Lines Matching defs:asin
841 * acos(x) = pi/2 - asin(x)
842 * acos(-x) = pi/2 + asin(x)
844 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
846 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
847 * = 2asin(sqrt((1-x)/2))
853 * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
963 /* asin(x)
965 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
966 * we approximate asin(x) on [0,0.5] by
967 * asin(x) = x + x*x^2*R(x^2)
969 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
971 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
974 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
977 * asin(x) = pi/2 - 2*(s+s*z*R(z))
983 * asin(x) = pi/2 - 2*(s+s*z*R(z))
991 double asin(double x) {
1019 if (((ix - 0x3FF00000) | lx) == 0) { /* asin(1)=+-pi/2 with inexact */
1022 return std::numeric_limits<double>::signaling_NaN(); // asin(|x|>1) is NaN