Lines Matching refs:val

160 	def unary(func):	return lambda val: val.applyUnary(func)
166 def frac(val): return val.applyUnary(lambda x: x - math.floor(x))
169 def exp2(val): return val.applyUnary(lambda x: math.pow(2.0, x))
172 def log2(val): return val.applyUnary(lambda x: math.log(x, 2.0))
175 def rsq(val): return val.applyUnary(lambda x: 1.0 / math.sqrt(x))
178 def sign(val): return val.applyUnary(glslSign)
224 def expandVec(self, val): return val
273 def __add__(self, val):
274 assert isinstance(val, Scalar)
275 return Scalar(self.x + val.x)
277 def __sub__(self, val):
278 return self + (-val)
280 def __mul__(self, val):
281 if isinstance(val, Scalar):
282 return Scalar(self.x * val.x)
283 elif isinstance(val, Vec2):
284 return Vec2(self.x * val.x, self.x * val.y)
285 elif isinstance(val, Vec3):
286 return Vec3(self.x * val.x, self.x * val.y, self.x * val.z)
287 elif isinstance(val, Vec4):
288 return Vec4(self.x * val.x, self.x * val.y, self.x * val.z, self.x * val.w)
292 def __div__(self, val):
293 if isinstance(val, Scalar):
294 return Scalar(self.x / val.x)
295 elif isinstance(val, Vec2):
296 return Vec2(self.x / val.x, self.x / val.y)
297 elif isinstance(val, Vec3):
298 return Vec3(self.x / val.x, self.x / val.y, self.x / val.z)
299 elif isinstance(val, Vec4):
300 return Vec4(self.x / val.x, self.x / val.y, self.x / val.z, self.x / val.w)
340 def expandVec(self, val): return val.toVec2()
388 def __add__(self, val):
389 if isinstance(val, Scalar):
390 return Vec2(self.x + val, self.y + val)
391 elif isinstance(val, Vec2):
392 return Vec2(self.x + val.x, self.y + val.y)
396 def __sub__(self, val):
397 return self + (-val)
399 def __mul__(self, val):
400 if isinstance(val, Scalar):
401 val = val.toVec2()
402 assert isinstance(val, Vec2)
403 return Vec2(self.x * val.x, self.y * val.y)
405 def __div__(self, val):
406 if isinstance(val, Scalar):
407 return Vec2(self.x / val.x, self.y / val.x)
409 assert isinstance(val, Vec2)
410 return Vec2(self.x / val.x, self.y / val.y)
426 def expandVec(self, val): return val.toVec3()
480 def __add__(self, val):
481 if isinstance(val, Scalar):
482 return Vec3(self.x + val, self.y + val)
483 elif isinstance(val, Vec3):
484 return Vec3(self.x + val.x, self.y + val.y, self.z + val.z)
488 def __sub__(self, val):
489 return self + (-val)
491 def __mul__(self, val):
492 if isinstance(val, Scalar):
493 val = val.toVec3()
494 assert isinstance(val, Vec3)
495 return Vec3(self.x * val.x, self.y * val.y, self.z * val.z)
497 def __div__(self, val):
498 if isinstance(val, Scalar):
499 return Vec3(self.x / val.x, self.y / val.x, self.z / val.x)
518 def expandVec(self, val): return val.toVec4()
567 def __add__(self, val):
568 if isinstance(val, Scalar):
569 return Vec3(self.x + val, self.y + val)
570 elif isinstance(val, Vec4):
571 return Vec4(self.x + val.x, self.y + val.y, self.z + val.z, self.w + val.w)
575 def __sub__(self, val):
576 return self + (-val)
578 def __mul__(self, val):
579 if isinstance(val, Scalar):
580 val = val.toVec4()
581 assert isinstance(val, Vec4)
582 return Vec4(self.x * val.x, self.y * val.y, self.z * val.z, self.w * val.w)
584 def __div__(self, val):
585 if isinstance(val, Scalar):
586 return Vec4(self.x / val.x, self.y / val.x, self.z / val.x, self.w / val.x)
653 def compMul(self, val):
654 assert self.isTypeEqual(val)
655 return Mat(self.numRows, self.numCols, [self.scalars(i) * val.scalars(i) for i in range(self.numRows*self.numCols)])