PVirtualValue buffer_offset = nullptr; for (unsigned i = 0; i < ai.n_sources(); ++i) { buffer_offset = copy_src(alu.src[i], ai.src(i)); alu.src[i].neg = ai.has_alu_flag(AluInstr::src_neg_flags[i]); if (!alu.is_op3) alu.src[i].abs = ai.has_alu_flag(AluInstr::src_abs_flags[i]); if (buffer_offset && kcache_index_mode == bim_none) { kcache_index_mode = bim_zero; alu.src[i].kc_bank = 1; alu.src[i].kc_rel = 1; } if (ai.has_lds_queue_read()) { assert(m_bc->cf_last->nlds_read > 0); m_bc->cf_last->nlds_read--; } } if (ai.bank_swizzle() != alu_vec_unknown) alu.bank_swizzle_force = ai.bank_swizzle(); alu.last = ai.has_alu_flag(alu_last_instr); alu.execute_mask = ai.has_alu_flag(alu_update_exec); /* If the destination register is equal to the last loaded address register * then clear the latter one, because the values will no longer be identical */ if (m_last_addr) sfn_log << SfnLog::assembly << " Current address register is " << *m_last_addr << "\n"; if (dst) sfn_log << SfnLog::assembly << " Current dst register is " << *dst << "\n"; if (dst && m_last_addr && *dst == *m_last_addr) { sfn_log << SfnLog::assembly << " Clear address register (was " << *m_last_addr << "\n"; m_last_addr = nullptr; } auto cf_op = ai.cf_type(); unsigned type = 0; switch (cf_op) { case cf_alu: type = CF_OP_ALU; break; case cf_alu_push_before: type = CF_OP_ALU_PUSH_BEFORE; break; case cf_alu_pop_after: type = CF_OP_ALU_POP_AFTER; break; case cf_alu_pop2_after: type = CF_OP_ALU_POP2_AFTER; break; case cf_alu_break: type = CF_OP_ALU_BREAK; break; case cf_alu_else_after: type = CF_OP_ALU_ELSE_AFTER; break; case cf_alu_continue: type = CF_OP_ALU_CONTINUE; break; case cf_alu_extended: type = CF_OP_ALU_EXT; break; default: assert(0 && "cf_alu_undefined should have been replaced"); } if (alu.last) m_nliterals_in_group.clear(); m_result = !r600_bytecode_add_alu_type(m_bc, &alu, type); if (ai.opcode() == op1_mova_int) m_bc->ar_loaded = 0; if (ai.opcode() == op1_set_cf_idx0) m_bc->index_loaded[0] = 1; if (ai.opcode() == op1_set_cf_idx1) m_bc->index_loaded[1] = 1; m_bc->force_add_cf |= (ai.opcode() == op2_kille || ai.opcode() == op2_killne_int || ai.opcode() == op1_set_cf_idx0 || ai.opcode() == op1_set_cf_idx1); } void AssamblerVisitor::visit(const AluGroup& group) { clear_states(sf_vtx | sf_tex); if (group.slots() == 0) return; if (group.has_lds_group_start()) { if (m_bc->cf_last->ndw + 2 * (*group.begin())->required_slots() > 220) { assert(m_bc->cf_last->nlds_read == 0); m_bc->force_add_cf = 1; m_last_addr = nullptr; } } else if (m_bc->cf_last) { if (m_bc->cf_last->ndw + 2 * group.slots() > 240) { assert(m_bc->cf_last->nlds_read == 0); m_bc->force_add_cf = 1; m_last_addr = nullptr; } else { auto instr = *group.begin(); if (instr && !instr->has_alu_flag(alu_is_lds) && instr->opcode() == op0_group_barrier && m_bc->cf_last->ndw + 14 > 240) { assert(m_bc->cf_last->nlds_read == 0); m_bc->force_add_cf = 1; m_last_addr = nullptr; } } } auto addr = group.addr(); if (addr.first) { if (!addr.second) { if (!m_last_addr || !m_bc->ar_loaded || !m_last_addr->equal_to(*addr.first)) { m_bc->ar_reg = addr.first->sel(); m_bc->ar_chan = addr.first->chan(); m_last_addr = addr.first; m_bc->ar_loaded = 0; r600_load_ar(m_bc, group.addr_for_src()); } } else { emit_index_reg(*addr.first, 0); } } for (auto& i : group) { if (i) i->accept(*this); } } void AssamblerVisitor::visit(const TexInstr& tex_instr) { clear_states(sf_vtx | sf_alu); int sampler_offset = 0; auto addr = tex_instr.sampler_offset(); EBufferIndexMode index_mode = bim_none; if (addr) index_mode = emit_index_reg(*addr, 1); if (tex_fetch_results.find(tex_instr.src().sel()) != tex_fetch_results.end()) { m_bc->force_add_cf = 1; tex_fetch_results.clear(); } r600_bytecode_tex tex; memset(&tex, 0, sizeof(struct r600_bytecode_tex)); tex.op = tex_instr.opcode(); tex.sampler_id = tex_instr.sampler_id() + sampler_offset; tex.resource_id = tex_instr.resource_id() + sampler_offset; tex.src_gpr = tex_instr.src().sel(); tex.dst_gpr = tex_instr.dst().sel(); tex.dst_sel_x = tex_instr.dest_swizzle(0); tex.dst_sel_y = tex_instr.dest_swizzle(1); tex.dst_sel_z = tex_instr.dest_swizzle(2); tex.dst_sel_w = tex_instr.dest_swizzle(3); tex.src_sel_x = tex_instr.src()[0]->chan(); tex.src_sel_y = tex_instr.src()[1]->chan(); tex.src_sel_z = tex_instr.src()[2]->chan(); tex.src_sel_w = tex_instr.src()[3]->chan(); tex.coord_type_x = !tex_instr.has_tex_flag(TexInstr::x_unnormalized); tex.coord_type_y = !tex_instr.has_tex_flag(TexInstr::y_unnormalized); tex.coord_type_z = !tex_instr.has_tex_flag(TexInstr::z_unnormalized); tex.coord_type_w = !tex_instr.has_tex_flag(TexInstr::w_unnormalized); tex.offset_x = tex_instr.get_offset(0); tex.offset_y = tex_instr.get_offset(1); tex.offset_z = tex_instr.get_offset(2); tex.resource_index_mode = index_mode; tex.sampler_index_mode = index_mode; if (tex.dst_sel_x < 4 && tex.dst_sel_y < 4 && tex.dst_sel_z < 4 && tex.dst_sel_w < 4) tex_fetch_results.insert(tex.dst_gpr); if (tex_instr.opcode() == TexInstr::get_gradient_h || tex_instr.opcode() == TexInstr::get_gradient_v) tex.inst_mod = tex_instr.has_tex_flag(TexInstr::grad_fine) ? 1 : 0; else tex.inst_mod = tex_instr.inst_mode(); if (r600_bytecode_add_tex(m_bc, &tex)) { R600_ERR("shader_from_nir: Error creating tex assembly instruction\n"); m_result = false; } } void AssamblerVisitor::visit(const ExportInstr& exi) { const auto& value = exi.value(); r600_bytecode_output output; memset(&output, 0, sizeof(output)); output.gpr = value.sel(); output.elem_size = 3; output.swizzle_x = value[0]->chan(); output.swizzle_y = value[1]->chan(); output.swizzle_z = value[2]->chan(); output.burst_count = 1; output.op = exi.is_last_export() ? CF_OP_EXPORT_DONE: CF_OP_EXPORT; output.type = exi.export_type(); clear_states(sf_all); switch (exi.export_type()) { case ExportInstr::pixel: output.swizzle_w = ps_alpha_to_one ? 5 : exi.value()[3]->chan(); output.array_base = exi.location(); break; case ExportInstr::pos: output.swizzle_w = exi.value()[3]->chan(); output.array_base = 60 + exi.location(); break; case ExportInstr::param: output.swizzle_w = exi.value()[3]->chan(); output.array_base = exi.location(); break; default: R600_ERR("shader_from_nir: export %d type not yet supported\n", exi.export_type()); m_result = false; } /* If all register elements pinned to fixed values * we can override the gpr (the register allocator doesn't see * this because it doesn't take these channels into account. */ if (output.swizzle_x > 3 && output.swizzle_y > 3 && output.swizzle_z > 3 && output.swizzle_w > 3) output.gpr = 0; int r = 0; if ((r =r600_bytecode_add_output(m_bc, &output))) { R600_ERR("Error adding export at location %d : err: %d\n", exi.location(), r); m_result = false; } } void AssamblerVisitor::visit(const ScratchIOInstr& instr) { clear_states(sf_all); struct r600_bytecode_output cf; memset(&cf, 0, sizeof(struct r600_bytecode_output)); cf.op = CF_OP_MEM_SCRATCH; cf.elem_size = 3; cf.gpr = instr.value().sel(); cf.mark = !instr.is_read(); cf.comp_mask = instr.is_read() ? 0xf : instr.write_mask(); cf.swizzle_x = 0; cf.swizzle_y = 1; cf.swizzle_z = 2; cf.swizzle_w = 3; cf.burst_count = 1; assert(!instr.is_read() || m_bc->gfx_level < R700); if (instr.address()) { cf.type = instr.is_read() || m_bc->gfx_level > R600 ? 3 : 1; cf.index_gpr = instr.address()->sel(); /* The docu seems to be wrong here: In indirect addressing the * address_base seems to be the array_size */ cf.array_size = instr.array_size(); } else { cf.type = instr.is_read() || m_bc->gfx_level > R600 ? 2 : 0; cf.array_base = instr.location(); } if (r600_bytecode_add_output(m_bc, &cf)){ R600_ERR("shader_from_nir: Error creating SCRATCH_WR assembly instruction\n"); m_result = false; } } void AssamblerVisitor::visit(const StreamOutInstr& instr) { struct r600_bytecode_output output; memset(&output, 0, sizeof(struct r600_bytecode_output)); output.gpr = instr.value().sel(); output.elem_size = instr.element_size(); output.array_base = instr.array_base(); output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE; output.burst_count = instr.burst_count(); output.array_size = instr.array_size(); output.comp_mask = instr.comp_mask(); output.op = instr.op(m_shader->bc.gfx_level); if (r600_bytecode_add_output(m_bc, &output)) { R600_ERR("shader_from_nir: Error creating stream