Lines Matching defs:and
9 THE SOFTWARE is provided on an "AS IS" basis and without warranty.
13 and any warranty against infringement with regard to the SOFTWARE
14 (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
21 Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
23 You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
24 so long as this entire notice is retained without alteration in any modified and/or
25 redistributed versions, and that such modified versions are clearly identified as such.
32 # and contains the entry points into the package. The user, in
472 set nzi_mask, 0x01ffffff #clears N, Z, and I
572 # copy, convert, and tag input argument
629 # copy, convert, and tag input argument
687 # copy, convert, and tag input argument
749 # copy, convert, and tag input argument
806 # copy, convert, and tag input argument
864 # copy, convert, and tag input argument
926 # copy, convert, and tag input argument
983 # copy, convert, and tag input argument
1041 # copy, convert, and tag input argument
1103 # copy, convert, and tag input argument
1160 # copy, convert, and tag input argument
1218 # copy, convert, and tag input argument
1280 # copy, convert, and tag input argument
1337 # copy, convert, and tag input argument
1395 # copy, convert, and tag input argument
1457 # copy, convert, and tag input argument
1514 # copy, convert, and tag input argument
1572 # copy, convert, and tag input argument
1634 # copy, convert, and tag input argument
1691 # copy, convert, and tag input argument
1749 # copy, convert, and tag input argument
1811 # copy, convert, and tag input argument
1868 # copy, convert, and tag input argument
1926 # copy, convert, and tag input argument
1988 # copy, convert, and tag input argument
2045 # copy, convert, and tag input argument
2103 # copy, convert, and tag input argument
2165 # copy, convert, and tag input argument
2222 # copy, convert, and tag input argument
2280 # copy, convert, and tag input argument
2342 # copy, convert, and tag input argument
2399 # copy, convert, and tag input argument
2457 # copy, convert, and tag input argument
2519 # copy, convert, and tag input argument
2576 # copy, convert, and tag input argument
2634 # copy, convert, and tag input argument
2696 # copy, convert, and tag input argument
2753 # copy, convert, and tag input argument
2811 # copy, convert, and tag input argument
2873 # copy, convert, and tag input argument
2930 # copy, convert, and tag input argument
2988 # copy, convert, and tag input argument
3050 # copy, convert, and tag input argument
3107 # copy, convert, and tag input argument
3165 # copy, convert, and tag input argument
3227 # copy, convert, and tag input argument
3284 # copy, convert, and tag input argument
3342 # copy, convert, and tag input argument
3404 # copy, convert, and tag input argument
3461 # copy, convert, and tag input argument
3519 # copy, convert, and tag input argument
3581 # copy, convert, and tag input argument
3638 # copy, convert, and tag input argument
3696 # copy, convert, and tag input argument
3758 # copy, convert, and tag input argument
3815 # copy, convert, and tag input argument
3873 # copy, convert, and tag input argument
3935 # copy, convert, and tag input argument
3992 # copy, convert, and tag input argument
4050 # copy, convert, and tag input argument
4112 # copy, convert, and tag input argument
4171 # copy, convert, and tag input argument
4231 # copy, convert, and tag input argument
4295 # copy, convert, and tag input argument
4361 # copy, convert, and tag input argument
4427 # copy, convert, and tag input argument
4499 # copy, convert, and tag input argument
4565 # copy, convert, and tag input argument
4631 # copy, convert, and tag input argument
4703 # copy, convert, and tag input argument
4769 # copy, convert, and tag input argument
4835 # copy, convert, and tag input argument
4898 # ssincos(): computes the sine and cosine of a normalized input #
4899 # ssincosd(): computes the sine and cosine of a denormalized input #
4912 # ACCURACY and MONOTONICITY ******************************************* #
4920 # SIN and COS: #
4961 # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
4962 # sin(r) and cos(r) are computed as odd and even #
4966 # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
4967 # sin(r) and cos(r) are computed as odd and even #
4972 # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
5034 and.l &0x7FFFFFFF,%d1 # strip sign
5095 and.l &0x80000000,%d1
5149 and.l &0x80000000,%d1
5155 and.l &0x80000000,%d1
5244 and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
5296 and.l &0x80000000,%d2
5298 and.l &0x80000000,%d2
5308 and.l &0x80000000,%d1
5371 and.l &0x80000000,%d1
5506 and.l &0x00007FFF,%d1
5542 and.l &0x80000000,%d2
5549 #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
5564 #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
5573 #--Then, we need to compute A := R-P and a := r-p
5617 # ACCURACY and MONOTONICITY ******************************************* #
5632 # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
5634 # U = r + r*s*(P1 + s*(P2 + s*P3)), and #
5640 # U = r + r*s*(P1 + s*(P2 + s*P3)), and #
5764 and.l &0x7FFFFFFF,%d1
5792 and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
5937 and.l &0x00007FFF,%d1
5973 and.l &0x80000000,%d2
5980 #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
5995 #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
6004 #--Then, we need to compute A := R-P and a := r-p
6047 # ACCURACY and MONOTONICITY ******************************************* #
6247 and.l &0x7FFFFFFF,%d1
6281 and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
6297 and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
6298 and.l &0x7FFF0000,%d2 # EXPONENT OF F
6309 and.l &0x80000000,%d1 # SIGN(F)
6497 # ACCURACY and MONOTONICITY ******************************************* #
6528 and.l &0x7FFFFFFF,%d1
6568 and.l &0x80000000,%d1 # SIGN BIT OF X
6598 # ACCURACY and MONOTONICITY ******************************************* #
6629 and.l &0x7FFFFFFF,%d1
6664 #Returns PI and inexact exception
6694 # ACCURACY and MONOTONICITY ******************************************* #
6700 # ALGORITHM and IMPLEMENTATION **************************************** #
6722 # are the sign and biased exponent field of |X|; the #
6725 # the comparisons in Steps 1.1 and 1.3 can be performed #
6731 # 16380 log(2) and the branch to Step 9 is taken. #
6755 # This error has to be considered later in Steps 3 and 4. #
6762 # Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
6765 # and L1 is no longer than 24 bits. #
6788 # and A5 are single precision; A2 and A3 are double #
6801 # where T and t are the stored values for 2^(J/64). #
6802 # Notes: 2^(J/64) is stored as T and t where T+t approximates #
6804 # and t is in single precision. Note also that T is #
6807 # T-2, and T-8 will all be exact --- a property that will #
6818 # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
6864 # X's sign. "Huge" and "Tiny" are respectively large/tiny #
6899 # 2.5 Create the values Sc = 2^M and #
6916 # and A6 are single precision; A2, A3 and A4 are double #
6929 # where T and t are the stored values for 2^(J/64). #
6930 # Notes: 2^(J/64) is stored as T and t where T+t approximates #
6932 # and t is in single precision. Note also that T is #
6935 # T-2, and T-8 will all be exact --- a property that will #
6964 # precision and rounding modes. To avoid unnecessary #
6975 # precision; and B2 is double extended. #
6982 # X + ( S*B1 + Q ) where S = X*X and #
6997 # Notes: 10.2 will always create an inexact and return -1 + tiny #
6998 # in the user rounding precision and mode. #
7102 #--entry point for EXP(X), here X is finite, non-zero, and not NaN's
7106 and.l &0x7FFF0000,%d1 # biased expo. of X
7113 mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
7132 and.l &0x3F,%d1 # D0 is J = N mod 64
7228 and.l &0x3F,%d1 # D0 is J = N mod 64
7270 and.l &0x7FFF0000,%d1 # biased expo. of X
7278 mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
7296 and.l &0x3F,%d1 # D0 is J = N mod 64
7305 #--a0 points to 2^(J/64), D0 and a1 both contain M
7497 # The exponent bias is removed and the exponent value is #
7503 # an exponent of $3fff and is returned in fp0. The range of #
7575 # ACCURACY and MONOTONICITY ******************************************* #
7587 # y = |X|, z = exp(Y), and #
7604 # Huge*Huge to generate overflow and an infinity with #
7619 and.l &0x7FFFFFFF,%d1
7689 # ACCURACY and MONOTONICITY ******************************************* #
7701 # y = |X|, sgn = sign(X), and z = expm1(Y), #
7719 # sign(X)*Huge*Huge to generate overflow and an infinity with #
7732 and.l &0x7FFFFFFF,%d1
7755 and.l &0x80000000,%d1
7773 and.l &0x80000000,%d1
7807 # ACCURACY and MONOTONICITY ******************************************* #
