

OpenMAX™ Integration Layer
Application Programming Interface

Specification

Version 1.1.2
Copyright © 2008 The Khronos Group Inc.

September 1, 2008
Document version 1.1.2.0

Copyright © 2005-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior
written permission of the Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to
reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may
describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update
of the specification for any version of the API is used whenever possible. Such distributed
specification may be reformatted AS LONG AS the contents of the specification are not changed
in any way. The specification may be incorporated into a product that is sold as long as such
product includes significant independent work developed by the seller. A link to the current
version of this specification on the Khronos Group website should be included whenever
possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein with a
“grey” watermark and are included for illustrative purposes only and are expressly outside of the
Scope as defined in Attachment A - Khronos Group Intellectual Property (IP) Rights Policy of
the Khronos Group Membership Agreement. A Member or Promoter Member shall have no
obligation to grant any licenses under any Necessary Patent Claims covering SAMPLE CODE
and EXAMPLES.

Khronos and OpenMAX are trademarks of the Khronos Group Inc. Bluetooth is a registered
trademark of the Bluetooth Special Interest Group. RealAudio and RealVideo are registered
trademarks of RealNetworks, Inc. Windows Media is a registered trademark of Microsoft
Corporation.

 2

Contents
1 OVERVIEW...10

1.1 INTRODUCTION..10
1.1.1 About the Khronos Group..10
1.1.2 A Brief History of OpenMAX ...10

1.2 THE OPENMAX INTEGRATION LAYER..10
1.2.1 Key Features and Benefits ...10
1.2.2 Design Philosophy ...11
1.2.3 Software Landscape...12
1.2.4 Stakeholders...12
1.2.5 The Interface..13

1.3 DEFINITIONS..14
1.4 AUTHORS ..15
1.5 FEATURES NEW TO VERSION 1.1...15
1.6 BACKWARD COMPATIBILITY...16

1.6.1 IL Client 1.0 ...17
1.6.2 IL Client 1.1 ...19

2 OPENMAX IL INTRODUCTION AND ARCHITECTURE..20
2.1 OPENMAX IL DESCRIPTION ...20

2.1.1 Architectural Overview..20
2.1.2 Key Vocabulary ...22
2.1.3 System Components ...23
2.1.4 Component States ..25
2.1.5 Component Architecture ..26
2.1.6 Communication Behavior ..27
2.1.7 Tunneled Buffer Allocation..28
2.1.8 Port Reconnection ...30
2.1.9 Queues and Flush ..32
2.1.10 Marking Buffers ...32
2.1.11 Events and Callbacks...33
2.1.12 Buffer Payload ...34
2.1.13 Buffer Flags and Timestamps ..36
2.1.14 Synchronization ...36
2.1.15 Rate Control...37
2.1.16 Component Registration ..37
2.1.17 Resource Management...37
2.1.18 Content Pipes...41
2.1.19 File Parsing ...42
2.1.20 Video Decoder Error Mapping..42
2.1.21 Buffer Payload Additional Information ...43

2.2 ENDIANNESS ...44
3 OPENMAX INTEGRATION LAYER CONTROL API..45

3.1 OPENMAX IL TYPES ..46
3.1.1 Enumerations...46
3.1.2 Structures...58
3.1.3 OMX_PORTDOMAINTYPE..77
3.1.4 OMX_HANDLETYPE..78

3.2 OPENMAX IL CORE METHODS/MACROS ...78
3.2.1 Return Codes for the Functions ...79
3.2.2 Macros ...81
3.2.3 Functions ...104

3.3 OPENMAX IL COMPONENT METHODS AND STRUCTURES ..111

 3

3.3.1 pComponentPrivate ...111
3.3.2 pApplicationPrivate ...111
3.3.3 GetComponentVersion...112
3.3.4 SendCommand ...112
3.3.5 GetParameter ..112
3.3.6 SetParameter ...112
3.3.7 GetConfig...113
3.3.8 SetConfig ...113
3.3.9 GetExtensionIndex...113
3.3.10 GetState ...113
3.3.11 ComponentTunnelRequest ...114
3.3.12 UseBuffer ...115
3.3.13 AllocateBuffer ..115
3.3.14 FreeBuffer..116
3.3.15 EmptyThisBuffer ..116
3.3.16 FillThisBuffer...116
3.3.17 SetCallbacks ..116
3.3.18 ComponentDeinit ...117
3.3.19 UseEGLImage..118

3.4 CALLING SEQUENCES..118
3.4.1 Initialization...118
3.4.2 Data Flow ..124
3.4.3 De-Initialization...127
3.4.4 Port Disablement and Enablement ..129
3.4.5 Dynamic Port Reconfiguration ..131
3.4.6 Autodetect Port Reconfiguration ...133
3.4.7 Resource Management...135

4 OPENMAX IL DATA API..140
4.1 AUDIO ...140

4.1.1 Audio Use Case Examples ...140
4.1.2 Special Issues...141
4.1.3 General Enumerations...141
4.1.4 Parameter and Configuration Indexes...143
4.1.5 OMX_AUDIO_PORTDEFINITIONTYPE...145
4.1.6 OMX_AUDIO_PARAM_PORTFORMATTYPE ..146
4.1.7 OMX_AUDIO_PARAM_PCMMODETYPE ..147
4.1.8 OMX_AUDIO_PARAM_MP3TYPE ..148
4.1.9 OMX_AUDIO_PARAM_AACPROFILETYPE ..150
4.1.10 OMX_AUDIO_PARAM_VORBISTYPE...153
4.1.11 OMX_AUDIO_PARAM_WMATYPE...154
4.1.12 OMX_AUDIO_PARAM_RATYPE ...156
4.1.13 OMX_AUDIO_PARAM_SBCTYPE...157
4.1.14 OMX_AUDIO_PARAM_ADPCMTYPE ..158
4.1.15 OMX_AUDIO_PARAM_G723TYPE ...159
4.1.16 OMX_AUDIO_PARAM_G726TYPE ...160
4.1.17 OMX_AUDIO_PARAM_G729TYPE ...161
4.1.18 OMX_AUDIO_PARAM_AMRTYPE..162
4.1.19 OMX_AUDIO_PARAM_GSMFRTYPE...164
4.1.20 OMX_AUDIO_PARAM_GSMEFRTYPE...165
4.1.21 OMX_AUDIO_PARAM_GSMHRTYPE...166
4.1.22 OMX_AUDIO_PARAM_TDMAFRTYPE ..167
4.1.23 OMX_AUDIO_PARAM_TDMAEFRTYPE..167
4.1.24 OMX_AUDIO_PARAM_PDCFRTYPE ...168
4.1.25 OMX_AUDIO_PARAM_PDCEFRTYPE...169
4.1.26 OMX_AUDIO_PARAM_PDCHRTYPE...170

 4

4.1.27 OMX_AUDIO_PARAM_QCELP8TYPE ...171
4.1.28 OMX_AUDIO_PARAM_QCELP13TYPE ...172
4.1.29 OMX_AUDIO_PARAM_EVRCTYPE ..173
4.1.30 OMX_AUDIO_PARAM_SMVTYPE ..175
4.1.31 OMX_AUDIO_PARAM_MIDITYPE ...176
4.1.32 OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE..177
4.1.33 OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE..179
4.1.34 OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE ...179
4.1.35 OMX_AUDIO_CONFIG_MIDICONTROLTYPE..180
4.1.36 OMX_AUDIO_CONFIG_MIDISTATUSTYPE..182
4.1.37 OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE...183
4.1.38 OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE...184
4.1.39 OMX_AUDIO_CONFIG_VOLUMETYPE ..185
4.1.40 OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE ..186
4.1.41 OMX_AUDIO_CONFIG_BALANCETYPE...187
4.1.42 OMX_AUDIO_CONFIG_MUTETYPE ...187
4.1.43 OMX_AUDIO_CONFIG_CHANNELMUTETYPE..187
4.1.44 OMX_AUDIO_CONFIG_LOUDNESSTYPE ..188
4.1.45 OMX_AUDIO_CONFIG_BASSTYPE ...189
4.1.46 OMX_AUDIO_CONFIG_TREBLETYPE ..189
4.1.47 OMX_AUDIO_CONFIG_EQUALIZERTYPE ...190
4.1.48 OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE ..191
4.1.49 OMX_AUDIO_CONFIG_CHORUSTYPE...192
4.1.50 OMX_AUDIO_CONFIG_REVERBERATIONTYPE ...193
4.1.51 OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE...194
4.1.52 OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE...195

4.2 IMAGE AND VIDEO COMMON ..196
4.2.1 Uncompressed Data Formats ..196
4.2.2 Minimum Buffer Payload Size for Uncompressed Data ..200
4.2.3 Buffer Payload Requirements for Uncompressed Data ...201
4.2.4 Parameter and Configuration Indexes...201
4.2.5 OMX_PARAM_DEBLOCKINGTYPE ...206
4.2.6 OMX_PARAM_INTERLEAVETYPE ...207
4.2.7 OMX_PARAM_SENSORMODETYPE...207
4.2.8 OMX_CONFIG_COLORCONVERSIONTYPE ...208
4.2.9 OMX_CONFIG_SCALEFACTORTYPE..209
4.2.10 OMX_CONFIG_IMAGEFILTERTYPE ...210
4.2.11 OMX_CONFIG_COLORENHANCEMENTTYPE...211
4.2.12 OMX_CONFIG_COLORKEYTYPE ..211
4.2.13 OMX_CONFIG_COLORBLENDTYPE...212
4.2.14 OMX_FRAMESIZETYPE ..214
4.2.15 OMX_CONFIG_ROTATIONTYPE..214
4.2.16 OMX_CONFIG_MIRRORTYPE..214
4.2.17 OMX_CONFIG_POINTTYPE ...215
4.2.18 OMX_CONFIG_RECTTYPE...216
4.2.19 OMX_CONFIG_FRAMESTABTYPE ..216
4.2.20 OMX_CONFIG_WHITEBALCONTROLTYPE ...217
4.2.21 OMX_CONFIG_EXPOSURECONTROLTYPE...218
4.2.22 OMX_CONFIG_CONTRASTTYPE ...219
4.2.23 OMX_CONFIG_BRIGHTNESSTYPE ...219
4.2.24 OMX_CONFIG_BACKLIGHTTYPE...220
4.2.25 OMX_CONFIG_GAMMATYPE ..220
4.2.26 OMX_CONFIG_SATURATIONTYPE ...221
4.2.27 OMX_CONFIG_LIGHTNESSTYPE ..221
4.2.28 OMX_CONFIG_PLANEBLENDTYPE..222
4.2.29 OMX_CONFIG_DITHERTYPE ..223

 5

4.2.30 OMX_CONFIG_EXPOSUREVALUETYPE ..223
4.2.31 OMX_CONFIG_CAPTUREMODETYPE..224
4.2.32 OMX_CONFIG_BOOLEANTYPE...225
4.2.33 OMX_OTHER_EXTRADATATYPE...226
4.2.34 OMX_CONFIG_FOCUSREGIONTYPE ...228
4.2.35 OMX_PARAM_FOCUSSTATUSTYPE..229
4.2.36 OMX_CONFIG_TRANSITIONEFFECTTYPE..231

4.3 VIDEO ...232
4.3.1 General Enumerations...232
4.3.2 Parameter and Configuration Indices ...233
4.3.3 Video Use Case Examples ...234
4.3.4 OMX_VIDEO_PORTDEFINITIONTYPE ...235
4.3.5 OMX_VIDEO_PARAM_PORTFORMATTYPE...237
4.3.6 OMX_VIDEO_PARAM_QUANTIZATIONTYPE ..238
4.3.7 OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE ..239
4.3.8 OMX_VIDEO_PARAM_BITRATETYPE...239
4.3.9 OMX_VIDEO_PARAM_MOTIONVECTORTYPE ..241
4.3.10 OMX_VIDEO_PARAM_INTRAREFRESHTYPE ..242
4.3.11 OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE ...243
4.3.12 OMX_VIDEO_PARAM_VBSMCTYPE..244
4.3.13 OMX_VIDEO_PARAM_H263TYPE..245
4.3.14 OMX_VIDEO_PARAM_MPEG2TYPE ...247
4.3.15 OMX_VIDEO_PARAM_MPEG4TYPE ...248
4.3.16 OMX_VIDEO_PARAM_WMVTYPE ...250
4.3.17 OMX_VIDEO_PARAM_RVTYPE..251
4.3.18 OMX_VIDEO_PARAM_AVCTYPE...253
4.3.19 OMX_VIDEO_CONFIG_BITRATETYPE ...256
4.3.20 OMX_CONFIG_FRAMERATETYPE ..256
4.3.21 OMX_CONFIG_INTRAREFRESHVOPTYPE...257
4.3.22 OMX_CONFIG_MACROBLOCKERRORMAPTYPE ...257
4.3.23 OMX_PARAM_MACROBLOCKSTYPE..259
4.3.24 OMX_CONFIG_MBERRORREPORTINGTYPE...259
4.3.25 OMX_VIDEO_PARAM_PROFILELEVELTYPE...260
4.3.26 OMX_VIDEO_PARAM_AVCSLICEFMO...262
4.3.27 OMX_VIDEO_CONFIG_AVCINTRAPERIOD ...263
4.3.28 OMX_VIDEO_CONFIG_NALSIZE...264

4.4 IMAGE ...264
4.4.1 Parameter and Configuration Indices ...264
4.4.2 Image Use Case Example ..265
4.4.3 OMX_IMAGE_PORTDEFINITIONTYPE...266
4.4.4 OMX_IMAGE_PARAM_PORTFORMATTYPE ..268
4.4.5 OMX_IMAGE_PARAM_FLASHCONTROLTYPE ..269
4.4.6 OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE..270
4.4.7 OMX_IMAGE_PARAM_QFACTORTYPE ..272
4.4.8 OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE ..272
4.4.9 OMX_IMAGE_PARAM_HUFFMANTTABLETYPE ...273

4.5 “OTHER” DOMAIN...276
4.5.1 Parameters and Config Indexes...276
4.5.2 OMX_TIME_CONFIG_SEEKMODETYPE ..277
4.5.3 OMX_TIME_CONFIG_TIMESTAMPTYPE..278
4.5.4 OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE...278
4.5.5 OMX_TIME_CONFIG_MEDIATIMETYPE..279
4.5.6 OMX_TIME_CONFIG_SCALETYPE..280
4.5.7 OMX_TIME_CONFIG_CLOCKSTATETYPE ...281
4.5.8 OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE..282

 6

5 OPENMAX IL COMPONENT EXTENSION APIS ..283
5.1 DESCRIPTION OF THE EXTENSION PROCESS...283

5.1.1 GetExtensionIndex...284
5.1.2 Custom Data Structures...285
5.1.3 Enumerations...285
5.1.4 Promoting extensions to specification ...285

5.2 EXAMPLES OF USING EXTENSION QUERYING API...285
5.2.1 Sample Code Showing Calling Sequence...285

6 SYNCHRONIZATION ...287
6.1 SEEKING COMPONENT...287

6.1.1 Seeking Configurations..287
6.1.2 Seeking Buffer Flags..288
6.1.3 Seek Event Sequence..288

6.2 CLOCK COMPONENT..289
6.2.1 Timestamps ..289
6.2.2 Media Clock...290
6.2.3 Wall Clock ...292
6.2.4 Reference Clocks ...292
6.2.5 Clock Component Implementation...297
6.2.6 Audio-Video File Playback Example Use Case ...299

7 CONTAINER PARSING ..301
7.1 PARAMETER AND CONFIGURATION INDEXES ..301
7.2 FORMAT DETECTION ...302
7.3 PORT STREAMS ...302
7.4 METADATA EXTRACTION..303
7.5 TYPES AND STRUCTURES...305

7.5.1 OMX_PARAM_U32TYPE ...305
7.5.2 OMX_METADATACHARSETTYPE..305
7.5.3 OMX_METADATASCOPETYPE...307
7.5.4 OMX_CONFIG_METADATAITEMCOUNTTYPE..307
7.5.5 OMX_CONFIG_METADATAITEMTYPE...309
7.5.6 OMX_PARAM_METADATAFILTERTYPE ...311
7.5.7 OMX_CONFIG_CONTAINERNODECOUNTTYPE...314
7.5.8 OMX_CONFIG_CONTAINERNODEIDTYPE..314

8 STANDARD COMPONENTS..316
8.1 HIERARCHY OF STANDARD COMPONENT DEFINITION ...316

8.1.1 Standard Component Class Definition ..317
8.1.2 Standard Components Definition...317

8.2 COMPONENT ROLE ..318
8.2.1 ComponentRoleEnum ..318
8.2.2 OMX_PARAM_COMPONENTROLETYPE ..319
8.2.3 OMX_GetRolesOfComponent..319
8.2.4 OMX_GetComponentsOfRole..319

8.3 MANDATORY PORT PARAMETERS ...320
8.4 NOTATION USED ...321
8.5 VIDEO AND IMAGE ORDER OF OPERATIONS ..321
8.6 STANDARD AUDIO COMPONENTS..322

8.6.1 Audio Decoder Class ...322
8.6.2 Audio Encoder Class ...333
8.6.3 Audio Mixer Class ...341
8.6.4 Audio Reader Class ...344
8.6.5 Audio Renderer Class ..344

 7

8.6.6 Audio Writer Class ..346
8.6.7 Audio Capturer Class ..346
8.6.8 Audio processor class ..348

8.7 STANDARD IMAGE COMPONENTS..353
8.7.1 Image Decoder Class...353
8.7.2 Image Encoder Class ...355
8.7.3 Image Reader Class ...356
8.7.4 Image Writer Class ..356

8.8 STANDARD VIDEO COMPONENTS ..357
8.8.1 Video Decoder Class ...357
8.8.2 Video Encoder Class..364
8.8.3 Video Reader Class..370
8.8.4 Video Scheduler Class ...370
8.8.5 Video Writer Class...371

8.9 OTHER STANDARD COMPONENTS ...371
8.9.1 Camera Class...371
8.9.2 Clock Class ..375
8.9.3 Container Demuxer Class..376
8.9.4 Container Muxer Class..379
8.9.5 Image/Video Processor Class ..379
8.9.6 Image/Video Renderer Class ...381

9 CONTENT PIPES..385
9.1 RATIONALE ...385
9.2 CONCEPT...385
9.3 IMPLEMENTATION ...385
9.4 DEFINITION ...386

9.4.1 Content Access and Manipulation ...386
9.4.2 Streaming Support ...387
9.4.3 Enumerations...388
9.4.4 CP_PIPETYPE Methods..389

9.5 ACQUIRING A CONTENT PIPE...395
9.5.1 Indexes ...396
9.5.2 OMX_PARAM_CONTENTURITYPE ..396
9.5.3 OMX_PARAM_CONTENTPIPETYPE ..396
9.5.4 Acquiring a Content Pipe from the IL Core...397
9.5.5 Content Pipe Related Errors..397

9.6 EXAMPLE USE CASES..397
9.6.1 Playback/Parser Use Case: ...397
9.6.2 Recording/Combiner Use Case: ..398

10 IMPLEMENTING BUFFER SHARING...399
11 APPENDIX A – REFERENCES ..404

11.1 SPEECH ...404
11.1.1 3GPP ...404
11.1.2 3GPP2 ...404
11.1.3 ARIB...404
11.1.4 ITU...404
11.1.5 IETF...405
11.1.6 TIA ...405

11.2 AUDIO ...405
11.2.1 ISO...405
11.2.2 MISC..406

11.3 SYNTHETIC AUDIO ..406
11.3.1 MIDI ..406

 8

11.4 IMAGE...407
11.4.1 IETF...407
11.4.2 ISO...408
11.4.3 ITU...408
11.4.4 JEITA...409
11.4.5 MIPI...409
11.4.6 Miscellaneous ..409
11.4.7 SMIA ..409
11.4.8 W3C ...410

11.5 VIDEO..410
11.5.1 3GPP ...410
11.5.2 AVS ..410
11.5.3 DLNA...410
11.5.4 ETSI ...410
11.5.5 IETF...411
11.5.6 ISO...411
11.5.7 ITU...412
11.5.8 MISC..412

11.6 JAVA..412
11.6.1 Multimedia...412
11.6.2 Broadcast...412

12 APPENDIX B – OPENKODE ERROR CODES...413

 9

1 Overview

1.1 Introduction
This document details the Application Programming Interface (API) for the OpenMAX
Integration Layer (IL). Developed as an open standard by The Khronos Group, the IL
serves as a low-level interface for audio, video, and imaging components used in
embedded and/or mobile devices. The principal goal of the IL is to give components a
degree of system abstraction for the purpose of portability across operating systems and
software stacks.

1.1.1 About the Khronos Group
The Khronos Group is a member-funded industry consortium focused on the creation of
open standard APIs to enable the authoring and playback of dynamic media on a wide
variety of platforms and devices. All Khronos members may contribute to the
development of Khronos API specifications, may vote at various stages before public
deployment, and may accelerate the delivery of their multimedia platforms and
applications through early access to specification drafts and conformance tests. The
Khronos Group is responsible for open APIs such as OpenGL ES, OpenML, and
OpenVG.

1.1.2 A Brief History of OpenMAX
The OpenMAX set of APIs was originally conceived as a method of enabling portability
of components and media applications throughout the mobile device landscape. Brought
into the Khronos Group in mid-2004 by a handful of key mobile hardware companies,
OpenMAX has gained the contributions of companies and institutions stretching the
breadth of the multimedia field. As such, OpenMAX stands to unify the industry in
taking steps toward media component portability. Stepping beyond mobile platforms, the
general nature of the OpenMAX IL API makes it applicable to all media platforms.

1.2 The OpenMAX Integration Layer
The OpenMAX IL API strives to give media components portability across an array of
platforms. The interface abstracts the hardware and software architecture in the system.
Each component and relevant transform is encapsulated in a component interface. The
OpenMAX IL API allows the user to load, control, connect, and unload the individual
components. This flexible core architecture allows the Integration Layer to easily
implement almost any media use case and mesh with existing graph-based media
frameworks.

1.2.1 Key Features and Benefits
The OpenMAX IL API gives applications and media frameworks the ability to interface
with multimedia codecs and supporting components (i.e., sources and sinks) in a unified

 10

manner. The components themselves may be any combination of hardware or software
and are completely transparent to the user. Without a standardized interface of this nature,
component vendors have little alternative than to write to proprietary or closed interfaces
to integrate into mobile devices. In this case, the portability of the component is minimal
at best, costing many development-years of effort in re-tooling these solutions between
systems.

Thus, the IL incorporates a specialized arsenal of features, honed to combat the problem
of portability among many vastly different media systems. Such features include:

• A flexible component-based API core

• Ability to easily plug in new components

• Coverage of targeted domains (audio, video, and imaging) while remaining easily
extensible by both the Khronos Group and individual vendors

• Capable of being implemented as either static or dynamic libraries

• Retention of key features and configuration options needed by parent software
(such as media frameworks)

• Ease of communication between the client and the components and between
components themselves

• Standardized definition of key components so all implementations of such
“standard components” expose the same external interface (i.e. same inputs,
outputs, and controls)

1.2.2 Design Philosophy
As previously stated, the key focus of the OpenMAX IL API is portability of media
components. The diversity of existing devices and media implementation solutions
necessitates that the OpenMAX IL target the higher level of the media software stack as
the key initial user. For many operating systems, this means an existing media framework
or some form of multimedia middleware.

Another key target is the OpenMAX AL API which standardizes a higher application
level interface companion to OpenMAX IL. OpenMAX AL is designed to be amenable to
OpenMAX IL implementations.

Thus, much of the OpenMAX IL API accommodates the needs of multimedia
middleware allowing that layer to be as lightweight as possible. The result is an interface
that is easily pluggable into most software stacks across operating system and multimedia
middleware solutions.

The design of the API also strove to accommodate as many system architectures as
possible. The resulting design uses highly asynchronous communications, which allows
processing to take place in another thread, on multiple processing elements, or on
specialized hardware. In addition, the ability of hardware-accelerated components to
communicate directly with one another via tunneling affords implementation
architectures even greater flexibility and efficiency.

 11

1.2.3 Software Landscape
In some systems, a user-level media framework already exists. In those without such
multimedia middleware, OpenMAX AL may serve to fill the gap. The OpenMAX IL API
is designed to easily fit below this layer with little to no overhead between the interfaces.
In most cases, a native media framework can be replaced with a thin layer that simply
translates the API. Likewise, given the co-operative design of the two APIs, OpenMAX
IL can even more seamlessly fit into an OpenMAX AL implementation. Figure 1-1
illustrates the software landscape for the OpenMAX IL API.

Figure 1-1. OpenMAX IL API Software Landscape

System Media Driver

OpenMAX Development Layer

DL Primitives DL Primitives

Codec Codec

Multimedia Middleware
(e.g. OpenMAX AL, Native Framework)

Application

Application

OpenMAX Integration Layer

Component
Interface

Component
Interface

Component
Interface

Application

The OpenMAX standard also defines a set of Development Layer (DL) primitives on
which components can be built. The DL primitives and their full relationship to the IL are
specified in the OpenMAX Development Layer API specification documents.

1.2.4 Stakeholders
A few categories of stakeholders represent the broad array of companies participating in
the production of multimedia solutions, each with their own interest in the IL API.

 12

 13

1.2.4.1

1.2.4.2

1.2.4.3

1.2.4.4

1.2.5.1

1.2.5.2

Silicon Vendors
Silicon vendors (SV) are responsible for delivering a representative set of OpenMAX IL
components that are specific to the vendor’s platform. The vendors are anticipated to also
supply components that are representative of the capabilities of their platforms.

Independent Software Vendors
Independent software vendors (ISV) are anticipated to deliver additional differentiated
OpenMAX IL components that may or may not be specific to a given silicon vendor’s
platform.

Operating System Vendors
Operating System Vendors (OSV) are anticipated to deliver software multimedia
framework and standard reference OpenMAX IL components that enable integration of
the representative silicon vendor’s components and ISV components. The OSV is
responsible for conformance testing of the standard reference OpenMAX IL components.

Original Equipment Manufacturers
Original Equipment Manufacturers (OEM) are anticipated to modify and optimize the
integration of OpenMAX IL components provided by SVs, ISVs, and OSVs to their
specific product architectures to enable delivery of OpenMAX IL integrated multimedia
devices. OEMs may also develop and integrate their own proprietary OpenMAX IL
components.

1.2.5 The Interface
The OpenMAX IL API is a component-based media API that consists of two main
segments: the core API and the component API.

Core
The OpenMAX IL core is used for dynamically loading and unloading components and
for facilitating component communication. Once loaded, the API allows the user to
communicate directly with the component, which eliminates any overhead for high
commands. Similarly, the core allows a user to establish a communication tunnel between
two components. Once established, the core API is no longer used and communications
flow directly between components.

Components
In the OpenMAX Integration Layer, components represent individual blocks of
functionality. Components can be sources, sinks, codecs, filters, splitters, mixers, or any
other data operator. Depending on the implementation, a component could possibly
represent a piece of hardware, a software codec, another processor, or a combination
thereof.

The individual parameters of a component can be set or retrieved through a set of
associated data structures, enumerations, and interfaces. The parameters include data
relevant to the component’s operation (i.e., codec options) or the actual execution state of
the component.

Buffer status, errors, and other time-sensitive data are relayed to the application via a set
of callback functions. These are set via the normal parameter facilities and allow the API
to expose more of the asynchronous nature of system architectures.

Data communication to and from a component is conducted through interfaces called
ports. Ports represent both the connection for components to the data stream and the
buffers needed to maintain the connection. Users may send data to components through
input ports or receive data through output ports. Similarly, a communication tunnel
between two components can be established by connecting the output port of one
component to a similarly formatted input port of another component.

1.3 Definitions
When this specification discusses requirements and features of the OpenMAX IL API,
specific words are used to convey their necessity in an implementation. Table 1-1 shows
a list of these words.

Table 1-1: Definitions of Commonly Used Words

Word Definition
May The stated functionality is an optional requirement for an implementation of

the OpenMAX IL API. Optional features are not required by the
specification but may have conformance requirements if they are
implemented. This is an optional feature as in “The component may have
vendor specific extensions.”

Shall The stated functionality is a requirement for an implementation of the
OpenMAX IL API. If a component fails to meet a shall statement, it is not
considered to conform to this specification. Shall is always used as a
requirement, as in “The component designers shall produce good
documentation.”

Should The stated functionality is not a requirement for an implementation of the
OpenMAX IL API but is recommended or is a good practice. Should is
usually used as follows: “The component should begin processing buffers
immediately after it transitions to the OMX_StateExecuting state.” While
this is good practice, there may be a valid reason to delay processing buffers,
such as not having input data available.

Will The stated functionality is not a requirement for an implementation of the
OpenMAX IL API. Will is usually used when referring to a third party, as in
“the application framework will correctly handle errors.”

 14

1.4 Authors
The following individuals, listed alphabetically by company, contributed to the
OpenMAX Integration Layer Application Programming Interface Specification.

• Tom Longo (AMD)

• Wilson Kwan (AMD)

• Russell Tillitt (Beatnik)

• Tim Granger (Broadcom)

• Roger Nixon (Broadcom)

• Sriram Divakar (Motorola)

• Yeshwant Muthusamy (Nokia)

• Ukri Niemimuukko (Nokia)

• Gordon Grigor (NVIDIA)

• Jim Van Welzen (NVIDIA)

• Bruno Smets (NXP)

• Diego Melpignano (STMicroelectronics)

• Leo Estevez (Texas Instruments)

1.5 Features New to Version 1.1
A summary of new features included into this release of this specification include:

• The explicit definition of a set of standard components representing the most
common pieces of functionality (e.g. specific data sources, sinks, decoders,
encoders, transformations for specific formats). All implementations of particular
standard component expose the same interface including inputs, outpus, and
controls.

• The addition of the ability to append additional information to buffer payloads
(e.g. the video quantization data appended to video frames).

• The extension of color format types.

• The extension of buffer payload flags

• The clarification of data transform (e.g. rotate and scale) order

• The introduction media container parsing and creating, including the abstraction
of file access (denoted content pipes) and metadata parsing.

• The enhancement of Resource Management to include suspensiont due to
unavailable resources (a lightweight alternative to component deinitialization on
resource loss), resource Concealment control, dynamic resource allocation.

 15

• The addition of a means to specify an EGL buffer to be used as an OpenMAX IL
buffer.

• The addition of MP3 file formats.

• The enhancement of video encoder controls including dynamic frame rate and bit
rate,intraframe and macroblock refresh, FMO and Slice selection, IDR and intra
period selection, NAL size selection, video profile querying.

• The enhancement of video decoder controls including macroblock error reporting
during during decoding and video profile querying.

• The enhancement of image codec controls including more sophisticated controls
for for JPEG Huffman and Quantization tables

• The enhancement of camera controls including sophisticated focus control,
continuous and single shot control, auto exposure control.

1.6 Backward Compatibility
The OpenMAX IL specification defines components and structures that evolve and
improve with subsequent versions of the specification. The version of the specification is
indicated with 4 digits Ma.Mi.R.S (Respectively Major, Minor, Revision and Step).
Increments of these digits give the following indications:

• An increment of Major indicates a significant number of fundamental non-
backward compatible changes.

• An increment of Minor indicates a significant number of functional changes like
the addition of new structures and components. Essential corrections may create
limited non backward compatible changes. Heterogeneous Minor version
implementations should be possible as explained below for 1.0 to 1.1.

• An increment of revision indicates a significant number of corrections and
clarifications which should be backward compatible unless stated explicitely. Any
component of a later revision should interoperate with components of an earlier
revision.

• An increment of step indicates a significant number of editorial corrections.

This specification works to maintain backward compatibility with the OpenMAX
Integration Layer Specification 1.0 to aid in the adoption and deployment of the
specification.

It is recognized that systems of heterogeneous pieces from prior versions and this version
of the specification may exist. As such, new features and modifications to existing
features part of this specification need to provide a standardized mechanism for backward
compatibility. Thus systems with heterogeneous OpenMAX IL clients, IL core, and IL
components can operate together.

 16

Backward compatibility is required on any interfaces where an OpenMAX IL 1.0 piece
(i.e. a client, core, or component) connects to an OpenMAX IL 1.1 piece. The cost of
backward compatibility is placed on the OpenMAX IL 1.1 pieces. So OpenMAX IL 1.1
components and OpenMAX IL 1.1 cores shall support backward compatibility with
OpenMAX IL 1.0.

The specification enables OpenMAX IL 1.1 pieces to support backward compatibility.

This is achieved by providing structures which maintain the same fields as OpenMAX IL
1.0 structures. New fields are added to the end of the structures. Thus an OpenMAX IL
1.0 structure can be interpreted as a clipped OpenMAX IL 1.1 structure if the nSize and
nVersion fields are used to detect the difference.

Versions apply per method call as indicated in the nVersion field of structures passed
on that call. OpenMAX IL uses the nVersion field in structures to allow the same
methods to vary from version to version. Functions defined in both versions but that do
not pass versioned structures are identical across versions.

In addition, enumerated values remain consistent with enumerated values from
OpenMAX IL 1.0.

Lastly parameters to methods defined in OpenMAX IL 1.0 remain unchanged in
OpenMAX IL 1.1. Specifically the number and format of the parameter remains
unchanged, but additional fields may be added to the contents of the parameters. Method
functionality defined in OpenMAX IL 1.0 remains unchanged by default (i.e. a new
method or parameter must be used to enable OpenMAX IL 1.1 functionality).

