Lines Matching refs:factorial
56 # Here's a pure Python version of the math.factorial algorithm, for
61 # factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
97 described at http://www.luschny.de/math/factorial/binarysplitfact.html
522 self.assertEqual(math.factorial(0), 1)
526 self.assertEqual(math.factorial(i), total)
527 self.assertEqual(math.factorial(i), py_factorial(i))
528 self.assertRaises(ValueError, math.factorial, -1)
529 self.assertRaises(ValueError, math.factorial, -10**100)
532 self.assertRaises(TypeError, math.factorial, 5.0)
533 self.assertRaises(TypeError, math.factorial, 5.2)
534 self.assertRaises(TypeError, math.factorial, -1.0)
535 self.assertRaises(TypeError, math.factorial, -1e100)
536 self.assertRaises(TypeError, math.factorial, decimal.Decimal('5'))
537 self.assertRaises(TypeError, math.factorial, decimal.Decimal('5.2'))
538 self.assertRaises(TypeError, math.factorial, "5")
545 self.assertRaises(OverflowError, math.factorial, 10**100)
546 self.assertRaises(TypeError, math.factorial, 1e100)
1895 factorial = math.factorial
1896 # Test if factorial definition is satisfied
1900 factorial(n) // factorial(n - k))
1911 self.assertEqual(perm(n, n), factorial(n))
1915 self.assertEqual(perm(n), factorial(n))
1916 self.assertEqual(perm(n, None), factorial(n))
1959 factorial = math.factorial
1960 # Test if factorial definition is satisfied
1963 self.assertEqual(comb(n, k), factorial(n)
1964 // (factorial(k) * factorial(n - k)))