output instruction\n"); m_result = false; } } void AssamblerVisitor::visit(const MemRingOutInstr& instr) { struct r600_bytecode_output output; memset(&output, 0, sizeof(struct r600_bytecode_output)); output.gpr = instr.value().sel(); output.type = instr.type(); output.elem_size = 3; output.comp_mask = 0xf; output.burst_count = 1; output.op = instr.op(); if (instr.type() == MemRingOutInstr::mem_write_ind || instr.type() == MemRingOutInstr::mem_write_ind_ack) { output.index_gpr = instr.index_reg(); output.array_size = 0xfff; } output.array_base = instr.array_base(); if (r600_bytecode_add_output(m_bc, &output)) { R600_ERR("shader_from_nir: Error creating mem ring write instruction\n"); m_result = false; } } void AssamblerVisitor::visit(const EmitVertexInstr& instr) { int r = r600_bytecode_add_cfinst(m_bc, instr.op()); if (!r) m_bc->cf_last->count = instr.stream(); else m_result = false; assert(m_bc->cf_last->count < 4); } void AssamblerVisitor::visit(const FetchInstr& fetch_instr) { clear_states(sf_tex | sf_alu); auto buffer_offset = fetch_instr.resource_offset(); EBufferIndexMode rat_index_mode = bim_none; if (buffer_offset) rat_index_mode = emit_index_reg(*buffer_offset, 0); if (fetch_instr.has_fetch_flag(FetchInstr::wait_ack)) emit_wait_ack(); bool use_tc = fetch_instr.has_fetch_flag(FetchInstr::use_tc) || (m_bc->gfx_level == CAYMAN); if (!use_tc && vtx_fetch_results.find(fetch_instr.src().sel()) != vtx_fetch_results.end()) { m_bc->force_add_cf = 1; vtx_fetch_results.clear(); } if (fetch_instr.has_fetch_flag(FetchInstr::use_tc) && tex_fetch_results.find(fetch_instr.src().sel()) != tex_fetch_results.end()) { m_bc->force_add_cf = 1; tex_fetch_results.clear(); } if (use_tc) tex_fetch_results.insert(fetch_instr.dst().sel()); else vtx_fetch_results.insert(fetch_instr.dst().sel()); struct r600_bytecode_vtx vtx; memset(&vtx, 0, sizeof(vtx)); vtx.op = fetch_instr.opcode(); vtx.buffer_id = fetch_instr.resource_id(); vtx.fetch_type = fetch_instr.fetch_type(); vtx.src_gpr = fetch_instr.src().sel(); vtx.src_sel_x = fetch_instr.src().chan(); vtx.mega_fetch_count = fetch_instr.mega_fetch_count(); vtx.dst_gpr = fetch_instr.dst().sel(); vtx.dst_sel_x = fetch_instr.dest_swizzle(0); /* SEL_X */ vtx.dst_sel_y = fetch_instr.dest_swizzle(1); /* SEL_Y */ vtx.dst_sel_z = fetch_instr.dest_swizzle(2); /* SEL_Z */ vtx.dst_sel_w = fetch_instr.dest_swizzle(3); /* SEL_W */ vtx.use_const_fields = fetch_instr.has_fetch_flag(FetchInstr::use_const_field); vtx.data_format = fetch_instr.data_format(); vtx.num_format_all = fetch_instr.num_format(); /* NUM_FORMAT_SCALED */ vtx.format_comp_all = fetch_instr.has_fetch_flag(FetchInstr::format_comp_signed); vtx.endian = fetch_instr.endian_swap(); vtx.buffer_index_mode = rat_index_mode; vtx.offset = fetch_instr.src_offset(); vtx.indexed = fetch_instr.has_fetch_flag(FetchInstr::indexed); vtx.uncached = fetch_instr.has_fetch_flag(FetchInstr::uncached); vtx.elem_size = fetch_instr.elm_size(); vtx.array_base = fetch_instr.array_base(); vtx.array_size = fetch_instr.array_size(); vtx.srf_mode_all = fetch_instr.has_fetch_flag(FetchInstr::srf_mode); if (fetch_instr.has_fetch_flag(FetchInstr::use_tc)) { if ((r600_bytecode_add_vtx_tc(m_bc, &vtx))) { R600_ERR("shader_from_nir: Error creating tex assembly instruction\n"); m_result = false; } } else { if ((r600_bytecode_add_vtx(m_bc, &vtx))) { R600_ERR("shader_from_nir: Error creating tex assembly instruction\n"); m_result = false; } } m_bc->cf_last->vpm = (m_bc->type == PIPE_SHADER_FRAGMENT) && fetch_instr.has_fetch_flag(FetchInstr::vpm); m_bc->cf_last->barrier = 1; } void AssamblerVisitor::visit(const WriteTFInstr& instr) { struct r600_bytecode_gds gds; auto& value = instr.value(); memset(&gds, 0, sizeof(struct r600_bytecode_gds)); gds.src_gpr = value.sel(); gds.src_sel_x = value[0]->chan(); gds.src_sel_y = value[1]->chan(); gds.src_sel_z = 4; gds.dst_sel_x = 7; gds.dst_sel_y = 7; gds.dst_sel_z = 7; gds.dst_sel_w = 7; gds.op = FETCH_OP_TF_WRITE; if (r600_bytecode_add_gds(m_bc, &gds) != 0) { m_result = false; return; } if (value[2]->chan() != 7) { memset(&gds, 0, sizeof(struct r600_bytecode_gds)); gds.src_gpr = value.sel(); gds.src_sel_x = value[2]->chan(); gds.src_sel_y = value[3]->chan(); gds.src_sel_z = 4; gds.dst_sel_x = 7; gds.dst_sel_y = 7; gds.dst_sel_z = 7; gds.dst_sel_w = 7; gds.op = FETCH_OP_TF_WRITE; if (r600_bytecode_add_gds(m_bc, &gds)) { m_result = false; return; } } } void AssamblerVisitor::visit(const RatInstr& instr) { struct r600_bytecode_gds gds; /* The instruction writes to the retuen buffer loaction, and * the value will actually be read bach, so make sure all previous writes * have been finished */ if (m_ack_suggested /*&& instr.has_instr_flag(Instr::ack_rat_return_write)*/) emit_wait_ack(); int rat_idx = instr.rat_id(); EBufferIndexMode rat_index_mode = bim_none; auto addr = instr.rat_id_offset(); if (addr) rat_index_mode = emit_index_reg(*addr, 1); memset(&gds, 0, sizeof(struct r600_bytecode_gds)); r600_bytecode_add_cfinst(m_bc, instr.cf_opcode()); auto cf = m_bc->cf_last; cf->rat.id = rat_idx + m_shader->rat_base; cf->rat.inst = instr.rat_op(); cf->rat.index_mode = rat_index_mode; cf->output.type = instr.need_ack() ? 3 : 1; cf->output.gpr = instr.data_gpr(); cf->output.index_gpr = instr.index_gpr(); cf->output.comp_mask = instr.comp_mask(); cf->output.burst_count = instr.burst_count(); assert(instr.data_swz(0) == PIPE_SWIZZLE_X); if (cf->rat.inst != RatInstr::STORE_TYPED) { assert(instr.data_swz(1) == PIPE_SWIZZLE_Y || instr.data_swz(1) == PIPE_SWIZZLE_MAX) ; assert(instr.data_swz(2) == PIPE_SWIZZLE_Z || instr.data_swz(2) == PIPE_SWIZZLE_MAX) ; } cf->vpm = m_bc->type == PIPE_SHADER_FRAGMENT; cf->barrier = 1; cf->mark = instr.need_ack(); cf->output.elem_size = instr.elm_size(); m_ack_suggested |= instr.need_ack(); } void AssamblerVisitor::clear_states(const uint32_t& states) { if (states & sf_vtx) vtx_fetch_results.clear(); if (states & sf_tex) tex_fetch_results.clear(); if (states & sf_alu) { m_last_op_was_barrier = false; m_last_addr = nullptr; } } void AssamblerVisitor::visit(const Block& block) { if (block.empty()) return; m_bc->force_add_cf = block.has_instr_flag(Instr::force_cf); sfn_log << SfnLog::assembly << "Translate block size: " << block.size() << " new_cf:" << m_bc->force_add_cf << "\n"; for (const auto& i : block) { sfn_log << SfnLog::assembly << "Translate " << *i << " "; i->accept(*this); sfn_log << SfnLog::assembly << (m_result ? "good" : "fail") << "\n"; if (!m_result) break; } } void AssamblerVisitor::visit(const IfInstr& instr) { int elems = m_callstack.push(FC_PUSH_VPM); bool needs_workaround = false; if (m_bc->gfx_level == CAYMAN && m_bc->stack.loop > 1) needs_workaround = true; if (m_bc->gfx_level == EVERGREEN && m_bc->family != CHIP_HEMLOCK && m_bc->family != CHIP_CYPRESS && m_bc->family != CHIP_JUNIPER) { unsigned dmod1 = (elems - 1) % m_bc->stack.entry_size; unsigned dmod2 = (elems) % m_bc->stack.entry_size; if (elems && (!dmod1 || !dmod2)) needs_workaround = true; } auto pred = instr.predicate(); auto [addr, dummy0, dummy1 ] = pred->indirect_addr(); {} if (addr) { if (!m_last_addr || !m_bc->ar_loaded || !m_last_addr->equal_to(*addr)) { m_bc->ar_reg = addr->sel(); m_bc->ar_chan = addr->chan(); m_last_addr = addr; m_bc->ar_loaded = 0; r600_load_ar(m_bc, true); } } if (needs_workaround) { r600_bytecode_add_cfinst(m_bc, CF_OP_PUSH); m_bc->cf_last->cf_addr = m_bc->cf_last->id + 2; pred->set_cf_type(cf_alu); } clear_states(sf_tex|sf_vtx); pred->accept(*this); r600_bytecode_add_cfinst(m_bc, CF_OP_JUMP); clear_states(sf_all); m_jump_tracker.push(m_bc->cf_last, jt_if); } void AssamblerVisitor::visit(const ControlFlowInstr& instr) { clear_states(sf_all); switch (instr.cf_type()) { case ControlFlowInstr::cf_else: emit_else(); break; case ControlFlowInstr::cf_endif: emit_endif(); break; case ControlFlowInstr::cf_loop_begin: emit_loop_begin(instr.has_instr_flag(Instr::vpm)); break; case ControlFlowInstr::cf_loop_end: emit_loop_end(); break; case ControlFlowInstr::cf_loop_break: emit_loop_break(); break; case ControlFlowInstr::cf_loop_continue: emit_loop_cont(); break; case ControlFlowInstr::cf_wait_ack: { int r = r600_bytecode_add_cfinst(m_bc, CF_OP_WAIT_ACK); if (!r) { m_bc->cf_last->cf_addr = 0; m_bc->cf_last->barrier = 1; m_ack_suggested = false; } else { m_result = false; } } break; default: unreachable("Unknown CF instruction type"); } } void AssamblerVisitor::visit(const GDSInstr& instr) { struct r600_bytecode_gds gds; bool indirect = false; auto addr = instr.uav_id(); if (addr) { indirect = true; emit_index_reg(*addr, 1); } memset(&gds, 0, sizeof(struct r600_bytecode_gds)); gds.op = ds_opcode_map.at(instr.opcode()); gds.dst_gpr = instr.dest()->sel(); gds.uav_id = instr.uav_base(); gds.uav_index_mode = indirect ? bim_one : bim_none; gds.src_gpr = instr.src().sel(); gds.src_sel_x = instr.src()[0]->chan() < 7 ? instr.src()[0]->chan() : 4; gds.src_sel_y = instr.src()[1]->chan(); gds.src_sel_z = instr.src()[2]->chan() < 7 ? instr.src()[2]->chan() : 4; gds.dst_sel_x = 7; gds.dst_sel_y = 7; gds.dst_sel_z = 7; gds.dst_sel_w = 7; switch (instr.dest()->chan()) { case 0: gds.dst_sel_x = 0;break; case 1: gds.dst_sel_y = 0;break; case 2: gds.dst_sel_z = 0;break; case 3: gds.dst_sel_w = 0; } gds.src_gpr2 = 0; gds.alloc_consume = m_bc->gfx_level < CAYMAN ? 1 : 0; // Not Cayman int r = r600_bytecode_add_gds(m_bc, &gds); if (r) { m_result = false; return; } m_bc->cf_last->vpm = PIPE_SHADER_FRAGMENT == m_bc->type; m_bc->cf_last->barrier = 1; } void AssamblerVisitor::visit(const LDSAtomicInstr& instr) { (void)instr; unreachable("LDSAtomicInstr must be lowered to ALUInstr"); } void AssamblerVisitor::visit(const LDSReadInstr& instr) { (void)instr; unreachable("LDSReadInstr must be lowered to ALUInstr"); } EBufferIndexMode AssamblerVisitor::emit_index_reg(const VirtualValue& addr, unsigned idx) { assert(idx < 2); if (!m_bc->index_loaded[idx] || m_loop_nesting || m_bc->index_reg[idx] != (unsigned)addr.sel() || m_bc->index_reg_chan[idx] != (unsigned)addr.chan()) { struct r600_bytecode_alu alu; // Make sure MOVA is not last instr in clause if (!m_bc->cf_last || (m_bc->cf_last->ndw>>1) >= 110) m_bc->force_add_cf = 1; if (m_bc->gfx_level != CAYMAN) { EAluOp idxop = idx ? op1_set_cf_idx1 : op1_set_cf_idx0; memset(&alu, 0, sizeof(alu)); alu.op = opcode_map.at(op1_mova_int); alu.dst.chan = 0; alu.src[0].sel = addr.sel(); alu.src[0].chan = addr.chan(); alu.last = 1; sfn_log << SfnLog::assembly << " mova_int, "; int r = r600_bytecode_add_alu(m_bc, &alu); if (r) return bim_invalid; alu.op = opcode_map.at(idxop); alu.dst.chan = 0; alu.src[0].sel = 0; alu.src[0].chan = 0; alu.last = 1; sfn_log << SfnLog::assembly << "op1_set_cf_idx" << idx; r = r600_bytecode_add_alu(m_bc, &alu); if (r) return bim_invalid; } else { memset(&alu, 0, sizeof(alu)); alu.op = opcode_map.at(op1_mova_int); alu.dst.sel = idx == 0 ? CM_V_SQ_MOVA_DST_CF_IDX0 : CM_V_SQ_MOVA_DST_CF_IDX1; alu.dst.chan = 0; alu.src[0].sel = addr.sel(); alu.src[0].chan = addr.chan(); alu.last = 1; sfn_log << SfnLog::assembly << " mova_int, "; int r = r600_bytecode_add_alu(m_bc, &alu); if (r) return bim_invalid; } m_bc->ar_loaded = 0; m_bc->index_reg[idx] = addr.sel(); m_bc->index_reg_chan[idx] = addr.chan(); m_bc->index_loaded[idx] = true; m_bc->force_add_cf = 1; sfn_log << SfnLog::assembly << "\n"; } return idx == 0 ? bim_zero : bim_one; } void AssamblerVisitor::emit_else() { r600_bytecode_add_cfinst(m_bc, CF_OP_ELSE); m_bc->cf_last->pop_count = 1; m_result &= m_jump_tracker.add_mid(m_bc->cf_last, jt_if); } void AssamblerVisitor::emit_endif() { m_callstack.pop(FC_PUSH_VPM); unsigned force_pop = m_bc->force_add_cf; if (!force_pop) { int alu_pop = 3; if (m_bc->cf_last) { if (m_bc->cf_last->op == CF_OP_ALU) alu_pop = 0; else if (m_bc->cf_last->op == CF_OP_ALU_POP_AFTER) alu_pop = 1; } alu_pop += 1; if (alu_pop == 1) { m_bc->cf_last->op = CF_OP_ALU_POP_AFTER; m_bc->force_add_cf = 1; } else { force_pop = 1; } } if (force_pop) { r600_bytecode_add_cfinst(m_bc, CF_OP_POP); m_bc->cf_last->pop_count = 1; m_bc->cf_last->cf_addr = m_bc->cf_last->id + 2; } m_result &= m_jump_tracker.pop(m_bc->cf_last, jt_if); } void AssamblerVisitor::emit_loop_begin(bool vpm) { r600_bytecode_add_cfinst(m_bc, CF_OP_LOOP_START_DX10); m_bc->cf_last->vpm = vpm && m_bc->type == PIPE_SHADER_FRAGMENT; m_jump_tracker.push(m_bc->cf_last, jt_loop); m_callstack.push(FC_LOOP); ++m_loop_nesting; } void