The following section details how heterogeneous pieces operation together. The section
simplifies the combinations and permutations of heterogeneous pieces into systems with
IL clients using OpenMAX IL 1.0 methods, and IL clients using OpenMAX IL 1.1
methods.

1.6.1 IL Client 1.0
Backward compatibility requires IL clients using OpenMAX IL 1.0 methods to work
with a core, and components from OpenMAX IL 1.1. Furthermore, an OpenMAX IL 1.1
core needs to operate with both OpenMAX IL 1.0 and OpenMAX IL 1.1 components.

 17

Figure 1-2. OpenMAX IL 1.0 Client Using 1.0 Core and 1.0 & 1.1 Compnents

In the above simple example, an client using OpenMAX IL 1.0 methods is operating with
an OpenMAX IL 1.0 core and components from both OpenMAX IL 1.0, and OpenMAX
IL 1.1.

The OpenMAX IL 1.1 component A is the only OpenMAX IL 1.1 piece in the system.
Component A detects the Core is OpenMAX IL 1.0 by the value 1.0.R.S in the
nVersion field of the component handle OMX_COMPONENTTYPE. Component A uses
this version information to set OpenMAX IL 1.0 compatible interfaces for all method
pointers in the component handle. Component A further uses this version information to
not issue calls to any of the core methods new to OpenMAX IL 1.1 (e.g. content pipes).

Figure 1-3. OpenMAX IL 1.0 Client Using 1.1 Core and 1.0 & 1.1 Components

In the above complex example, a client using OpenMAX IL 1.0 methods is operating
with an OpenMAX IL 1.1 core and components from both OpenMAX IL 1.0, and
OpenMAX IL 1.1.

 18

The OpenMAX IL 1.1 core, determines that Component D, is an OpenMAX IL 1.0
component via the OMX_GetComponentVersion method. The core should flag
component D as OpenMAX IL 1.0, and allocate the component handle in
OMX_COMPONENTTYPE as an OpenMAX IL 1.0 structure. All subsequent method
accesses to Component D from the core shall be restricted to OpenMAX IL 1.0 methods.
Furthermore the core shall provide OpenMAX IL 1.0 structures for all methods to
component D.

The OpenMAX IL 1.1 component C detects the core is OpenMAX IL 1.1 by the version
of the component handle in OMX_COMPONENTTYPE. Component C may use OpenMAX
IL 1.1 core methods.

Component C, detects per-method that the client is using OpenMAX IL 1.0 methods and
structures and responds accordingly.

Lastly Component C detects Component D is OpenMAX IL 1.0 during the
ComponentTunnelRequest method to setup the tunnel between components C and
D, by inspecting the nVersion field in the component handle provided in
hTunneledComp. Component C then uses OpenMAX IL 1.0 methods and structures
for the tunnel with Component D.

1.6.2 IL Client 1.1
Clients developed for OpenMAX IL 1.1 have visibility into this version, and prior
versions of the specification. It is expected that these clients will use the version
information provided by the OMX_GetComponentVersion method to determine the
version of OpenMAX IL supported by each component.

The Client may use OpenMAX IL 1.0 interfaces for OpenMAX IL 1.0 components. The
client should not use OpenMAX IL 1.1 interfaces on a OpenMAX IL 1.0 component. if
the client chooses to do so the behavior is not defined.

 19

2 OpenMAX IL Introduction and Architecture
This section of the document describes the OpenMAX IL features and architecture.

2.1 OpenMAX IL Description
The OpenMAX IL layer is an API that defines a software interface used to provide an
access layer around software components in a system. The intent of the software interface
is to take components with disparate initialization and command methodologies and
provide a software layer that has a standardized command set and a standardized
methodology for construction and destruction of the components.

2.1.1 Architectural Overview
Consider a system that requires the implementation of four multimedia processing
functions denoted as F1, F2, F3, and F4. Each of these functions may be from different
vendors or may be developed in house but by different groups within the organization.
Each may have different requirements for setup and teardown. Each may have different
methods of facilitating configuration and data transfer. The OpenMAX IL API provides a
means of encapsulating these functions, singly or in logical groups, into components. The
API includes a standard protocol that enables compliant components that are potentially
from different vendors/groups to exchange data with one another and be used
interchangeably.

The OpenMAX IL API interfaces with a higher-level entity denoted as the IL client,
which is typically a functional piece of a filter graph multimedia framework, OpenMAX
AL, or an application. The IL client interacts with a centralized IL entity called the core.
The IL client uses the OpenMAX IL core for loading and unloading components, setting
up direct communication between two OpenMAX IL components, and accessing the
component’s methods.

An IL client always communicates with a component via the IL core. In most cases, this
communication equates to calling one of the IL core’s macros, which translates directly
to a call on one of the component methods. Exceptions (where the IL client calls an
actual core function that works) include component creation and destruction, queries
about installed components and the roles they support, and connection via tunneling of
two components.

Components embody the media processing function or functions. Although this
specification clearly defines the functionality of the OpenMAX IL core, the component
provider defines the functionality of a given component. Components operate on four
types of data that are defined according to the parameter structures that they export: audio,
video, image, and other (e.g., time data for synchronization).

An OpenMAX IL component provides access to a standard set of component functions
via its component handle. These functions allow a client to get and set component and
port configuration parameters, get and set the state of the component, send commands to
the component, receive event notifications, allocate buffers, establish communications

 20

with a single component port, and establish communication between two component
ports.

Every OpenMAX IL component shall have at least one port to claim OpenMAX IL
conformance. Although a vendor may provide an OpenMAX IL-compatible component
without ports, the bulk of conformance testing is dependent on at least one conformant
port. The four types of ports defined in OpenMAX IL correspond to the types of data a
port may transfer: audio, video, and image data ports, and other ports. Each port is
defined as either an input or output depending on whether it consumes or produces
buffers.

In a system containing four multimedia processing functions F1, F2, F3, and F4, a system
implementer might provide a standard OpenMAX IL interface for each of the functions.
The implementer might just as easily choose any combination of functions. The
delineation for the separation of this functionality is based on ports. Figure 2-1 shows a
few possible partitions for an OpenMAX IL implementation that provides these functions.

F1 F2 F3 F4

F1 F2

F1

F3 F4

F2 F3 F4

OpenMAXComponent A

OpenMAX Component B

OpenMAX Component C

OpenMAX Component D

OpenMAX Component A OpenMAXComponent B

OpenMAX Component A

Figure 2-1. Possible Partitions for an OpenMAX IL Implementation

 21

 22

2.1.2 Key Vocabulary
This section describes acronyms and definitions commonly used in describing the
OpenMAX IL API.

2.1.2.1 Key Definitions
Table 2-1 lists key definitions used in describing the OpenMAX IL API.

Table 2-1: Key Definitions

Key word Meaning
Accelerated component OpenMAX IL components that wrap a function with a portion

running on an accelerator.
Accelerator Hardware designed to speed up processing of some functions. This

hardware may also be referred to as accelerated hardware. Note that
the accelerator may actually be software running in a different
processor and not be hardware at all.

Buffer Supplier The entity that “owns” the buffer passed into a port.
Container A format for encapsulating elementary streams of data and associated

metadata (e.g. the 3gp file format).
Content Pipe The abstraction of a means to access (read or write) some content

external to OpenMAX IL. Content may manifest itself as a file and a
pipe may leverage system file i/o functions, but the abstraction is not
limited to these particular types of content or content access.

Component Group A group of components that are functionally dependent upon one
another. If one component of a group is inoperable then all
components in a group are inoperable.

Component Suspension A component is suspended when it lacks a critical resource but holds
all other resources so that, if and when the required resource is again
available, that component may resume from the point of suspension.

Dynamic resources Any component resources that are allocated after the initial transition
to the idle state. Dynamic resource allocation is discouraged and
should only occur when the parameters of the allocation (e.g. the size
or number of internal memory buffers) is not known at the preferred
times to allocate resources.

Host processor The processor in a multi-core system that controls media acceleration
and typically runs a high-level operating system.

IL client The layer of software that invokes the methods of the core or
component. The IL client may be a layer below the GUI application,
such as GStreamer, or may be several layers below the GUI layer. In
this document, the application refers to any software that invokes the
OpenMAX IL methods.

Main memory Typically external memory that the host processor and the accelerator
share.

 23

Key word Meaning
OpenMAX IL
component

A component that is intended to wrap functionality that is required in
the target system. The OpenMAX IL wrapper provides a standard
interface for the function being wrapped.

OpenMAX IL core Platform-specific code that has the functionality necessary to locate
and then load an OpenMAX IL component into main memory. The
core also is responsible for unloading the component from memory
when the application indicates that the component is no longer
needed.
In general, after the OpenMAX IL core loads a component into
memory, the core will not participate in communication between the
application and the component.

Resource manager A software entity that manages hardware resources in the system.
Static resources Component resources that are allocated as a prerequisite to entering

the idle state. Most component resources fall into this category.
Synchronization A mechanism for gating the operation of one component with

another.
Tunnels/Tunneling The establishment and use of a standard data path that is managed

directly between two OpenMAX IL components.

2.1.3 System Components
Figure 2-2 depicts the various types of communication enabled with OpenMAX IL. Each
component can have an arbitrary number of ports for data communication. Components
with a single output port are referred to as source components. Components with a single
input port are referred to as sink components. Components running entirely on the host
processor are referred to as host components. Components running on a loosely coupled
accelerator are referred to as accelerator components. OpenMAX IL may be integrated
directly with an application or may be integrated with multimedia framework
components enabling heterogeneous implementations.

Three types of communication are described. Non-tunneled communications defines a
mechanism for exchanging data buffers between the IL client and a component.
Tunneling defines a standard mechanism for components to exchange data buffers
directly with each other in a standard way. Proprietary communication describes a
proprietary mechanism for direct data communications between two components and
may be used as an alternative when a tunneling request is made, provided both
components are capable of doing so.

 24

IL Client

Host
Component Accelerator

Component

Hardware
Accelerated

Codec

Source
Component

Sink
Component

IPCIPC

Framework
Component

Framework
Component

Framework
Component

Framework
Component

Multimedia Framework

Proprietary
Communication

Tunneled
Communication

Non-Tunneled
Communication

O
pe

nM
A

X
C

or
e

Figure 2-2. OpenMAX IL API System Components

2.1.3.1 Component Profiles
OpenMAX IL component functionality is grouped into two profiles: base profile and
interop profile.

The base profile shall support non-tunneled communication. Base profile components
may support proprietary communication. Base profile components do not support
tunneled communication.

The interop profile is a superset of the base profile. An interop profile component shall
support non-tunneled communication and tunneled communication. An interop profile
component may support proprietary communication.

The primary difference between the interop profile and the base profile is that the
component supports tunneled communication. The base profile exists to reduce the
adoption barrier for OpenMAX IL implementers by simplifying the implementation. A
base profile component does not need to implement tunneled communication.

Table 2-2: Types of Communication Supported Per Component Profile

Type of Communication Base Profile Support Interop Profile Suport
Non-Tunneled Communication Yes Yes
Tunneled Communication No Yes
Proprietary Communication Yes Yes

2.1.4 Component States
Each OpenMAX IL component can undergo a series of state transitions, as depicted in
Figure 2-3. Every component is first considered to be unloaded. The component shall be
loaded through a call to the OpenMAX IL core. All other state transitions may then be
achieved by communicating directly with the component.

A component can enter an invalid state when a state transition is made with invalid data.
For example, if the callback pointers are not set to valid locations, the component may
time out and alert the IL client of the error. The IL client shall stop, de-initialize, unload,
and reload the component when the IL client detects an invalid state. Figure 2-3 depicts
the invalid state as enterable from any state, although the only way to exit the invalid
state is to unload and reload the component.

LOADED

IDLE

EXECUTING

PAUSED

INVALID

UNLOADED

WAIT FOR
RESOURCES

Figure 2-3. Component States

In general, the component shall have all its operational resources when in the IDLE state.
There are, however, exceptions when the parameters for the resource allocation are not
known at the time of the transition to IDLE. For example, a component that decodes

 25

video does not know how many reference frames are required until the data stream is
examined yet the component cannot examine the stream prior to transition to IDLE. In
these cases the component may defer the allocation of resources until such time as it
knows the parameters of allocation. If dynamic allocation fails the component shall
suspend itself. Thus we often distinguish between those resources allocated “up front”
(e.g. on a transition to IDLE) and those allocated later by calling the former static
resources and the latter dynamic resources.

Transitioning into the IDLE state may fail since this state requires allocation of all
operational static resources. When the transition from LOADED to IDLE fails, the IL
client may try again or may choose to put the component into the WAIT FOR
RESOURCES state. Upon entering the WAIT FOR RESOURCE state, the component
registers with a vendor-specific resource manager to alert it when resources have become
available. The component will subsequently transition into the IDLE state. A command
that the IL client sends controls all other state transitions except to INVALID.

The IDLE state indicates that the component has all of its needed static resources but is
not processing data. The EXECUTING state indicates that the component is pending
reception of buffers to process data and will make required callbacks as specified in
section 3. The PAUSED state maintains a context of buffer execution with the component
without processing data or exchanging buffers. Transitioning from PAUSED to
EXECUTING enables buffer processing to resume where the component left off.
Transitioning from EXECUTING or PAUSED to IDLE will cause the context in which
buffers were processed to be lost, which requires the start of a stream to be reintroduced.
Transitioning from IDLE to LOADED will cause operational resources such as
communication buffers to be lost.

2.1.5 Component Architecture
Figure 2-4 depicts the component architecture. Note that there is only one entry point for
the component (through its handle to an array of standard functions) but there are
multiple possible outgoing calls that depend on how many ports the component has. Each
component will make calls to a specified IL client event handler. Each port will also
make calls (or callbacks) to a specified external function. A queue for pointers to buffer
headers is also associated with each port. These buffer headers point to the actual buffers.
The command function also has a queue for commands. All parameter or configuration
calls are performed on a particular index and include a structure associated with that
parameter or configuration, as depicted in Figure 2-4.

 26

Parameter/
Configuration

SET/GET

Commands

Buffer Sent

Port A
Input

Port B
Output

IL Client
Event
Handler

Component
Handle

Command
Queue

Port A Buffer
Header
Pointer
Queue

Port B Buffer
Header
Pointer
Queue

Port
Callbacks

IL Client
Or other
component

Component Event
Handler

Configuration
Structures

Port
Callbacks
And Calls

Figure 2-4. OpenMAX IL API Component Architecture

A port shall support callbacks to the IL client and, when part of an interop profile
component, shall support communication with ports on other components.

2.1.6 Communication Behavior
Configuration of a component may be accomplished once the handle to the component
has been received from the OpenMAX IL core. Data communication calls with a
component are non-blocking and are enabled once the number of ports has been
configured, each port has been configured for a specific data format, and the component
has been put in the appropriate state. Data communication is specific to a port of the
component. Input ports are always called from the IL client with
OMX_EmptyThisBuffer (for more information, see section 3.2.2.17). Output ports
are always called from the IL client with OMX_FillThisBuffer (for more
information, see section 3.2.2.18). In an in-context implementation, callbacks to
EmptyBufferDone or FillBufferDone will be made before the return. Figure 2-5
depicts the anticipated behavior for an in-context versus an out-of-context
implementation. Note that the IL client should not make assumptions about
return/callback sequences to enable heterogeneous integration of in-context and out-of-
context OpenMAX IL components.

 27

 28

C a llin g A p p lic a tio n /F ra m e w o rk

O p e n M A X C o m p o n e n t

P a ra m e tr ic
c h e c k

C a ll R e tu rn

F u n c tio n

C a llb a c k

C a llin g A p p lic a tio n /F ra m e w o rk

O p e n M A X C o m p o n e n t

P a ra m e tr ic
c h e c k

C a ll R e tu rn

F u n c tio n

C a llb a c k

O p e n M A X C o m p o n e n t ru n s in
S e p a ra te th re a d /p ro c e s s
A s a p p lic a tio n /fra m e w o rk

O p e n M A X C o m p o n e n t ru n s in
S a m e th re a d /p ro c e s s
A s a p p lic a tio n /fra m e w o rk

Figure 2-5. Out-of-Context versus In-Context Operation

Data communications with components is always directed to a specific component port.
Each port has a component-defined minimum number of buffers it shall allocate or use. A
port associates a buffer header with each buffer. A buffer header references data in the
buffer and provides metadata associated with the contents of the buffer. Every component
port shall be capable of allocating its own buffers or using pre-allocated buffers; one of
these choices will usually be more efficient than the other.

2.1.7 Tunneled Buffer Allocation
This section describes buffer allocation for tunneling components. For a given tunnel,
exactly one port supplies the buffers and passes those buffers to the non-supplier port.
Normally the supplier port of a tunnel also allocates the buffers. Under the right
circumstances, however, a tunneling component may choose to re-use buffers from one
port on another to avoid memory copies and optimize memory usage. This optional
practice, known as buffer sharing is described in detail in Section 10—Implementing
Buffer Sharing..

Figure 2-6 illustrates the concepts relevant to tunneled buffer allocation.

Figure 2-6. Example of Buffer Allocation and Sharing Relationships

Component 3Component 2Component 1

UseBuffer(K) UseBuffer(K) share K
Buffer K

 a b c d

 29

Among a pair of ports that are tunneling, the port that calls UseBuffer on its neighbor
is known as a supplier port. A buffer supplier port does not necessarily allocate its
buffers; it may re-use buffer from another port on the same component. Ports a and c in
Figure 2-6 illustrate supplier ports.

The port that receives the UseBuffer calls from its neighbor is known as a non-
supplier port. Ports b and d Figure 2-6 illustrate non-supplier ports.

A port’s tunneling port is the port neighboring it with which it shares a tunnel. For
example, port b in Figure 2-6 is the tunneling port to port a. Likewise, port a is the
tunneling port to port b.

An allocator port is a supplier port that also allocates its own buffers. Port a in Figure 2-6
is the only allocator port.

A sharing port is a port that re-uses buffers from another port on the same component.
For example, port c in Figure 2-6 is a sharing port.

A tunneling component is a component that uses at least one tunnel.

The set of buffer requirements for a port includes the number of buffers required and the
required size of each buffer. The maximum of multiple sets of buffer requirements is
defined as the largest number of buffers mandated in any set combined with the largest
size mandated in any set. One port retrieves buffer requirements from its tunneled port in
a OMX_PARAM_PORTDEFINITIONTYPE structure via an OMX_GetParameter call
on the tunneled port's component. Note that one port may determine buffer requirements
from a port that shares its buffers without resorting to an OMX_GetParameter call
since they are both contained in the same component.

Regardless of whether the component is sharing buffers or not, it is obligated to obey the
following external semantics:

• Provide buffers on all of its supplier ports.

• Accurately communicate buffer requirements on its ports.

• Pass a buffer from an output port to an input port with an
OMX_EmptyThisBuffer call.

• Return a buffer from an input port to an output port with an
OMX_FillThisBuffer call.

2.1.7.1 IL Client Component Setup
To set up tunneling components, the IL client should perform the following setup
operations in this order:

1. Load all tunneling components and set up the tunnels on these components.

2. Command all tunneling components to transition from the loaded state to the
idle state.

 30

Note that if an IL client does not operate in this manner when some components are
sharing buffers, a tunneling component might never transition to idle because of the
possible dependencies between components.

2.1.7.2 Component Transition from Loaded to Idle State
When commanded to transition from loaded to idle, each supplier port of a non-sharing
component does the following:

1. Determine the buffer requirements of its tunneled port via an
OMX_GetParameter call.

2. Allocate buffers according to the maximum of its own requirements and the
requirements of the tunneled port.

3. Call OMX_UseBuffer on its tunneling port.

2.1.8 Port Reconnection
Port reconnection enables a tunneled component to be replaced with another tunneled
component without having to tear down surrounding components. In Figure 2-7,
component B1 is to be replaced with component B2. To do this, the component A output
port and the component B input port shall first be disabled with the port disable command.
Once all allocated buffers have returned to their rightful owner and freed, the component
A output port may be connected to component B2. The component B1 output port and the
component C input port should similarly be given the port disable command. After all
allocated buffers have returned to their owners and freed, the component C input port
may be connected to the component B2 output port. Then all ports may be given the
enable command. Refer to Section 3.4.4 Port Disablement and Enablement for additional
information regarding port disabling and enabling.

Component
A

Component
B1

Component
C

Component
B2

Component
A

Component
A

Component
B2

Component
C

Component
B1

Component
C

1.

2.

3.

4.

Figure 2-7. Port Reconnection

In some cases such as audio, reconnecting one component to another and then fading in
data for one component while fading out data for the original component may be
desirable. Figure 2-8 illustrates how this would work. In step 1, component A sends data
to component B1, which then sends the data on to component C. Components A and C
both have an extra port that is disabled. In step 2, the IL client first establishes a tunnel
between component A and B2, then establishes a tunnel between B2 and C, and then
enables all ports in the two tunnels. Component C may be able to mix data from
components B1 and B2 at various gains, assuming that these are audio components. In
step 3, the ports connected to component B1 from components A and C are disabled, and
component B1 resources may be de-allocated.

 31

A

B1

C

A

B1

C

B2

A C

B2

1.

2.

3.

Figure 2-8. Reconnecting Components

2.1.9 Queues and Flush
A separate command queue enables the component to flush buffers that have not been
processed and return these buffers to the IL client when using non-tunneled
communication, or to the tunneled output port when using tunneled communication. For
example, assume that a component has an output port that is using buffers allocated by
the IL client. In this example, the client sends a series of five buffers to the component
before sending the flush command. Upon processing the flush command, the component
returns each unprocessed buffer and triggers its event handler to notify the IL client. Two
buffers were already processed before the flush command got processed. The component
returns the remaining three buffers unfilled and generates an event. The IL client should
wait for the event before attempting to de-initialize the component.

2.1.10 Marking Buffers
An IL client can also trigger an event to be generated when a marked buffer is
encountered. A buffer can be marked in its buffer header. The mark is internally
transmitted from an input buffer to an output buffer in a chain of OpenMAX IL
components. The mark enables a component to send an event to the IL client when the
marked buffer is encountered. Figure 2-9 depicts how this works.

 32

A B C

IL Client

Mark
Buffer

B1 B2

Marked
Buffer Event

Figure 2-9. Marking Buffers

The IL client sends a command to mark a buffer. The next buffer sent from the output
port of the component is marked B1. Component B processes the B1 buffer and provides
the results in buffer B2 along with the mark. When component C receives the marked
buffer B2 through its input port, the component does not trigger its event handler until it
has processed the buffer.

2.1.11 Events and Callbacks
Six kinds of events are sent by a component to the IL client:

• Error events are enumerated and can occur at any time

• Command complete notification events are triggered upon successful execution of
a command.

• Marked buffer events are triggered upon detection of a marked buffer by a
component.

• A port settings changed notification event is generated when the component
changes its port settings.

• A buffer flag event is triggered when an end of stream is encountered.

• A resources acquired event is generated when a component gets resources that it
has been waiting for.

Ports make buffer handling callbacks upon availability of a buffer or to indicate that a
buffer is needed.

 33

2.1.12 Buffer Payload
The port configuration is used to determine and define the format of the data to be
transferred on a component port, but the configuration does not define how that data
exists in the buffer.

There are generally three cases that describe how a buffer can be filled with data. Each
case presents its own benefits.

In all cases, the range and location of valid data in a buffer is defined by the pBuffer,
nOffset, and nFilledLen parameters of the buffer header. The pBuffer parameter
points to the start of the buffer. The nOffset parameter indicates the number of bytes
between the start of the buffer and the start of valid data. The nFilledLen parameter
specifies the number of contiguous bytes of valid data in the buffer. The valid data in the
buffer is therefore located in the range pBuffer + nOffset to pBuffer +
nOffset + nFilledLen.

The following cases are representative of compressed data in a buffer that is transferred
into or out of a component when decoding or encoding. In all cases, the buffer just
provides a transport mechanism for the data with no particular requirement on the content.
The requirement for the content is defined by the port configuration parameters.

The shaded portion of the buffer represents data and the white portion denotes no data.

Case 1: Each buffer is filled in whole or in part. In the case of buffers containing
compressed data frames, the frames are denoted by f1 to fn.

 Case 1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4f5 fn f1

Figure 2-10: Case 1—Each Buffer Filled In Whole or In Part

Case 1 provides a benefit when decoding for playback. The buffer can accommodate
multiple frames and reduce the number of transactions required to buffer an amount of
data for decoding. However, this case may require the decoder to parse the data when
decoding the frames. It also may require the decoder component to have a frame-building
buffer in which to put the parsed data or maintain partial frames that would be completed
with the next buffer.

 34

Case 2: Each buffer is filled with only complete frames of compressed data.

Case 2

Case 3

f1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4f5fn f6

Figure 2-11: Case 2—Each Buffer Filled with Only Complete Frames of Data

Case 2 differs from case 1 because it requires the compressed data to be parsed first so
that only complete frames are put in the buffers. Case 2 may also require the decoder
component to parse the data for decoding. This case may not require the extra working
buffer for parsing frames required in case 1.

Case 3: Each buffer is filled with only one frame of compressed data.

f1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4fn

Figure 2-12: Case 3—Each Buffer Filled with Only One Frame of Compressed Data

The benefit in case 3 is that a decoding component does not have to parse the data.
Parsing would be required at the source component. However, this method creates a
bottleneck in data transfer. Data transfer would be limited to one frame per transfer.
Depending on the implementation, one transaction per frame could have a greater impact
on performance than parsing frames from a buffer.

At a minimum, a decoder or encoder component would be required to support case 1. By
definition, if a codec component can support case 1, then it can support cases 2 and 3, but
only if the compression format allows for byte-aligned frame boundaries. Operating in
case 2 or 3 may not make sense when, for example, configuring an Adaptive Multi-Rate
(AMR) codec for RTP-payload format, bandwidth-efficient mode. The non-byte aligned
frames defined by this format would not fit the byte-aligned frame boundaries defined by
these cases.

When filling a buffer with compressed data for input to a decoder or output from an
encoder, a problem with limiting the filling to complete frames only might arise when

 35

frames are not byte aligned. Padding would have to be added outside of any padding
defined in the format specification. The padding would then need to be removed, since
the data could not be appended as is. This would require knowledge of the padding bits
outside of any standard specification. Likewise, if this padding were not in place to
maintain compliance with the standards specification for the port configuration, complete
frames could not always be placed in the buffers. In either case, specific knowledge of
how this situation is handled would be required, and may be different between
components.

For interoperability, the content delivered in a buffer should not be assumed or required
to be any number of complete frames, although at least one complete unit of data will be
delivered in a buffer for uncompressed data formats. Compressed data formats do not
place restrictions on the amount of content delivered in each buffer.

2.1.13 Buffer Flags and Timestamps
Buffer flags associate certain properties (e.g., the end of a data stream) with the data
contained in a buffer. A buffer timestamp associates a presentation time in microseconds
with the data in the buffer used to time the rendering of that data. Once a timestamp is
associated with a buffer, no component should alter the timestamp for rate control or
synchronization, which are implemented in the clock component.

Buffer metadata (i.e., flags and timestamps) applies to the [first] new logical unit in the
buffer. Thus, given the presence of multiple logical units in a buffer, the metadata applies
to the logical unit whose starting boundary occurs first in the buffer. [Subsequent logical
units in a buffer don’t have explicit flags nor timestamps. If explicit flag and timestamps
are required on every logical unit, one or less logical unit should be included in each
buffer]. Unless otherwise stated (e.g., in a flag definition), a component that receives a
logical input unit marked with a flag or timestamp shall copy that metadata to all logical
output units that the input contributes to.

2.1.14 Synchronization
Synchronization is enabled by the use of synchronization (sync) ports on a clock
component. These ports and the clock component are defined within the “other” domain
and operate with the same protocols and calls that regulate data ports. The clock
component maintains a media clock that tracks the position in the media stream based on
audio and video reference clocks. The clock component transmits buffers containing time
information (denoted by a media time update and containing the media clock’s current
position, scale, and state) to client components via sync ports. A client component may
time the execution of an operation (e.g., the presentation of a video frame) to a timestamp
by requesting that the clock component send that timestamp when it matches the media
clock. In this case, the client component executes the operation when it receives the
fulfillment of the request over its sync port. Figure 2-13 illustrates the flow of time and
data buffers in an example configuration of components.

 36

data

data

data

data
File
Reader/
Demux

Audio
Decoder

Video
Renderer

data

time

time
Video
Scheduler

Video
Decoder

Audio
Renderer

Clock
Component

Figure 2-13. Flow of Time and Data Buffers

2.1.15 Rate Control
The clock component also implements all rate control by exposing a set of configurations
for controlling its media clock. The IL client may change the scale factor of the media
clock (effectively changing the rate and direction that the media clock advances) to
implement play, fast forward, rewind, pause, and slow motion trick modes. The IL client
may also start and stop the clock by using these configurations to change the state of the
media clock. The clock component makes all of its client components aware of a change
to the media clock scale and state by sending a media time update with the new scale or
state on all sync ports. Although a component may not alter a buffer timestamp in
reaction to a scale change, a component may alter its processing accordingly. For
instance, an audio component might scale and pitch correct audio during trick modes or
cease transmitting output entirely.

2.1.16 Component Registration
How components are registered with a core is generally core specific.

However, if the core supports static linking with components, then it will support a
standard compile-time component registration scheme as described in section 3. Vendors
can therefore supply components that are suitable for static linking with all cores that
support it; this is achieved by placing component information into a data structure that is
linked with the component and the core.

A component can be registered statically using this mechanism but have the bulk of its
code dynamically loaded.

A component supplies an interface for retieving the standard component roles it supports.
The core may leverage this interface for exposing role-related information to the IL client.

2.1.17 Resource Management
This section discusses the role of resource management in the OpenMAX IL API.

 37

 38

2.1.17.1

2.1.17.2

Need for Resource Management
When a component is not allowed to go to idle state due to lack of resources, the IL client
does not know what the limited resource is or which components are using that resource.
Therefore, the IL client cannot resolve the resource conflict. These situations necessitate
IL resource management.

One of the goals of OpenMAX IL is hardware independence provided by the IL layer to
the layers above it. The goal of hardware independence can be achieved by specifying the
following requirements regarding resource management:

• An IL client (e.g., a multimedia plug-in that is typically part of a software
platform) should not need to know the details of an IL implementation or which
resource an IL component is using.

• In case of resource conflicts, an IL client should be able to rely on consistent
component behavior across IL implementations and hardware platforms.

• An IL client should not have to interface directly with a hardware vendor-specific
resource manager for two reasons.

o This method violates the goal of hardware independence.

o This method adds considerable re-work to the IL client, which has an
impact on the re-usability of the IL client on multiple hardware platforms.

Although resource management is not fully addressed in OpenMAX IL API version 1.1,
“hooks” for resource management have been put in place in the form of behavioral rules,
component priorities, and a resource management-related component state. These
“hooks” lay the groundwork for full-fledged resource management in later versions of the
OpenMAX IL API.

Before proceeding further, the terms resource management and policy are defined for the
benefit of the discussion that follows:

• Resource management is responsible for managing the access of components to a
limited resource. A resource manager will be aware of how much of a specific
resource is available, which components are currently using the resource, and how
much of the resource the components are using. A resource manager will
recommend to policy which components should be pre-empted or resumed based
on resource conflicts and availability.

• Policy is responsible for managing component chains or streams. Policy is used to
determine if a stream can run based on information including resources, system
configuration, and other factors.

Example Architecture
Figure 2-15 shows a high-level architecture diagram of an exemplar OpenMAX IL-based
system. In this example, a multimedia framework with a policy manager exists between
the applications and the IL layer. This exemplar system also has multiple hardware
platforms that are used by different OpenMAX IL components and that are managed by

 39

multiple hardware vendor-specific resource managers. But this system would work just as
well with a single, centralized resource manager.

This example architecture is used as a background for the following discussion on
component priorities, behavioral rules and hardware-specific resource managers. It is to
be noted, however, that this discussion applies to any OpenMAX IL-based architecture.

Figure 2-14. Example Architecture

To ensure consistent component behavior in case of resource conflicts, a common
definition of component priority and a set of behavioral rules are needed.

2.1.17.3 Component Priorities
Each IL component has a priority value (an OMX_U32 integer) that the IL client sets.

A descending order of priority is chosen with 0 denoting the highest priority. The
following tie-breaking rule also applies: When comparing components with the same

Applications

Multimedia Framework
(includes Policy Mgr)

OpenMAX IL

Component
A1

Component
A2

Component
An Component

B1
Component

B2
Component

Bn

Adaptation to HW "A" (includes resource
manager specific to HW "A")

Adaptation to HW "B" (includes
resource manager specific to HW "B")

Resource managers
are always HW
vendor-specific

The framework layer could be
thin or thick, depending on the
platform, but will always
include a Policy Manager that
handles preemption, based on
feedback fro the Resource m
Manager(s).

Includes OpenMAX IL
core and
component
interfaces

 40

priority, components that have acquired the resource most recently should be deemed to
be of higher priority than components that have had the resource longer

IL components may also be assigned a group priority by the IL client. Any component
sharing the same group ID maintains the same group priority .

2.1.17.4

2.1.17.5

Behavioral Rules
The following behavior is defined on the IL layer:

• The OMX_ErrorInsufficientResources error is called only on a
component that attempts to go to the idle state when there are insufficient
resources and sufficient resources cannot be freed by preempting lower priority
components.

