Lines Matching defs:tan
701 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
704 * Input k indicates whether tan (if k=1) or
705 * -1/tan (if k= -1) is returned.
708 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
710 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
713 * tan(x) ~ x + T1*x + ... + T13*x
716 * |tan(x) 2 4 26 | -59.2
720 * Note: tan(x+y) = tan(x) + tan'(x)*y
721 * ~ tan(x) + (1+x*x)*y
722 * Therefore, for better accuracy in computing tan(x+y), let
727 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
730 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
731 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
1330 * Let S,C and T denote the sin, cos and tan respectively on
1335 * n sin(x) cos(x) tan(x)
1344 * Let trig be any of sin, cos, or tan.
2422 * Let S,C and T denote the sin, cos and tan respectively on
2427 * n sin(x) cos(x) tan(x)
2436 * Let trig be any of sin, cos, or tan.
2473 /* tan(x)
2481 * Let S,C and T denote the sin, cos and tan respectively on
2486 * n sin(x) cos(x) tan(x)
2495 * Let trig be any of sin, cos, or tan.
2502 double tan(double x) {
2514 /* tan(Inf or NaN) is NaN */