AssamblerVisitor::emit_loop_end() { r600_bytecode_add_cfinst(m_bc, CF_OP_LOOP_END); m_callstack.pop(FC_LOOP); assert(m_loop_nesting); --m_loop_nesting; m_result |= m_jump_tracker.pop(m_bc->cf_last, jt_loop); } void AssamblerVisitor::emit_loop_break() { r600_bytecode_add_cfinst(m_bc, CF_OP_LOOP_BREAK); m_result |= m_jump_tracker.add_mid(m_bc->cf_last, jt_loop); } void AssamblerVisitor::emit_loop_cont() { r600_bytecode_add_cfinst(m_bc, CF_OP_LOOP_CONTINUE); m_result |= m_jump_tracker.add_mid(m_bc->cf_last, jt_loop); } bool AssamblerVisitor::copy_dst(r600_bytecode_alu_dst& dst, const Register& d, bool write) { if (write && d.sel() > 124) { R600_ERR("shader_from_nir: Don't support more then 124 GPRs, but try using %d\n", d.sel()); m_result = false; return false; } dst.sel = d.sel(); dst.chan = d.chan(); if (m_bc->index_reg[1] == dst.sel && m_bc->index_reg_chan[1] == dst.chan) m_bc->index_loaded[1] = false; if (m_bc->index_reg[0] == dst.sel && m_bc->index_reg_chan[0] == dst.chan) m_bc->index_loaded[0] = false; return true; } void AssamblerVisitor::emit_wait_ack() { int r = r600_bytecode_add_cfinst(m_bc, CF_OP_WAIT_ACK); if (!r) { m_bc->cf_last->cf_addr = 0; m_bc->cf_last->barrier = 1; m_ack_suggested = false; } else m_result = false; } class EncodeSourceVisitor : public ConstRegisterVisitor { public: EncodeSourceVisitor(r600_bytecode_alu_src& s, r600_bytecode *bc); void visit(const Register& value) override; void visit(const LocalArray& value) override; void visit(const LocalArrayValue& value) override; void visit(const UniformValue& value) override; void visit(const LiteralConstant& value) override; void visit(const InlineConstant& value) override; r600_bytecode_alu_src& src; r600_bytecode *m_bc; PVirtualValue m_buffer_offset{nullptr}; }; PVirtualValue AssamblerVisitor::copy_src(r600_bytecode_alu_src& src, const VirtualValue& s) { EncodeSourceVisitor visitor(src, m_bc); src.sel = s.sel(); src.chan = s.chan(); s.accept(visitor); return visitor.m_buffer_offset; } EncodeSourceVisitor::EncodeSourceVisitor(r600_bytecode_alu_src& s, r600_bytecode *bc): src(s), m_bc(bc) { } void EncodeSourceVisitor::visit(const Register& value) { assert(value.sel() <= 124 && "Only have 124 registers"); } void EncodeSourceVisitor::visit(const LocalArray& value) { (void)value; unreachable("An array can't be a source register"); } void EncodeSourceVisitor::visit(const LocalArrayValue& value) { src.rel = value.addr() ? 1 : 0; } void EncodeSourceVisitor::visit(const UniformValue& value) { assert(value.sel() >= 512 && "Uniform values must have a sel >= 512"); m_buffer_offset = value.buf_addr(); src.kc_bank = value.kcache_bank(); } void EncodeSourceVisitor::visit(const LiteralConstant& value) { src.value = value.value(); } void EncodeSourceVisitor::visit(const InlineConstant& value) { (void)value; } const std::map opcode_map = { {op2_add, ALU_OP2_ADD}, {op2_mul, ALU_OP2_MUL}, {op2_mul_ieee, ALU_OP2_MUL_IEEE}, {op2_max, ALU_OP2_MAX}, {op2_min, ALU_OP2_MIN}, {op2_max_dx10, ALU_OP2_MAX_DX10}, {op2_min_dx10, ALU_OP2_MIN_DX10}, {op2_sete, ALU_OP2_SETE}, {op2_setgt, ALU_OP2_SETGT}, {op2_setge, ALU_OP2_SETGE}, {op2_setne, ALU_OP2_SETNE}, {op2_sete_dx10, ALU_OP2_SETE_DX10}, {op2_setgt_dx10, ALU_OP2_SETGT_DX10}, {op2_setge_dx10, ALU_OP2_SETGE_DX10}, {op2_setne_dx10, ALU_OP2_SETNE_DX10}, {op1_fract, ALU_OP1_FRACT}, {op1_trunc, ALU_OP1_TRUNC}, {op1_ceil, ALU_OP1_CEIL}, {op1_rndne, ALU_OP1_RNDNE}, {op1_floor, ALU_OP1_FLOOR}, {op2_ashr_int, ALU_OP2_ASHR_INT}, {op2_lshr_int, ALU_OP2_LSHR_INT}, {op2_lshl_int, ALU_OP2_LSHL_INT}, {op1_mov, ALU_OP1_MOV}, {op0_nop, ALU_OP0_NOP}, {op2_mul_64, ALU_OP2_MUL_64}, {op1v_flt64_to_flt32, ALU_OP1_FLT64_TO_FLT32}, {op1v_flt32_to_flt64, ALU_OP1_FLT32_TO_FLT64}, {op2_prede_int, ALU_OP2_PRED_SETE_INT}, {op2_pred_setne_int, ALU_OP2_PRED_SETNE_INT}, {op2_pred_setge_int, ALU_OP2_PRED_SETGE_INT}, {op2_pred_setgt_int, ALU_OP2_PRED_SETGT_INT}, {op2_pred_setgt_uint, ALU_OP2_PRED_SETGT_UINT}, {op2_pred_setge_uint, ALU_OP2_PRED_SETGE_UINT}, {op2_pred_sete, ALU_OP2_PRED_SETE}, {op2_pred_setgt, ALU_OP2_PRED_SETGT}, {op2_pred_setge, ALU_OP2_PRED_SETGE}, {op2_pred_setne, ALU_OP2_PRED_SETNE}, {op0_pred_set_clr, ALU_OP0_PRED_SET_CLR}, {op1_pred_set