• A component is not aware that preemption is occurring when it tries to go to the
idle state, and the resources it requires need to be freed by preempting lower
priority components.

• When a component that has resources which need to be preempted, it will send
the OMX_ErrorResourcesPreempted error to the IL Client as it moves
from the Executing or Paused state to the Idle state. The component will send the
OMX_ErrorResourcesLost error to the IL client as it moves from the Idle
state to the Loaded state once the resources are released.

• In cases where the IL client wants to know when the stream associated with the
component can be resumed or started, the IL client shall request to be notified
when resources are available. This occurs by putting the component into the
OMX_StateWaitForResources state. When the resources become available, the
component automatically goes to the idle state. When the client receives the
notification that the component is in the idle state, it can try to move the rest of
the components in that chain to the idle state as well. This automatic movement to
the idle state ensures that in cases where multiple IL clients are waiting for the
same resource, the IL client can resume or start the stream as soon as the resource
is available. If the component were to automatically move just to the loaded state,
then another IL client could grab that resource first.

These behavioral rules are intended to cover only the interactions between the IL client(s)
and the IL components.

Hardware Vendor-Specific Resource Manager
To implement the behavioral rules, a hardware vendor-specific resource manager may
exist and perform the following functions:

• Implement and manage the wait queue(s).

• Keep track of available resources.

• Keep track of each component that has resources and which resources they are
using.

 41

• Notify a component or multiple components that they need to give up their
resources when a higher priority component requests the resource.

• Notify the highest priority component waiting for a resource when the resource is
available.

The actual interactions between the components and the hardware vendor-specific
resource manager(s) are vendor-specific and outside the scope of this document. Section
 3 provides more details of the parameter structures and use cases related to priority and
resource management.

2.1.17.6 Component Suspension
When a component lacks sufficient resources to process data it may elect to suspend itself
as a means to enable more optimal dynamic resource management. Component
suspension addresses two use cases:

1. Component has lost an essential resource and the resource loss is potentially
temporary in nature.

2. Dynamic allocation of essential resources has failed

In the absence of the ability to suspend, the component’s only possible reaction to the
preemption and loss of a resource is deinitialization via a transition to the Idle and then
Loaded states. Such deinitialization causes the state of the data stream to be lost because
the buffers have to be returned to their allocator. Suspension allows a component to retain
its state so that it may be resumed at the point of suspension after some delay.

Suspension is a property of a component when it is in the idle or paused component states.
Specifically a component is “suspended” when it has lost one or more resources that
prevent it from processing data. This means that a component cannot be suspended and
be in the executing state at the same time (since “executing” implies the component will
process or output data whenever that data is available). Therefore, a component may be
suspended anytime it is normally holding some resources but not seeking to process data,
namely when in the idle or paused states.

Component suspension requires no new component states but adds one new component-
initiated state transition, namely a transition from the executing to the paused which an
executing component performs on itself upon suspension. IL client may perform any of
the normal state transitions on a suspended component with the following exception: a
client may not transition a suspended component into the Executing state. Any attempt to
do so will fail and return the OMX_ErrorComponentSuspended error.

2.1.18 Content Pipes
IL components may leverage content piping to synchronously pull in or push out content
(e.g. a filestream) from a source or destination abstracting the platform implementation
specifics of the source or destination (e.g. local file, remote file, broadcast, etc). A
content pipe is an object that provides content access by implementing the data access
abstraction interface defined in the content pipe structure.

The content pipe interface includes functions for conventional content manipulation
including:

• opening, closing, and creating content

• seeking to a particular position in the the content

• getting the position in the content

• reading data from the current position

• writing data to the current position

This content pipe interface also includes functions to accommodate content pipe
implementations that may be streaming data asynchronously to or from a remote location.
In this case the pipe may not be immediately ready to provide data (in the case of
reading) or accept data (in the case of writing). Furthermore such pipes may maintain
their own data caches. These functions support:

• Checking the pipe for available bytes (either incoming or outgoing) to verify a
pipe client may perform a subsequent read or write.

• Reading or writing data via pipe supplied data buffers to avoid unnecessary
memory copies between pipe buffers and client buffers.

A component that leverages content pipes (e.g. a container demuxer or muxer) acquires
the pipe from IL Core via the OMX_GetContentPipe function. Alternatively the IL
client may provide a custom content pipe (e.g. if the client implements the content pipe
itself) via the OMX_IndexParamCustomContentPipe config. The IL client
specifies the target content as a URI via the OMX_IndexParamContentURI param.

2.1.19 File Parsing
OpenMAX IL 1.1 defines both standard container format demuxers and the mechanisms
to facilitate file parsing functionality in such components. These include means:

• For a component to indicate whether or not it successfully detected and supports
the datastream format it was given.

• For a component to inspect and select the streams available on each of the
components output ports (when there are multiple alternative streams).

• For the IL client to traverse, extract, and filter the metadata a component captures
from a data stream.

2.1.20 Video Decoder Error Mapping
A video decoder component has the ability to inform the IL client of any macroblock
(MB) errors it encounters while decoding the stream.The client may query the component
for a map of the MB errors it has encountered at any time via a dedicated parameter.

One pontential use for this functionality is the Video Telephony use case where the video
terminal at one end of the connection generates an encoded bitstream for a remote video

 42

 43

terminal. The encoded bitstream might get corrupted during transmission resulting in MB
errors when the remote terminal receives and decodes it. An application that can
communicate with both may extract the MB error map at the decoding terminal and
transmit it to the encoding terminal allowing it to refresh the macroblocks in error with
intra macroblocks in a subsequent encoded frame.

Figure 2-15. Example Use Case for Error Mapping

2.1.21 Buffer Payload Additional Information
Depending on buffer payload types and component requirements, a need may arise where
additional supporting information will need to be appended to the end of the buffer to
further process the buffer payload content within the next component.

For instance, video deblocking algorithms require macroblock level quantization
information in order to perform the deblocking process on the video content.
The existence of additional buffer payload information shall be identified via the “extra
data” buffer flag within the buffer header structure, which is described in section 3.1.2.7
— OMX_BUFFERHEADERTYPE.

This additional buffer payload information applies to the first new logical unit in the
buffer. Thus, given the presence of multiple logical units in a buffer, the “extra data” flag
applies to the logical unit whose starting boundary occurs first in the buffer. Subsequent
logical units in a buffer don’t have explicit “extra data”. If explicit “extra data” are
required on every logical unit, one or less logical unit should be included in each buffer.

2.1.21.1 Buffer Data Formatting
When extra data is present, the data attributes like type and size are identified by a
corresponding data structure,immediately following the buffer payload and preceding the
actual data. Multiple types of extra data may be appended to the end of the normal
payload as series of block pairs (supporting data structure and actual data). To terminate
this list of extra data sections, a further data structure should be included in the buffer
which indicates that this is the terminating item. For more details see Section 4.2.33.

Encoder

Client

Decoder

error map

data

refresh
request

Figure 2-16. Formatting of Extra Buffer Data

2.2 Endianness
The endianness used in the implementation of OpenMAX IL API data structures shall
obey the endianness of the platform on which the IL client is running. This requirement
includes interfaces used by the IL client and interfaces between components (e.g.
functions executed exclusively between two tunneling components). The OpenMAX IL
implementation is responsible for any endianness conversions inherent in supporting this
requirement; any such conversions are transparent to the IL client and to components
using the same endianness as the IL client.

 44

3 OpenMAX Integration Layer Control API
The OpenMAX Integration Layer API allows integration layer clients to control
multimedia components in the audio, video and image domains. An “other” domain is
also included to provide for extra functionality, such as audio-video (A/V)
synchronization. The user of the OpenMAX Integration Layer API is usually a
multimedia framework. In the rest of this document, the user of the OpenMAX
Integration Layer API will be referred to as the IL client.

The OpenMAX Integration Layer API is defined in a set of header files, namely:

• OMX_Types.h: Data types used in the OpenMAX IL

• OMX_Core.h: OpenMAX IL core API

• OMX_Component.h: OpenMAX IL component API

• OMX_Audio.h: OpenMAX IL audio domain data structures

• OMX_IVCommon.h: OpenMAX IL structures common to image and video
domains

• OMX_Video.h: OpenMAX IL video domain data structures

• OMX_Image.h: OpenMAX IL image domain data structures

• OMX_Other.h: OpenMAX IL other domain data structures (includes A/V
synchronization)

• OMX_Index.h: Index of all OpenMAX IL-defined data structures

• OMX_ContentPipe.h: Content pipe definition

This section describes how the OpenMAX IL core and OpenMAX IL components are
configured for operation.

First, the OpenMAX IL data types are introduced. Next, the methods of the OpenMAX
IL core are described. The methods that components implement are discussed in section
 3.2.3. Finally, section 3.4 shows calling sequences for a few meaningful operations,
including component initialization, normal data flow, data tunnel setup, and data flow in
the presence of data tunneling. Such sequence diagrams aim at describing the dynamic
interactions between the IL client, the IL core, and the OpenMAX IL components.

When documenting functions, the following convention is used for function parameters:

• <param_name> [in] specifies an input parameter, which is set by the function
caller and read by the function implementation.

• <param_name> [out] specifies an output parameter, which is set by the function
implementation and passed back to the caller. When the function returns, the
caller can read the new value of the parameter, which is passed as a reference.

 45

 46

• <param_name> [inout] specifies an input/output parameter, which the function
caller can set. The function implementation can modify the parameter before
returning it back to the function caller.

This parameter classification can also be found in the OpenMAX IL header files, where
the null macros OMX_IN, OMX_OUT and OMX_INOUT are defined. OMX_IN corresponds
to the function parameter <param_name> [in]. OMX_OUT corresponds to the function
parameter <param_name> [out], and OMX_INOUT corresponds to the function parameter
<param_name> [inout].

3.1 OpenMAX IL Types

3.1.1 Enumerations
Five 32-bit integer enumerations are defined in OMX_Core.h:

• OMX_ERRORTYPE is returned by each function defined in the OpenMAX
Integration Layer API (see section 3.1.1.3).

• OMX_COMMANDTYPE includes the possible commands that an IL client can send
to an OpenMAX IL component (see section 3.1.1.1).

• OMX_EVENTTYPE includes events that can be generated inside an OpenMAX IL
component and that are passed to the IL client through a callback function (see
section 3.1.1.4).

• OMX_BUFFERSUPPLIERTYPE includes all the possibilities for the buffer
supplier in the case of tunneled ports. A description of the use of this enumerative
type can be found in section 3.1.1.5.

• OMX_STATETYPE, which is described in section 3.1.1.2.

3.1.1.1 OMX_COMMANDTYPE
Table 3-1 represents the possible commands that an IL client can send to an OpenMAX
IL component. Since commands are non-blocking, the OpenMAX IL component
generates a command completion event via a callback function when the command has
completed. Callbacks are defined in a dedicated structure; see section 3.1.2.8.

Table 3-1: OpenMAX IL Commands

Field Name Description
OMX_CommandStateSet Change the component state
OMX_CommandFlush Flush the queue(s) of buffers on a port of a component
OMX_CommandPortDisable Disable a port on a component
OMX_CommandPortEnable Enable a port on a component
OMX_CommandMarkBuffer Mark a buffer and specify which other component will

raise the event mark received

 47

Table 3-2 describes the parameters to be used for each command.
Table 3-2: Command Syntax

Command code nParam pCmdData
OMX_CommandStateSet OMX_STATETYPE – state to

transition to
NULL

OMX_CommandFlush OMX_U32 – target port ID NULL
OMX_CommandPortDisable OMX_U32 – target port ID NULL
OMX_CommandPortEnable OMX_U32 – target port ID NULL
OMX_CommandMarkBuffer OMX_U32 – target port ID OMX_MARKTYPE* -

mark data and target
component

3.1.1.2 OMX_STATETYPE
Figure 3-1 illustrates the transitions among states that occur as a consequence of the IL
client calling OMX_SendCommand(OMX_StateSet, <state>), where the new state for
the component is passed as a parameter. A transition name surrounded by “<” and “>”
brackets indicates that the transition is not triggered by a command sent by the IL client
but is a consequence of internal component events.

Figure 3-1. OpenMAX IL Component State Transitions

sm OpenMAX component states

OMX_StateIdle

OMX_StateExecuting

OMX_StatePause

OMX_StateLoaded
Initial Final

OMX_StateInvalid

OMX_StateWaitForResources
OMX_FreeHandle()

<internal_error> O R
OMX_StateInvalid

OMX_StateLoaded

<resources available>

OMX_StateWaitForResources

OMX_StateLoaded OR
<OMX_ErrorResourcesLost>

OMX_StateIdle OR
<OMX_ErrorResourcesPreempted>

OMX_StatePause
<OMX_ErrorComponentSuspended>
<OMX_ErrorDynamicResourcesUnavailable>

OMX_StateExecuting

OMX_FreeHandle()

OMX_StateIdle

OMX_GetHandle()

OMX_StatePause OMX_StateIdle OR
<OMX_ErrorResourcesPreempted>

OMX_StateExecuting

 48

This section describes component states. An IL client commands a component to change
states via the OMX_SendCommand function using the OMX_CommandStateSet
command.

Table 3-3 represents the states of an OpenMAX IL component.
Table 3-3: OpenMAX IL Component States

Field Name Description

Static
Resources
Allocated

Location of
buffer

OMX_StateInvalid Component is corrupt or has
encountered an error from which it
cannot recover.

Unknown Unknown

OMX_StateLoaded Component has been loaded but
has no resources allocated.

No Not available

OMX_StateIdle Component has all resources but
has not transferred any buffers or
begun processing data.

Yes Supplier only

OMX_StateExecuting Component is transferring buffers
and is processing data (if data is
available).

Yes Supplier or
non-supplier

OMX_StatePause Component data processing has
been paused but may be resumed
from the point it was paused.

Yes Supplier or
non-supplier

OMX_StateWaitFor
Resources

Component is waiting for a
resource to become available.

No Not available

3.1.1.2.1 OMX_StateLoaded
A component is in the OMX_StateLoaded state after it has been created via an
OMX_GetHandle call and before allocation of its resources. In this state, the IL client
may modify the component’s parameters via OMX_SetParameter, set up data tunnels
on the component’s ports with OMX_SetupTunnel, or transition the component to
either the OMX_StateIdle state or the OMX_StateWaitForResources state.

The IL client may elect to transition a component that is currently in the
OMX_StateLoaded state into the OMX_StateWaitForResources state if, for example, the
component failed to acquire all of its static resources on an attempted transition to the
OMX_StateIdle state.

3.1.1.2.1.1 OMX_StateLoaded to OMX_StateIdle

If the IL client requests a state transition from OMX_StateLoaded to OMX_StateIdle, the
component shall acquire all of its static resources, including buffers for all enabled ports,
before completing the transition. The component does not acquire buffers for any
disabled ports. Furthermore, before the transition can complete, the buffer supplier,

 49

which is always the IL client when not tunneling, shall ensure that the non-supplier
possesses all of its buffers.

For a port connected to the IL client, the IL client may allocate the buffers itself and then
pass them to the port via an OMX_UseBuffer call on the port, or it may direct the port
to perform the allocation via an OMX_AllocateBuffer call on the port. For each port,
the IL client shall exclusively use OMX_UseBuffer or OMX_AllocateBuffer.

When a port is tunneling, the supplier port either allocates buffers itself or, if the port
implements buffer sharing, re-uses buffers from a port on the same component. A
tunneling supplier port then passes the buffers to the non-supplier port via an
OMX_UseBuffer call on the non-supplier.

The number of buffers used on a port is specified in its port definition (see
OMX_IndexParamPortDefinition), which defaults to the minimum (specified in
the same structure) but which may be modified by the supplier before the sequence of
OMX_UseBuffer and OMX_AllocateBuffer calls via a call to
OMX_SetParameter.

3.1.1.2.2 OMX_StateIdle
In the OMX_StateIdle state, the component is ready to be used, meaning that all
necessary static resources have been properly allocated. However, the suppliers retain all
their buffers, and no buffer exchange or processing is taking place. Thus, if this state is
entered from an OMX_StateExecuting or OMX_StatePause state, the component shall
have returned all buffers it was processing to their respective suppliers. The IL client may
transition the component to any states other than the OMX_StateInvalid and
OMX_StateWaitForResources states.

3.1.1.2.2.1 OMX_StateIdle to OMX_StateLoaded

On a transition from OMX_StateIdle to OMX_StateLoaded, each buffer supplier shall
call OMX_FreeBuffer on the non-supplier port for each buffer residing at the non-
supplier port. If the supplier allocated the buffer, it shall free the buffer before calling
OMX_FreeBuffer. If the non-supplier port allocated the buffer, it shall free the buffer
upon receipt of an OMX_FreeBuffer call. Furthermore, a non-supplier port shall
always free the buffer header upon receipt of an OMX_FreeBuffer call. When all of
the buffers have been removed from the component, the state transition is complete; the
component communicates that the initiating OMX_SendCommand call has completed
via a callback event.

3.1.1.2.2.2 OMX_StateIdle to OMX_StateExecuting

This transition is disallowed when the component is suspended. If the IL client requests a
state transition from OMX_StateIdle to OMX_StateExecuting and the component is not
suspended, the component shall begin transferring and processing data. If the client
requests this transition when the component is suspended the component shall fail the call
returning the OMX_ErrorComponentSuspended error. For ports that communicate

 50

with the IL client, the IL client will initiate buffer transfers via
OMX_EmptyThisBuffer and OMX_FillThisBuffer. Among tunneling ports, any
input port that is also a supplier shall transfer its empty buffers to the tunneled output port
via OMX_FillThisBuffer.

3.1.1.2.3 OMX_StateExecuting
In this state, an OpenMAX IL component is transferring and processing data buffers; the
component can therefore not be suspended and in this state. The component shall accept
calls to OMX_EmptyThisBuffer on its input ports and OMX_FillThisBuffer on
its output ports. Any port that communicates with the IL client shall call the
EmptyBufferDone and FillBufferDone callbacks to return an empty or full
buffer, respectively, back to the IL client. Any tunneling port shall call
OMX_FillThisBuffer or OMX_EmptyThisBuffer on its corresponding tunneled
port to return an empty or full buffer, respectively, back to its tunneled port. An IL client
may transition a component in the OMX_StateExecuting state to either the
OMX_StateIdle state or the OMX_StatePause state.

3.1.1.2.3.1 OMX_StateExecuting to OMX_StateIdle

If the IL client requests a state transition from OMX_StateExecuting to OMX_StateIdle,
the component shall return all buffers to their respective suppliers and receive all buffers
belonging to its supplier ports before completing the transition. Any port communicating
with the IL client shall return any buffers it is holding via EmptyBufferDone and
FillBufferDone callbacks, which are used by input and output ports, respectively.
Any non-supplier port shall return all buffers it is holding to the input port or output port
it is tunneling with using OMX_EmptyThisBuffer or OMX_FillThisBuffer,
respectively. Likewise, any supplier tunneling port shall wait for all of its buffers to be
returned from its tunneled port.

3.1.1.2.3.2 OMX_StateExecuting to OMX_StatePause

A transition from the OMX_StateExecuting state to the OMX_StatePause state occurs
under in one of three circumstances:

• When the client explicitly requests the transition

• When the component loses a resource required for execution but may be resumed
from the point of resource loss if the resource is reacquired later. In this case the
component shall execute the transition automatically and issue an error event with
the OMX_ErrorResourcesSuspended error.

• When the component is unsuccessful in an attempt to allocate dynamic resources.
In this case the component shall execute the transition automatically and issue an
error event with the OMX_ErrorDynamicResourcesUnavailable error.

 51

3.1.1.2.4

3.1.1.2.5

3.1.1.2.6

OMX_StatePause
In this state, an OpenMAX IL component is not transferring or processing data but
buffers are not necessarily returned to their suppliers. From the OMX_StatePause state,
execution may be resumed via a transition to OMX_StateExecuting, preferably without
dropping data. However, if the client requests this transition when the component is
suspended the component shall fail the call returning the
OMX_ErrorResourcesSuspended error. The component may still accept data
buffers at its input, but such buffers will be queued only and not processed further. The
IL client may transition a component in the OMX_StatePause state to OMX_StateIdle or
OMX_StateExecuting. On a transition from OMX_StatePause to OMX_StateIdle, the
component shall return all buffers to their respective suppliers in a manner identical to the
OMX_StateExecuting-to-OMX_StateIdle transition described in section 3.1.1.2.3.1.

OMX_StateWaitForResources
In this state, the component is waiting for one or more of its required resources to become
available. This state is related to resource management. The assumption is that one or
more hardware-specific resource managers exist on the platform to handle available
resources. The interaction among OpenMAX IL components and resource managers is
outside the scope of this specification.

If a component in the OMX_StateLoaded state fails to enter the OMX_StateIdle state
because resources other than buffers are insufficient, the IL client may put the component
in the OMX_StateWaitForResources state if the IL client wants to be notified when the
needed resources become available. The IL client may command the component to
discontinue waiting for resources by transitioning it from the
OMX_StateWaitForResources state to the OMX_StateLoaded state. If a component in
the OMX_StateWaitForResources state acquires all the resources upon which it is
waiting, it shall initiate a transition to the OMX_StateIdle state.

3.1.1.2.5.1 OMX_StateWaitForResources to OMX_StateIdle

When a component initiates a transition from the OMX_StateWaitForResources state to
the OMX_StateIdle state, it shall communicate the initiation of this transition to the IL
client via an OMX_EventResourcesAcquired event. When the IL client receives
the OMX_EventResourcesAcquired event, it shall call OMX_UseBuffer and
OMX_AllocateBuffer in the manner of a transition from OMX_StateLoaded to
OMX_StateIdle. Likewise, the component cannot complete its transition to
OMX_StateIdle until it acquires all of its static resources, including buffers.

OMX_StateInvalid
In this state, the component has suffered internal corruption or an error from which it
cannot recover. When it detects such a condition, the component transitions itself to
OMX_StateInvalid and informs the IL client by generating an OMX_EventError event
with the value OMX_ErrorInvalidState. When the IL client receives
OMX_EventError indicating a transition to OMX_StateInvalid, it shall free all

 52

resources associated with that component and eventually call OMX_FreeHandle to
release the handle associated with the component.

A component in the OMX_StateInvalid state shall fail every call made upon it and return
an OMX_ErrorInvalidState error message except for OMX_GetState,
OMX_FreeBuffer, or OMX_ComponentDeinit. The IL client may also command a
transition to the OMX_StateInvalid state explicitly via OMX_SendCommand. A
component may transition between any state and the OMX_StateInvalid state.

3.1.1.3 OMX_ERRORTYPE
The OMX_ERRORTYPE enumeration shown in Table 3-4 defines the standard OpenMAX
IL errors that all functions defined in the OpenMAX IL API return. These errors should
cover most of the common failure cases. However, vendors are free to add additional
error messages of their own as long as they follow these rules:

• Vendor error messages shall be in the range of 0x90000000 to 0x9000FFFF.

• Vendor error messages shall be defined in a header file provided with the
component. No error messages are allowed that are not defined.

Table 3-4: OpenMAX IL Error Codes

Field Name Description
OMX_ErrorNone The function returned successfully.
OMX_ErrorInsufficientResources There were insufficient resources to perform

the requested operation.
OMX_ErrorUndefined There was an error but the cause of the error

could not be determined.
OMX_ErrorInvalidComponentName The component name string was invalid.
OMX_ErrorComponentNotFound No component with the specified name string

was found.
OMX_ErrorInvalidComponent The component specified did not have a

OMX_ComponentInit entry point, or the
component did not correctly complete the
OMX_ComponentInit call

OMX_ErrorBadParameter One or more parameters were invalid.
OMX_ErrorNotImplemented The requested function is not implemented.
OMX_ErrorUnderflow The buffer was emptied before the next buffer

was ready.
OMX_ErrorOverflow The buffer was not available when it was

needed.
OMX_ErrorHardware The hardware failed to respond as expected.
OMX_ErrorInvalidState The component is in the OMX_StateInvalid

state.

Field Name Description
OMX_ErrorStreamCorrupt The stream is found to be corrupt. OMX IL

components processing coded data (typically
decoders) may have the ability to detect
corruption in the data stream. Also they may
have the ability to detect missing frames and
perform error concealment. Such components
should report these errors to the client using
this error code on a frame basis. Note that the
components will in most cases continue
normal operation.

OMX_ErrorPortsNotCompatible Ports being set up for tunneled
communication are incompatible.

OMX_ErrorResourcesLost Resources allocated to a component in the
OMX_StateIdle state have been lost, which
has resulted in the component returning to the
OMX_StateLoaded state.

OMX_ErrorNoMore No more indices can be enumerated.
OMX_ErrorVersionMismatch The component detected a version mismatch.
OMX_ErrorNotReady The component is not ready to return data at

this time.
OMX_ErrorTimeout A timeout occurred where the component was

unable to process the call in a reasonable
amount of time. This could be due to an
infinite loop, or busy hardware.

OMX_ErrorSameState The component tried to transition into the
state that it is currently in.

OMX_ErrorResourcesPreempted Resources allocated to a component in the
OMX_StateExecuting or OMX_StatePause
states have been pre-empted, causing the
component to return to the OMX_StateIdle
state.

OMX_ErrorPortUnresponsive
DuringAllocation

The non-supplier port deemed that it had
waited an unusually long time for the supplier
port to send it an allocated buffer via an
OMX_UseBuffer call. A non-supplier port
sends this error to the IL client via the
EventHandler callback during the
allocation of buffers on a transition from the
LOADED to the IDLE state or on a port
enable.

 53

Field Name Description
OMX_ErrorPortUnresponsive
DuringDeallocation

The non-supplier port deemed that it had
waited an unusually long time for the supplier
port to request the de-allocation of a buffer
header via a OMX_FreeBuffer call. A non-
supplier port sends this error to the IL client
via the EventHandler callback during the
de-allocation of buffers on a transition from
the IDLE to LOADED state or on a port
disablement.

OMX_ErrorPortUnresponsiveDuringStop The supplier port deemed that it had waited an
unusually long time for the non-supplier port
to return a buffer via an
EmptyThisBuffer or
FillThisBuffer call. A supplier port sent
this error to the IL client via the
EventHandler callback during the
disabling of a port, either on a transition from
the IDLE to LOADED state or on a port
disablement.

OMX_ErrorIncorrectStateTransition A state transition was attempted that is not
allowed.

OMX_ErrorIncorrectStateOperation A command or method was attempted that is
not allowed during the present state.

OMX_ErrorUnsupportedSetting One or more values encapsulated in the
parameter or configuration structure are
unsupported.

OMX_ErrorUnsupportedIndex The parameter or configuration indicated by
the given index is unsupported.

OMX_ErrorBadPortIndex The port index that was supplied is incorrect.
OMX_ErrorPortUnpopulated The port has lost one or more of its buffers

and is thus unpopulated.
OMX_ErrorComponentSuspended Component suspended due to temporary loss

of resources.
OMX_ErrorDynamicResourcesUnavailable Component suspended due to inability to

acquire dynamic resources.
OMX_ErrorMbErrorsInFrame Errors detected in frame.

 54

 55

Field Name Description
OMX_ErrorFormatNotDetected OMX IL components performing parsing

when reading input buffers or content pipes
have the ability to check correct formatting of
input data. Such components should report
this error to the client (in the form of an
OMX_EventError event passed via the
EventHandler callback) when it cannot parse
or determine the format of the given
datastream. This reporting is performed only
once in case of file parsing error. In other
cases, it is performed on every data unit (e.g.
frame) formatting error.

OMX_ErrorContentPipeOpenFailed Opening the Content Pipe failed
OMX_ErrorContentPipeCreationFailed Creating the Content Pipe failed
OMX_ErrorSeperateTablesUsed Attempting to query for single Chroma table

when separate quantization tables are used for
the Chroma (Cb and Cr) coefficients

OMX_ErrorTunnelingUnsupported Tunneling is not supported by the component

3.1.1.4 OMX_EVENTTYPE
The OMX_EVENTTYPE enumeration shown in Table 3-5 includes the event types that an
OpenMAX IL component can generate. Section 3.1.2.8 describes events that the
OpenMAX IL component generates and passes to the IL client by means of the callback
mechanism. Events have associated parameters that are also passed in the callback.

Table 3-5: OpenMAX IL Event Types

Field Name Description
OMX_EventCmdComplete Component has completed the

execution of a command.
OMX_EventError Component has detected an error

condition.
OMX_EventMark A buffer mark has reached the target

component, and the IL client has
received this event with the private
data pointer of the mark.

OMX_EventPortSettingsChanged Component has changed port settings.
For example, the component has
changed port settings resulting from
bit stream parsing.

OMX_EventBufferFlag The event that a component sends
when it detects the end of a stream.

 56

Field Name Description
OMX_EventResourcesAcquired The component has been granted

resources and is transitioning from the
OMX_StateWaitForResources state to
the OMX_StateIdle state.

OMX_EventComponentResumed The component has been resumed (i.e.
no longer suspended) due to
reacquisition of resources.

OMX_EventDynamicResourcesAvailable The component has acquired
previously unavailable dynamic
resources.

3.1.1.4.1

3.1.1.4.2

3.1.1.4.3

OMX_EventCmdComplete
A component generates an OMX_EventCmdComplete event as soon as a command
sent by the IL client has completed its execution, or a component-initiated state transition
has occurred. In case of a component state change (whether initiated by the IL client or
the component), the new state that the component has entered is returned as an event
parameter. A component that transitions to the OMX_StateInvalid state does not generate
this event.

OMX_EventError
A component generates the OMX_EventError event when the component detects an
error condition; the type of error detected is returned as an event parameter and will use
values defined in OMX_ERRORTYPE. A component shall send the following errors via
OMX_EventError:

• A component sends the OMX_ErrorInvalidState error if the component
transitions to the OMX_StateInvalid state.

• A component sends the OMX_ErrorResourcesPreempted error if the
component transitions from OMX_StateExecuting or OMX_StatePause to
OMX_StateIdle due to the loss of a resource.

• A component sends the OMX_ErrorResourcesLost error if the component
transitions from OMX_StateIdle to OMX_StateLoaded due to the loss of a
resource.

OMX_EventMark
A component generates the OMX_EventMark event when it receives a marked buffer.
When a component receives a buffer, it shall compare its own pointer to the
pMarkTargetComponent field contained in the buffer. If the pointers match, then the
component shall send a mark event including pMarkData as a parameter, immediately
after the component has finished processing the buffer. The IL client can use the mark

 57

event to measure the propagation delay of a data buffer through a chain of components,
or to notify a component that a particular buffer has reached the given destination.

3.1.1.4.4

3.1.1.4.5

3.1.1.4.6

3.1.1.4.7

OMX_EventPortSettingsChanged
A component generates the OMX_EventPortSettingsChanged event as soon as
component port settings change. For example, a video decoder may not know a priori the
output frame size and frame rate, as these parameters are coded in the input bit stream. As
soon as such parameters are parsed, the component changes the values of the
configuration structures of its output port and sends the
OMX_EventPortSettingsChanged event to the IL client. If a settings change
requires the IL client to either reallocate buffers or recycle the tunnel on the port that
generated the OMX_EventPortSettingsChanged then that port shall cease
transferring data until the IL client takes such action.

OMX_EventBufferFlag
A component generates the OMX_EventBufferFlag event when an output port emits
a buffer with the OMX_BUFFERFLAG_EOS flag set in the nFlags field. The nData1
field of EventHandler specifies the value of the output port’s portindex field. The
nData2 field of EventHandler specifies the unaltered nFlags field containing the
end-of-stream (EOS) flag.

If a component does not propagate a stream further (e.g., the component is an audio or
video sink), then the component shall send an OMX_EventBufferFlag event for that
stream when it has finished processing a buffer with OMX_BUFFERFLAG_EOS set. The
nData1 field of EventHandler specifies the input port that received the buffer. The
nData2 field of EventHandler specifies the unaltered nFlags field containing the
EOS flag.

OMX_EventResourcesAcquired
A component generates the OMX_EventResourcesAcquired event when it is in the
OMX_StateWaitForResources state, and the resource manager detects that the needed
resources are available. When the component generates this event, it is ready to change
state into the OMX_StateIdle, and it waits for all the buffers to be allocated and assigned
to its ports.

OMX_EventComponentResumed
A suspended component generates the OMX_EventComponentResumed event when
the resources it had lost have been reacquired. Upon receipt of this event the component
is no longer suspended client may attempt to transition a suspended component into the
executing state.

 58

3.1.1.4.8

3.1.1.5

OMX_EventDynamicResourcesAvailable
A suspended component generates the OMX_EventDynamicResourcesAvailable
event when some dynamic resource it was formerly unable to allocate has become
available. Upon receipt of this event the component is no longer suspended and the client
may attempt to transition it into the executing state.

OMX_BUFFERSUPPLIERTYPE
The OMX_BUFFERSUPPLIERTYPE enumerative type shown in Table 3-6 specifies the
port in the tunnel that is the supplier port. A buffer supplier port either may allocate its
buffers or reuse buffers provided by another port within the same component.

Table 3-6: OpenMAX IL Buffer Supplier Type For Tunnel Setup

Field Name Description
OMX_BufferSupplyUnspecified The port supplying the buffers is unspecified, or

no supplier is preferred.
OMX_BufferSupplyInput The input port supplies the buffers.
OMX_BufferSupplyOutput The output port supplies the buffer.

