Lines Matching defs:tan
748 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
751 * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
754 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
756 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
759 * tan(x) ~ x + T1*x + ... + T13*x
762 * |tan(x) 2 4 26 | -59.2
766 * Note: tan(x+y) = tan(x) + tan'(x)*y
767 * ~ tan(x) + (1+x*x)*y
768 * Therefore, for better accuracy in computing tan(x+y), let
773 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
776 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
777 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
890 * Let S,C and T denote the sin, cos and tan respectively on
895 * n sin(x) cos(x) tan(x)
904 * Let trig be any of sin, cos, or tan.
1025 /* tan(x)
1034 tan (double x)
1049 /* tan(Inf or NaN) is NaN */
1061 } /* tan */