Lines Matching defs:log1p
930 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
959 return log1p(t + sqrt(2.0 * t + t * t));
1065 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
1088 w = log1p(fabs(x) + t / (one + sqrt(one + t)));
1541 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
1545 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
1574 t = 0.5 * log1p(t + t * x / (one - x));
1576 t = 0.5 * log1p((x + x) / (one - x));
1715 /* double log1p(double x)
1729 * 2. Approximation of log1p(f).
1747 * log1p(f) = f - (hfsq - s*(hfsq+R)).
1749 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
1756 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
1757 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
1758 * log1p(NaN) is that NaN with no signal.
1771 * algorithm can be used to compute log1p(x) to within a few ULP:
1779 double log1p(double x) {
1804 return -std::numeric_limits<double>::infinity(); /* log1p(-1)=+inf */
1806 return std::numeric_limits<double>::signaling_NaN(); // log1p(x<-1)=NaN