3.1.2 Structures
This section discusses the data structures defined in the OpenMAX IL core. The first two
fields of each OpenMAX IL data structure denote the size, nSize, of the structure and
the version of type OMX_VERSIONTYPE, nVersion, which is defined in section
 3.1.2.4. The entity that allocates an OpenMAX IL structure is responsible for filling in
these two values. Hereinafter, definitions for these two common fields are omitted in
individual structure definitions.

3.1.2.1 OMX_COMPONENTREGISTERTYPE
The OMX_COMPONENTREGISTERTYPE structure is used in the case of static linking of
components to the core. The core optionally uses it to load the component and run the
specific component initialization functifons.

OMX_COMPONENTREGISTERTYPE is defined as follows.
typedef struct OMX_COMPONENTREGISTERTYPE
{
 const char * pName;
 OMX_COMPONENTINITTYPE pInitialize;
} OMX_COMPONENTREGISTERTYPE;

3.1.2.2 OMX_COMPONENTINITTYPE Type Definition
The OMX_COMPONENTINITTYPE type definition is the type of function pointer for the
component initialization entry point. The definition is as follows:

 59

typedef OMX_ERRORTYPE (* OMX_COMPONENTINITTYPE)(OMX_IN OMX_HANDLETYPE
hComponent);

3.1.2.2.1

3.1.2.3

3.1.2.4

Parameter Defintions
• pName contains the string name of the component and has limit of 128 bytes

(including ‘\0’).

• pInitialize contains the pointer to the initialization function of the
component.

OMX_ComponentRegistered[]
Any core that statically links its components shall define this global array containing the
list of all registered components in the form of OMX_COMPONENTREGISTERTYPE
fields.

OMX_VERSIONTYPE
The OMX_VERSIONTYPE type indicates the version of a component or structure. Each
structure uses an OMX_VERSIONTYPE field to indicate the OpenMAX IL specification
version under which the structure is defined. For OpenMAX IL version 1.0, the
specification version is 1.0.R.S with any Revision R and Step S values. For OpenMAX
IL version 1.1, the specification version is 1.1.R.S with any Revision R and Step S values.
The component structure also includes an OMX_VERSIONTYPE field to indicate a
vendor-specific component version.

OMX_VERSIONTYPE is defined as follows.
typedef union OMX_VERSIONTYPE
{
 struct
 {
 OMX_U8 nVersionMajor;
 OMX_U8 nVersionMinor;
 OMX_U8 nRevision;
 OMX_U8 nStep;
 } s;
 OMX_U32 nVersion;

} OMX_VERSIONTYPE;

3.1.2.4.1 Parameter Defintions
• nVersionMajor identifies the major version number. This byte of the version

occurs first.

• nVersionMinor identifies the minor version number.

• nRevision identifies the revision number.

 60

• nStep identifies the step number. This byte of the version occurs last.

3.1.2.5 OMX_PRIORITYMGMTTYPE
The IL client may use the OMX_IndexConfigPriorityMgmt and
OMX_IndexParamPriorityMgmt parameters with the
OMX_PRIORITYMGMTTYPE structure. This structure describes the priority assigned to a
set of components. A component group identifies a set of co-dependent components
associated with the same feature. All components in the same group share the same group
ID and priority. If one component in a group loses resources and stops running, the entire
feature they collectively contribute to is lost. In this case, the IL Client should transition
all of the other components in the same group to OMX_StateLoaded. A component that
is the only one with a certain nGroupID acts atomically.

OMX_PRIORITYMGMTTYPE is defined as follows.
typedef struct OMX_PRIORITYMGMTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nGroupPriority;
 OMX_U32 nGroupID;
} OMX_PRIORITYMGMTTYPE;

3.1.2.5.1

3.1.2.6

Parameter Defintions
• nGroupPriority is the priority value associated with a group of components.

If a parameter of this type is assigned to a component, that component belongs to
the group identified with nGroupID and has a priority equal to
nGroupPriority. By definition, the value 0 represents the highest priority for
a group of components.

The exact mechanism to assign priorities to groups of components is outside the
scope of this document.

The group is treated as having the same priority. When the priority of one
component in the group is changed, that change effectively applies to all
components in the group The IL Client shall update each component’s priority
within the group with the same priority. The suspension of one component in a
group does not imply the suspension of all components in that group.

• nGroupID is a unique ID for all components in the same component group.

OMX_RESOURCECONCEALMENTTYPE
The IL client may use the OMX_IndexParamDisableResourceConcealment parameter
with the OMX_RESOURCECONCEALMENTTYPE structure to enable or disable resource
concealment in a component.

The definition of OMX_RESOURCECONCEALMENTTYPE is shown as follows:
typedef struct OMX_RESOURCECONCEALMENTTYPE

 61

{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_BOOL bResourceConcealmentForbidden;
} OMX_RESOURCECONCEALMENTTYPE;

3.1.2.6.1

3.1.2.6.2

Parameter Defintions
• bResourceConcealmentForbidden is a Boolean that shall disallow the

use of resource concealment methods by a component to resolve resource
conflicts.

Component Suspension Policy
A component lacking sufficient resources to process data may elect to suspend itself to
resolve a temporary resource conflict. Component suspension is ideal when the resource
loss is temporary in nature or driven by a requirement for additional runtime dynamic
resources.
The IL client specifies the suspension policy of a component via a parameter,
OMX_IndexParamSuspensionPolicy, where possible suspension policies include:

• Suspension Disabled: The component shall not suspend itself. If an executing
loses resource it shall transition through the idle state, into the loaded state as part
of its resource loss. This shall be the default component behaviour as defined in
v1.0.

• Suspension Enabled: Upon detection of a temporary loss of resources a
component may suspend processing. No state transitions are triggered if
suspension occurs in the paused or idle states. If the component is in the executing
state when it suspends, it shall transition to paused..

The OMX_PARAM_SUSPENSIONPOLICYTYPE is defined as follows:
typedef struct OMX_PARAM_SUSPENSIONPOLICYTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_SUSPENSIONPOLICYTYPE ePolicy;
} OMX_PARAM_SUSPENSIONPOLICYTYPE;

The parameters for OMX_PARAM_SUSPENSIONPOLICYTYPE are defined as follows.

• ePolicy specifies to the component to support suspension,
OMX_SuspensionEnabled, or to disable support for suspension,
OMX_SuspensionDisabled. The component default shall be
OMX_SuspensionDisabled.

An IL client may query if the component is suspended using the
OMX_IndexParamComponentSuspended parameter. The client can use this
suspension status of the component to make decisions on how to proceed when a
component is suspended. The IL Client may opt to leave the component as-is expecting

 62

the suspension to be temporary. The IL Client may opt to transition the component to the
loaded state, or perform some alternative processing.
The OMX_PARAM_SUSPENSIONTYPE is defined as follows:
typedef struct OMX_PARAM_SUSPENSIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_SUSPENSIONTYPE eType;
} OMX_PARAM_SUSPENSIONTYPE;

The parameters for OMX_PARAM_SUSPENSIONTYPE are defined as follows.

• eType specifies the suspension state of the component where OMX_Suspended
indicates suspension and OMX_NotSuspended is the converse.

3.1.2.6.3 Suspension Due to Pre-emption of Resources
The effect of “suspension” on component implementations is minimal, specifically:

• Upon the loss of one or more resources, a component shall decide between either
suspending itself (if it is capable of resumption later and its suspension policy
allows it) or de-initializing itself via
OMX_ErrorResourcesPreempted/Lost (if it is incapable of resumption
later or if its suspension policy disallows suspension).

• In the case of suspension the component shall send the
OMX_ErrorComponentSuspended error to the IL client. If the component is
in the executing state the component shall transition itself to the paused state and
send the OMX_EventCmdComplete event to the IL client.

• The component shall support the OMX_IndexParamComponentSuspended
parameter.

• Upon a request to transition to Executing the component shall validate that it is
not suspended. If it is suspended, the component shall fail the transition with an
OMX_ErrorComponentSuspended error.

• Upon reacquisition of resources the component signals the IL client via the
OMX_EventComponentResumed event. The component remains in the
paused state until the IL client resumes the component by transitioning it back to
the executing state.

• Upon the de-allocation of resources, the component shall be aware of which
resources have already been de-allocated from a suspension.

Figure 3-2: Suspension Policy (A)

Resource
manager

1.0 setParameter(hMP3Decoder, portIndex, OMX_IndexParamSuspensionPolicy)
1.0 IL Client enables suspension
support for MP3 decoder

1.1 setParameter(hAACDecoder, portIndex, OMX_IndexParamSuspensionPolicy)
1.1 IL Client enables suspension
support for AAC decoder

1.2 SendCommand(hMP3Decoder, OMX_StateIdle)
1.2 IL Client sets the MP3
decoder into the idle state

1.3 AcquireResourceRequest(Resource_X, hRM, priorityX)
1.3 MP3 decoder requests
Resource_X from the RM with
priority X

1.4 AcquireResourceResponse(Resource_X, hRM, granted)
1.4 RM grants Resource_X to
MP3 decoder

1.5 EventHandler(OMX_EventCmdComplete, OMX_StateIdle)

1.5 MP3 decoder responds via
callback t at command was h
complete

1.6 SendCommand(hMP3Decoder, OMX_StateExecuting)
1.6 IL Client sets the MP3
decoder into the executing state

1.7 EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)

1.7 MP3 decoder responds via
callback t at command was h
complete

sd Suspension Policy (A)

IL Client MP3 Decoder
OMX Component

AAC Decoder
OMX Component

 63

sd Suspension Policy (B)

IL Cl ient MP3 Decoder
OMX Component

AAC Decoder
OMX Component

Resource
manager

1.0 SendCommand(hAACDecoder, OMX_StateIdle)
1.0 IL Cl ient sets the AAC
decoder into the idle state

1.1 AcquireResourceRequest(Resource_X, hRM, priori tyX - 1)
1.1 AAC decoder requests
Resource_X from the RM with
priori ty X - 1

1.2 ReleaseResourceRequest(Resource_X, hRM)
1.2 RM issues request to MP3
decoder to rel inquish
Resource_X 1.3 ReleaseResourceResponse(Resource_X, hRM, granted)
1.3 MP3 decoder rel inquishes
Resource_X to the RM

1.4 EventHandler(OMX_EventError, OMX_ErrorComponentSuspended)
1.4 MP3 decoder indicates to IL
Cl ient that i t is now suspended
and sets i ts suspension type to
suspended

1.5 AcquireResourceRequest(Resource_X, hRM, priori tyX)
1.5 The MP3 decoder requests
Resource_X from the RM with
priori ty X

1.6 component transition to paused state
1.6 MP3 decoder transi tion to
paused state

1.7 EventHandler(OMX_EventCmdComplete, OMX_StatePause)
1.7 MP3 decoder indicates state
transi tion to paused to the IL
cl ient

1.8 AcquireResourceResponse(Resource_X, hRM, granted)
1.8 RM grants Resource_X to
AAC decoder

1.9 EventHandler(OMX_EventCmdComplete, OMX_StateIdle)
1.9 AAC decoder responds via
cal lback that state change
command was complete

Figure 3-3: Suspension Policy (B)

 64

sd Suspension Policy (C)

IL Cl ient MP3 Decoder
OMX Component

AAC Decoder
OMX Component

Resource
manager

1.0 AAC processes data with Resource_X
1.0 AAC decoder continues with
i ts processing using Resource_X.
Note that state transitions and
buffer transfers are not shown
here 1.1 ReleaseResourceResponse(Resource_X, hRM, granted)
1.1 AAC releases Resource_X

1.2 AcquireResourceResponse(Resource_X, hRM, granted)
1.2 RM grants Resource_X back
to MP3 decoder

1.3 sets suspension type to resume
1.3 MP3 decoder sets
suspension type to resumed

1.4 EventHandler(OMX_EventComponentResumed, 0)
1.4 MP3 decoder informs IL
Cl ient that the component has
al l the resources to resume
execution

1.5 SendCommand(hMP3Decoder, OMX_StateExecuting)
1.5 IL Cl ient sets the MP3
decoder into the executing state

1.6 EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)
1.6 MP3 decoder responds via
cal lback that command was
complete

Figure 3-4: Component Suspension Due to Pre-emption of Resources

Figure 3-2, Figure 3-3, and Figure 3-4 comprise an example of two components, MP3
decoder and AAC decoder, requiring access to a common resource. Assume that each
component needs to process a set of compressed buffers to be decoded. The IL client sets
the components to support the suspension mechanism (1.0 A and 1.1 A) so that any loss
of resources while processing the streams can be resumed.

The IL client transitions the MP3 decoder into the idle state (1.2 A). At this time the MP3
decoder issues a request to the resource manager (RM) for Resource_X (1.3 A). The RM
responds to the request by granting Resource_X to the MP3 decoder (1.4 A). The MP3
decoder is then transitioned to start processing of stream buffers. (Note the buffer
transfers are not shown in the diagram for simplicity).

Next the IL client transitions the AAC decoder into the idle state (1.0 B). The AAC
decoder issues a request for Resource_X with as a higher priority client to the RM (1.1 B).
The RM in turn issues a request to the MP3 decoder to release Resource_X (1.2 B). The
MP3 decoder complies and releases Resource_X to the RM (1.3 B).

The MP3 decoder at this point sends an error to the IL client to indicate that the
component is suspended (1.4 B). The MP3 decoder issues an acquire resource request for
Resource_x (1.5 B) which of course the RM cannot fulfill since it is a lower priority
request but the RM will track this resource request for the MP3 decoder.

 65

 66

The next step for the MP3 decoder is to transition to the paused state (1.6 B) and then
emit a command complete paused event to the IL client (1.7 B). At this point the MP3
decoder is in a paused suspension state.

Concurrently, the RM may also grant Resource_X to the AAC decoder after being
released by the MP3 decoder (1.7 B).The AAC decoder completes the state change to idle
by issuing a command complete to the IL client. Assuming the IL client transitions the
AAC decoder to executing and after processing a number of buffers (1.0 C) the AAC
decoder releases Resource_X (1.1 C).

The RM then grants Resource_X to the MP3 component (1.2 C) base on its earlier
request (1.5 B). The MP3 decoder then sets its suspension type to resume (1.3 C) and
then issues an OMX_EventComponentResumed message to the IL client (1.4 C). The
IL client transitions the MP3 component out of the paused state to executing to resume
the stream processing (1.5 C-1.6 C).

3.1.2.6.4

3.1.2.7

Suspension Due to Unavailable Dynamic Resources
Under certain conditions the size and type of component resources vary within the
lifetime of the component. As an example, resource requirements are dependent upon
properties of the data stream itself, which are known only after inspection of the stream.
This implies a component is in the executing state by which point all resources shall be
allocated.

A component in the executing state may attempt to allocate additional resources as a
result of increased requirements during processing. This dynamic resource allocation is
completely transparent to the client except in the case where the component fails to
allocate resources while in OMX_StateExecuting. Upon failure to allocate resources the
component issues an error, OMX_ErrorDynamicResourcesUnavailable, and
transitions to OMX_StatePause if the component suspension policy has been previously
enabled by the IL client.

The component upon receiving the dynamic resources issues the event
OMX_EventDynamicResourcesAvailable to the IL client and remains in
OMX_StatePause. The component remains in the paused state until the IL client resumes
the component by transitioning it back to the executing state.

The suspension mechanism follows the case where suspension occurs as a result of
preemption with the exception of the errors and events presented to the IL client.

OMX_BUFFERHEADERTYPE
In the context of a single port, each data buffer has a header associated with it that
contains meta-information about the buffer. The IL client shares buffer headers with each
port with which it is communicating. Likewise, each pair of tunneling ports share buffer
headers; otherwise, the same buffer transferred over multiple ports will have distinct
buffer headers associated with it for each port.

The definition of the buffer header is shown as follows.

 67

typedef struct OMX_BUFFERHEADERTYPE
{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U8* pBuffer;
 OMX_U32 nAllocLen;
 OMX_U32 nFilledLen;
 OMX_U32 nOffset;
 OMX_PTR pAppPrivate;
 OMX_PTR pPlatformPrivate;
 OMX_PTR pInputPortPrivate;
 OMX_PTR pOutputPortPrivate;
 OMX_HANDLETYPE hMarkTargetComponent;
 OMX_PTR pMarkData;
 OMX_U32 nTickCount;
 OMX_TICKS nTimeStamp;
 OMX_U32 nFlags;
 OMX_U32 nOutputPortIndex;
 OMX_U32 nInputPortIndex;
} OMX_BUFFERHEADERTYPE;

3.1.2.7.1 Parameter Defintions
• pBuffer is a pointer to the actual buffer where data is stored but not necessarily

the start of valid data; for more information, see the description of nOffset
below.

• nAllocLen is the total size of the allocated buffer in bytes, including valid and
unused byte.

• nFilledLen is the total size of valid bytes currently in the buffer starting from
the location specified by pBuffer and nOffset. This includes any padding,
e.g. the unused bytes at the end of a line of video when stride in bytes is larger
than width in bytes.

• nOffset is the start offset of valid data in bytes from the start of the buffer. A
pointer to the valid data may be obtained by adding nOffset to pBuffer.

• pAppPrivate is a pointer to an IL client private structure.

• pPlatformPrivate is a pointer to a private platform-specific structure. For
instance, in the case where the IL client allocates the buffer through the platform’s
memory manager, this structure may contain information the platform’s memory
manager associates with the buffer.

• pOutputPortPrivate is a private pointer of the output port that uses the
buffer. If a buffer header is used on an input port communicating with the IL
client, the value of the buffer’s pOutputPortPrivate is undefined.

• pInputPortPrivate is a private pointer of the input port that uses the buffer.
If a buffer header is used on an output port communicating with the IL client, the
value of the buffer’s pInputPortPrivate is undefined.

• hMarkTargetComponent is the handle of the component that should emit an
OMX_EventMark event upon processing this buffer. A NULL handle indicates
that the buffer carries no mark. The OMX_CommandMarkBuffer command
provides this handle to the marking component. The marking component, in turn,
copies this handle to the marked buffer. Each component that is processing a
buffer should compare its own handle to this handle and emit the mark if the
handles match. A component should propagate this field from an input buffer to
its associated output buffer.

• The pMarkData pointer refers to IL client-specific data associated with the
mark that is sent on OMX_EventMark when emitted. Upon receipt of a mark,
the IL client may use this data to disambiguate this mark from others. The
OMX_CommandMarkBuffer command provides this pointer to the marking
component. The marking component, in turn, copies this pointer to the marked
buffer. A component should propagate this field from an input buffer to its
associated output buffer.

• nTickCount is an optional entry that the component and IL client can update
with a tick count when they access the component; not all components will update
it. The value of nTickCount is in microseconds. Since this is a value relative to
an arbitrary starting point, nTickCount cannot be used to determine absolute
time.

• nTimeStamp is a timestamp corresponding to the sample starting at the first
logical sample boundary in the buffer. Timestamps of successive samples within
the buffer may be inferred by adding the duration of the preceding buffer to the
timestamp of the preceding buffer. A component should propagate this field from
an input buffer to its associated output buffer.

• nFlags field contains buffer specific flags, such as the EOS flag. A component
should propagate this field from an input buffer to its associated output buffer.
The list of flags is as follows:
#define OMX_BUFFERFLAG_EOS 0x00000001
#define OMX_BUFFERFLAG_STARTTIME 0x00000002
#define OMX_BUFFERFLAG_DECODEONLY 0x00000004
#define OMX_BUFFERFLAG_DATACORRUPT 0x00000008
#define OMX_BUFFERFLAG_ENDOFFRAME 0x00000010
#define OMX_BUFFERFLAG_SYNCFRAME 0x00000020
#define OMX_BUFFERFLAG_EXTRADATA 0x00000040
#define OMX_BUFFERFLAG_CODECCONFIG 0x00000080

o OMX_BUFFERFLAG_EOS A source component (e.g. a demuxer) sets
OMX_BUFFERFLAG_EOS when it has reached the end of the stream
content on a particular output port. Some examples of this are:

 End of a stream within a 3GP file,

 Camera Component stopping the emission of stream data on its
capture port. i.e. OMX_IndexAutoPauseAfterCapture support

 68

The emission of the OMX_BUFFERFLAG_EOS does not preclude the
possibility of subsequent stream content being emitted on the port in
response to an IL client command. In the examples above, a port may emit
additional stream content when:

 It receives a seek request to an earlier position earlier in the 3GP
file,

 The Camera Component is requested to start emitting additional
content via the capture port.

Other components forward the OMX_BUFFERFLAG_EOS in a way that
is appropriate for their processing.

OMX_BUFFERFLAG_EOS shall not be emitted in response to a state
change command.

o OMX_BUFFERFLAG_STARTTIME The source of a stream (e.g., a de-
multiplexing component) sets the OMX_BUFFERFLAG_STARTTIME
flag on the buffer that contains the starting timestamp for the stream. The
starting timestamp corresponds to the first data that should be displayed at
startup or after a seek operation.

The first timestamp of the stream is not necessarily the start time. For
instance, in the case of a seek to a particular video frame, the target frame
may be an interframe. Thus the first buffer of the stream will be the
intraframe preceding the target frame, and the start time will occur with
the target frame along with any other required frames required to
reconstruct the target intervening.

The OMX_BUFFERFLAG_STARTTIME flag is directly associated with
the buffer timestamp. Thus, the association of the
OMX_BUFFERFLAG_STARTTIME flag to buffer data and its propagation
is identical to that of the timestamp.

A clock component client that receives a buffer with the STARTTIME
flag shall perform an OMX_SetConfig call on its sync port using
OMX_ConfigTimeClientStartTime and pass the timestamp for the
buffer.

o OMX_BUFFERFLAG_DECODEONLY The source of a stream (e.g., a
de-multiplexing component) sets the
OMX_BUFFERFLAG_DECODEONLY flag on any buffer that should be
decoded but not rendered. This flag is used, for instance, when a source
seeks to a target interframe that requires decoding of frames preceding the
target to facilitate reconstruction of the target. In this case, the source
would emit the frames preceding the target downstream but mark them as
decode only.

The OMX_BUFFERFLAG_DECODEONLY flag is associated with buffer
data and propagated in a manner identical to that of the buffer timestamp.

 69

A component that renders data should ignore all buffers with the
OMX_BUFFERFLAG_DECODEONLY flag set.

o OMX_BUFFERFLAG_DATACORRUPT flag is set when the IL client
identifies the data in the associated buffer as corrupt.

o OMX_BUFFERFLAG_ENDOFFRAME is an optional flag that is set by
an output port when the last byte that a buffer payload contains is an end-
of-frame. Any component that implements setting the
OMX_BUFFERFLAG_ENDOFFRAME flag on an output port shall set
this flag for every buffer sent from the output port containing an end-of-
frame. No buffer payload can contain data from two separate frames.

These restrictions enable input ports that receive data from the output port
to detect an end-of-frame without requiring additional processing. These
restrictions also enable an input port to easily detect if an output port
supports this flag by its presence or absence on completion of the first
frame.

o The OMX_BUFFERFLAG_SYNCFRAME flag that should be set by an
output port to indicate that the buffer content contains a coded
synchronization frame. A coded synchronization frame is a frame that can
be reconstructed without reference to any other frame information. An
example of a video synchronization frame is an MPEG4 I-VOP.

If the OMX_BUFFERFLAG_SYNCFRAME flag is set then the buffer may
only contain one frame.

o The OMX_BUFFERFLAG_EXTRADATA is an optional flag that should
be set by an output port when the buffer payload contains additional
information appended to the end of the buffer payload. Each extra block of
data is preceded by an OMX_OTHER_EXTRADATATYPE structure
which provides specific information about the extra data.

o The OMX_BUFFERFLAG_CODECCONFIG is an optional flag that is
set by an output port when all bytes in the buffer form part or all of a set of
codec specific configuration data. Examples include SPS/PPS nal units
for OMX_VIDEO_CodingAVC or AudioSpecificConfig data for
OMX_AUDIO_CodingAAC. Any component that for a given stream sets
OMX_BUFFERFLAG_CODECCONFIG shall not mix codec
configuration bytes with frame data in the same buffer, and shall send all
buffers containing codec configuration bytes before any buffers containing
frame data that those configurations bytes describe. If the stream format
for a particular codec has a frame specific header at the start of each frame,
for example OMX_AUDIO_CodingMP3 or OMX_AUDIO_CodingAAC
in ADTS mode, then these shall be presented as normal without setting
OMX_BUFFERFLAG_CODECCONFIG.

• nOutputPortIndex contains the port index of the output port that uses the
buffer. If a buffer header is used on an input port that is communicating with the
IL client, the value of nOutputPortIndex is undefined.

 70

 71

• nInputPortIndex contains the port index of the input port that uses the buffer.
If a buffer header is used on an input port that is communicating with the IL client,
the value of nInputPortIndex is undefined.

3.1.2.8 OMX_PORT_PARAM_TYPE
A component uses the OMX_PORT_PARAM_TYPE structure to identify the number and
starting index of ports of a particular domain.

OMX_PORT_PARAM_TYPE is defined as follows.
typedef struct OMX_PORT_PARAM_TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPorts;
 OMX_U32 nStartPortNumber;
} OMX_PORT_PARAM_TYPE;

3.1.2.8.1

3.1.2.9

Parameter Defintions
• nPorts is the number of ports of a given port domain (audio, video, image, or

other) for the component.

• nStartPortNumber is the index of the first port of a given port domain
(audio, video, image, or other) for the component . Subsequent ports of the given
domain are numbered sequentially from nStartPortNumber.

OMX_CALLBACKTYPE
The OpenMAX IL includes a callback mechanism that allows a component to
communicate the following with the IL client:

• An asynchronous command triggered by the IL client has completed successfully
or failed and generated an error. Commands include those sent by
OMX_SendCommand and those implied by IL client calls to
EmptyThisBuffer or FillThisBuffer.

• An error unassociated with a command triggered by the IL client has occurred.
For example, the component has suffered an unrecoverable error and is
transitioning to the OMX_StateInvalid state.

To accomplish a callback, the OpenMAX IL has three callback functions defined: a
generic event handler and two callbacks related to the dataflow (EmptyBufferDone
and FillBufferDone).

The IL client is responsible for filling in an OMX_CALLBACKTYPE structure with its
callback entry points and passing the structure to the OpenMAX IL core at initialization
(init) time, usually in the OMX_GetHandle function.

OMX_CALLBACKTYPE is defined as follows.
 typedef struct OMX_CALLBACKTYPE

 72

{
 OMX_ERRORTYPE (*EventHandler)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_EVENTTYPE eEvent,
 OMX_IN OMX_U32 nData1,
 OMX_IN OMX_U32 nData2,
 OMX_IN OMX_PTR pEventData);
 OMX_ERRORTYPE (*EmptyBufferDone)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);
 OMX_ERRORTYPE (*FillBufferDone)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);
} OMX_CALLBACKTYPE;

3.1.2.9.1 EventHandler
A component uses the EventHandler method to notify the IL client when an event of
interest occurs within the component. The OMX_EVENTTYPE enumeration defines the
set of OpenMAX IL events; refer to the definition of this enumeration for the meaning of
each event. nData1 carries the value of OMX_COMMANDTYPE that has been completed
or OMX_ERRORTYPE. nData2 carries further event parameters, e.g.,
OMX_STATETYPE. pEventData contains event specific data. The pEventData
pointer may contain additional data associated with the event (e.g., mark-specific data). A
call to EventHandler is a blocking call, so the IL client should respond within five
milliseconds to avoid blocking the component for an excessively long time period.

The EventHandler method is defined as follows.
OMX_ERRORTYPE(* OMX_CALLBACKTYPE::EventHandler)(
OMX_IN OMX_HANDLETYPE hComponent,
OMX_IN OMX_PTR pAppData,
OMX_IN OMX_EVENTTYPE eEvent,
OMX_IN OMX_U32 nData1,
OMX_IN OMX_U32 nData2,
OMX_IN OMX_PTR pEventData)

The parameters are as follows.

Parameter Description
hComponent
[in]

The handle of the component that calls this function.

eEvent
[in]

The event that the component is communicating to the IL client.

nData1
[in]

The first integer event-specific parameter. See Table 3-7 for the meaning in the context of
each event.

nData2
[in]

The second integer event-specific parameter. See Table 3-7 for the meaning in the
context of each event. The default value is 0 if not used.

 73

Parameter Description
pEventData
[in]

A pointer to additional event-specific data. See Table 3-7 for the meaning in the context
of each event.

Table 3-7 lists the parameters used in each event.
Table 3-7: Event Parameter Usage

eEvent nData1 nData2 pEventData
OMX_CommandStateSet State

reached
Null

OMX_CommandFlush Port index Null
OMX_CommandPort
Disable

Port index Null

OMX_CommandPort
Enable

Port index Null

OMX_EventCmdComplete

OMX_CommandMark
Buffer

Port index Null

OMX_EventError Error code 0 Null
OMX_EventMark 0 0 Data linked to the

mark, if any
OMX_EventPortSettings
Changed

port index 0 Null

OMX_EventBufferFlag port index nFlags
unaltered

Null

OMX_EventResources
Acquired

0 0 Null

OMX_EventDynamic
ResourcesAvailable

0 0 Null

3.1.2.9.2 EmptyBufferDone
A component uses the EmptyBufferDone callback to pass a buffer from an input port
back to the IL client. A component sets the nOffset and nFilledLen values of the
buffer header to reflect the portion of the buffer it consumed; for example, nFilledLen
is set equal to 0x0 if completely consumed.

In addition to facilitating normal data flow between an executing component and the IL
client, a component uses the EmptyBufferDone function to return input buffers to the
IL client in the following cases:

• The IL client commands a transition from OMX_StateExecuting or
OMX_StatePause to OMX_StateIdle or to OMX_StateInvalid.

• The IL client flushes or disables a port.

 74

The EmptyBufferDone call is a blocking call that should return from within five
milliseconds. Therefore, the IL client may elect not to fill the buffers during this call but
queue them for processing outside this call.

The EmptyBufferDone call is defined as follows.
OMX_ERRORTYPE(* OMX_CALLBACKTYPE::EmptyBufferDone)(
 OMX_OUT OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_PTR pAppData,
 OMX_OUT OMX_BUFFERHEADERTYPE* pBuffer)

The parameters are as follows.

Parameter Description
hComponent
[out]

The handle of the component that is calling this function.

pAppData
[out]

A pointer to IL client-defined data.

pBuffer
[out]

A pointer to an OMX_BUFFERHEADERTYPE structure that was consumed or returned.

3.1.2.9.3 FillBufferDone
A component uses the FillBufferDone callback to pass a buffer from an output port
back to the IL client. A component sets the nOffset and nFilledLen of the buffer
header to reflect the portion of the buffer it filled; for example, nFilledLen is equal to
0x0 if it contains no data).

In addition to facilitating normal dataflow between an executing component and the IL
client, a component uses this function to return output buffers to the IL client in the
following cases:

• The IL client commands a transition from OMX_StateExecuting or
OMX_StatePause to OMX_StateIdle or to OMX_StateInvalid.

• The IL client flushes or disables a port.

The FillBufferDone call is a blocking call that should return from within five
milliseconds. The IL client may elect not to empty the buffers during this call but queue
them for consumption outside this call.

FillBufferDone is defined as follows.
OMX_ERRORTYPE(* OMX_CALLBACKTYPE::FillBufferDone)(
OMX_OUT OMX_HANDLETYPE hComponent,
OMX_OUT OMX_PTR pAppData,
OMX_OUT OMX_BUFFERHEADERTYPE* pBuffer)

The parameters are as follows.

 75

Parameter Description

hComponent
[out]

The handle of the component to access. This handle is the component handle returned by
the call to the GetHandle function.

pAppData
[out]

A pointer to IL client-defined data

pBuffer
[out]

A pointer to an OMX_BUFFERHEADERTYPE structure that was filled or returned.

3.1.2.10 OMX_PARAM_BUFFERSUPPLIERTYPE
The OMX_PARAM_BUFFERSUPPLIERTYPE structure is used to communicate buffer
supplier settings or buffer supplier preferences.

OMX_PARAM_BUFFERSUPPLIERTYPE is defined as follows.
typedef struct OMX_PARAM_BUFFERSUPPLIERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BUFFERSUPPLIERTYPE eBufferSupplier;
} OMX_PARAM_BUFFERSUPPLIERTYPE;

3.1.2.10.1

3.1.2.11

Parameter Defintions
• nPortIndex represents the port that this structure applies to.

• eBufferSupplier is a field that contains the index of the buffer supplier, if
input or output.

OMX_TUNNELSETUPTYPE
The ComponentTunnelRequest function uses the OMX_TUNNELSETUPTYPE
structure to pass data between two ports when an IL client connects these ports via an
OMX_SetupTunnel call.

OMX_TUNNELSETUPTYPE is defined as follows.
typedef struct OMX_TUNNELSETUPTYPE {
 OMX_U32 nTunnelFlags;
 OMX_BUFFERSUPPLIERTYPE eSupplier;
} OMX_TUNNELSETUPTYPE;

3.1.2.11.1 Parameter Defintions
• nTunnelFlags is an integer parameter that contains one or more bit flags

applied to the port that receives this structure. Flags include:
#define OMX_PORTTUNNELFLAG_READONLY 0x00000001

If the flag is set as read only, the input port that receives this structure cannot alter the
contents of buffers supplied on the tunnel.

