Lines Matching defs:bytecode
743 // Underlying function needs to have bytecode available.
925 // Advance the current bytecode offset. This simulates what all bytecode
927 // label if the bytecode (without prefix) is a return bytecode. Will not advance
928 // the bytecode offset if the current bytecode is a JumpLoop, instead just
929 // re-executing the JumpLoop to jump to the correct bytecode.
933 Register bytecode, Register scratch1,
939 // The bytecode offset value will be increased by one in wide and extra wide
940 // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
941 // will restore the original bytecode. In order to simplify the code, we have
944 DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
949 // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
956 __ Branch(&process_bytecode, hi, bytecode, Operand(3));
957 __ And(scratch2, bytecode, Operand(1));
960 // Load the next bytecode and update table to the wide scaled table.
963 __ lbu(bytecode, MemOperand(scratch2));
969 // Load the next bytecode and update table to the extra wide scaled table.
972 __ lbu(bytecode, MemOperand(scratch2));
978 // Bailout to the return label if this is a return bytecode.
980 __ Branch(if_return, eq, bytecode, \
988 __ Branch(¬_jump_loop, ne, bytecode,
991 // increased it to skip the wide / extra-wide prefix bytecode.
996 // Otherwise, load the size of the current bytecode and advance the offset.
997 __ Addu(scratch2, bytecode_size_table, bytecode);
1120 // We'll use the bytecode for both code age/OSR resetting, and pushing onto
1128 // store the bytecode offset.
1216 // Get the bytecode array from the function object and load it into
1226 // The bytecode array could have been flushed from the shared function info,
1276 // Load initial bytecode offset.
1280 // Push bytecode array and Smi tagged bytecode array offset.
1310 // If the bytecode array has a valid incoming new target or generator object
1331 // Load the dispatch table into a register and dispatch to the bytecode
1332 // handler at the current bytecode offset.
1345 // Any returns to the entry trampoline are either due to the return bytecode
1348 // Get bytecode array and bytecode offset from the stack frame.
1354 // Either return, or advance to the next bytecode and dispatch.
1370 // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
1379 // After the call, restore the bytecode array, bytecode offset and accumulator
1380 // registers again. Also, restore the bytecode offset in the stack to its
1606 // Get the bytecode array pointer from the frame.
1622 // Get the target bytecode offset from the frame.
1636 // Dispatch to the target bytecode.
1646 // Advance the current bytecode offset stored within the given interpreter
1647 // stack frame. This simulates what all bytecode handlers do upon completion
1660 // Load the current bytecode.
1665 // Advance to the next bytecode.
1672 // Convert new bytecode offset to a Smi and save in the stackframe.
1681 // not a valid bytecode offset. Detect this case and advance to the first
1682 // actual bytecode.
1803 // JavaScript frame. This is the case then OSR is triggered from bytecode.
4038 // bytecode. If there is baseline code on the shared function info, converts an
4040 // code. Otherwise execution continues with bytecode.
4065 // Start with bytecode as there is no baseline code.
4104 // Compute baseline pc for bytecode offset.
4119 // not a valid bytecode offset.
4134 // Get bytecode array from the stack frame.
4170 // If the bytecode offset is kFunctionEntryOffset, get the start address of
4171 // the first bytecode.