Lines Matching defs:numerator
27 (?P<num>\d*|\d+(_\d+)*) # numerator (possibly empty)
43 be Rational. The numerator defaults to 0 and the denominator
62 def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
66 numerator/denominator pair, or a float.
96 if type(numerator) is int:
97 self._numerator = numerator
101 elif isinstance(numerator, numbers.Rational):
102 self._numerator = numerator.numerator
103 self._denominator = numerator.denominator
106 elif isinstance(numerator, (float, Decimal)):
108 self._numerator, self._denominator = numerator.as_integer_ratio()
111 elif isinstance(numerator, str):
113 m = _RATIONAL_FORMAT.match(numerator)
116 numerator)
117 numerator = int(m.group('num') or '0')
127 numerator = numerator * scale + int(decimal)
133 numerator *= 10**exp
137 numerator = -numerator
143 elif type(numerator) is int is type(denominator):
146 elif (isinstance(numerator, numbers.Rational) and
148 numerator, denominator = (
149 numerator.numerator * denominator.denominator,
150 denominator.numerator * numerator.denominator
157 raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
159 g = math.gcd(numerator, denominator)
162 numerator //= g
164 self._numerator = numerator
258 def numerator(a):
294 return Fraction(self.numerator * other.denominator +
295 other.numerator * self.denominator,
310 return Fraction(self.numerator * other.denominator +
311 other.numerator * self.denominator,
428 # g is a power of 2 and the unnormalized numerator t is an odd integer.
441 # two factors in the numerator is coprime to each of the two factors
454 na, da = a.numerator, a.denominator
455 nb, db = b.numerator, b.denominator
470 na, da = a.numerator, a.denominator
471 nb, db = b.numerator, b.denominator
486 na, da = a.numerator, a.denominator
487 nb, db = b.numerator, b.denominator
503 na, da = a.numerator, a.denominator
504 nb, db = b.numerator, b.denominator
522 return (a.numerator * b.denominator) // (a.denominator * b.numerator)
529 div, n_mod = divmod(a.numerator * db, da * b.numerator)
537 return Fraction((a.numerator * db) % (b.numerator * da), da * db)
551 power = b.numerator
578 return Fraction(a.numerator, a.denominator) ** b
613 return a.numerator // a.denominator
618 return -(-a.numerator // a.denominator)
626 floor, remainder = divmod(self.numerator, self.denominator)
683 return (a._numerator == b.numerator and
712 self._denominator * other.numerator)