 76

• The eSupplier field defines whether the input port or the output port provides
the buffers. The exact sequence of calls to set up a tunnel is specified in section
 3.4.1.2.

3.1.2.12 OMX_PARAM_PORTDEFINITIONTYPE
The OMX_PARAM_PORTDEFINITIONTYPE structure contains a set of generic fields
that characterize each port of the component. Some of these fields are common to all
domains while other fields are specific to their respective domains. The IL client uses this
structure to retrieve general information from each port.

OMX_PARAM_PORTDEFINITIONTYPE is defined as follows.
typedef struct OMX_PARAM_PORTDEFINITIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_DIRTYPE eDir;
 OMX_U32 nBufferCountActual;
 OMX_U32 nBufferCountMin;
 OMX_U32 nBufferSize;
 OMX_BOOL bEnabled;
 OMX_BOOL bPopulated;
 OMX_PORTDOMAINTYPE eDomain;
 union {
 OMX_AUDIO_PORTDEFINITIONTYPE audio;
 OMX_VIDEO_PORTDEFINITIONTYPE video;
 OMX_IMAGE_PORTDEFINITIONTYPE image;
 OMX_OTHER_PORTDEFINITIONTYPE other;
 } format;
 OMX_BOOL bBuffersContiguous;
 OMX_U32 nBufferAlignment;
} OMX_PARAM_PORTDEFINITIONTYPE;

3.1.2.12.1 Parameter Defintions
• nPortIndex is a read-only field the identifies the port. The value of

nPortIndex is a unique 32-bit number for the component. No two ports on a
single component may share the same port number, but ports on different
components may have the same port number.

• eDir is a read-only field that indicates the direction (OMX_DirInput or
OMX_DirOutput) for the port.

• nBufferCountActual represents the number of buffers that are required on
this port before it is populated, as indicated by the bPopulated field of this
structure. The component shall set a default value no less than
nBufferCountMin for this field.

• nBufferCountMin is a read-only field that specifies the minimum number of
buffers that the port requires. The component shall define this non-zero default
value.

• nBufferSize is a read-only field that specifies the minimum size in bytes for
buffers that are allocated for this port. .

• bEnabled is a read-only Boolean field that indicates if the port is enabled. Ports
default to bEnabled = OMX_TRUE and are enabled/disabled by sending the
OMX_CommandPortEnable and OMX_CommandPortDisable commands
with the OMX_SendCommand method. A port shall not be populated when it is
not enabled.

• bPopulated is a read-only Boolean field that indicates if a port is populated. A
port is populated when all of the buffers indicated by nBufferCountActual
with a size of at least nBufferSize have been allocated on the port. A
populated port shall be enabled. Enabled ports shall be populated on a transition
to OMX_StateIdle and unpopulated on a transition to OMX_StateLoaded.

• eDomain is a read-only field that indicates the domain of the port. This field
determines the contents of the format union explained in the next paragraph.

• The format fields are a union of domain-specific parameters. For more
information on parameters for audio, video, image, and other domains, see
Section 4 - OpenMAX IL Data API.

• bBuffersContiguous is a read-only Boolean field that indicates this port
requires each buffer to be in contiguous memory.

• nBufferAlignment is a read-only field that specifies the alignment the port
requires for each of its buffers (e.g. a value of 4 denotes that each buffer shall be
4-byte aligned). A value of zero denotes that the port does not have any
alignment restrictions.

3.1.3 OMX_PORTDOMAINTYPE
Table 3-8 enumerates the fields used in the OMX_PARAM_PORTDEFINITIONTYPE
structure to define the domain of the port.

Table 3-8: Port Domain Names

Field Name Description
OMX_PortDomainAudio Specifies that the field format is a structure of

the OMX_AUDIO_PORTDEFINITIONTYPE
type.

OMX_PortDomainVideo Specifies that the field format is a structure of
the OMX_VIDEO_PORTDEFINITIONTYPE
type.

OMX_PortDomainImage Specifies that the field format is a structure of
the OMX_IMAGE_PORTDEFINITIONTYPE
type.

 77

Field Name Description
OMX_PortDomainOther Specifies that the field format is a structure of

the OMX_OTHER_PORTDEFINITIONTYPE
type.

3.1.4 OMX_HANDLETYPE
The OMX_HANDLETYPE structure defines the component handle as seen by the IL client.
The component handle is used to access all of the public methods of the component. The
component handle also contains pointers to the private data area of the component. The
OpenMAX IL core allocates and initializes the component handle with help from the
component during the process of loading the component. After the component is
successfully loaded, the IL client can safely access any of the public functions of the
component, although some may return an error because the state is inappropriate for the
access.

3.2 OpenMAX IL Core Methods/Macros
The OpenMAX IL core implements the main interface for an IL client that wants to use
OpenMAX IL components. For efficiency, OpenMAX IL defines a set of OpenMAX IL
core macros that map on one-to-one basis to most OpenMAX IL component methods.

Some macros and methods recommend that the function return within either five
milliseconds or 20 milliseconds, depending on the function. The 5-millisecond timeout
was deemed by the standards body to be a reasonable response time for commands that
may not require buffer processing. The standards body identified the 20-millisecond
timeout to be a reasonable response time for commands that may require buffer
processing to be completed; the assumption here is that the longest buffer processing
would be less than 30 milliseconds, which corresponds to 30-frames per second video.
These timeouts are intended primarily to enable component integrators to get a good idea
of component response latency via conformance testing.

The macros include the following:

• Get component information (version, capabilities).

• Set/Get component parameters at init time.

• Set/Get component parameters at run time.

• Allocate/De-allocate buffers.

• Send a buffer full of data to an OpenMAX IL component port.

• Send an empty buffer to an OpenMAX IL component port.

• Send commands to a component.

• Get the actual state of the component.

• Get references to OpenMAX IL component-proprietary parameters.

 78

 79

The OpenMAX IL Core also implements methods for the following:

• Initializing/de-initializing the whole OpenMAX IL Core.

• Getting an OpenMAX IL component handle.

• Releasing an OpenMAX IL component handle.

• Detecting all OpenMAX IL components available on the platform at run time.

• Setting up data tunnels among OpenMAX IL components.

• Acquiring content pipes.

• Querying for information on installed standard component implementations.

When a time limit for the execution of a method is specified, it is not intended as a hard
restriction for the conformance of the component to the standard, but if the limit is not
respected, a note shall appear in the description document related to the component.

3.2.1 Return Codes for the Functions
Table 3-9 lists all of the possible return error codes for each function. A critical error
denotes an error from which the component cannot recover. The component should
transition to the OMX_StateInvalid state when a critical error occurs. All columns but the
last two correspond to errors returned from a call to the component. The rightmost two
columns denote errors sent asynchronously as the result of an internal error.

Table 3-9: Error Codes

 O
M
X
_
G
e
t
C
o
m
p
o
n
e
n
t
V
e
r
s
i
o
n

O
M
X
_
S
e
n
d
C
o
m
m
a
n
d

O
M
X
_
G
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
S
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
G
e
t
C
o
n
f
i
g

O
M
X
_
S
e
t
C
o
n
f
i
g

O
M
X
_
G
e
t
E
x
t
e
n
s
i
o
n
I
n
d
e
x

O
M
X
_
G
e
t
S
t
a
t
e

O
M
X
_
U
s
e
B
u
f
f
e
r

O
M
X
_
A
l
l
o
c
a
t
e
B
u
f
f
e
r

O
M
X
_
F
r
e
e
B
u
f
f
e
r

O
M
X
_
E
m
p
t
y
T
h
i
s
B
u
f
f
e
r

O
M
X
_
F
i
l
l
T
h
i
s
B
u
f
f
e
r

O
M
X
_
C
o
m
p
o
n
e
n
t
D
e
I
n
i
t

O
M
X
_
I
n
i
t

O
M
X
_
D
e
i
n
i
t

O
M
X
_
C
o
m
p
o
n
e
n
t
N
a
m
e
E
n
u
m

O
M
X
_
G
e
t
H
a
n
d
l
e

O
M
X
_
F
r
e
e
H
a
n
d
l
e

O
M
X
_
S
e
t
u
p
T
u
n
n
e
l

O
M
X

G
e
t
C
o
n
t
e
n
t
P
i
p
e

O
M
X

G
e
t
C
o
m
p
o
n
e
n
t
s
O
f
R
o
l
e

O
M
X

G
e
t
R
o
l
e
s
O
f
C
o
m
p
o
n
e
n
t

S
e
n
t

w
i
t
h

E
v
e
n
t
H
a
n
d
l
e
r

C
r
i
t
i
c
a
l

e
r
r
o
r

OMX_ErrorNone X

OMX_ErrorInsufficien
tResources X X X X X X

OMX_ErrorUndefined X X X X X X X X X X X X X X X X X X X X

OMX_ErrorInvalidComp
onentName X X X

OMX_ErrorComponentNo
tFound X

OMX_ErrorInvalidComp
onent X X X X X X X X X X X X X X X X X X X

OMX_ErrorBadParamete
r X X X X X X X X X X X X X X X X X X X X X

OMX_ErrorNotImplemen
ted

 X

OMX_ErrorUnderflow X

OMX_ErrorOverflow X

 80

 O
M
X
_
G
e
t
C
o
m
p
o
n
e
n
t
V
e
r
s
i
o
n

O
M
X
_
S
e
n
d
C
o
m
m
a
n
d

O
M
X
_
G
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
S
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
G
e
t
C
o
n
f
i
g

O
M
X
_
S
e
t
C
o
n
f
i
g

O
M
X
_
G
e
t
E
x
t
e
n
s
i
o
n
I
n
d
e
x

O
M
X
_
G
e
t
S
t
a
t
e

O
M
X
_
U
s
e
B
u
f
f
e
r

O
M
X
_
A
l
l
o
c
a
t
e
B
u
f
f
e
r

O
M
X
_
F
r
e
e
B
u
f
f
e
r

O
M
X
_
E
m
p
t
y
T
h
i
s
B
u
f
f
e
r

O
M
X
_
F
i
l
l
T
h
i
s
B
u
f
f
e
r

O
M
X
_
C
o
m
p
o
n
e
n
t
D
e
I
n
i
t

O
M
X
_
I
n
i
t

O
M
X
_
D
e
i
n
i
t

O
M
X
_
C
o
m
p
o
n
e
n
t
N
a
m
e
E
n
u
m

O
M
X
_
G
e
t
H
a
n
d
l
e

O
M
X
_
F
r
e
e
H
a
n
d
l
e

O
M
X
_
S
e
t
u
p
T
u
n
n
e
l

O
M
X

G
e
t
C
o
n
t
e
n
t
P
i
p
e

O
M
X

G
e
t
C
o
m
p
o
n
e
n
t
s
O
f
R
o
l
e

O
M
X

G
e
t
R
o
l
e
s
O
f
C
o
m
p
o
n
e
n
t

S
e
n
t

w
i
t
h

E
v
e
n
t
H
a
n
d
l
e
r

C
r
i
t
i
c
a
l

e
r
r
o
r

OMX_ErrorHardware X X

OMX_ErrorInvalidStat
e X X X X X X X X X X X X X X X X

OMX_ErrorStreamCorru
pt X

OMX_ErrorPortsNotCom
patible

 X

OMX_ErrorResourcesLo
st

 X

OMX_ErrorNoMore X X X

OMX_ErrorVersionMism
atch

X X X X X X X X X X X X X X X X X X

OMX_ErrorNotReady X X

OMX_ErrorTimeout X X X X X X X X X X X X X X X X X X

OMX_ErrorSameState X

OMX_ErrorResourcesPr
eempted X

OMX_ErrorPortUnrespo
nsiveDuringAllocatio
n

X

OMX_ErrorPortUnrespo
nsiveDuringDeallocat
ion

X

OMX_ErrorPortUnrespo
nsiveDuringStop X

OMX_ErrorIncorrectSt
ateTransition X

OMX_ErrorIncorrectSt
ateOperation X X X X X X X

OMX_ErrorUnsupported
Setting

 X X

OMX_ErrorUnsupported
Index

 X X X X X

OMX_ErrorBadPortInde
x

 X X X X X X X X X X X X

OMX_ErrorPortUnpopul
ated

 X

OMX_ErrorDynamicReso
urcesUnavailable X

OMX_ErrorMbErrorsInF
rame X

OMX_ErrorFormatNotDe
tected X

OMX_ErrorSeperateTab
lesUsed X

 81

3.2.2 Macros
This section describes the OpenMAX IL core macros. Note that some of these calls occur
when only the caller is in the appropriate state to make the call (e.g. when tunneling) or
when the component is transitioning from one state to another.

Table 3-10 defines which macros may be called on a component in each component state.
Table 3-10: Valid Component Calls

 O
M
X
_
G
e
t
C
o
m
p
o
n
e
n
t
V
e
r
s
i
o
n

O
M
X
_
S
e
n
d
C
o
m
m
a
n
d

O
M
X
_
G
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
S
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
G
e
t
C
o
n
f
i
g

O
M
X
_
S
e
t
C
o
n
f
i
g

O
M
X
_
G
e
t
E
x
t
e
n
s
i
o
n
I
n
d
e
x

O
M
X
_
G
e
t
S
t
a
t
e

O
M
X
_
U
s
e
B
u
f
f
e
r

O
M
X
_
A
l
l
o
c
a
t
e
B
u
f
f
e
r

O
M
X
_
F
r
e
e
B
u
f
f
e
r

O
M
X
_
E
m
p
t
y
T
h
i
s
B
u
f
f
e
r

O
M
X
_
F
i
l
l
T
h
i
s
B
u
f
f
e
r

O
M
X
_
C
o
m
p
o
n
e
n
t
D
e
i
n
i
t

O
M
X
_
S
e
t
u
p
T
u
n
n
e
l

OMX_StateLoaded X X X X X X X X X X X X X

OMX_StateIdle X X X X X X X X X X X

OMX_StateExecuting X X X X X X X X X X X

OMX_StatePause X X X X X X X X X X X

OMX_StateWaitForResources X X X X X X X X X X X X

OMX_StateInvalid X X X

Disabled Port X X X X X X X X X X X X X X X

3.2.2.1 OMX_GetComponentVersion
The GetComponentVersion macro will query the component and returns
information about it. This is a blocking call. The component should return from this call
within five milliseconds.

The macro is defined as follows.
#define OMX_GetComponentVersion (
 hComponent,
 pComponentName,
 pComponentVersion,
pSpecVersion,
pComponentUUID)

((OMX_COMPONENTTYPE*)hComponent)->GetComponentVersion(\
 hComponent, \
 pComponentName, \
 pComponentVersion, \
 pSpecVersion,
 pComponentUUID)

The parameters are as follows.

 82

Parameter Description

hComponent
[in]

The handle of the component that executes the command.

pComponentName
[out]

A pointer to a component name string. Component names are strings limited to a
length up to 127 bytes plus the trailing null for a maximum length of 128 bytes.
An example of a valid component name is
"OMX.<vendor_name>.AUDIO.DSP.MIXER\0". Names are assigned by the
vendor, but shall start with "OMX." concatenated to the vendor specified string.

pComponentVersion
[out]

A pointer to an OpenMAX IL version structure that the component will populate.
The component will fill in a value that indicates the component version. Note that
the component version is not the same as the OpenMAX IL specification version,
which is found in all structures. The vendor of the component defines the
component version and establishes its value.

pSpecVersion
[out]

A pointer to an OpenMAX IL version structure that the component will populate.
SpecVersion is the version of the specification that the component was built
against. Note that this value may or may not match the version of the structure.
For example, if the component was built against the version 2.0 specification but
the IL client, which creates the structure, was built against the version 1.0
specification, the versions would be different.

pComponentUUID
[out]

A pointer to an UUID identifier that uniquely identies the component.
A component shall not be required to provide this information, it is optional
information that a component may choose to provide.

3.2.2.1.1

3.2.2.1.2

Prerequisites for This Method
This method has no prerequisites.

Sample Code Showing Calling Sequence
The following sample code shows a calling sequence.
/* detect mismatch between IL client's and component's spec version */
OMX_GetComponentVersion(
 hComp,
 &CompName,
 &CompVersion,
 &CompSpecVersion);
if (CompSpecVersion != IlClientVersion){
 printf("ERROR: version mismatch\n");
}

3.2.2.2 OMX_SendCommand
The OMX_SendCommand macro will invoke a command on the component. This is a
non-blocking call that should, at a minimum, validate command parameters but return
within five milliseconds. The component normally executes the command outside the
context of the call, though a solution without threading may elect to execute it in context.
In either case, the component uses an event callback to notify the IL client of the results

 83

of the command once completed. If the component executes the command successfully,
the component generates an OMX_EventCmdComplete callback. If the component
fails to execute the command, the component generates an OMX_EventError and
passes the appropriate error as a parameter.

The component may elect to queue commands for later execution. The only restriction is
that the completion shall be done in the same order as the requests arrived.

The macro is defined as follows.
#define OMX_SendCommand (
 hComponent,
 Cmd,
nParam,
pCmdData)
 ((OMX_COMPONENTTYPE*)hComponent)->SendCommand(\
 hComponent, \
 Cmd, \
 nParam,
 pCmdData)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the command

Cmd
[in]

Command for the component to execute

nParam
[in]

Integer parameter for the command that is to be executed

pCmdData
[in]

A pointer that contains implementation-specific data that cannot be represented with the
numeric parameter nParam

Section 3.3—OpenMAX IL Component Methods and Structures describes the
corresponding function that each component implements.

3.2.2.3 OMX_CommandStateSet
The IL client calls this command to request that the component transition into the state
given in nParam. The component shall make the transition between the old state and the
new state successfully only if it is a legal transition and all prerequisites for this transition
are met. For more information on component states, see Section 3.1.1.2—
OMX_STATETYPE.

If the component successfully transitions to the new state, it notifies the IL client of the
new state via the OMX_EventCmdComplete event, indicating
OMX_CommandStateSet for nData1 and the new state for nData2. If a state
transition fails, the component shall notify the IL client of the error that prevented it via
OMX_EventError event. Relevant errors include but are not limited to the following:

 84

• OMX_ErrorSameState: The component is already in the state requested.

• OMX_ErrorIncorrectStateTransition: The transition requested is not
legal.

• OMX_ErrorInsufficientResources: The transition required the
allocation of resources and the component failed to acquire the resources.

3.2.2.4

3.2.2.5

OMX_CommandFlush
This IL client calls this command to flush one or more component ports. nParam
specifies the index of the port to flush. If the value of nParam is OMX_ALL, the
component shall flush all ports.

When the IL client flushes a non-tunnelling port, that port shall return all buffers it is
holding to the IL client using EmptyBufferDone and FillBufferDone
(appropriate for an input port or an output port, respectively) to return the buffers. When
tunnelling, the flushed input port uses EmptyThisBuffer or FillThisBuffer
(appropriate for an input port or an output port, respectively) to return the buffers to the
output port.

For each port that the component successfully flushes, the component shall send an
OMX_EventCmdComplete event, indicating OMX_CommandFlush for nData1
and the individual port index for nData2, even if the flush resulted from using a value
of OMX_ALL for nParam. If a flush fails, the component shall notify the IL client of
the error via an OMX_EventError event.

OMX_CommandPortDisable
The OMX_CommandPortDisable command disables a port. nParam specifies the
index of the port to disable. If the value of nParam is OMX_ALL, the component shall
disable all ports. A disabled port has no buffers and is not connected to either the IL
client or another port via a tunnel. A disabled port does not allocate buffers on a
transition from OMX_StateLoaded or OMX_StateWaitForResources to OMX_StateIdle.
An IL client can change the parameters via OMX_SetParameter of a disabled port or
set up a tunnel on it regardless of the component state. Thus the
OMX_CommandPortDisable command, in co-operation with
OMX_CommandPortEnable, is useful for the dynamic reconfiguration or re-tunneling
of a port.

The port shall immediately clear bEnabled in its port definition structure when it
receives OMX_CommandPortDisable. If the port that the IL client is disabling is a
non-supplier port, the IL client shall return any buffers it is holding to the supplier port
via OMX_EmptyThisBuffer/OMX_FillThisBuffer if tunneling or
EmptyBufferDone/FillBufferDone if not tunneling. Then, the IL client shall
wait for the supplier port to free the buffers via OMX_FreeBuffer before completing
the disable command. If the port that the IL client is disabling is a supplier port with
buffers allocated, the IL client shall wait for the non-supplier port to return all buffers via

 85

OMX_EmptyThisBuffer or OMX_FillThisBuffer. Then, the IL client shall free
the buffers via OMX_FreeBuffer before completing the disable command.

For each port that the component successfully disables, the component shall send an
OMX_EventCmdComplete event indicating OMX_CommandPortDisable for
nData1 and the individual port index for nData2, even if using a value of OMX_ALL
for nParam caused the port to be disabled. If the disable operation fails, the component
shall notify the IL client of the error via the OMX_EventError event.

3.2.2.6

3.2.2.7

OMX_CommandPortEnable
The OMX_CommandPortEnable command enables a port. nParam specifies the
index of the port to be enabled. If the value of nParam is OMX_ALL, the component
shall enable all ports. An enabled port shall abide by all the requirements of the
component’s state. Thus, the port shall:

• Have no buffers allocated if the component is in the OMX_StateLoaded state or
the OMX_StateWaitForResources state and all buffers are allocated otherwise.

• Allocate buffers on a transition from either the OMX_StateLoaded state or the
OMX_WaitForResources state to the OMX_StateIdle.

• Transfer a buffer to facilitate data flow in the OMX_StateExecuting state.

• Disallow modification of its parameters via OMX_SetParameter in all states
but OMX_StateLoaded.

The OMX_CommandPortEnable command, in co-operation with
OMX_CommandPortDisable, is useful for the dynamic reconfiguration or re-
tunneling of a port.

The port shall immediately set bEnabled in its port definition structure when the port
receives OMX_CommandPortEnable. If the IL client enables a port while the
component is in any state other than OMX_StateLoaded or
OMX_StateWaitForResources, then that port shall allocate its buffers via the same call
sequence used on a transition from OMX_StateLoaded to OMX_StateIdle. If the IL client
enables while the component is in the OMX_StateExecuting state, then that port shall
begin transferring buffers.

For each port that the component successfully enables, the component shall send an
OMX_EventCmdComplete event, indicating OMX_CommandPortEnable for
nData1 and the individual port index for nData2, even if using the value of
OMX_ALL for nParam caused the enable operation. If a port enablement operation fails,
the component shall notify the IL client of the error via OMX_EventError event.

OMX_CommandMarkBuffer
The OMX_CommandMarkBuffer command instructs the given port to mark a buffer.
nParam holds the index of the port that will perform the mark. The pCmdData
parameter of OMX_SendCommand points to an OMX_MARKTYPE structure. The

pMarkTargetComponent field of this structure holds a pointer to the component that
will send an event after processing the marked buffer. The pMarkData field of this
structure holds a pointer to application-specific data associated with the mark to uniquely
identify the mark to the application upon a mark event (denoted the mark data).

When instructed to mark a buffer, the component will mark the next buffer that it
receives as input after it receives the mark command. The exception is a source
component, which will mark the next buffer it adds to its output buffer queue. For
components other than source components, the port index value in nParam holds the
index of the input port that will mark its next buffer. For source components, the port
index value in nParam holds the index of the output port that will mark its next buffer.

In the following cases, multiple marks may compete for a single buffer:

• A component receives two or more mark commands with no intervening buffer(s).

• Two or more input buffers, each with a mark, contribute to an output buffer (e.g.,
in a mixer).

• A component receives a mark command and the next buffer is already marked.

If multiple marks compete for application to the same buffer, the component uses the first
mark received to mark the buffer and applies the remaining marks to subsequent buffers
in the order that the component received them. If there are no subsequent buffers, the
component may send the remaining marks on one or more empty buffers.

For each port that the component successfully marks a buffer, the component shall send
an OMX_EventCmdComplete event indicating OMX_CommandMarkBuffer for
nData1 and the individual port index for nData2. If a mark operation fails, the
component shall notify the IL client of the error via OMX_EventError event.

A buffer header includes pMarkTargetComponent and the pMarkData fields,
whose meaning is identical to those in OMX_MARKTYPE. A component marks a buffer by
copying pMarkTargetComponent and the pMarkData fields from the mark
command to the buffer headers. Both fields are NULL by default (i.e., before the buffer
being marked). A component propagates the mark fields from an input buffer to an output
buffer according to the buffer metadata rules established for buffer flags and timestamps.
The target component does not propagate the mark but instead clears both fields to NULL.

When a component receives a buffer, it shall compare its own pointer to the
pMarkTargetComponent. If the pointers match, the component shall send a mark
event, including pMarkData as a parameter, immediately after the buffer exits the
component or has been completely processed in the case where it does not exit the
component.

OMX_MARKTYPE is defined as follows.
typedef struct OMX_MARKTYPE {
 OMX_HANDLETYPE hMarkTargetComponent;
 OMX_PTR pMarkData;
} OMX_MARKTYPE;

The parameters are described as follows.

 86

 87

Parameter Description

hMarkTargetComponent Identies the component handle that shall generate a mark event
upon process the mark.

nMarkData Application specific data associated with mark sent on a mark event
to disambiguate a mark from others.

3.2.2.7.1

3.2.2.7.2

Prerequisites for This Method
This method has no prerequisites.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* instructs a component port to mark a buffer*/

OMX_MARKTYPE mark;

mark.hMarkTargetComponent = hComp;
mark.pMarkData = appData;

OMX_SendCommand(hComp, OMX_CommandMarkBuffer, portIndex, &mark);

3.2.2.8 OMX_GetParameter
The OMX_GetParameter macro will get a parameter setting from a component. The
nParamIndex parameter indicates which structure is requested from the component.
The caller shall provide memory for the structure and populate the nSize and
nVersion fields before invoking this macro. If the parameter settings are for a port, the
caller shall also provide a valid port number in the nPortIndex field before invoking
this macro. All components shall support a set of defaults for each parameter so that the
caller can obtain the structure populated with valid values.

This call is a blocking call. The component should return from this call within 20
milliseconds.

The OMX_GetParameter macro is defined as follows.
#define OMX_GetParameter (
 hComponent,
 nParamIndex,
pComponentParameterStructure)
((OMX_COMPONENTTYPE*)hComponent)->GetParameter(\
 hComponent, \
 nParamIndex, \
 pComponentParameterStructure)

The parameters are described as follows.

 88

Parameter Description

hComponent
[in]

The handle of the component that executes the call

nParamIndex
[in]

The index of the structure to be filled. This value is from the
OMX_INDEXTYPE enumeration.

pComponentParameterStructure
[in,out]

A pointer to the IL client-allocated structure that the component
fills

Section 3.3—OpenMAX IL Component Methods and Structures describes the
corresponding function that each component implements.

3.2.2.8.1

3.2.2.8.2

Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* disable every audio port of a component*/
OMX_GetParameter(hComp, OMX_IndexParamAudioInit, &oParam);
for (i=0;i<oParam.nPorts;i++) {
 OMX_SendCommand(
 hComp,
 OMX_CommandPortDisable,
 oParam.nStartPortNumber + i,
 0);
}

3.2.2.8.3 Error Conditions
The following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the parameter structure
are incorrect.

• OMX_ErrorUnsupportedIndex when the specified parameter index is
unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the parameter
structure does not match the expected version for the component.

• OMX_ErrorNotReady if an OMX_GetParameter operation has not
completed processing. The caller should retry the OMX_GetParameter call.

• OMX_ErrorNoMore when the OMX_GetParameter function is called with a
structure that includes the nPortIndex field and the value of nPortIndex
exceeds the number of ports (of the appropriate domain) for the component.

 89

3.2.2.9 OMX_SetParameter
The OMX_SetParameter macro will send a parameter structure to a component. The
nParamIndex parameter indicates which structure is passed to the component.

The caller shall provide the memory for the correct structure and shall fill in the structure
nSize and nVersion fields in addition to all other fields before invoking this macro.
The caller is free to dispose of this structure after the call, as the component is required to
copy any data it shall retain.

Some parameter structures contain read-only fields. The OMX_SetParameter method
will preserve read-only fields, and shall not generate an error when the caller attempts to
change the value of a read-only field.

This call is a blocking call. The component should return from this call within 20
milliseconds.

The OMX_SetParameter macro is defined as follows.
#define OMX_SetParameter (
 hComponent,
 nParamIndex,
pComponentParameterStructure)
((OMX_COMPONENTTYPE*)hComponent)->SetParameter(\
 hComponent, \
 nParamIndex, \
 pComponentParameterStructure)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

nParamIndex
[in]

The index of the structure that is to be sent. This value is from the
OMX_INDEXTYPE enumeration.

pComponentParameterStructure
[in]

A pointer to the IL client-allocated structure that the component uses
for initialization.

Section 3.3.6 below describes the corresponding function that each component
implements.

3.2.2.9.1

3.2.2.9.2

Prerequisites for This Method
The OMX_SetParameter macro can be invoked only when the component is in the
OMX_StateLoaded state or on a port that is disabled.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* force a port to be the supplier */
OMX_GetParameter(hComp, OMX_IndexParamPortDefinition, &oPortDef);

 90

if (oPortDef.eDir == OMX_DirInput){
 oSupplier.eBufferSupplier = OMX_BufferSupplyInput;
} else {
 oSupplier.eBufferSupplier = OMX_BufferSupplyOutput;
}
oSupplier.nPortIndex = nPortIndex;
OMX_SetParameter(hComp, OMX_IndexParamCompBufferSupplier, &oSupplier);

3.2.2.9.3

3.2.2.10

Error Conditions
The following error conditions can occur:

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorBadParameter if one or more fields of the parameter structure
are incorrect.

• OMX_ErrorUnsupportedIndex when the specified parameter index is
unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the parameter
structure does not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the parameter structure is
unsupported by the component during an OMX_SetParameter call.

• OMX_ErrorNotReady if an OMX_SetParameter operation has not
completed processing. The caller should retry the OMX_SetParameter call.

• OMX_ErrorNoMore when the OMX_SetParameter function is called with a
structure that includes the nPortIndex field and the value of nPortIndex
exceeds the number of ports (of the appropriate domain) for the component.

OMX_GetConfig
The OMX_GetConfig macro will get a configuration structure from a component. This
macro can be invoked at any time after the component has been loaded. The
nConfigIndex parameter indicates which structure is being requested from the
component. The caller shall provide the memory for the structure and populate the
nSize and nVersion fields before invoking this macro. If the configuration settings
are for a port, the caller shall also provide a valid port number in the nPortIndex field
before invoking this macro. All components shall support a set of defaults for each
configuration so that the caller can obtain the structure populated with valid values.

This call is a blocking call. The component should return from this call within five
milliseconds.

The OMX_GetConfig macro is defined as follows.
#define OMX_GetConfig (

 91

 hComponent,
 nConfigIndex,
pComponentConfigStructure)
((OMX_COMPONENTTYPE*)hComponent)->GetConfig(\
 hComponent, \
 nConfigIndex, \
 pComponentConfigStructure)

The parameters are as follows.

Parameters Description

hComponent
[in]

The handle of the component that executes the call.

nConfigIndex
[in]

The index of the structure to be filled. This value is from the
OMX_INDEXTYPE enumeration.

pComponentConfigStructure
[in,out]

A pointer to the IL client-allocated structure that the component fills.

Section 3.3.7 below describes the corresponding function that each component
implements.

3.2.2.10.1

3.2.2.10.2

Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Wait until a certain playback position */
do {
OMX_GetConfig(hClockComp, OMX_IndexConfigTimeCurrentMediaTime,
 oMediaTime);
} while (oMediaStamp.nTimeStamp < nTargetTimeStamp);

3.2.2.10.3 Error Conditions
The following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the config structure are
incorrect.

• OMX_ErrorUnsupportedIndex when the specified config index is
unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the config
structure does not match the expected version for the component.

• OMX_ErrorNotReady if an OMX_GetConfig operation has not completed
processing. The caller should retry the OMX_GetConfig call.

 92

• OMX_ErrorNoMore when the OMX_GetConfig function is called with a
structure that includes the nPortIndex field and the value of nPortIndex
exceeds the number of ports (of the appropriate domain) for the component.

3.2.2.11 OMX_SetConfig
The OMX_SetConfig macro will set a component configuration value. This macro can
be invoked anytime after the component has been loaded.

The caller shall provide the memory for the correct structure and fill in the structure
nSize and nVersion fields in addition to all other fields before invoking this macro.
The caller can dispose of this structure after the call, as the component is required to copy
any data it shall retain.

Some configuration structures contain read-only fields. The OMX_SetConfig method
will preserve read-only fields in configuration structures that contain them, and shall not
generate an error when the caller attempts to change the value of a read-only field.

This call is a blocking call. The component should return from this call within five
milliseconds.

The OMX_SetConfig macro is defined as follows.
#define OMX_SetConfig (
 hComponent,
 nConfigIndex,
 pComponentConfigStructure)
((OMX_COMPONENTTYPE*)hComponent)->SetConfig(\
 hComponent, \
 nConfigIndex, \
 pComponentConfigStructure)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

nConfigIndex
[in]

The index of the structure that is to be sent. This value is from
the OMX_INDEXTYPE enumeration.

pComponentConfigStructure
[in]

A pointer to the IL client-allocated structure that the component
uses for initialization.

Section 3.3.8 below describes of the corresponding function that each component
implements.