_restore, ALU_OP1_PRED_SET_RESTORE}, {op2_pred_sete_push, ALU_OP2_PRED_SETE_PUSH}, {op2_pred_setgt_push, ALU_OP2_PRED_SETGT_PUSH}, {op2_pred_setge_push, ALU_OP2_PRED_SETGE_PUSH}, {op2_pred_setne_push, ALU_OP2_PRED_SETNE_PUSH}, {op2_kille, ALU_OP2_KILLE}, {op2_killgt, ALU_OP2_KILLGT}, {op2_killge, ALU_OP2_KILLGE}, {op2_killne, ALU_OP2_KILLNE}, {op2_and_int, ALU_OP2_AND_INT}, {op2_or_int, ALU_OP2_OR_INT}, {op2_xor_int, ALU_OP2_XOR_INT}, {op1_not_int, ALU_OP1_NOT_INT}, {op2_add_int, ALU_OP2_ADD_INT}, {op2_sub_int, ALU_OP2_SUB_INT}, {op2_max_int, ALU_OP2_MAX_INT}, {op2_min_int, ALU_OP2_MIN_INT}, {op2_max_uint, ALU_OP2_MAX_UINT}, {op2_min_uint, ALU_OP2_MIN_UINT}, {op2_sete_int, ALU_OP2_SETE_INT}, {op2_setgt_int, ALU_OP2_SETGT_INT}, {op2_setge_int, ALU_OP2_SETGE_INT}, {op2_setne_int, ALU_OP2_SETNE_INT}, {op2_setgt_uint, ALU_OP2_SETGT_UINT}, {op2_setge_uint, ALU_OP2_SETGE_UINT}, {op2_killgt_uint, ALU_OP2_KILLGT_UINT}, {op2_killge_uint, ALU_OP2_KILLGE_UINT}, {op2_pred_setgt_int, ALU_OP2_PRED_SETGT_INT}, {op2_pred_setge_int, ALU_OP2_PRED_SETGE_INT}, {op2_pred_setne_int, ALU_OP2_PRED_SETNE_INT}, {op2_kille_int, ALU_OP2_KILLE_INT}, {op2_killgt_int, ALU_OP2_KILLGT_INT}, {op2_killge_int, ALU_OP2_KILLGE_INT}, {op2_killne_int, ALU_OP2_KILLNE_INT}, {op2_pred_sete_push_int, ALU_OP2_PRED_SETE_PUSH_INT}, {op2_pred_setgt_push_int, ALU_OP2_PRED_SETGT_PUSH_INT}, {op2_pred_setge_push_int, ALU_OP2_PRED_SETGE_PUSH_INT}, {op2_pred_setne_push_int, ALU_OP2_PRED_SETNE_PUSH_INT}, {op2_pred_setlt_push_int, ALU_OP2_PRED_SETLT_PUSH_INT}, {op2_pred_setle_push_int, ALU_OP2_PRED_SETLE_PUSH_INT}, {op1_flt_to_int, ALU_OP1_FLT_TO_INT}, {op1_bfrev_int, ALU_OP1_BFREV_INT}, {op2_addc_uint, ALU_OP2_ADDC_UINT}, {op2_subb_uint, ALU_OP2_SUBB_UINT}, {op0_group_barrier, ALU_OP0_GROUP_BARRIER}, {op0_group_seq_begin, ALU_OP0_GROUP_SEQ_BEGIN}, {op0_group_seq_end, ALU_OP0_GROUP_SEQ_END}, {op2_set_mode, ALU_OP2_SET_MODE}, {op1_set_cf_idx0, ALU_OP0_SET_CF_IDX0}, {op1_set_cf_idx1, ALU_OP0_SET_CF_IDX1}, {op2_set_lds_size, ALU_OP2_SET_LDS_SIZE}, {op1_exp_ieee, ALU_OP1_EXP_IEEE}, {op1_log_clamped, ALU_OP1_LOG_CLAMPED}, {op1_log_ieee, ALU_OP1_LOG_IEEE}, {op1_recip_clamped, ALU_OP1_RECIP_CLAMPED}, {op1_recip_ff, ALU_OP1_RECIP_FF}, {op1_recip_ieee, ALU_OP1_RECIP_IEEE}, {op1_recipsqrt_clamped, ALU_OP1_RECIPSQRT_CLAMPED}, {op1_recipsqrt_ff, ALU_OP1_RECIPSQRT_FF}, {op1_recipsqrt_ieee1, ALU_OP1_RECIPSQRT_IEEE}, {op1_sqrt_ieee, ALU_OP1_SQRT_IEEE}, {op1_sin, ALU_OP1_SIN}, {op1_cos, ALU_OP1_COS}, {op2_mullo_int, ALU_OP2_MULLO_INT}, {op2_mulhi_int, ALU_OP2_MULHI_INT}, {op2_mullo_uint, ALU_OP2_MULLO_UINT}, {op2_mulhi_uint, ALU_OP2_MULHI_UINT}, {op1_recip_int, ALU_OP1_RECIP_INT}, {op1_recip_uint, ALU_OP1_RECIP_UINT}, {op1_recip_64, ALU_OP2_RECIP_64}, {op1_recip_clamped_64, ALU_OP2_RECIP_CLAMPED_64}, {op1_recipsqrt_64, ALU_OP2_RECIPSQRT_64}, {op1_recipsqrt_clamped_64, ALU_OP2_RECIPSQRT_CLAMPED_64}, {op1_sqrt_64, ALU_OP2_SQRT_64}, {op1_flt_to_uint, ALU_OP1_FLT_TO_UINT}, {op1_int_to_flt, ALU_OP1_INT_TO_FLT}, {op1_uint_to_flt, ALU_OP1_UINT_TO_FLT}, {op2_bfm_int, ALU_OP2_BFM_INT}, {op1_flt32_to_flt16, ALU_OP1_FLT32_TO_FLT16}, {op1_flt16_to_flt32, ALU_OP1_FLT16_TO_FLT32}, {op1_ubyte0_flt, ALU_OP1_UBYTE0_FLT}, {op1_ubyte1_flt, ALU_OP1_UBYTE1_FLT}, {op1_ubyte2_flt, ALU_OP1_UBYTE2_FLT}, {op1_ubyte3_flt, ALU_OP1_UBYTE3_FLT}, {op1_bcnt_int, ALU_OP1_BCNT_INT}, {op1_ffbh_uint, ALU_OP1_FFBH_UINT}, {op1_ffbl_int, ALU_OP1_FFBL_INT}, {op1_ffbh_int, ALU_OP1_FFBH_INT}, {op1_flt_to_uint4, ALU_OP1_FLT_TO_UINT4}, {op2_dot_ieee, ALU_OP2_DOT_IEEE}, {op1_flt_to_int_rpi, ALU_OP1_FLT_TO_INT_RPI}, {op1_flt_to_int_floor, ALU_OP1_FLT_TO_INT_FLOOR}, {op2_mulhi_uint24, ALU_OP2_MULHI_UINT24}, {op1_mbcnt_32hi_int, ALU_OP1_MBCNT_32HI_INT}, {op1_offset_to_flt, ALU_OP1_OFFSET_TO_FLT}, {op2_mul_uint24, ALU_OP2_MUL_UINT24}, {op1_bcnt_accum_prev_int, ALU_OP1_BCNT_ACCUM_PREV_INT}, {op1_mbcnt_32lo_accum_prev_int, ALU_OP1_MBCNT_32LO_ACCUM_PREV_INT}, {op2_sete_64, ALU_OP2_SETE_64}, {op2_setne_64, ALU_OP2_SETNE_64}, {op2_setgt_64, ALU_OP2_SETGT_64}, {op2_setge_64, ALU_OP2_SETGE_64}, {op2_min_64, ALU_OP2_MIN_64}, {op2_max_64, ALU_OP2_MAX_64}, {op2_dot4, ALU_OP2_DOT4}, {op2_dot4_ieee, ALU_