Lines Matching defs:bytecode
439 // Underlying function needs to have bytecode available.
935 // Advance the current bytecode offset. This simulates what all bytecode
937 // label if the bytecode (without prefix) is a return bytecode. Will not advance
938 // the bytecode offset if the current bytecode is a JumpLoop, instead just
939 // re-executing the JumpLoop to jump to the correct bytecode.
943 Register bytecode, Register scratch1,
948 // The bytecode offset value will be increased by one in wide and extra wide
949 // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
950 // will restore the original bytecode. In order to simplify the code, we have
953 DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
958 // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
965 __ Branch(&process_bytecode, hi, bytecode, Operand(3));
966 __ And(scratch2, bytecode, Operand(1));
969 // Load the next bytecode and update table to the wide scaled table.
972 __ Lbu(bytecode, MemOperand(scratch2));
978 // Load the next bytecode and update table to the extra wide scaled table.
981 __ Lbu(bytecode, MemOperand(scratch2));
987 // Bailout to the return label if this is a return bytecode.
989 __ Branch(if_return, eq, bytecode, \
997 __ Branch(¬_jump_loop, ne, bytecode,
1000 // increased it to skip the wide / extra-wide prefix bytecode.
1005 // Otherwise, load the size of the current bytecode and advance the offset.
1006 __ Daddu(scratch2, bytecode_size_table, bytecode);
1128 // We'll use the bytecode for both code age/OSR resetting, and pushing onto
1136 // store the bytecode offset.
1224 // Get the bytecode array from the function object and load it into
1234 // The bytecode array could have been flushed from the shared function info,
1284 // Load initial bytecode offset.
1288 // Push bytecode array and Smi tagged bytecode array offset.
1318 // If the bytecode array has a valid incoming new target or generator object
1339 // Load the dispatch table into a register and dispatch to the bytecode
1340 // handler at the current bytecode offset.
1353 // Any returns to the entry trampoline are either due to the return bytecode
1356 // Get bytecode array and bytecode offset from the stack frame.
1363 // Either return, or advance to the next bytecode and dispatch.
1379 // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
1388 // After the call, restore the bytecode array, bytecode offset and accumulator
1389 // registers again. Also, restore the bytecode offset in the stack to its
1612 // Get the bytecode array pointer from the frame.
1628 // Get the target bytecode offset from the frame.
1641 // Dispatch to the target bytecode.
1651 // Advance the current bytecode offset stored within the given interpreter
1652 // stack frame. This simulates what all bytecode handlers do upon completion
1665 // Load the current bytecode.
1670 // Advance to the next bytecode.
1677 // Convert new bytecode offset to a Smi and save in the stackframe.
1686 // not a valid bytecode offset. Detect this case and advance to the first
1687 // actual bytecode.
1807 // JavaScript frame. This is the case then OSR is triggered from bytecode.
3617 // bytecode. If there is baseline code on the shared function info, converts an
3619 // code. Otherwise execution continues with bytecode.
3644 // Start with bytecode as there is no baseline code.
3682 // Compute baseline pc for bytecode offset.
3697 // not a valid bytecode offset.
3712 // Get bytecode array from the stack frame.
3748 // If the bytecode offset is kFunctionEntryOffset, get the start address of
3749 // the first bytecode.