Lines Matching refs:hypot
238 r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
241 r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
277 r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
332 r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
335 r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
434 h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
449 r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
609 The usual formula for the real part is log(hypot(z.real, z.imag)).
613 (1) the absolute value of z is subnormal. Then hypot is subnormal,
645 r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
648 /* catch cases where hypot(ax, ay) is subnormal */
649 r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
660 h = hypot(ax, ay);
795 s = sqrt((x + hypot(x, y))/2)
802 computation of the expression x + hypot(x, y). We can avoid this
805 s = 2*sqrt(x/8 + hypot(x/8, y/8))
810 If both x and y are subnormal then hypot(x, y) may also be
833 /* here we catch cases where hypot(ax, ay) is subnormal */
835 s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
839 s = 2.*sqrt(ax + hypot(ax, ay/8.));