// Copyright 2018 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "util/sys_info.h" #include "base/logging.h" #include "util/build_config.h" #if defined(OS_POSIX) #include #include #endif #if defined(OS_WIN) #include #include "base/win/registry.h" #endif bool IsLongPathsSupportEnabled() { #if defined(OS_WIN) struct LongPathSupport { LongPathSupport() { // Probe ntdll.dll for RtlAreLongPathsEnabled, and call it if it exists. HINSTANCE ntdll_lib = GetModuleHandleW(L"ntdll"); if (ntdll_lib) { using FunctionType = BOOLEAN(WINAPI*)(); auto func_ptr = reinterpret_cast( GetProcAddress(ntdll_lib, "RtlAreLongPathsEnabled")); if (func_ptr) { supported = func_ptr(); return; } } // If the ntdll approach failed, the registry approach is still reliable, // because the manifest should've always be linked with gn.exe in Windows. const char16_t key_name[] = uR"(SYSTEM\CurrentControlSet\Control\FileSystem)"; const char16_t value_name[] = u"LongPathsEnabled"; base::win::RegKey key(HKEY_LOCAL_MACHINE, key_name, KEY_READ); DWORD value; if (key.ReadValueDW(value_name, &value) == ERROR_SUCCESS) { supported = value == 1; } } bool supported = false; }; static LongPathSupport s_long_paths; // constructed lazily return s_long_paths.supported; #else return true; #endif } std::string OperatingSystemArchitecture() { #if defined(OS_POSIX) struct utsname info; if (uname(&info) < 0) { NOTREACHED(); return std::string(); } std::string arch(info.machine); std::string os(info.sysname); if (arch == "i386" || arch == "i486" || arch == "i586" || arch == "i686") { arch = "x86"; } else if (arch == "i86pc") { // Solaris and illumos systems report 'i86pc' (an Intel x86 PC) as their // machine for both 32-bit and 64-bit x86 systems. Considering the rarity // of 32-bit systems at this point, it is safe to assume 64-bit. arch = "x86_64"; } else if (arch == "amd64") { arch = "x86_64"; } else if (os == "AIX" || os == "OS400") { arch = "ppc64"; } else if (std::string(info.sysname) == "OS/390") { arch = "s390x"; } return arch; #elif defined(OS_WIN) SYSTEM_INFO system_info = {}; ::GetNativeSystemInfo(&system_info); switch (system_info.wProcessorArchitecture) { case PROCESSOR_ARCHITECTURE_INTEL: return "x86"; case PROCESSOR_ARCHITECTURE_AMD64: return "x86_64"; case PROCESSOR_ARCHITECTURE_IA64: return "ia64"; } return std::string(); #else #error #endif } int NumberOfProcessors() { #if defined(OS_ZOS) return __get_num_online_cpus(); #elif defined(OS_POSIX) // sysconf returns the number of "logical" (not "physical") processors on both // Mac and Linux. So we get the number of max available "logical" processors. // // Note that the number of "currently online" processors may be fewer than the // returned value of NumberOfProcessors(). On some platforms, the kernel may // make some processors offline intermittently, to save power when system // loading is low. // // One common use case that needs to know the processor count is to create // optimal number of threads for optimization. It should make plan according // to the number of "max available" processors instead of "currently online" // ones. The kernel should be smart enough to make all processors online when // it has sufficient number of threads waiting to run. long res = sysconf(_SC_NPROCESSORS_CONF); if (res == -1) { NOTREACHED(); return 1; } return static_cast(res); #elif defined(OS_WIN) // On machines with more than 64 logical processors this will not return the // full number of processors. Instead it will return the number of processors // in one processor group - something smaller than 65. However this is okay // because gn doesn't parallelize well beyond 10-20 threads - it starts to run // slower. SYSTEM_INFO system_info = {}; ::GetNativeSystemInfo(&system_info); return system_info.dwNumberOfProcessors; #else #error #endif }