Lines Matching defs:exponent

16 static int NormalizedExponent(uint64_t significand, int exponent) {
20 exponent = exponent - 1;
22 return exponent;
27 static int EstimatePower(int exponent);
67 int exponent = Double(v).Exponent();
68 int normalized_exponent = NormalizedExponent(significand, exponent);
231 // exponent (decimal_point), when rounding upwards.
316 // v = f * 2^exponent and 2^52 <= f < 2^53.
317 // v is hence a normalized double with the given exponent. The output is an
318 // approximation for the exponent of the decimal approimation .digits * 10^k.
330 static int EstimatePower(int exponent) {
331 // This function estimates log10 of v where v = f*2^e (with e == exponent).
357 std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
365 // A positive exponent implies a positive power.
392 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
393 // have to test it in the other function where exponent < 0).
410 int exponent = Double(v).Exponent();
416 // since v = significand * 2^exponent this is equivalent to
417 // numerator = v * / 2^-exponent
419 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
421 denominator->ShiftLeft(-exponent);
430 // Given that the denominator already includes v's exponent the distance
439 // then the distance is 1 ulp. Since the exponent is close to zero
459 int exponent = Double(v).Exponent();
476 // since v = significand * 2^exponent this is equivalent to
477 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
483 // denominator = 2 * 2^-exponent with exponent < 0.
485 denominator->ShiftLeft(-exponent);
511 // Let v = significand * 2^exponent.