Lines Matching refs:WE
5181 #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
5234 #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
5298 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5641 #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
5982 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
6072 #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
6364 #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
6367 #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
6378 #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
6379 #--WE CHOSE F TO BE +-2^K * 1.BBBB1
6383 #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
6397 #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
6422 #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
6426 #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
7257 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7259 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7420 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7422 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
8346 #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
8362 #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
8591 #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
8592 #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
8597 #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF