Lines Matching refs:one
41 * n0 = ((*(int*)&one)>>29)^1; * index of high word *
307 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
320 if (static_cast<int>(x) == 0) return one; /* generate inexact */
325 return one - (0.5 * z - (z * r - x * y));
333 a = one - qx;
375 * precison, one may have to do something like:
466 one = 1.0,
547 z = one - z;
548 if (carry != 0) z -= scalbn(one, q0);
593 fw = scalbn(one, q0);
748 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
752 #define one xxx[13]
767 return one / fabs(x);
777 t = a = -one / w;
779 s = one + t * z;
831 #undef one
864 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
898 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
902 z = (one + x) * 0.5;
904 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
910 z = (one - x) * 0.5;
916 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
938 one = 1.0,
956 return log(2.0 * x - one / (x + sqrt(t - one)));
958 t = x - one;
993 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
1025 if (huge + x > one) return x; /* return x with inexact if x!=0*/
1030 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
1035 w = one - fabs(x);
1038 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
1069 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
1079 if (huge + x > one) return x; /* return x inexact except 0 */
1085 w = log(2.0 * t + one / (sqrt(x * x + one) + t));
1088 w = log1p(fabs(x) + t / (one + sqrt(one + t)));
1101 * is further reduced to one of the following intervals and the
1145 static const double one = 1.0, huge = 1.0e300;
1164 if (huge + x > one) return x; /* raise inexact */
1172 x = (2.0 * x - one) / (2.0 + x);
1175 x = (x - one) / (x + one);
1180 x = (x - 1.5) / (one + 1.5 * x);
1445 one = 1.0,
1507 if (huge + x > one) return one + x; /* trigger inexact */
1524 return one - ((x * c) / (c - 2.0) - x);
1526 y = one - ((lo - (x * c) / (2.0 - c)) - hi);
1554 static const double one = 1.0, huge = 1e300;
1574 t = 0.5 * log1p(t + t * x / (one - x));
1576 t = 0.5 * log1p((x + x) / (one - x));
1727 * (Note: when x > 2**53, one can simply return log(x))
1839 * strict bounds than the one here so that the k==0 case is
2178 * (A). To save one multiplication, we scale the coefficient Qi
2211 one = 1.0,
2250 return tiny - one; /* return -1 */
2284 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
2301 return one + 2.0 * (x - e);
2304 y = one - (e - x);
2312 return y - one;
2314 t = one;
2322 y += one;
2403 /* one step Newton iteration to 53 bits with error < 0.667 ulps */
2548 static const double one = 1.0, half = 0.5;
2560 double w = one + t;
2563 return one + (t * t) / (w + w);
2642 zero = 0.0, one = 1.0, two = 2.0,
2682 if ((iy | ly) == 0) return one;
2724 return base::Divide(one, x);
2742 if (hy < 0) z = base::Divide(one, z); /* z = (1/|x|) */
2762 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
2763 if ((n | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */
2771 /* over/underflow if x is not close to one */
2776 t = ax - one; /* t has 20 trailing zeros */
2809 v = base::Divide(one, ax + bp[k]);
2887 z = one - (r - z);
2977 static const double one = 1.0, two = 2.0, huge = 1.0e300;
2987 return one / x + one; /* tanh(+-inf)=+-1 */
2989 return one / x - one; /* tanh(NaN) = NaN */
2995 if (huge + x > one) return x; /* tanh(tiny) = tiny with inexact */
2999 z = one - two / (t + two);
3006 z = one - tiny; /* raise inexact flag */