3.2.2.11.1 Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

 93

3.2.2.11.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Change the time scale of the clock component*/
oScale.xScale = 0x00020000; /*2x*/
OMX_SetConfig(hClockComp, OMX_IndexConfigTimeScale, (OMX_PTR)&oScale);

3.2.2.11.3

3.2.2.12

Error Conditions
The following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the config structure are
incorrect.

• OMX_ErrorUnsupportedIndex when the specified config index is
unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the config
structure does not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the config structure is
unsupported by the component during an OMX_SetConfig call.

• OMX_ErrorNotReady if an OMX_SetConfig operation has not completed
processing. The caller should retry the OMX_SetConfig call.

• OMX_ErrorNoMore when the OMX_SetConfig function is called with a
structure that includes the nPortIndex field and the value of nPortIndex
exceeds the number of ports (of the appropriate domain) for the component.

OMX_GetExtensionIndex
The OMX_GetExtensionIndex macro will invoke a component to translate from a
standardized OpenMAX IL or vendor-specific extension string for a configuration or a
parameter into an OpenMAX IL structure index. The vendor is not required to support
this command for the indexes already found in the OMX_INDEXTYPE enumeration,
which reduces the memory footprint. The component may support any standardized
OpenMAX IL or vendor-specific extension indexes that are not found in the master
OMX_INDEXTYPE enumeration.

This call is a blocking call. The component should return from this call within five
milliseconds.

The OMX_GetExtensionIndex macro is defined as follows.
#define OMX_GetExtensionIndex (
 hComponent,
 cParameterName,
 pIndexType)
((OMX_COMPONENTTYPE*)hComponent)->GetExtensionIndex(\
 hComponent, \
 cParameterName, \

 94

 pIndexType)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

cParameterName
[in]

An OMX_STRING value that shall be less than 128 characters long including the
trailing null byte. The component will translate this string into a configuration
index.

pIndexType
[out]

A pointer to the OMX_INDEXTYPE structure that is to receive the index value.

Section 3.3.9 below describes the corresponding function that each component
implements.

3.2.2.12.1

3.2.2.12.2

Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Set the vendor-specific filename parameter on a reader */
OMX_GetExtensionIndex(
 hFileReaderComp,
 "OMX.CompanyXYZ.index.param.filename",
 &eIndexParamFilename);
OMX_SetParameter(hComp, eIndexParamFilename, &oFileName);

3.2.2.13 OMX_GetState
The OMX_GetState macro will invoke the component to get the current state of the
component and place the state value into the location pointed to by pState. The
component should return from this call within five milliseconds.

The OMX_GetState macro is defined as follows.
#define OMX_GetState (
 hComponent,
 pState)
((OMX_COMPONENTTYPE*)hComponent)->GetState(\
 hComponent, \
 pState)

The parameters are as follows.

 95

Section 3.3.10 below describes the corresponding function that each component
implements.

3.2.2.13.1

3.2.2.13.2

Prerequisites for This Method
This method has no prerequisites.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateIdle, 0);
do {
OMX_GetState(hComp, &eState);
} while (OMX_StateIdle != eState);

3.2.2.14 OMX_UseBuffer
The OMX_UseBuffer macro requests the component to use a buffer already allocated
by the IL client or a buffer already supplied by a tunneled component. The
OMX_UseBuffer implementation shall allocate the buffer header, populate it with the
given input parameters, and pass it back via the ppBufferHdr output parameter.

When populating fields within the buffer header structure, components are
required to correctly initialise both pInputPortIndex and pOutputPortIndex.
They are also required to initialise the pAppPrivate field with the pAppPrivate
function parameter. The pAppPrivate parameter should also be used to
initialise the pInputPortPrivate or pOutputPortPrivate field, when called on an
output port or input port respectively.

The OMX_UseBuffer macro shall be executed under the following conditions:

• While the component is in the OMX_StateLoaded state and has already sent a
request for the state transition to OMX_StateIdle

• While the component is in the OMX_StateWaitForResources state, the resources
needed are available, and the component is ready to go to the OMX_StateIdle
state

• On a disabled port when the component is in the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle state

This is a blocking call. The component should return from this call within 20
milliseconds.

Parameter Definition

hComponent
[in]

The handle of the component that executes the call.

pState
[out]

A pointer to the location that receives the state. The value returned is one of the
OMX_STATETYPE members.

 96

The OMX_UseBuffer macro is defined as follows.
#define OMX_UseBuffer(\
 hComponent,\
 ppBufferHdr,\
 nPortIndex,\
 pAppPrivate,\
 nSizeBytes,\
 pBuffer)\
((OMX_COMPONENTTYPE*)hComponent->UseBuffer(\
 hComponent,\
 ppBufferHdr,\
 nPortIndex,\
 pAppPrivate,\
 nSizeBytes,\
 pBuffer)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of that component that executes the call.

ppBufferHdr
[out]

A pointer to a pointer of an OMX_BUFFERHEADERTYPE structure
that receives the pointer to the buffer header.

nPortIndex
[in]

The index of the port that will use the specified buffer. This index
is relative to the component that owns the port.

pAppPrivate
[in]

A pointer that refers to an implementation-specific memory area
that is under responsibility of the supplier of the buffer.

nSizeBytes
[in]

The buffer size in bytes.

pBuffer
[in]

A pointer to the memory buffer area to be used.

Section 3.3.12 below describes the corresponding function that each component
implements.

3.2.2.14.1

3.2.2.14.2

Prerequisites for This Method
The component shall be in the OMX_StateLoaded or the OMX_StateWaitForResources
state, or the port to which the call applies shall be disabled.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* supplier port allocates buffers and pass them to non-supplier */
for (i=0;i<pPort->nBufferCount;i++)
{
 pPort->pBuffer[i] = malloc(pPort->nBufferSize);
 OMX_UseBuffer(pPort->hTunnelComponent,

 97

 &pPort->pBufferHdr[i],
 pPort->nTunnelPort,
 pPort,
 pPort->nBufferSize,
 pPort->pBuffer[j]);
}

3.2.2.15 OMX_AllocateBuffer
The OMX_AllocateBuffer macro will request that the component allocate a new
buffer and buffer header. The component will allocate the buffer and the buffer header
and return a pointer to the buffer header.

When populating fields within the buffer header structure, components are
required to correctly initialise both pInputPortIndex and pOutputPortIndex.
They are also required to initialise the pAppPrivate field with the pAppPrivate
function parameter. The pAppPrivate parameter should also be used to
initialise the pInputPortPrivate or pOutputPortPrivate field, when called on an
output port or input port respectively.

This call is a blocking call that shall be performed under the following conditions:

• While the component is in the OMX_StateLoaded state and has already sent a
request for the state transition to OMX_StateIdle.

• While the component is in the OMX_StateWaitForResources state, the resources
needed are available, and the component is ready to go to the OMX_StateIdle
state.

• On a disabled port when the component is the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle states.

The OMX_AllocateBuffer macro allocates buffers on a specific port for
communication with the IL client only. This macro cannot be used to allocate buffers for
tunneled ports. Buffers allocated before a port was configured for tunneling will result in
the component failing OMX_SetupTunnel calls to the port.

The component should return from this call within five milliseconds.

The OMX_AllocateBuffer macro is defined as follows.
#define OMX_AllocateBuffer (
 hComponent,
 pBuffer,
 nPortIndex,
 pAppPrivate,
 nSizeBytes)
 ((OMX_COMPONENTTYPE*)hComponent)->AllocateBuffer(\
 hComponent, \
 ppBuffer, \
 nPortIndex, \
 pAppPrivate, \
 nSizeBytes)
 pAppPrivate,\
 nSizeBytes,\

 98

 pBuffer)

The parameter are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

ppBuffer
[out]

A pointer to a pointer of an OMX_BUFFERHEADERTYPE structure that receives the
pointer to the buffer header.

nPortIndex
[in]

Selects the port on the component that the buffer will be used with. The port can be
found by using the nPortIndex value as an index into the port definition array of the
component.

pAppPrivate
[in]

Initializes the pAppPrivate member of the buffer header structure.

nSizeBytes
[in]

The size of the buffer to allocate.

Section 3.3.13 below describes the corresponding function that each component
implements.

3.2.2.15.1

3.2.2.15.2

Prerequisites for This Method
The component shall be in the OMX_StateLoaded or the OMX_StateWaitForResources
state, or the port to which the call applies shall be disabled.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* IL client asks component to allocate buffers */
for (i=0;i<pClient->nBufferCount;i++)
{
 OMX_AllocateBuffer(hComp,
 &pClient->pBufferHdr[i],
 pClient->nPortIndex,
 pClient,
 pClient->nBufferSize);
}

3.2.2.16 OMX_FreeBuffer
The OMX_FreeBuffer macro will release a buffer and buffer header from the
component. The component shall free only the buffer header if it allocated only the buffer
header. The component shall free both the buffer and the buffer header if it allocated both
the buffer and the buffer header. Thus, the component shall track which buffers it
allocated so it can perform the corresponding de-allocation.

The call should be performed under the following conditions:

 99

• While the component is in the OMX_StateIdle state and the IL client has already
sent a request for the state transition to OMX_StateLoaded (e.g., during the
stopping of the component)

• On a disabled port when the component is in the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle state.

The call can be made at any time, but may result in the port sending an
OMX_ErrorPortUnpopulated event error if the call is not performed as described.

The call is made from buffer supplier ports when tunneling to release buffer headers from
the port that the supplier port is tunneling with.

This call is a blocking call. The component should return from the call within 20
milliseconds.

The OMX_FreeBuffer macro is defined as follows.
#define OMX_FreeBuffer (
 hComponent,
 nPortIndex,
 pBuffer)
 ((OMX_COMPONENTTYPE*)hComponent)->FreeBuffer(\
 hComponent, \
 nPortIndex,
 pBuffer)
 pBuffer)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call

nPortIndex
[in]

The index of the port that is using the specified buffer

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure used to provide or receive the
pointer to the buffer header.

Section 3.3.14 describes the corresponding function that each component implements.

3.2.2.16.1

3.2.2.16.2

Prerequisites for This Method
The component should be in the OMX_StateIdle state or the port should be disabled.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* supplier port frees buffers */
for (i=0;i<pPort->nBufferCount;i++)
{
 free(pPort->pBuffer[i]);
 pPort->pBuffer[i] = 0;

 100

 OMX_FreeBuffer(pPort->hTunnelComponent,
 pPort->nTunnelPort,
 pPort->pBufferHdr[i]);
 pPort->pBufferHdr[j] = 0;
}

3.2.2.17 OMX_EmptyThisBuffer
The OMX_EmptyThisBuffer macro will send a filled buffer to an input port of a
component. When the buffer contains data, the value of the nFilledLen field of the
buffer header will not be zero. If the buffer contains no data, the value of nFilledLen
is 0x0. The OMX_EmptyThisBuffer macro is invoked to pass buffers containing data
when the component is in or making a transition to the OMX_StateExecuting or in the
OMX_StatePause state.

When a port is non-tunneled, buffers sent to OMX_EmptyThisBuffer are returned to
the IL client with the EmptyBufferDone callback once they have been emptied.

When a port is tunneled, buffers sent to OMX_EmptyThisBuffer are sent to the
tunneled port once they are emptied so long as the component is in the
OMX_StateExecuting state. Buffers are returned to the input port that supplied them
using OMX_EmptyThisBuffer whenever the tunneled port is flushed or disabled.
Buffers are also returned to the input port that supplied them when the component calling
OMX_FillThisBuffer is transitioning from the OMX_StateExecuting state or the
OMX_StatePaused state to the OMX_StateIdle state.

This call is a non-blocking call since the component will queue the buffer and return
immediately. The buffer will be emptied later at the proper time. If the parameter
nInputPortIndex in the buffer header does not specify a valid input port, the
component returns OMX_ErrorBadPortIndex. The component should return from
this call within five milliseconds.

The OMX_EmptyThisBuffer macro is defined as follows.
#define OMX_EmptyThisBuffer (
 hComponent,
 pBuffer)
 ((OMX_COMPONENTTYPE*)hComponent)->EmptyThisBuffer(\
 hComponent, \
 pBuffer)

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure that is used to provide or receive
the pointer to the buffer header. The buffer header shall specify the index of the input
port that receives the buffer

 101

Section 3.3.15 below describes the corresponding function that each component
implements.

3.2.2.17.1

3.2.2.17.2

Prerequisites for This Method
The component shall be in the appropriate state as shown in Table 3-10.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* deliver full buffer */
if (pPort->hTunnelComponent)
OMX_EmptyThisBuffer(pPort->hTunnelComponent, pBuffer);
else
 pCallbacks->FillBufferDone(hComp, pBuffer,
pPort->pCallbackAppData);

3.2.2.18 OMX_FillThisBuffer
The OMX_FillThisBuffer macro will send an empty buffer to an output port of a
component. The OMX_FillThisBuffer macro is invoked to pass buffers containing
no data when the component is in or making a transition to the OMX_StateExecuting
state or is in the OMX_StatePaused state.

When a port is non-tunneled, buffers sent to OMX_FillThisBuffer return to the IL
client with the FillBufferDone callback once they have been filled.

When a port is tunneled, buffers sent to OMX_FillThisBuffer are sent to the
tunneled port once they are filled so long as the component is in the
OMX_StateExecuting state. Buffers are returned to the output port that supplied them
using OMX_FillThisBuffer whenever the tunneled port is flushed or disabled.
Buffers are also returned to the output port that supplied them when the component that
calls OMX_FillThisBuffer is transitioning from the OMX_StateExecuting state or
OMX_StatePaused state to the OMX_StateIdle state.

This call is a non-blocking call since the component will queue the buffer and return
immediately. The buffer will be filled later at the proper time. If the parameter
nOutputPortindex in the buffer header does not specify a valid output port, the
component returns OMX_ErrorBadPortIndex. The component should return from
this call within five milliseconds.

The OMX_FillThisBuffer macro is defined as follows.
#define OMX_FillThisBuffer (
 hComponent,
 pBuffer)
 ((OMX_COMPONENTTYPE*)hComponent)->FillThisBuffer(\
 hComponent, \
 pBuffer)

The parameters are as follows.

 102

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure used to provide or receive the
pointer to the buffer header. The buffer header shall specify the index of the input port
that receives the buffer.

Section 3.3.16 below describes the corresponding function that each component
implements.

3.2.2.18.1

3.2.2.18.2

Prerequisites for This Method
The component shall be in the appropriate state as shown in Table 3-10.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On a port enable, if tunneling and an input and not supplier */
/* then give buffers to supplier port */
if (pPort->hTunnelComponent &&
 (pPort->oPortDef.eDir == OMX_DirInput) &&
 (pPort->eSupplierSetting == OMX_BufferSupplyInput))
{
 for (i=0;i<pPort->nBuffers;i++){
OMX_FillThisBuffer(pPort->hTunnelComponent,
pPort->ppBufferHdrs[i]);
 }
}

3.2.2.19 OMX_UseEGLImage
OMX_UseEGLImage enables an OMX IL component to use as a buffer, the image
already allocated via EGL. EGLImages are designed for sharing data between rendering
based EGL interfaces, such as OpenGL ES and OpenVG. The format of an EGLImage is
opaque to the EGL’s client by design, so any memory allocated through this macro are
not accessible directly by the IL client.

A method for this interface shall be provided by the component, but may not be
implemented, by returning OMX_ErrorNotImplemented. Components should
inspect the EGLImage provided to the method, and determine if the EGLImage is
compatible with the port configuration.

The OMX_UseEGLImage macro requests that the component use an EGLImage
provided by EGL, in place of using the OMX_UseBuffer method. The
OMX_UseEGLImage implementation shall allocate the buffer header, populate it with
the given input parameters, and pass it back via the ppBufferHdr output parameter.
The pBuffer field of the pBufferHdr parameter shall be 0x0, because the format of the
EGLImage is opaque to the IL Client.

The OMX_UseEGLImage macro shall be executed under the following conditions:

• While the component is in the OMX_StateLoaded state and has already sent a
request for the state transition to OMX_StateIdle.

• While the component is in the OMX_StateWaitForResources state, the resources
needed are available, and the component is ready to go to the OMX_StateIdle
state.

• On a disabled port when the component is in the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle state.

This is a blocking call. The component should return from this call within 20
milliseconds.

The OMX_UseEGLImage macro is defined as follows.
#define OMX_UseEGLImage(\
 hComponent,\
 ppBufferHdr,\
 nPortIndex,\
 pAppPrivate,\
 eglImage)\
((OMX_COMPONENTTYPE*)hComponent->UseEGLImage(\
 hComponent,\
 ppBufferHdr,\
 nPortIndex,\
 pAppPrivate,\
 eglImage)

The parameters are as follows.

Parameter Description

hComponent The handle of that component that executes the call.
[in]
ppBufferHdr A pointer to a pointer of an OMX_BUFFERHEADERTYPE structure

that receives the pointer to the buffer header. [out]
nPortIndex The index of the port that will use the specified buffer. This index

is relative to the component that owns the port. [in]
pAppPrivate A pointer that refers to an implementation-specific memory area

that is under responsibility of the supplier of the buffer. [in]
eglImage The handle of the EGLImage to use as a buffer on the
[in] specified port. The component is expected to validate properties of

the EGLImage against the configuration of the port to ensure the
component can use the EGLImage as a buffer.

Section 3.3.19 below describes the corresponding function that each component
implements.

 103

 104

3.2.2.19.1

3.2.3.1

Prerequisites for This Method
The component shall be in the OMX_StateLoaded or the OMX_StateWaitForResources
state, or the port to which the call applies shall be disabled.

3.2.3 Functions
This section describes the functions in the OpenMAX IL API.

OMX_Init
The OMX_Init method initializes the OpenMAX IL core. OMX_Init shall be the first
call made into OpenMAX IL and should be executed only one time without an
intervening OMX_Deinit call. If OMX_Init is called twice, OMX_ErrorNone is
returned but the init request is ignored. The core should return from this call within 20
milliseconds.

The usage of OMX_Init() is as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_Init()

3.2.3.1.1

3.2.3.1.2

3.2.3.1.3

Prerequisites for This Method
This method has no prerequisites.

Results/Outputs for This Method
If the command successfully executes, the return code will be OMX_ErrorNone.
Otherwise, the appropriate OpenMAX IL error will be returned. The OpenMAX IL core
functions are ready to be used when this function returns successfully.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Initialize OpenMAX IL and create some components */
OMX_Init();
OMX_GetHandle(hMp3Decoder, "OMX.CompanyXYZ.mp3.decoder",
 pAppData, pCallbacks);
OMX_GetHandle(hAudioMixer, "OMX.CompanyXYZ.audio.mixer",
 pAppData, pCallbacks);

3.2.3.2 OMX_Deinit
The OMX_Deinit method de-initializes the OpenMAX IL core. OMX_Deinit should
be the last call made into the OpenMAX IL core after all OpenMAX IL-related resources
have been released. The core should return from this call within 20 milliseconds. While it
may be preferable to have the core command each of the components back to the loaded
state and then de-initialize them, doing so may require more than the recommended 20

 105

milliseconds call time. It further requires the OpenMAX IL core to track all component
handles, which may add unnecessary complexity for some platforms.

The OMX_Deinit method usage is as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_Deinit()

3.2.3.2.1

3.2.3.2.2

3.2.3.2.3

Prerequisites for This Method
The use of OMX_Deinit requires that all component handles acquired by the IL client
in the system have been released, implying that all resources associated with components
have been freed.

Results/Outputs for This Method
The use of OMX_Deinit returns OMX_ERRORTYPE. If the command successfully
executes, the return code will be OMX_ErrorNone. Otherwise, the appropriate
OpenMAX IL error will return.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Determine if a component of a particular name exists. */
OMX_Init();
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNone == eError; i++)
{
 eError = OMX_ComponentNameEnum(szCompEnumName, 256, i);
 if ((OMX_ErrorNone == eError) &&
 (!strcmp(szCompEnumName, szComponentName))
 {
 OMX_Deinit();
 return OMX_TRUE;
 }
}
OMX_Deinit();
return OMX_FALSE;

3.2.3.3 OMX_ComponentNameEnum
The OMX_ComponentNameEnum method will enumerate through all the names of
recognized components in the system to detect all the components in the system run-time.
There is no strict ordering to the enumeration of component names, although each name
shall be enumerated only once. If the OpenMAX IL core supports run-time installation of
new components, it is required to detect newly installed components only when the first
call to enumerate component names occurs (i.e., when the value of nIndex is 0x0).

The OMX_ComponentNameEnum method is defined as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_ComponentNameEnum(
 OMX_OUT OMX_STRING cComponentName,

 106

 OMX_IN OMX_U32 nNameLength,
 OMX_IN OMX_U32 nIndex
)

The parameters are as follows.

Parameter Description

cComponentName
[out]

A pointer to a null-terminated string with the component name. Component
names are strings limited to less than 127 bytes in length plus the trailing
null for a maximum length of 128 bytes. An example of a valid component
name is "OMX.<vendor_name>.AUDIO.DSP.MIXER\0". The name shall
start with "OMX." concatenated to a vendor-specified string.

nNameLength
[in]

The number of characters in the cComponentName string. Since all
component name strings are restricted to less than 128 characters, not
including the trailing null, the caller should provide an input string of at least
128 characters.

nIndex
[in]

A number containing the enumeration index for the component. Multiple
calls to OMX_ComponentNameEnum with increasing values of nIndex
will enumerate through the component names in the system until
OMX_ErrorNoMore returns. The value of nIndex is 0 to N-1, where N is
the number of installed components in the system.

3.2.3.3.1

3.2.3.3.2

3.2.3.3.3

Prerequisites for This Method
OMX_ComponentNameEnum can be called after the OMX_Init function.

Results/Outputs for This Method
If OMX_ComponentNameEnum successfully executes, the return code will be
OMX_ErrorNone. When the value of nIndex exceeds the number of components in
the system minus 1, OMX_ErrorNoMore will be returned. Otherwise, the appropriate
OpenMAX IL error will be returned.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* print a list of all components */
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNoMore != eError; i++)
{
 eError = OMX_ComponentNameEnum(szCompName, 256, i);
 if (OMX_ErrorNone == eError)
 printf("Component %i: %s\n", szCompName);
}

 107

3.2.3.4 OMX_GetHandle
The OMX_GetHandle method will locate the component specified by the component
name given, load that component into memory, and validate it. If the component is valid,
OMX_GetHandle will invoke the component's methods to fill the component handle
and set up the callbacks. The OMX_GetHandle method will allocate the actual
OMX_HANDLETYPE structure, ensures it is populated correctly, and then updates the
value of *pHandle with a pointer to the newly created handle. The component should
return from this call within 20 millisecconds.

Each time the OMX_GetHandle function returns successfully, a new component
instance is created. The IL client shall configure the newly created component, which is
in the OMX_StateLoaded state, before the component can be used.

Since components are requested by name, a naming convention is defined. OpenMAX IL
component names are zero terminated strings with the following format:

 “OMX.<vendor_name>.<vendor_specified_convention>”.

For example:

OMX.CompanyABC.MP3Decoder.productXYZ

No standardization among component names is dictated across different vendors.

OMX_GetHandle is defined as follows.

OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_GetHandle(
 OMX_OUT OMX_HANDLETYPE * pHandle,
 OMX_IN OMX_STRING cComponentName,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_CALLBACKTYPE * pCallBacks
)

The parameters are as follows.

Parameter Description

pHandle
[out]

A pointer to OMX_HANDLETYPE to be filled in by this method.

cComponentName
[in]

A pointer to a null-terminated string with the component name. Component
names are strings limited to less than 128 bytes in length plus the trailing
null for a maximum length of 128 bytes. An example of a valid component
name is “OMX.<vendor_name>.AUDIO.DSP.MIXER\0”. The name shall
start with “OMX.” concatenated to a vendor-specified string.

pAppData
[in]

A pointer to an IL client-defined value that will be returned during callbacks
so that the IL client can identify the source of the callback.

pCallBacks
[in]

A pointer to an OMX_CALLBACKTYPE structure containing the callbacks
that the component will use for this IL client.

 108

3.2.3.4.1

3.2.3.4.2

3.2.3.4.3

Prerequisites for This Method
The OpenMAX IL core shall be initialized.

Results/Outputs for This Method
If successful, the function returns a valid component handle to the IL client.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* determine maximum number of instantiations of a component */
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNone == eError; i++)
{
 eError = OMX_GetHandle(&hComp[i],
 szComponentName,
 pAppData,
 pCallbacks);
}
printf("Created %i instantiations.\n",i);

3.2.3.5 OMX_FreeHandle
The OMX_FreeHandle method will free a handle allocated by the OMX_GetHandle
method. The component should return from this call within 20 milliseconds. The IL client
should call OMX_FreeHandle only when the component is in the OMX_StateLoaded
or the OMX_StateInvalid state; calling OMX_FreeHandle from any other state may
result in the component taking longer than the recommended 20 milliseconds execution
time, and is provided only as a failure recovery mechanism.

OMX_FreeHandle is defined as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_FreeHandle(
 OMX_IN OMX_HANDLETYPE hComponent)

The single parameter is as follows.

Parameter Description

hComponent
[in]

The handle of the component to be freed.

3.2.3.5.1

3.2.3.5.2

Prerequisites for This Method
The component should be in the OMX_StateLoaded or the OMX_StateInvalid state when
this method is called.

Results/Outputs for This Method
All resources associated with the components are freed.

 109

3.2.3.5.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* stop executing component and clean up component */
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateIdle, 0);
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateLoaded, 0);
do {
 OMX_GetState(hComp, &eState);
} while (OMX_StateLoaded != eState);
OMX_FreeHandle(hComp);

3.2.3.6 OMX_SetupTunnel
The OMX_SetupTunnel method sets up tunneled communication between an output
port and an input port. This method is an actual method and not a defined macro. The
OMX_SetupTunnel method will make calls to the component’s
ComponentTunnelRequest() method to set up the tunnel.

When changing an input port to non-tunneled communication, the value of the hOutput
parameter shall be 0x0. When changing an output port to a non-tunneled communication,
the value of the hInput parameter shall be 0x0.

When setting up tunneled communication between an output port and an input port, the
method first issues a call to ComponentTunnelRequest() on the component with
the output port. If the call is successful, a second call to
ComponentTunnelRequest() on the component with the input port is made.
Should either call to ComponentTunnelRequest() fail, the method will set up both
the output and input ports for non-tunneled communication.

The components may negotiate proprietary communication in place of tunneled
communication so long as both the output and input ports can support proprietary
communication. An IL client cannot disambiguate between tunneled and proprietary
communication.

The core should return from this call within 20 milliseconds.

The IL client may use OMX_SetupTunnel to establish proprietary communication
between base profile components (given than both components support it) but not to
establish a tunnel between them. An IL client may only establish tunnels between Interop
profile components.

If this method fails because the OMX_SetupTunnel implementation supports neither
tunneling nor proprietary communication then it shall return
OMX_ErrorNotImplemented.

If this method fails because OMX_SetupTunnel supports proprietary communication but
not tunneling and proprietary communication does not apply to the given components
then is shall return OMX_ErrorTunnelingUnsupported.

OMX_SetupTunnel may only return OMX_ErrorNotImplemented or
OMX_ErrorTunnelingUnsupported when operating on one or more base profile
components; these errors do not apply when operating on two Interop profile components.

 110

For a detailed description of the process to set up a data tunnel between two components,
see section 3.4.1.2.

OMX_SetupTunnel is defined as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_SetupTunnel(
 OMX_IN OMX_HANDLETYPE hOutput,
 OMX_IN OMX_U32 nPortOutput,
 OMX_IN OMX_HANDLETYPE hInput,
 OMX_IN OMX_U32 nPortInput
)

The parameters are as follows.

Parameter Description

hOutput
[in]

The handle of the component containing the output port used in the tunnel,
where the output port is identified by the nPortOutput parameter. By
definition, an output port has the direction OMX_DirOutput. If the value of
this parameter is 0x0, the hPortInput port on the hInput component will be set
up for non-tunneled communication.

nPortOutput
[in]

Indicates the output port of the component specified by hOutput that is to be
used for tunneled or proprietary communication.

hInput
[in]

The handle of the component containing the input port used in the tunnel,
where the input port is identified by the nPortInput parameter. By definition,
an input port has the direction OMX_DirInput. If the value of this
parameter is 0x0, the hPortOutput port on the hOutput component will be set
up for non-tunneled communication.

nPortInput
[in]

Indicates the input port of the component specified by hInput that is to be
used for tunneled or proprietary communication.

3.2.3.6.1

3.2.3.6.2

3.2.3.6.3

Prerequisites for This Method
Each component that is being tunneled shall be in the OMX_StateLoaded state, or its port
shall be disabled.

Results/Outputs for This Method
If the method returns successfully when both an output and input component are supplied,
tunneled or proprietary communication has been set up between the specified output and
input ports. When only an output or an input component is supplied or if an error occurs
during processing, the ports are set up for non-tunneled communication.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* set up tunnel between two components then transition to idle */
OMX_SetupTunnel(hCompA, nCompAOutPort, hCompB, nCompBInPort);
OMX_SendCommand(hCompA, OMX_CommandStateSet, OMX_StateIdle, 0);
OMX_SendCommand(hCompB, OMX_CommandStateSet, OMX_StateIdle, 0);

 111

3.2.3.7 OMX_GetContentPipe
The OMX_GetContentPipe method returns a content pipe capable of manipulating a
given piece of content as (specified via URI). The OMX IL Core shall provide this
interface and return OMX_ErrorNotImplemented if it is not implemented.

The IL client may also use this function to retrieve content pipes for its own use.

The core should return from this call within 20 milliseconds.

OMX_GetContentPipe is defined as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_GetContentPipe (
 OMX_IN OMX_HANDLETYPE *hPipe,
 OMX IN OMX_STRING szURI)

The parameters are as follows.

Parameter Description

hPipe
[out]

The handle of content pipe retrieved.

szURI
[in]

The name of the content the caller is
requesting an associated content pipe for.

3.2.3.7.1

3.2.3.7.2

Prerequisites for This Method
None.

Results/Outputs for This Method
The IL Core populates the hPipe field with a content pipe handle corresponding to the
given URI.

3.3 OpenMAX IL Component Methods and Structures
OpenMAX IL components are defined in the OMX_Component.h header file. The
structure OMX_COMPONENTTYPE holds the data fields and function entry points for a
component.

3.3.1 pComponentPrivate
pComponentPrivate is a pointer to the component private data area. The component
allocates and initializes this member when the component is first loaded. The application
should not access this data area.

3.3.2 pApplicationPrivate
pApplicationPrivate is a pointer to the application private data area. The
component initializes this field during the call to SetCallbacks, as this field is
provided back to the IL client when the component issues callbacks.

3.3.3 GetComponentVersion
The IL client calls the GetComponentVersion component method via the
OMX_GetComponentVersion core macro. See the definition of
OMX_GetComponentVersion in section 3.2.2.1 above for a description of its
semantics.

GetComponentVersion is defined as follows.
 OMX_ERRORTYPE (*GetComponentVersion)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_STRING pComponentName,
 OMX_OUT OMX_VERSIONTYPE* pComponentVersion,
 OMX_OUT OMX_VERSIONTYPE* pSpecVersion);

3.3.4 SendCommand
The IL client calls the SendCommand component method via the OMX_SendCommand
core macro. See the definition of OMX_SendCommand in section 3.2.2.2 above for a
description of its semantics.

SendCommand is defined as follows.
 OMX_ERRORTYPE (*SendCommand)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_COMMANDTYPE Cmd,
 OMX_IN OMX_U32 nParam,
 OMX_IN OMX_PTR pCmdData);

3.3.5 GetParameter
The IL client or a tunneled component calls the GetParameter component method via
the OMX_GetParameter core macro. See the definition of OMX_GetParameter in
section 3.2.2.8 above for a description of its semantics.

GetParameter is defined as follows.
 OMX_ERRORTYPE (*GetParameter)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nParamIndex,
 OMX_INOUT OMX_PTR pComponentParameterStructure);

3.3.6 SetParameter
The IL client or a tunneled component calls the SetParameter component method via
the OMX_SetParameter core macro. See the definition of OMX_SetParameter in
section 3.2.2.8.3 above for a description of its semantics.

SetParameter is defined as follows.
 OMX_ERRORTYPE (*SetParameter)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,

 112

 OMX_IN OMX_PTR pComponentParameterStructure);

3.3.7 GetConfig
The IL client calls the GetConfig component method via the OMX_GetConfig core
macro. See the definition of OMX_GetConfig in section 3.2.2.9.3 above for a
description of its semantics.

GetConfig is defined as follows.
 OMX_ERRORTYPE (*GetConfig)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,
 OMX_INOUT OMX_PTR pComponentConfigStructure);

3.3.8 SetConfig
The IL client calls the SetConfig component method via the OMX_SetConfig core
macro. See the definition of OMX_SetConfig in section 3.2.2.10.3 above for a
description of its semantics.

SetConfig is defined as follows.
 OMX_ERRORTYPE (*SetConfig)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,
 OMX_IN OMX_PTR pComponentConfigStructure);

3.3.9 GetExtensionIndex
The IL client calls the GetExtenstionIndex component method via the
OMX_GetExtensionIndex core macro. See the definition of
OMX_GetExtensionIndex in section 3.2.2.1293 for a description of its semantics.