7819 # sgn := sign(X), y := 2|X|, z := expm1(Y), and #
7858 and.l &0x7FFFFFFF,%d1
7869 and.l &0x7FFF0000,%d1
7872 and.l &0x80000000,SGN(%a6)
7906 and.l &0x7FFF0000,%d1
7909 and.l &0x80000000,SGN(%a6)
7945 and.l &0x80000000,%d1
7948 and.l &0x80000000,%d1
7973 # ACCURACY and MONOTONICITY ******************************************* #
7996 # calculated beforehand and stored in the program. #
8004 # in Step 2 of the algorithm for LOGN and compute #
8259 and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
8262 and.l &0x7E000000,%d1
8385 #----below), adjusting exponent and storing -k to ADJK
8495 and.l &0xFE000000,FFRAC(%a6)
8506 and.l &0x7E000000,%d1
8524 and.l &0x7E000000,%d1
8568 # ACCURACY and MONOTONICITY ******************************************* #
8588 # 4. (|X| = 1) Generate infinity with an appropriate sign and #
8603 and.l &0x7FFFFFFF,%d1
8617 and.l &0x80000000,%d1
8658 # ACCURACY and MONOTONICITY ******************************************* #
8668 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8671 # traps, and precision control = double extended. #
8682 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8685 # traps, and precision control = double extended. #
8695 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8698 # traps, and precision control = double extended. #
8709 # Step 0. If X < 0, create a NaN and raise the invalid operation #
8712 # traps, and precision control = double extended. #
8774 and.l &0x7FFFFFFF,%d1
8779 and.l &0x00007FFF,%d1
8822 # ACCURACY and MONOTONICITY ******************************************* #
8854 # where L1, L2 are the leading and trailing parts of #
8855 # log_10(2)/64 and L10 is the natural log of 10. Then #
8860 # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
8862 # 2. Overwrite Fact1 and Fact2 by #
8991 and.l &0x7FFFFFFF,%d1
9013 and.l &0x3F,%d1 # D0 IS J
9088 and.l &0x7FFFFFFF,%d1
9110 and.l &0x3F,%d1 # D0 IS J
9248 # the dst is a DENORM. normalize the DENORM and add the adjustment to
9270 # exception to be put into the machine which will be caught and corrected
9312 # Source is outside of 2^14 range. Test the sign and branch
9324 # and set unfl.
9349 # The input operands X and Y can be either normalized or #
9357 # Step 1. Save and strip signs of X and Y: signX := sign(X), #
9392 # Step 8. Return signQ, last 7 bits of Q, and R as required. #
9396 # R := 0. Return signQ, last 7 bits of Q, and R. #
9432 #..Save sign of X and Y
9436 and.l &0x00007FFF,%d3 # Y := |Y|
9483 and.l &0x00008000,%d1
9485 and.l &0x00007FFF,%d0
9544 #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
9550 cmp.l %d1,%d4 # compare hi(R) and hi(Y)
9552 cmp.l %d2,%d5 # compare lo(R) and lo(Y)
9564 #..and Y < (D1,D2) < 2Y. Either way, perform R - Y
9685 and.l &0x0000007F,%d3 # 7 bits of Q
9686 or.l %d6,%d3 # sign and bits of Q
9689 # and.l &0xFF00FFFF,%d6
9706 # algorithm just got done playing with fp0 and expected no exceptions
9717 #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
9736 and.l &0x00000001,%d6
9764 # Simply test the exponent, j-bit, and mantissa values to #
9766 # If it's an unnormalized zero, alter the operand and force it #
9807 and.l &0x7fffffff, %d0 # msb is a don't care!
9910 # and the source operand in fp1. Use fp2 to create an OPERR exception #
9966 # and two very small numbers of appropriate sign so the operating #
10023 # and two very lareg numbers of appropriate sign so the operating #
10123 # occurred and has been logged. Now we need to see if an inexact #
10157 # the event here by adding a large and very small number together #
10160 # set the FPSR bits and return. #
10210 # For all functions that have a denormalized input and that #
10239 # values are already in fp0 and fp1 so we do nothing here.
10531 # Routine used for fetox, ftwotox, and ftentox. #
10541 # Routine used for flogn, flognp1, flog10, and flog2. #
10621 # cosine register and return a ZERO in fp0 w/ the same sign
10639 # register and jump to the operand error routine for negative
10649 # register and branch to the src QNAN routine.
10894 # zero; both the exponent and mantissa are changed. #
10918 and.w &0x7fff, %d1 # strip off sgn
10928 and.w &0x8000, %d0 # save old sign
10951 and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
10968 and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
10977 and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero