Lines Matching defs:sum
531 double sum = 0.0;
536 sum += GETRAWSAMPLE(width, fragment->buf, i);
540 avg = (int)floor(sum / (double)(fragment->len/width));
551 Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).
578 double sum = 0.0;
581 sum = sum + (double)a[i]*(double)b[i];
583 return sum;
596 ** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
597 ** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
601 ** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 ) =>
602 ** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
611 ** sum_ri_2 sum(R[i]^2)
612 ** sum_aij_2 sum(A[i+j]^2)
613 ** sum_aij_ri sum(A[i+j]R[i])
805 double sum = 0.0;
825 sum += (double)((unsigned int)prevextreme -
828 sum += (double)((unsigned int)prevval -
842 avg = (unsigned int)(sum / (double)nextreme);