GetExtensionIndex is defined as follows.
 OMX_ERRORTYPE (*GetExtensionIndex)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_STRING cParameterName,
 OMX_OUT OMX_INDEXTYPE* pIndexType);

3.3.10 GetState
The IL client calls the GetState component method via the OMX_GetState core
macro. See the definition of OMX_GetState in section 3.2.2.13 above for a description
of its semantics.

GetState is defined as follows.
 OMX_ERRORTYPE (*GetState)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_STATETYPE* pState);

 113

3.3.11 ComponentTunnelRequest
The ComponentTunnelRequest method will interact with another OpenMAX IL
component to determine if tunneling is possible and to set up the tunneling if it is possible.
The return codes for this method can determine if tunneling is not possible or if
proprietary communication or tunneling is used.

The interop profile-conformant component shall support tunneling to a component with
compatible parameters. The component may also support proprietary communication. If
proprietary communication is supported, the negotiation of proprietary communication is
performed in a vendor-specific way. The only requirement is that the proper result be
returned. The details of the proprietary communication setup are left to the vendor’s
component implementer.

The ComponentTunnelRequest method is invoked on both components that
support the tunneling communication. When this method is invoked on the component
that provides the output port, the component will do the following:

1. Indicate its supplier preference in pTunnelSetup.

When this method is invoked on the component that provides the input port, the
component will do the following:

1. Check the data compatibility between the ports using one or more
GetParameter calls.

2. Review the buffer supplier preferences of the output port and use
OMX_SetParameter with index
OMX_IndexParamCompBufferSupplier to inform the output port of
which port supplies the buffers.

If this method is invoked with a NULL parameter for the pTunnelComp parameter, the
port should be set up for non-tunneled communication with the IL client.

The component should return from this call within five milliseconds.

ComponentTunnelRequest is defined as follows.
 OMX_ERRORTYPE (*ComponentTunnelRequest)(
 OMX_IN OMX_HANDLETYPE hComp,
 OMX_IN OMX_U32 nPort,
 OMX_IN OMX_HANDLETYPE hTunneledComp,
 OMX_IN OMX_U32 nTunneledPort,
 OMX_INOUT OMX_TUNNELSETUPTYPE* pTunnelSetup);

The parameters are as follows.

Parameter Description

hComp The handle of the target component of the RequestTunnel
call and one of the components that will participate in the tunnel. [in]

nPort The index of the port belonging to hComp that will participate in
the tunnel. [in]

 114

 115

Parameter Description

hTunneledComp
[in]

The handle of the other component that participates in the tunnel.
When this parameter is NULL, the port specified in nPort should
be configured for non-tunneled communication with the IL
client.

nTunneledPort
[in]

The index of the port belonging to hTunneledComp that
participates in the tunnel.

pTunnelSetup
[in,out]

The structure that contains data for the tunneling negotiation
between components. The supplier field can be filled by both
components; the callbacks field is filled by the output port
component. The read-only flag can be applied by both
components.

3.3.11.1

3.3.11.2

Prerequisites for This Method
The component shall be in the OMX_StateLoaded state.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Translate a SetupTunnel call to two ComponentTunnelRequest calls */
pCompOut = (OMX_COMPONENTTYPE *)hOutput;
pCompIn = (OMX_COMPONENTTYPE *)hInput;
pCompOut->ComponentTunnelRequest(hOutput, nPortOutput, hInput,
 nPortInput, &oTunnelSetup);
pCompIn->ComponentTunnelRequest(hInput, nPortInput, hOutput,
 nPortOutput, &oTunnelSetup);

3.3.12 UseBuffer
The IL client or a tunneled component calls the UseBuffer component method via the
OMX_UseBuffer core macro. See the definition of OMX_UseBuffer in section
 3.2.2.14 above for a description of its semantics.

UseBuffer is defined as follows.
 OMX_ERRORTYPE (*UseBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_INOUT OMX_BUFFERHEADERTYPE** ppBufferHdr,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_PTR pAppPrivate,
 OMX_IN OMX_U32 nSizeBytes,
 OMX_IN OMX_U8* pBuffer);

3.3.13 AllocateBuffer
The IL client calls the AllocateBuffer component method via the
OMX_AllocateBuffer core macro. See the definition of OMX_AllocateBuffer
in section 3.2.2.15 above for a description of its semantics.

AllocateBuffer is defined as follows.
 OMX_ERRORTYPE (*AllocateBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_INOUT OMX_BUFFERHEADERTYPE** pBuffer,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_PTR pAppPrivate,
 OMX_IN OMX_U32 nSizeBytes);

3.3.14 FreeBuffer
The IL client or a tunneled component calls the FreeBuffer component method via
the OMX_FreeBuffer core macro. See the definition of OMX_FreeBuffer in section
 3.2.2.16 above for a description of its semantics.

FreeBuffer is defined as follows.
 OMX_ERRORTYPE (*FreeBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

3.3.15 EmptyThisBuffer
The IL client or a tunneled component calls the EmptyThisBuffer component
method via the OMX_EmptyThisBuffer core macro. See the definition of
OMX_EmptyThisBuffer in section 3.2.2.17 above for a description of its semantics.

EmptyThisBuffer is defined as follows.
 OMX_ERRORTYPE (*EmptyThisBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

3.3.16 FillThisBuffer
The IL client or a tunneled component calls the FillThisBuffer component method
via the OMX_FillThisBuffer core macro. See the definition of
OMX_FillThisBuffer in section 3.2.2.18 above for a description of its semantics.

FillThisBuffer is defined as follows.
 OMX_ERRORTYPE (*FillThisBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

3.3.17 SetCallbacks
The SetCallbacks method will allow the core to transfer the callback structure from
the IL client to the component. This is a blocking call. The component should return from
this call within five milliseconds.

SetCallbacks is defined as follows.

 116

 117

 OMX_ERRORTYPE (*SetCallbacks)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_CALLBACKTYPE* pCallbacks,
 OMX_IN OMX_PTR pAppData);

The parameters are as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the call.

pCallbacks
[in]

A pointer to an OMX_CALLBACKTYPE structure that is used to provide the
callback information to the component.

pAppData
[in]

A pointer to a value that the IL client has defined (for example, a pointer to a data
structure) that allows the callback in the IL client to determine the context of the
call.

3.3.17.1

3.3.17.2

Prerequisites for This Method
The component shall be in the OMX_StateLoaded state.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On GetHandle (for statically linked components):
 create component, initialize it, and set its callbacks */
pComp = (OMX_COMPONENTTYPE *)malloc(sizeof(OMX_COMPONENTTYPE));
hHandle = (OMX_HANDLETYPE)pComp;
pComp->nVersion = version_1_0;
pComp->nSize = sizeof(OMX_COMPONENTTYPE);
OMX_ComponentRegistered[i].pInitialize(hHandle);
pComp->SetCallbacks(hHandle, pCallBacks, pAppData);

3.3.18 ComponentDeinit
The core calls the ComponentDeinit function when the core needs to dispose of a
component.

ComponentDeinit is defined as follows.
 OMX_ERRORTYPE (*ComponentDeinit)(
 OMX_IN OMX_HANDLETYPE hComponent);

The single parameter is as follows.

Parameter Description

hComponent
[in]

The handle of the component that executes the
call.

 118

3.3.18.1

3.3.18.2

Prerequisites for This Method
There are no prerequisites for this method. The IL client may execute this function
regardless of component state so that de-initialization is guaranteed even on components
that are unresponsive to state changes. However, executing ComponentDeinit when
the component is in the OMX_StateLoaded state is recommended for proper shutdown.

Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On FreeHandle: de-initialize component and destroy it */
pComp = (OMX_COMPONENTTYPE*)hComponent;
(pComp->ComponentDeinit)(hComponent);
OMX_OSAL_Free(pComp);

3.3.19 UseEGLImage
The IL client or a tunneled component calls the UseEGLImage component method via
the OMX_UseBuffer core macro. See the definition of OMX_UseEGLImage in section
 3.2.2.19 above for a description of its semantics.

UseEGLImageBuffer is defined as follows.
 OMX_ERRORTYPE (*UseEGLImageBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_INOUT OMX_BUFFERHEADERTYPE** ppBufferHdr,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_PTR pAppPrivate,
 OMX_IN void* pBuffer);

3.4 Calling Sequences
This section describes how the IL client, the OpenMAX IL core, and the components
dynamically interact in a few meaningful use cases, namely initialization, de-initialization,
data flow, data tunneling setup, and data flow in the case of data tunneling and dynamic
port reconfiguration. The interaction between the core, the components, and the possible
implementation of a resource manager is also described.

3.4.1 Initialization
This section describes the operations for initializing the OpenMAX IL components. The
components can be handled directly by the IL client, can be tunneled to each other, or
both. The tunneled and non-tunneled cases are distinguished for clarity, but the two cases
can be both present in the component framework.

3.4.1.1 Non-tunneled Initialization
Figure 3-5 shows how an IL client should initialize an OpenMAX IL component.

sd Buffer Allocation - no tunneling
IL client

OpenMAX
Component

IL Core

1.0 OMX GetHandle(handle, componentName, NULL, callBacks)
1.0 The IL client ask for an handle. The
returned component is in the loaded state.

1.1 component allocation

1.2 SetCallbacks
1.2 The C assiore gns to the component the
callbacks.

1.3 return

1.4 SetParameter

2.0 SendCommand(handle, OMX CommandStateSet, OMX StateIdle)
2.0 The IL client requests the change of
component state.

2.1 OMX AllocateBuffer(handle, bufferHeader, portindex, NULL, bufferSize)
2.1 The IL client requests to the
component to allocate the buffer with the
spec d size and assiifie gn it to the specif ied
port. 2.2 allocate buffer

and buffer header
2.2 The component al ates the buffer loc
and the buffer header.

2.3 return

2.4 allocate buffer2.4 The client allocates in a syst em
specific way the buffer memory.

2.5 OMX UseBuffer(handle, bufferHeader, portindex, NULL)
2.5 The IL c nt sends the buffer to t lie
com

he
ponent.

2.6 allocate buffer header2.6 The I lient allocates the buffer L c
at wheader th ill contain the buffer given by

the client.
2.7 return

2.8 EventHandler(handle, NULL, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle, NULL)
2.8 When the component detects that all
the ports have the needed buffers, it c an
perform the state transition to Idle and
inform the IL client of the completion of its
available, the component can enable the
port. request.

Figure 3-5. Component Initialization

First, the IL client shall call the OMX_GetHandle function, which activates the actual
component creation (1.1) by the core. Also, all of the configuration resources of the
component are loaded into memory. The core passes IL client callback functions to the
component by means of the SetCallbacks method (1.2). If previous steps are
successful, a valid handle is returned in step 1.3 and the component will be in the
OMX_StateLoaded state.

The IL client shall configure the component and its ports. For this purpose, the IL core
macro OMX_SetParameter shall be used; it may be called multiple times (step 1.4) if
needed.

When the client has completed the configuration phase, it can request the component to
make the state transition to OMX_StateIdle. Only after this request shall the IL client set
up buffers for the component to use for all of its ports. The IL client shall use either
OMX_AllocateBuffer or OMX_UseBuffer to set up buffers. If the IL client asks
components for a tunnel, it does not allocate setup buffers because the tunneled
components allocate any buffers. See section 3.4.1.2 for more details on tunneling.

This process may be repeated multiple times, depending on the number of ports and the
total number of buffers needed on each port. If OMX_UseBuffer is used, the IL client
shall have allocated a buffer and passed it to the component. Alternatively, the IL client

 119

 120

may ask the component to allocate a buffer and a buffer header using the
OMX_AllocateBuffer method. In the latter case, the component will allocate both a
buffer and its related header and return it to the IL client by reference.

As soon as these initial configuration steps are completed, the component shall complete
the state transition and return an event to the client for the SendCommand request
completion (step 2.8).

The component is now ready to be used by the IL client.

3.4.1.2 Tunneled Initialization
To avoid moving data buffers back and forth among the IL client and OpenMAX IL
components, data tunnels can be set up so that the output buffer of one component is
passed directly to the input port of the next component in the chain.

Consider the example shown in Figure 3-6, where an IL client generates data for a chain
of three tunneled components identified as A, B, and C. Component C is a sink and does
not return data to the IL client.

cd DT

A :
OMXComponent

A1

A0

B :
OMXComponent

B0 B1

C :
OMXComponent

C0

ILClient

Output

Data tunneling:
data pipeline

«event»«event»«callbacks»

Figure 3-6. Example of Data Tunneling Among OpenMAX IL Components

Note that all callbacks are always directed to and managed by the IL client when ports
communicate using proprietary or tunneled communication. The tunneling setup and
initialization require a detailed description, based on the following steps:

• The components are constructed with the calls to OMX_GetHandle.

• The components are tunneled, linking an output port of the first component to an
input port of the second component. The port that shall supply the buffer is
decided in this phase.

• The IL client may override the input ports’ choice of buffer supplier after
OMX_SetupTunnel has completed by setting the buffer supplier into the input
port, which in turn will reprogram the supplier to the output port.

During the transition from OMX_StateLoaded to OMX_StateIdle, each component shall
not transition until the required buffers on all enabled ports have been allocated.

OMX_SetupTunnel shall be executed only when the components are in the
OMX_StateLoaded state or when ports are disabled. Figure 3-7 illustrates the setup
process:

sd DT - setupTunnel

ILClient
:OMXCallback

:ILCore A
:OMXComponent

B
:OMXComponent

opt Unsuccessful tunnel setup

[B does not accept tunneling]

1.0 OMX_SetupTunnel(A,1,B,0)
1.0 IL client tunnelling request

1.1 ComponentTunnelRequest(A,1,B,0,*pTunnelSetup)
1.1 The core starts the
negotiation

1.2 *pTunnelSetup
1.2 A returns its tunnel setup
requirements to the core by
means of the
OMX_TUNNELSETUPTYPE
struct.

1.3 ComponentTunnelRequest(B,0,A,1,*pTunnelSetup)
1.3 The core calls component
tunnel request on component
B and passes the tunnel setup
structure defined by A. 1.4 getParameter(A, nParamIndex, ComponentParameterStructure)
1.4 B checks if i ts input port is
compatible with the output
port of component A.

1.5 SetParameter(A, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.5 The component B informs
component A about the final
result of negotiation.

1.6 *pTunnelSeup
1.6 The setup tunnel struct is
returned to the core.

1.7 ComponentTunnelRequest(A, 1, NULL, 0, NULL)
1.7 If the tunneling request is
rejected by B, the setup on A is
canceled

1.8 OK
0R Errror1.8 By examining the tunnel

setup struct the core decides
that the tunnel can be
established and returns an
OMX_ERRORNONE or return
an error i f the tunnel fails

Figure 3-7. Tunnel Setup

The IL client shall start the data setup process by calling the OMX_SetupTunnel
function of the IL core when the components that are being tunneled are in the
OMX_StateLoaded state (step 1.0).

As a result, the IL core shall call the ComponentTunnelRequest methods of
component A and B in sequence. The structure OMX_TUNNELSETUPTYPE defined in
section 3.1.2.10 shall be passed by the IL core to the component with the output port first.
The component receiving such a call shall fill in the structure and return it to the core. If
the ComponentTunnelRequest call returns successfully, the IL core shall call the
same function on the second component (1.3), passing the OMX_TUNNELSETUPTYPE
structure that was filled in by the first component. The component also shall check that
the output port of the peer component is compatible with its input port (i.e., the data type
should be the same) (1.4). If the tunnel setup parameters included in the structure are
agreed to by the second component, the ComponentTunnelRequest call will send
back to the first component the result of negotiation (1.5) and returns successfully (1.6).
The IL core shall check that both calls of ComponentTunnelRequest did not return
errors. If so, the initial OMX_SetupTunnel will return successfully.

 121

If the call to ComponentTunnelRequest on component B fails, component A will
be set to not tunnel by a second call to ComponentTunnelRequest with a pointer to
NULL in place of the component B handle and pTunnelSetup parameter.

After the successful tunnel setup, the IL client may override the buffer supplier
negotiation with the procedure illustrated in Figure 3-8:

sd DT - Client ov erride

IL Client IL Core Component A :
output port
prov ider

Component B :
input port
prov ider

1.0 SetParameter(B, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.0 The IL cl ient is al lowed to call the
SetParameter to change the buffer
supplier only on the input port provider (B)

1.1 change buffer supplier setting
1.1 The component B takes care of the
cl ient's request

1.2 SetParameter(A, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.2 The compoent B is responsible to
change the buffer supplier parameter on
the component A

1.3 change buffer supplier setting

1.4 return(OMX_ErrorNone)

1.5 return(OMX_ErrorNone)

Figure 3-8. IL Client Buffer Supplier Override

If the IL client wants to override the negotiation of tunneled components that specifies
which component is the buffer supplier, it shall call the function SetParameter on the
component that provides the input port. That component is responsible for signaling to
the other tunneled component the new buffer supplier, with the same call to
SetParameter.

The last step of the tunnel initialization phase is the state transition from
OMX_StateLoaded to OMX_StateIdle that also involves the buffer allocation and
assignment. Figure 3-9 illustrates the state transition behavior in which the tunnels are
already created and configured.

id allocation_tunnel

Component A OutputA Component BInputB OutputB Component CInputC

buffer supplier
ports

Buffer user ports

Figure 3-9. Tunneling Example

Component A is tunneled with component B, and component B is the buffer supplier.
Component B is tunneled with component C, and component C is the buffer supplier.

 122

Figure 3-10 illustrates the behavior of each tunneled component during the state
transition.

sd DT - buffer allocation

IL Client Component A Component B Component C

1.0 SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)
1.0 The IL cl ient starts to change the
state to al l the components, starting
from component A. The order of
SendCammand cal ls to the
component is does NOT matter

1.1 wait
1.1 The component A detects i t is
m issing buffers on output port and
suspends the execution waiting for
those buffers

1.2 SendCommand(B, OMX_CommandStateSet, OMX_StateIdle)
1.2 The IL cl ient requests the
component B to change state from
loaded to idle

1.3 buffer al location
1.3 The needed buffers are
al located or provided from another
port in case of buffer sharing

1.4 UseBuffer(A, pBuffer)
1.4 The Component B suppl ies the
buffers to the tunnel at i ts input port.
It calss the UseBuffer on tunneled
component A

1.5 EventHandler(A, OMX_CommandStateSet, OMX_StateIdle)
1.5 The Component A has now al l
the needed buffers, and can perform
the state change

1.6 wait
1.6 The Component B waits for the
other buffers sti l l needed

1.7 SendCommand(C, OMX_CommandStateSet, OMX_StateIdle)
1.7 The IL cl ient requests the
component C to change state from
loaded to idle

1.8 UseBuffer(B, pBuffer)
1.8 he Component C suppl ies the
buffers to the tunnel at i ts input port.
It calss the UseBuffer on tunneled
component B

1.9 EventHandler(B, OMX_CommandStateSet, OMX_StateIdle)
1.9 The Component B has now al l
the needed buffers, and can perform
the state change

1.10 EventHandler(C, OMX_CommandStateSet, OMX_StateIdle)
1.10 The Component C has now al l
the needed buffers, and can perform
the state change

Figure 3-10. State Transition to Idle in the Case of Tunneled Component s

Each supplier port on a component shall pass its buffers to the non-supplier port it is
tunneling with via OMX_UseBuffer. After all of its supplier ports have passed buffers,
the component waits until all of its non-supplier ports have received all of their buffers
via OMX_UseBuffer.

In Figure 3-10, component A receives the state transition request from the IL client.
Component A is tunneled with component B. The input port of B is set as buffer supplier
for the tunnel. In this case, component A shall wait until its output port receives all of the
needed buffers.

Meanwhile, the IL client asks component B to change its state. In this case, component B
has a port that is a buffer supplier, the input port, and it shall call UseBuffer on the
output port of component A. Then, component B waits for all of the needed buffers on its
output port.

Now component A has all of the needed buffers, so it can perform the state transition to
OMX_StateIdle. The exact sequence of transitions can be different, since it depends on

 123

 124

the platform, the operating system, and the implementation. The only rule is to wait until
all the resources are available.

The IL client requests that component C change its state. Component C behaves like
component B: Component C gives the buffers needed to component B, and then can
change its state, since it does not need any other buffers.

Finally, component B can change its state to OMX_StateIdle since it has obtained all of
the needed buffers.

3.4.2 Data Flow
OpenMAX IL defines two means of data communication:

• Tunneled communication, where a port exchanges data directly with a port on
another component

• Non-tunneled communication, where a port exchanges data only with the IL client

A port may implement data tunneling via proprietary communication, taking advantage
of platform-specific features. The following sections describe the data flow inherent to
each means of communication.

3.4.2.1 Non-tunneled Data Flow
An IL client that has a data buffer to deliver to a component input port shall issue an
OMX_EmptyThisBuffer call.

Conversely, for the component output port, the IL client shall initially provide one or
more empty buffers into which the component can write output data; the
OMX_FillThisBuffer call accomplishes this task. As soon as one buffer is available
from the component output port, the component shall send an FillBufferDone
callback. The component is aware of the callback entry point from the earlier SetBacks
call.

Note that the IL client is entirely responsible for moving data buffers among components
if data tunneling is not used.

Figure 3-11 illustrates the dynamic behavior related to data flow.

 125

Figure 3-11. Data Flow Between Non-tunneled Components

3.4.2.2 Tunneled Data Flow
In data tunneling, OpenMAX IL components directly pass data buffers among themselves
without returning them to the IL client. This data flow uses a different convention from
the situation where all data buffers are exchanged with the IL client.

If the buffer supplier is the output component, it shall call OMX_EmptyThisBuffer on
the other tunneled component to pass the buffer that is to be emptied. When the input
component has terminated the operation, it shall return the buffer to the output
component by calling OMX_FillThisBuffer on it.

If the buffer supplier is the input component, the communication mechanism is the same
but is initiated by calling OMX_FillThisBuffer on the output component. Figure
 3-12 illustrates this process.

sd dataflow
ILClient

:OMXCallback
:ILCore A

:OMXComponent

1.0 OMX_FillThisBuffer(pHandle,1,pBufferOut)
1.0 The application provides an empty
buffer for component A’s o ut port. utp

1.1 FillThisBuffer(pHandle, 1, pBufferOut)
1.1 .this is actually a macro

2.0 OMX_EmptyThisBuffer(pHandle,0,pBufferIn)
2.0 The application passes one buffer for
component A’s input port (push model).

2.1 EmptyThisBuffer(pHandle,0,pBuffer)
2.1 This is a macro, so it gets
called directly to component A.

2.2 FillBufferDone(pBufferOut)
2.2 When component A has an output
buffer available, it will issue a callback (pull model).

2.3 OMX_FillThisBuffer(pHandle,1,pBufferOut)
2.3 When the application is done with
the output buffer, it will send it back to
the component to be filled in again.

2.4 FillThisBuffer(nPortindex,hComponent,pBuffer)
2.4 .macro

2.5 EmptyBufferDone(pBufferIn)
2.5 Component A has finished
processing the input buffer and signals
it to the application via callback.

 126

Figure 3-12. Data Flow Between Tunneled Components

3.4.2.3 Proprietary Communication
On some platforms data tunneling among components can be optimized by proprietary
communication mechanisms, which can be based on specific hardware such as DMA or
shared memory. Such resources are set up in a proprietary manner during the standard
data tunneling setup phase. Although the IL client uses the standard
OMX_SetupTunnel call, platform-specific optimizations can prepare optimized
transport channels among components.

Assuming a chain of components A, B, and C that support proprietary communication,
the resulting data flow would appear as illustrated in Figure 3-13.

sd DT - dataflow

A
:OMXComponen
t

B
:OMXComponen
t

The supplier is
component
A, which provides the
output port of the
tunnel.

The supplier is
component B,
which provides the
input port of the
tunnel
.

1.0 OMX_EmptyThisBuffer(B, pBuffer)
1.0 The suppli port calls EmptyThisBuffer on the er
tunneling port.

1.1 OMX_FillThisBuffer(A, pBuffer)
1.1 When done with processing that buffer, the
tunneling port invokes OMX_FillThisBuffer on A.

2.0 OMX_FillThisBuffer(A, pBuffer)
2.0 The communication is started by B, which is the
buffer supplier.

2.1 OMX_EmptyThisBuffer(B, pBuffer)
2.1 Component A receives the buffer and fills it
before returning the buffer to component B.

 127

sd Proprietary communication

ILClient
:OMXCallback

A
:OMXComponent

B
:OMXComponent

C
:OMXComponent

Since optimized proprietary
communication is used, no buffer
management callbacks among
components are issued.

1.0 emptyThisBuffer(A,0,pBuffer1)

1.1 emptyThisBuffer(A,0,pBuffer2)

1.2 OMX_EmptyBufferDone(pBuffer1)

1.3 OMX_EmptyBufferDone(pBuffer2)

Figure 3-13. Data Flow with Proprietary Communication Between Components

Assuming that all components are in the OMX_StateExecuting state, the IL client sends
two buffers to component A using the OMX_EmptyThisBuffer call (steps 1.0 and
1.1). Given the data tunnel setup, the output of component A is sent to the input port of
component B. The output of component B is sent to the input port of component C, which
is the sink.

No callbacks will be invoked since the components will use their proprietary mechanisms
to move data.

The EmptyBufferDone callback will be issued to the IL client only when component
A has finished processing buffers.

Even though buffer-related callbacks are not used in this use case, note that components
may still generate events to the IL client using the EventHandler callback entry point.

3.4.3 De-Initialization
This section describes tunneled and non-tunneled component de-initialization.

3.4.3.1 Non-tunneled De-initialization
When the IL client decides to stop the execution and dispose of the components, it should
first switch the components to the OMX_StateIdle state so that all buffers are returned to
their suppliers.

When the transition to OMX_StateIdle is completed, the IL client can request the
component to change its state to OMX_StateLoaded. The IL client shall free all of the
component’s buffers by calling OMX_FreeBuffer for each buffer. The
OMX_FreeBuffer function requires that the component remove the specified buffer
from the specified port. If the component allocated the buffer with an
OMX_AllocateBuffer call, the component shall also free the buffer memory. If the
IL client allocated the buffer and assigned it to the component with an

 128

OMX_UseBuffer call, then the IL client shall de-allocate the buffer memory after
calling OMX_FreeBuffer.

When all of the buffers have been freed, the component shall complete the state transition.
Finally, the IL client calls the OMX_FreeHandle function that disposes of the
component.

This procedure is performed for each non-tunneled port. Figure 3-14 illustrates non-
tunneled de-initialization.

Figure 3-14. De-initialization of Non-tunneled Components

A port that is tunneled shall follow the component de-initialization procedure illustrated
in Section 3.4.3.2.

3.4.3.2 Tunneled De-Initialization
Figure 3-15 illustrates the component de-initialization for a port that is tunneled.

sd De-init
IL client OpenMAX component

opt - the buffer has been allocated by the compo nt ne

alt - the buffer has been allocated by the IL client

1.0 SendCommand(handle, OMX_CommandStateSet, OMX_StateIdle)
1.0 The IL client stop e execution of the s th

for
OMX_StateIdle state. component by asking transition to the

1.1 return buffers
1.1 The component shall flush all of the
buffers currently bein rocessed by calling g p

 F
EmptyBufferDone. the relevant callback, illBufferDone or

1.2 EventHandler(handle, NULL, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle, NULL)

1.2 The component anges state and ch
informs the IL client.

2.0 SendCommand(handle, OMX_CommandStateSet, OMX_StateLoaded)
2.0 or example, the ent wants When, f
to destroy the component, i witches

 cli
t s

the component state to loaded.
2.1 OMX_FreeBuffer

2.1 The client shall remove all of the
buffers from every port of the component. It calls FreeBuffer for each buffer.

2.2 de-allocate buffer header
2.2 The omponent de-allocates the buffer c

header.
2.3 de-allocate buffer

2.3 The component frees the buffer only if
it has allocated the
buffer.

2.4 return

2.5 de-allocate the buffer
2.5 The client frees the buffer only if
it has allocated the buffer.

2.6 EventHandler(handle, NULL, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded, NULL)
2.6 The component can complete
the state transition to Idle now that
all of the buffers have been freed.

 129

Figure 3-15. De-initialization of Tunneled Components

3.4.4 Port Disablement and Enablement
Disabling a port causes it to behave as if its component transitioned to the
OMX_StateLoaded state. Thus, all of the port’s buffers are returned to their suppliers,
and any buffers the disabled port allocated are freed. The act of enabling a port inverts
this process, putting a port that is effectively in the OMX_StateLoaded state into the
component’s state. Thus, if the component is in a state where its ports have buffers, then
an enabled port will acquire buffers. Likewise, if the component is exchanging buffers, an
enabled port will begin exchanging buffers.

Note that if a port is disabled when the component is in the OMX_StateLoaded state, the
port’s effective state is still made disjoint from the component’s state. Thus, when a
component transitions from OMX_StateLoaded to OMX_StateIdle, any disabled port will
not acquire buffers but, instead, will effectively remain in OMX_StateLoaded.

The description of port disablement and enablement is divided into tunneling and non-
tunneling cases.

3.4.4.1 Tunneled Ports Disablement and Enablement
Figure 3-16 illustrates the behavior of enabling and disabling tunneled ports.

sd DT - de-initialization
IL Client Component A

(output, supplier)
Component B

(input, non
supplier)

1.0 SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)
1.0 As in the non-tunneled case, the IL client
ends buffer processing by transitioning
the component to the OMX_StateIdle state.

1.1 wait1.1 Component A cannot cha e state il ng
e t

component has been flushed.
unt

each buffer that it sends to th unneled
1.2 SendCommand(B, OMX_CommandStateSet, OMX_StateIdle)

1.2 The IL client asks for the change of
state of component B.

1.3 FillThisBuffer 1.3 Component B returns buffers to the supplier,
mponent A. Component A shall be in the
ecuting or paused states.

co
ex 1.4 EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateIdle)

1.4 Finally, com nent A can change state to po
OMX_StateIdle.

1.5 EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateIdle) 1.5 Compon t B completes the state change to
OMX_StateI e and signals its completion to

en
dl

the IL client.
2.0 SendCommand(A, OMX_CommandStateSet, OMX_StateLoaded)

2.0 The IL client asks a component, in this case
component A, to change state to OMX_StateLoaded.

2.1 SendCommand(B, OMX_CommandStateSet, OMX_StateLoaded)
2.1 The IL client asks component B to change state.

2.2 FreeBuffer
2.2 Component A calls FreeBuffer on component B
for each buffer supplied.

2.3 EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateLoaded)

2.3 Finally, compon t A can change its state toen
OMX_StateLoaded. 2.4 EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateLoaded)

2.4 Component B is not a buffer supplier, so it
may change state to OMX_StateLoaded
immediately.

 130

Figure 3-16. Disablement and Enablement of Tunneled Ports

3.4.4.2 Non-tunneled Port Disablement and Enablement
Figure 3-17 illustrates the case of the disablement and enablement procedure for a non-
tunneled port. A detailed discussion of OMX_AllocateBuffer, OMX_UseBuffer,
and OMX_FreeBuffer is omitted here; for more detailed descriptions of the use of
these functions, see sections 3.3.13, 3.3.12, and 3.3.14, respectively.

sd Stop_Restart_Port tunneled
IL Client Component A

(non-supplier)
Component B

(supplier)
1.0 SendCommand(OMX_CommandPortDisable)

1.0 The IL client requests that component B
stop one of its ports.

1.1 wait
1.1 Compone B waits until its buffers nt

by are released the tunneled port of
component A.

1.2 SendCommand(OMX_CommandPortDisable)
1.2 The IL client requests that component A
stop the connected port on component A.

1.3 return buffers
1.3 Component A returns buffers supplied by
component B with a call to EmptyThisB er or
FillThisBuffer.

uff

1.4 free buffers
1.4 Component B can free the memory.

1.5 FreeBuffer
1.5 Component B calls FreeBuffer on
Component A for each buffer that it frees.

1.6 free buffer headers
1.6 Component A fr s each buffer header ee

 Fre
from component B. associated with each eBuffer call

1.7 EventHandler(OMX_EventCmdComplete, OMX_CommandPortDisable)
1.7 Component A ca omplete the n c
PortDisable request.

1.8 EventHandler(OMX_EventCmdComplete, OMX_CommandPortDisable)
1.8 Component B ca omplete the n c
PortDisable request.

2.0 SendCommand(OMX_CommandPortEnable)
2.0 The IL client requests that component A
restarts the connected port on component A.

2.1 wait
2.1 Component A sha ait for the required ll w
buffers to be supplied.

2.2 SendCommand(OMX_CommandPortEnable)
2.2 The IL client requests that component B
restart the connected port on component B.

2.3 allocate buffers
2.3 As supplier, component B shall al cate all lo
of the required buffers for the tunnel.

2.4 UseBuffer
2.4 Component B sends to component A
the required buffers for the tunnel.

2.5 allocate buffer headers
2.5 Component A shall allocate the buffer
header for each buffer passed by UseBuffer
calls.

2.6 EventHandler(OMX_EventCmdComplete, OMX_CommandPortEnable)
2.6 After all the needed buffers have
been assigned, component A can co le mp

en
te

the port enablement and notify the cli t.
2.7 EventHandler(OMX_EventCmdComplete, OMX_CommandPortEnable)

2.7 After all the needed buffers have
been allo ted and assigned, component A can ca

 th
the client complete e port enablement and notify

Figure 3-17. Disablement and Enablement of Non-tunneled Ports

3.4.5 Dynamic Port Reconfiguration
This section describes how a component may change its port settings dynamically.

The following examples show where this functionality is typically needed:

• A video decoder parses a sequence header and discovers the frame size of the
output pictures, so buffers associated with its output ports shall be rearranged.