OP2_DOT4_IEEE}, {op2_cube, ALU_OP2_CUBE}, {op1_max4, ALU_OP1_MAX4}, {op1_frexp_64, ALU_OP1_FREXP_64}, {op1_ldexp_64, ALU_OP2_LDEXP_64}, {op1_fract_64, ALU_OP1_FRACT_64}, {op2_pred_setgt_64, ALU_OP2_PRED_SETGT_64}, {op2_pred_sete_64, ALU_OP2_PRED_SETE_64}, {op2_pred_setge_64, ALU_OP2_PRED_SETGE_64}, {op2_add_64, ALU_OP2_ADD_64}, {op1_mova_int, ALU_OP1_MOVA_INT}, {op1v_flt64_to_flt32, ALU_OP1_FLT64_TO_FLT32}, {op1_flt32_to_flt64, ALU_OP1_FLT32_TO_FLT64}, {op2_sad_accum_prev_uint, ALU_OP2_SAD_ACCUM_PREV_UINT}, {op2_dot, ALU_OP2_DOT}, {op1_mul_prev, ALU_OP1_MUL_PREV}, {op1_mul_ieee_prev, ALU_OP1_MUL_IEEE_PREV}, {op1_add_prev, ALU_OP1_ADD_PREV}, {op2_muladd_prev, ALU_OP2_MULADD_PREV}, {op2_muladd_ieee_prev, ALU_OP2_MULADD_IEEE_PREV}, {op2_interp_xy, ALU_OP2_INTERP_XY}, {op2_interp_zw, ALU_OP2_INTERP_ZW}, {op2_interp_x, ALU_OP2_INTERP_X}, {op2_interp_z, ALU_OP2_INTERP_Z}, {op0_store_flags, ALU_OP1_STORE_FLAGS}, {op1_load_store_flags, ALU_OP1_LOAD_STORE_FLAGS}, {op0_lds_1a, ALU_OP2_LDS_1A}, {op0_lds_1a1d, ALU_OP2_LDS_1A1D}, {op0_lds_2a, ALU_OP2_LDS_2A}, {op1_interp_load_p0, ALU_OP1_INTERP_LOAD_P0}, {op1_interp_load_p10, ALU_OP1_INTERP_LOAD_P10}, {op1_interp_load_p20, ALU_OP1_INTERP_LOAD_P20}, {op3_bfe_uint, ALU_OP3_BFE_UINT}, {op3_bfe_int, ALU_OP3_BFE_INT}, {op3_bfi_int, ALU_OP3_BFI_INT}, {op3_fma, ALU_OP3_FMA}, {op3_cndne_64, ALU_OP3_CNDNE_64}, {op3_fma_64, ALU_OP3_FMA_64}, {op3_lerp_uint, ALU_OP3_LERP_UINT}, {op3_bit_align_int, ALU_OP3_BIT_ALIGN_INT}, {op3_byte_align_int, ALU_OP3_BYTE_ALIGN_INT}, {op3_sad_accum_uint, ALU_OP3_SAD_ACCUM_UINT}, {op3_sad_accum_hi_uint, ALU_OP3_SAD_ACCUM_HI_UINT}, {op3_muladd_uint24, ALU_OP3_MULADD_UINT24}, {op3_lds_idx_op, ALU_OP3_LDS_IDX_OP}, {op3_muladd, ALU_OP3_MULADD}, {op3_muladd_m2, ALU_OP3_MULADD_M2}, {op3_muladd_m4, ALU_OP3_MULADD_M4}, {op3_muladd_d2, ALU_OP3_MULADD_D2}, {op3_muladd_ieee, ALU_OP3_MULADD_IEEE}, {op3_cnde, ALU_OP3_CNDE}, {op3_cndgt, ALU_OP3_CNDGT}, {op3_cndge, ALU_OP3_CNDGE}, {op3_cnde_int, ALU_OP3_CNDE_INT}, {op3_cndgt_int, ALU_OP3_CNDGT_INT}, {op3_cndge_int, ALU_OP3_CNDGE_INT}, {op3_mul_lit, ALU_OP3_MUL_LIT}, }; const std::map ds_opcode_map = { {DS_OP_ADD, FETCH_OP_GDS_ADD}, {DS_OP_SUB, FETCH_OP_GDS_SUB}, {DS_OP_RSUB, FETCH_OP_GDS_RSUB}, {DS_OP_INC, FETCH_OP_GDS_INC}, {DS_OP_DEC, FETCH_OP_GDS_DEC}, {DS_OP_MIN_INT, FETCH_OP_GDS_MIN_INT}, {DS_OP_MAX_INT, FETCH_OP_GDS_MAX_INT}, {DS_OP_MIN_UINT, FETCH_OP_GDS_MIN_UINT}, {DS_OP_MAX_UINT, FETCH_OP_GDS_MAX_UINT}, {DS_OP_AND, FETCH_OP_GDS_AND}, {DS_OP_OR, FETCH_OP_GDS_OR}, {DS_OP_XOR, FETCH_OP_GDS_XOR}, {DS_OP_MSKOR, FETCH_OP_GDS_MSKOR}, {DS_OP_WRITE, FETCH_OP_GDS_WRITE}, {DS_OP_WRITE_REL, FETCH_OP_GDS_WRITE_REL}, {DS_OP_WRITE2, FETCH_OP_GDS_WRITE2}, {DS_OP_CMP_STORE, FETCH_OP_GDS_CMP_STORE}, {DS_OP_CMP_STORE_SPF, FETCH_OP_GDS_CMP_STORE_SPF}, {DS_OP_BYTE_WRITE, FETCH_OP_GDS_BYTE_WRITE}, {DS_OP_SHORT_WRITE, FETCH_OP_GDS_SHORT_WRITE}, {DS_OP_ADD_RET, FETCH_OP_GDS_ADD_RET}, {DS_OP_SUB_RET, FETCH_OP_GDS_SUB_RET}, {DS_OP_RSUB_RET, FETCH_OP_GDS_RSUB_RET}, {DS_OP_INC_RET, FETCH_OP_GDS_INC_RET}, {DS_OP_DEC_RET, FETCH_OP_GDS_DEC_RET}, {DS_OP_MIN_INT_RET, FETCH_OP_GDS_MIN_INT_RET}, {DS_OP_MAX_INT_RET, FETCH_OP_GDS_MAX_INT_RET}, {DS_OP_MIN_UINT_RET, FETCH_OP_GDS_MIN_UINT_RET}, {DS_OP_MAX_UINT_RET, FETCH_OP_GDS_MAX_UINT_RET}, {DS_OP_AND_RET, FETCH_OP_GDS_AND_RET}, {DS_OP_OR_RET, FETCH_OP_GDS_OR_RET}, {DS_OP_XOR_RET, FETCH_OP_GDS_XOR_RET}, {DS_OP_MSKOR_RET, FETCH_OP_GDS_MSKOR_RET}, {DS_OP_XCHG_RET, FETCH_OP_GDS_XCHG_RET}, {DS_OP_XCHG_REL_RET, FETCH_OP_GDS_XCHG_REL_RET}, {DS_OP_XCHG2_RET, FETCH_OP_GDS_XCHG2_RET}, {DS_OP_CMP_XCHG_RET, FETCH_OP_GDS_CMP_XCHG_RET}, {DS_OP_CMP_XCHG_SPF_RET, FETCH_OP_GDS_CMP_XCHG_SPF_RET}, {DS_OP_READ_RET, FETCH_OP_GDS_READ_RET}, {DS_OP_READ_REL_RET, FETCH_OP_GDS_READ_REL_RET}, {DS_OP_READ2_RET, FETCH_OP_GDS_READ2_RET}, {DS_OP_READWRITE_RET, FETCH_OP_GDS_READWRITE_RET}, {DS_OP_BYTE_READ_RET, FETCH_OP_GDS_BYTE_READ_RET}, {DS_OP_UBYTE_READ_RET, FETCH_OP_GDS_UBYTE_READ_RET}, {DS_OP_SHORT_READ_RET, FETCH_OP_GDS_SHORT_READ_RET}, {DS_OP_USHORT_READ_RET, FETCH_OP_GDS_USHORT_READ_RET}, {DS_OP_ATOMIC_ORDERED_ALLOC_RET, FETCH_OP_GDS_ATOMIC_ORDERED_ALLOC}, {DS_OP_INVALID, 0}, }; }