• The parameters of an audio stream vary dynamically, and a decoder should
change its port settings.

Figure 3-18 shows how a video decoder and a video renderer, both of which exchange
data through the IL client, should dynamically change their port settings.

sd Stop_Restart port (non tunneled)
IL Client

OpenMAX Component

1.0 SendCommand(OMX_CommandPortDisable)
1.0 The IL clie asks the comnt ponent to
disable a port.

1.1 return buffers
1.1 The component s all return the h
buffers with a call to
EmptyBufferDone/FillBufferDone,

1.2 FreeBuffer
1.2 For each buffer returned, the IL client
shall call FreeBuffer on the connected

t 1.3 EventHandler(OMX_EventCmdComplete, OMX_CommandPortDisable)

1.3 When all the buffers have b eturned een r
nt c

complete the port disablement. and FreeBuffer called, the compone an

2.0 SendCommand(OMX_CommandPortEnable)
2.0 The IL client asks the component to
enable the disabled port.

2.1 AllocateBuffer/UseBuffer
2.1 The IL client shall provide to the
component all of the buffers that the port needs.

2.2 EventHandler(OMX_EventCmdComplete, OMX_CommandPortEnable)

2.2 When all of the required buffers nee d are de
available, the compo nt can complete ne
the port enablement.

 131

sd videoparse example
videodecoder

:OMXComponent ILClient
:OMXCallback

renderer
:OMXComponent

1.0 SendCommand(hRend,OMX_StateExecuting) 1.0 The IL client puts the video
renderer into the executing state. It is

he
idle state (i.e., it is fully configured). assumed that the component is in t

1.1 SendCommand(hDec, OMX_StateExecuting)
1.1 The same conditions apply to the video
decoder as apply to the video renderer.

1.2 EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)
1.2 The eo decoder replies with the vid
callback.

1.3 OMX_EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)
1.3 The vi o renderer is now de
executing.

Figure 3-18. Dynamic Port Reconfiguration

The sequence starts with the IL client putting a video renderer and a video decoder in the
OMX_StateExecuting state (1.0 through 1.3). At this stage, the output port of the video
decoder and the input port of the renderer are not yet configured, since the dimension of

1.4 EmptyThisBuffer(hDec,0,pBuf1)
1.4 The IL client sends the first buffer
to process to the video decoder input.

1.5 OMX_EventHandler(OMX_EventPortSettingsChanged)
1.5 The video decoder has parsed the sequence
header and determined the frame si . ze

1.6 The coder output port is now 1.6 SendCommand(hDec, OMX_CommandPortDisable)
de

stopped.
1.7 FreeBuffer

1.7 The IL client frees all of the buffers
associated with the decoder output port.

1.8 SendCommand(hRend, OMX_CommandPortDisable)

1.9 FreeBuffer
1.9 The IL client frees all of the buffers
associated with the video renderer input port.

1.10 OMX_EventHandler(OMX_CommandPortDisable)
1.10 When all of the buffers have been
freed, the component can disable the
port. 1.11 OMX_EventHandler(OMX_CommandPortDisable)

1.11 hen all the buffers have been W
, t

port. freed he component can disable the

1.12 The IL client gets the fr e size 1.12 GetParameter(hDec, portindex, OMX_IndexParamPortDefinition)

am
and other parameter values.

1.13 SetParameter(hRend, portindex, OMX_IndexParamPortDefinition)

1.13 Make sure the input port of the
video renderer is properly configured.

1.14 SendCommand(hRend, OMX_CommandPortEnable)
1.14 The video renderer input port is
now enabled.

1.15 SendCommand(hDec, OMX_CommandPortEnable)
1.15 The decoder output port is now
enabled.

1.16 AllocateBuffer(hDec,pBuffer,1,pAppPrivate,nSizeBytes)
1.16 The IL client asks the video
decoder to allocate a buffer with t he
right dimension for its output port.

1.17 UseBuffer(hRend,pBuffer,0)
1.17 The IL client clients tells the
video rendered to use the newly allocated buffer.

1.18 OMX_EventHandler(OMX_CommandPortEnable)
1.18 When all of the required buffers are
available, the component can enable
the port.

1.19 OMX_EventHandler(OMX_CommandPortEnable)
1.19 When all the required buffers are
available, the component can enable the port.

 132

the output frame is unknown a priori. The decoder needs to start parsing the input bit
stream to derive such information.

In fact, the IL client sends the first buffer to the decoder in step 1.4. Assuming that the
video sequence header is included in that first buffer, the OpenMAX IL decoder
component will parse it and change its output port settings accordingly.

The OpenMAX IL decoder component shall then notify the IL client by generating the
OMX_PortSettingsChanged event (step 1.5). As soon as the IL client receives this
callback, it shall disable the output port of the video decoder and the input port of the
video renderer (steps 1.6 through 1.11).

The IL client shall then read the new port settings with OMX_GetConfig and allocate
one or more buffers with the right dimensions for the output port. Once the buffers are
allocated, they will be also communicated to the video renderer using OMX_UseBuffer
(1.17). The input port of the video renderer shall also be set up with OMX_SetConfig
(1.18).

Finally, ports can be enabled and normal processing resumes.

3.4.6 Autodetect Port Reconfiguration
This section describes how a component may change its autodetect port settings.

The following example show where this functionality is typically needed:

• A file reader parses a media container such as a 3GPP file and discovers the video
and audio decoders required to decode the elementary streams.

• The encoding types of a media container may vary so a file reader should change
its port settings once the formats are determined.

Figure 3-19 Autodetect Port Reconfiguration shows how a file reader, an audio decoder
and a video decoder should connect after the autodetect ports have determined the
required port settings.

 133

Figure 3-19 Autodetect Port Reconfiguration

 134

The sequence starts with the IL client setting the output port formats
(OMX_IndexParamVideoPortFormat and OMX_IndexParamAudioPortFormat)
of the file reader to autodetect.

Initially only the IL client instantiates only the file reader, lets all output ports
communicate with the IL client, and sets all output ports to autodectect. The IL client
then commands the file reader to transition into the idle state (OMX_StateIdle) thereby
allocating all of its buffers. The IL client then commands the file reader to transition into
the executing state (OMX_StateExecuting).

The file reader now reads and parses data until it determines if it is able to detect the
format of the media container. If the file reader is not able to detect the media container
format it will notify the IL client by generating an OMX_ErrorFormatNotDetected
error (step 1.6). Since the media container format was not detected, the IL client can
return to step 1.0 with another file reader component and execute the same sequence.
This continues until either the media container format is detected or no more file reader
components exist that have not attempted to detect the media container format.

If the file reader is able to detect the media container format and the the format of the
streams it will emit on the output ports, the file reader component will change its output
port settings accordingly and notify the IL client by generating the
OMX_EventPortFormatDetected and OMX_PortSettingsChanged events
(step 1.8) for each output port where the format has been changed. As soon as the IL
client receives this callback, it shall disable the changed output ports of the file reader
(step 1.9).

The IL client shall then read the new file reader port settings for all output ports whose
settings have changed with OMX_GetConfig. Based on the these settings the IL client
shall select appropriate decoder components and call the OMX_GetHandle function for
each. If previous step is successful, valid handles are returned in step 1.11 and the
decoder components will be in the OMX_StateLoaded state.

The IL client shall configure the decoder components and its ports (including the format
settings discovered from the parser). For this purpose, the IL core macro
OMX_SetParameter shall be used; it may be called multiple times (step 1.12) if
needed.

At this point the IL client may setup the components for either non-tunneled
communication (by setting up the buffers itself) or tunneled communication (by setting
up tunnels and and letting the components set up the buffers)

Finally the IL client re-enables the reader’s output ports and transitions the decoders into
the idle state (OMX_StateIdle) then the executing state (OMX_StateExecuting). At this
point processing resumes.

3.4.7 Resource Management
This section describes the entry points for resource management. The interface between
components and the resource manager are presented only as an example. Only the

 135

interface between the IL client and the components is part of the OpenMAX IL standard
definition. An IL client may use the resource manager entry points.

Figure 3-20 proposes the behavior of an IL client is agnostic of the resource manager.
The resource manager handles the component internally only, and the IL client has to
take no special action.

Figure 3-20. Transition from Loaded to Idle with Resource Management

In Figure 3-20, the IL client is unaware of the existence of a resource manager. In the
implementation of the OpenMAX IL component, an asynchronous call to the resource
manager is implemented.

The OpenMAX IL component provides a callback to the resource manager, which
receives the signal for the completion of the request.

Figure 3-20 represents a possible implementation of a resource manager, and shows how
it can be transparent to the client. The functions AcquireResourceRequest and
AcquireResourceResponse are examples. This specification is concerned only
about the interface between the IL client and the components. Details of the interactions
between the components and the vendor/specific manager(s) are outside the scope of this
specification.

Figure 3-21 presents a more complex use case.

sd Resource Management - Resource Available
IL
Client OpenMAX

Component
Resource
Manager

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateIdle, 0)
1.0 The Client asks the component
to go to the idle state. During the state
switch all t resources needed he

mp
reserved. by the co onent are alloca or ted

1.1 The component ask e 1.1 AcquireResourceRequest(Resource_X, handle, priority)s th
Resource Manager about
Resource_X availability.

1.2 AcquireResourceResponse(Resource_X, allowed)
1.2 The Resource Manager answ s er

ble
(for the component priority level). "allowed" if the resource is availa

1.3 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle)

1.3 The IL Client can receive the
norma mpletion signal about l co
state
switch.

 136

sd Resource Management - Resource Busy

Figure 3-21. Busy Resource Management

In Figure 3-21, two different OpenMAX IL components, A and B, need the same
resource to work, and they have different priorities. Here, as in the preceding example,
the IL clients use the standard transition from Loaded to Idle to set up the component and
allocate all of the required resources.

The first component, component A, takes ownership of the resource, requesting it from
the resource manager. Component A switches to the idle state and is ready to execute.

The second component, component B, asks for the same resource, but in this case the
resource manager denies it since a higher priority component, component A, has that
resource. This event is reported to the IL client with an error message including the value
OMX_ErrorInsufficientResources. If IL client Y decides that it needs to be
notified when this resource becomes available again, it may direct component B to
change state to OMX_StateWaitForResources. This action puts component B in a
waiting queue until the resource X will become available. Alternatively, IL client Y may
request component B to switch back to the Loaded state.

Figure 3-21 also shows the behavior of components when resource X becomes available.
Component A changes state to Loaded and releases all of the resources. The resource
manager becomes aware of the available resource and calls Component B, which is
already in the waiting queue.

When the resource manager provides the component with all the resources it is waiting
on, the component informs the IL client that all resources needed are available with an
OMX_EventResourcesAcquired event. The IL client shall now provide all of the
needed buffers to the component. Then, the component can change state by itself to
OMX_StateIdle and alert the client about the state change. This waiting queue represents
a unique case of automatic state change.

IL Client X IL Client Y OpenMAX
Component

A

OpenMAX
Component

B Resource
Manager

1.0 The IL Client X needs component A, 1.0 OMX_SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)

which uses Resource X.
1.1 AcquireResourceRequest(Resource_X, A, priorityA)

1.1 The Resource manager receives the
request for Resource_X. The priority of A
is higher that the priority of B.

1.2 AcquireResourceResponse(Resource_X, allowed)
1.3 OMX_EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle)

1.3 The IL Client can use
Component A.

1.4 OMX_SendCommand(B, OMX_CommandStateSet, OMX_StateIdle) 1.4 The IL Client Y needs component B,
which uses Resource X.

1.5 AcquireResourceRequest(Resource_X, B, priorityB)
1.5 The R ource manager receives the es

r R
allocated. request fo esourc that is already e_X

1.6 AcquireResourceResponse(Resource_X, not_allowed)
1.6 The request is d ed. B cannot eni
switch to IDLE state.

1.7 OMX_EventHandler(B, OMX_EventError, OMX_ErrorInsufficientResources) 1.7 Resource X is not available. e Th
Y, a

the state of B remains LOADED. error is signaled to the IL Client nd

1.8 OMX_SendCommand(B, OMX_CommandStateSet, OMX_StateWaitForResources) 1.8 The I ient puts B in a waiting L Cl
 re

available. state until source X will become

1.9 WaitForResourceRequest(Resource_X, B)

1.10 OMX_EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources)

2.0 OMX_SendCommand(A, OMX_CommandStateSet, OMX_StateLoaded)2.0 The client disposes of A; no longer
needed. It releases its resources.

2.1 FreeResourceRequest(Resource_X, A) 2.2 FreeResourceResponse(Resource_X)
2.3 OMX_EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded)

2.4 WaitForResourceResponse(Resource_X)
2.4 The Resource Manager becomes
aware that the resource X has been

released, and becomes available for B,
which is i waiting queue.n a 2.5 EventHandler(B, OMX_EventResourcesAcquired) 2.5 The c ponent B informs the client om

available. Y that the needed resources are

 137

In Figure 3-21, the priorities of components A and B are not compared within the IL
layer, and no preemption mechanism is implemented or proposed; an external policy
manager, which should communicate with the resource manager, should have this
responsibility. The description of such a policy manager is outside the scope of this
document and the OpenMAX IL standard in general.

Figure 3-22 presents an example of a client that actively uses the resource management
API.

Figure 3-22. State Change from Loaded to WaitForResources

The IL client may request a state change from OMX_StateLoaded to
OMX_StateWaitForResources in case the IL client wants to be notified when the
resource becomes available again. For an explanation of OMX_StateWaitForResources,
see section 3.1.1.2.5.

In this case, the client puts the component into a waiting queue, handled by the resource
manager; the change to the idle state happens effectively when the resource will become
available or if it is available immediately. In any case, the client receives two different
EventHandler callbacks that correspond to two different state changes.

The two functions WaitForResourceRequest and
WaitForResourceResponse in Figure 3-22 are not defined in this specification but
are examples of an interaction between components and the resource manager.

The IL client may decide to stop waiting at a certain time. In this case, it shall request the
component to change state back to Loaded, as shown in Figure 3-23.

sd Resource Management - Wait For Resources
IL Client Resource

Manager
OpenMAX

Component

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateWaitForResources, 0)

1.0 The IL Client SHALL request a state change to the wait
for resources status. This happens when the IL client wishes to
be notified of resource availability In this way the client does
not implement any error checking, but wait for the resource

1.1 WaitForResourceRequest(Resource_X, handle)
1.1 The manager puts the component into the waiting
queue for the resource X. In this use case the resource
is already available.

1.2 OMX_ entHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources) Ev

component has been inserted in the waiting queue. 1.2 In any case the client SHALL be notified that the

1.3 WaitForResourceResponse(Resource_X)
1.3 The r ource is available, and the waiting component is es
signaled

1.4 EventHandler(handle, OMX_EventResourcesAcquired)
1.4 The component informs the IL client that the needed
resources are available.

1.5 UseBuffer/AllocateBuffer
1.5 The IL client SHALL provide to the component all the
buffers needed to the component, before it can switch to IDLE.

1.6 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateIdle)
1.6 The transition to the idle state is executed by the
component itself.

 This transition could happen only when the client has
assigned to the component all the needed buffers.

 138

Figure 3-23. Remove Component from Waiting Status

sd Resource Management - Wait canceled

IL
Client OpenMAX

Component
Resource
Manager

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateWaitForResources, 0)
1.0 The IL Client SHALL request a state
change to the wait for resources status. This
happens when the IL client wishes to be
notified of resource availability. In this way
the client does not implement any error
checking, but waits for the
resource. 1.1 WaitForResourceRequest(Resource_X, handle)
1.1 The manager puts the componen to t in
the waiting queue for the resource X.

1.2 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources)
1.2 In any cas he client SHALL be notified e t

waiting queue. that the component has been inserted in the

2.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateLoaded, 0)
2.0 The IL client decides to stop waiting for
the resource. It asks the component to
switch state back to the Loaded state.

2.1 CancelWaitForResourceRequest(Resource_X, handle)
2.1 The c ponent asks to be is removed om

wa
manager. from the iting queue of the resource

2.2 CancelWaitForResourceResponse(Resource_X)
2.2 The resource manager confirms that the
component has been removed from the internal
waiting queue.

2.3 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded)
2.3 The IL client is informed about the state
change completion.

 139

4 OpenMAX IL Data API
This section describes the typical component usage for the audio, video, image, and other
domains. This section also details all of the structures, parameters, and configurations
that apply to ports for each of the domains and provides use case examples where
appropriate.

4.1 Audio
This section describes the structures, parameters, and configuration details for ports in the
audio domain. These parameter and configurations details are specified in the
OMX_Audio.h header.

4.1.1 Audio Use Case Examples
Figure 4-1 illustrates an example of an audio playback processing chain. Two sound
sources are played simultaneously and are mixed with effects added to both the
individual processing paths and the mixed signal. Only OpenMAX IL standard
components are shown in this example.

MP3

MIDIMIDI Equalizer

Audio
mixer

Stereo
widening HeadsetHeadset

Figure 4-1. Audio Playback Processing Chain

Figure 4-2 illustrates a simple example of speech processing chains with echo
cancellation added for an uplink speech path. Speech codecs can be any specified
OpenMAX IL codecs.

Dow nlink
speech
stream

MicrophoneMicrophone
Echo

cancellat ion
Speech
encoder

SpeakerSpeaker

Uplink
speech
stream

Uplink
speech
stream

Speech
decoder

Figure 4-2. Speech Processing Chain

 140

 141

4.1.2 Special Issues
Some audio formats have special or unique requirements that are different from other
audio formats, or even from other domains. These issues are described in the following
sections.

4.1.2.1

4.1.2.2

Minimum Buffer Payload Size for Uncompressed Data
OpenMAX IL has specified a minimum buffer payload sizes for all types of
uncompressed data. The minimum payload size for pulse code modulation (PCM) audio
is five milliseconds. This means that an output port of a PCM component shall produce at
least five milliseconds of audio data for each buffer. The minimum payload size is
applied only for PCM (i.e., OMX_AUDIO_CodingPCM) and not for any other formats.

Whole-file Buffering for MIDI Formats
Most MIDI content formats contain multiple parallel tracks of media data that appear in
the file in serial track order rather than interleaved in real-time execution order. In
addition, the MIDI state is deterministic only from the beginning of file playback, and
thus seeks within any MIDI file require that at least some part of the file be re-processed
from the beginning. For these reasons, callers shall provide the full length of the MIDI
file data to the MIDI OpenMAX IL component using the nFileSize field of the
OMX_AUDIO_PARAM_MIDITYPE structure. For more information on the
OMX_AUDIO_PARAM_MIDITYPE structure, see section 4.1.31.

4.1.3 General Enumerations
OMX_AUDIO_CODINGTYPE is the enumeration used to define the possible audio coding.
If OMX_AUDIO_CodingUnused is selected, the coding selection shall be done in a
vendor-specific way. Table 4-1 shows the contents of OMX_AUDIO_CODINGTYPE.

Table 4-1: Audio Coding Types

Field Name Description References to
Standard(s)

OMX_AUDIO_CodingUnused Placeholder value
when coding is not
available

Not available

OMX_AUDIO_CodingAutoDetect Auto detection of
audio format

Not available

OMX_AUDIO_CodingPCM Any variant of
PCM coding

 PCM

OMX_AUDIO_CodingADPCM Any variant of
ADPCM encoded
data

 ADPCM

OMX_AUDIO_CodingAMR Any variant of
AMR encoded data

AMR-NB ,
AMR-WB

 142

Field Name Description References to
Standard(s)

OMX_AUDIO_CodingGSMFR Any variant of
GSM Full-Rate
(i.e., GSM610)

GSM-FR

OMX_AUDIO_CodingGSMEFR Any variant of
GSM Enhanced
Full-Rate encoded
data

GSM-EFR

OMX_AUDIO_CodingGSMHR Any variant of
GSM Half-Rate
encoded data

GSM-HR

OMX_AUDIO_CodingPDCFR Any variant of
PDC Full-Rate
encoded data

PDC-FR

OMX_AUDIO_CodingPDCEFR Any variant of
PDC Enhanced
Full-Rate encoded
data

PDC-EFR

OMX_AUDIO_CodingPDCHR Any variant of
PDC Half-Rate
encoded data

PDC-HR

OMX_AUDIO_CodingTDMAFR Any variant of
TDMA Full-Rate
encoded data
(TIA/EIA-136-420)

TDMA-FR

OMX_AUDIO_CodingTDMAEFR Any variant of
TDMA Enhanced
Full-Rate encoded
data (TIA/EIA-
136-410)

TDMA-EFR

OMX_AUDIO_CodingQCELP8 Any variant of
QCELP 8 kbps
encoded data

QCELP8

OMX_AUDIO_CodingQCELP13 Any variant of
QCELP 13 kbps
encoded data

QCELP13

OMX_AUDIO_CodingEVRC Any variant of
EVRC encoded
data

EVRC

OMX_AUDIO_CodingSMV Any variant of
SMV encoded data

SMV

OMX_AUDIO_CodingG711 Any variant of
G.711 encoded data

G.711

 143

Field Name Description References to
Standard(s)

OMX_AUDIO_CodingG723 Any variant of
G.723.1 encoded
data

G.723.1

OMX_AUDIO_CodingG726 Any variant of
G.726 encoded data

G.726

OMX_AUDIO_CodingG729 Any variant of
G.729 encoded data

G.729

OMX_AUDIO_CodingAAC Any variant of
AAC encoded data

MPEG-2 AAC ,
MPEG-4 AAC HE-AAC
v1 ,
HE-AAC v2

OMX_AUDIO_CodingMP3 Any variant of
MP3 encoded data

 MPEG-1 Audio ,
 MPEG-2 Audio

OMX_AUDIO_CodingSBC Any variant of SBC
encoded data

 SBC

OMX_AUDIO_CodingVORBIS Any variant of
VORBIS encoded
data

 VORBIS

OMX_AUDIO_CodingWMA Any variant of
WMA encoded
data

 WMA

OMX_AUDIO_CodingRA Any variant of RA
encoded data

 RA

OMX_AUDIO_CodingMIDI Any variant of
MIDI encoded data

SP-MIDI,
DLS 1,
DLS 2
General MIDI,
General MIDI 2 ,
GM Lite ,
XMF type 0 and 1,
Mobile XMF

4.1.4 Parameter and Configuration Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all standard index values used with the core functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 4-2 shows
the index values that relate to audio.

Table 4-2: Audio Coding Types by Index

OpenMAX IL Indices (OMX_Index.h) Corresponding OpenMAX IL Audio
Structures (OMX_Audio.h)

OMX_IndexParamAudioPortFormat OMX_AUDIO_PARAM_PORTFORMATTYPE

OMX_IndexParamAudioPcm OMX_AUDIO_PARAM_PCMMODETYPE

OMX_IndexParamAudioMp3 OMX_AUDIO_PARAM_MP3TYPE

OMX_IndexParamAudioAac OMX_AUDIO_PARAM_AACPROFILETYPE

OMX_IndexParamAudioVorbis OMX_AUDIO_PARAM_VORBISTYPE

OMX_IndexParamAudioWma OMX_AUDIO_PARAM_WMATYPE

OMX_IndexParamAudioRa OMX_AUDIO_PARAM_RATYPE

OMX_IndexParamAudioSbc OMX_AUDIO_PARAM_SBCTYPE

OMX_IndexParamAudioAdpcm OMX_AUDIO_PARAM_ADPCMTYPE

OMX_IndexParamAudioG723 OMX_AUDIO_PARAM_G723TYPE

OMX_IndexParamAudioG726 OMX_AUDIO_PARAM_G726TYPE

OMX_IndexParamAudioG729 OMX_AUDIO_PARAM_G729TYPE

OMX_IndexParamAudioAmr OMX_AUDIO_PARAM_AMRTYPE

OMX_IndexParamAudioGsm_FR OMX_AUDIO_PARAM_GSMFRTYPE

OMX_IndexParamAudioGsm_EFR OMX_AUDIO_PARAM_GSMEFRTYPE

OMX_IndexParamAudioGsm_HR OMX_AUDIO_PARAM_GSMHRTYPE

OMX_IndexParamAudioTdma_FR OMX_AUDIO_PARAM_TDMAFRTYPE

OMX_IndexParamAudioTdma_EFR OMX_AUDIO_PARAM_TDMAEFRTYPE

OMX_IndexParamAudioPdc_FR OMX_AUDIO_PARAM_PDCFRTYPE

OMX_IndexParamAudioPdc_EFR OMX_AUDIO_PARAM_PDCEFRTYPE

OMX_IndexParamAudioPdc_HR OMX_AUDIO_PARAM_PDCHRTYPE

OMX_IndexParamAudioQcelp8 OMX_AUDIO_PARAM_QCELP8TYPE

OMX_IndexParamAudioQcelp13 OMX_AUDIO_PARAM_QCELP13TYPE

OMX_IndexParamAudioEvrc OMX_AUDIO_PARAM_EVRCTYPE

OMX_IndexParamAudioSmv OMX_AUDIO_PARAM_SMVTYPE

OMX_IndexParamAudioMidi OMX_AUDIO_PARAM_MIDITYPE

OMX_IndexParamAudioMidiLoadUse
rSound

OMX_AUDIO_PARAM_MIDILOADUSERSOUN
DTYPE

OMX_IndexConfigAudioMidiImmedi
ateEvent

OMX_AUDIO_CONFIG_MIDIIMMEDIATEEV
ENTTYPE

OMX_IndexConfigAudioMidiSoundB
ankProgram

OMX_AUDIO_CONFIG_MIDISOUNDBANKPR
OGRAMTYPE

OMX_IndexConfigAudioMidiContro
l

OMX_AUDIO_CONFIG_MIDICONTROLTYPE

OMX_IndexConfigAudioMidiStatus OMX_AUDIO_CONFIG_MIDISTATUSTYPE

 144

OpenMAX IL Indices (OMX_Index.h) Corresponding OpenMAX IL Audio
Structures (OMX_Audio.h)

OMX_IndexConfigAudioMidiMetaEv
ent

OMX_AUDIO_CONFIG_MIDIMETAEVENTTY
PE

OMX_IndexConfigAudioMidiMetaEv
entData

OMX_AUDIO_CONFIG_MIDIMETAEVENTDA
TATYPE

OMX_IndexConfigAudioVolume OMX_AUDIO_CONFIG_VOLUMETYPE

OMX_IndexConfigAudioChannelVol
ume

OMX_AUDIO_CONFIG_CHANNELVOLUMETY
PE

OMX_IndexConfigAudioBalance OMX_AUDIO_CONFIG_BALANCETYPE

OMX_IndexConfigAudioMute OMX_AUDIO_CONFIG_MUTETYPE

OMX_IndexConfigAudioChannelMut
e

OMX_AUDIO_CONFIG_CHANNELMUTETYPE

OMX_IndexConfigAudioLoudness OMX_AUDIO_CONFIG_LOUDNESSTYPE

OMX_IndexConfigAudioBass OMX_AUDIO_CONFIG_BASSTYPE

OMX_IndexConfigAudioTreble OMX_AUDIO_CONFIG_TREBLETYPE

OMX_IndexConfigAudioEqualizer OMX_AUDIO_CONFIG_EQUALIZERTYPE

OMX_IndexConfigAudioStereoWide
ning

OMX_AUDIO_CONFIG_STEREOWIDENINGT
YPE

OMX_IndexConfigAudioChorus OMX_AUDIO_CONFIG_CHORUSTYPE

OMX_IndexConfigAudioReverberat
ion

OMX_AUDIO_CONFIG_REVERBERATIONTY
PE

OMX_IndexConfigAudioEchoCancel
ation

OMX_AUDIO_CONFIG_ECHOCANCELATION
TYPE

OMX_IndexConfigAudioNoiseReduc
tion

OMX_AUDIO_CONFIG_NOISEREDUCTIONT
YPE

4.1.5 OMX_AUDIO_PORTDEFINITIONTYPE
The OMX_AUDIO_PORTDEFINITIONTYPE structure is used to define all of the
parameters necessary for the compliant component to set up an input or an output audio
path. If additional information is needed to define the parameters of the port, such as
frequency, additional structures such as the OMX_AUDIO_PARAM_PCMMODETYPE
structure shall be sent to supply the extra parameters for the port. The number of audio
paths for input and output will vary by the type of the audio component.

OMX_Component.h contains common port definition structures for all media domains.

The OMX_AUDIO_PORTDEFINITIONTYPE structure can query the current or default
definition of an audio port or set the definition of an audio port for a component. The
OMX_AUDIO_PORTDEFINITIONTYPE structure is included as part of the
OMX_PARAM_PORTDEFINITIONTYPE structure, it is accessed via the
OMX_GetParameter function or the OMX_GetParameter function using the
OMX_IndexParamPortDefinition index.

 145

OMX_AUDIO_PORTDEFINITIONTYPE is defined as follows.
 typedef struct OMX_AUDIO_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_BOOL bFlagErrorConcealment;
 OMX_AUDIO_CODINGTYPE eEncoding;
} OMX_AUDIO_PORTDEFINITIONTYPE;

The parameters for OMX_AUDIO_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the MIME type of data for the port. If a MIME type string buffer
is not supplied this parameter shall be set to NULL.

• pNativeRender is the platform-specific reference for an output device;
otherwise this field is 0.

• bFlagErrorConcealment turns on error concealment if it is supported by
the OpenMAX IL component.

• eEncoding is the type of data expected for this port (e.g., PCM, AMR, MP3,
and so forth).

4.1.6 OMX_AUDIO_PARAM_PORTFORMATTYPE
OMX_AUDIO_PARAM_PORTFORMATTYPE is the structure for the port format
parameter. This structure enumerates the various data input/output formats that the port
supports.

This parameter call can be used with both OMX_GetParameter and
OMX_SetParameter. In the OMX_GetParameter case, the caller specifies all fields
and the OMX_GetParameter call returns the value of eEncoding. The value of
nIndex goes from 0 to N-1, where N is the number of formats supported by the port.
The port does not need to report N as the caller can determine N by enumerating all the
formats supported by the port. Each port shall support at least one format. If there are no
more formats, OMX_GetParameter returns OMX_ErrorNoMore (i.e., nIndex is
supplied where the value is N or greater). Ports supply formats in order of preference:
Higher preference formats are provided with lower values of nIndex.

For OMX_SetParameter, the field is nIndex ignored. If the format is supported, it is
set as the format of the port, and the default values for the format are programmed into
the port definition type as a side effect. This allows the caller to query the default values
for the format without having to know them in advance.

OMX_AUDIO_PARAM_PORTFORMATTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;

 146

 147

 OMX_AUDIO_CODINGTYPE eEncoding;
} OMX_AUDIO_PARAM_PORTFORMATTYPE;

The parameters for OMX_AUDIO_PARAM_PORTFORMATTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nIndex indicates the enumeration index for the format from 0x0 to N-1.

• eEncoding is the type of data expected for this port (e.g., PCM, AMR, MP3,
and so forth).

4.1.7 OMX_AUDIO_PARAM_PCMMODETYPE
The OMX_AUDIO_PARAM_PCMMODETYPE structure is used to set or query the current
or default settings for PCM audio using the OMX_GetParameter function. It is also
used to set the parameters for PCM audio using the OMX_SetParameter function.
When calling either the OMX_GetParameter or the OMX_SetParameter functions,
the index specified for this structure is OMX_IndexParamAudioPcm.

Note that the minimum buffer payload size is applied to all modes of PCM audio. The
payload size is defined by OMX_MIN_PCMPAYLOAD_MSEC and is five milliseconds.

OMX_AUDIO_PARAM_PCMMODETYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_PCMMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_NUMERICALDATATYPE eNumData;
 OMX_ENDIANTYPE eEndian;
 OMX_BOOL bInterleaved;
 OMX_U32 nBitPerSample;
 OMX_U32 nSamplingRate;
 OMX_AUDIO_PCMMODETYPE ePCMMode;
 OMX_AUDIO_CHANNELTYPE eChannelMapping[OMX_AUDIO_MAXCHANNELS];
} OMX_AUDIO_PARAM_PCMMODETYPE;

4.1.7.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_PCMMODETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• eNumData indicates whether the PCM data is signed or unsigned.

• eEndian indicates whether PCM data is in little- or big-endian order.

• bInterleaved indicates whether the data is normal interleaved or non-
interleaved. True represents normal interleaved data, and false represents non-
interleaved data such as block data.

 148

• nBitPerSample is the number of bits per sample.

• nSamplingRate is the sampling rate of the source data. Use the value 0 for
variable or unknown sampling rate.

• ePCMMode is the PCM mode enumeration. Table 4-3 identifies the PCM mode.
Table 4-3: PCM Mode

Field Name Description
OMX_AUDIO_PCMModeLinear Linear PCM encoded data
OMX_AUDIO_PCMModeALaw A law PCM encoded data (G.711)
OMX_AUDIO_PCMModeMULaw μ law PCM encoded data (G.711)

• eChannelMapping is the audio channel mapping enumeration. A component
will indicate the order of the audio channels as shown in Table 4-4. A component
should use the default channel mapping (standard RIFF/WAV mapping as present
in standard multi-channel WAV files: FRONT_LEFT FRONT_RIGHT
FRONT_CENTER LOW_FREQUENCY BACK_LEFT BACK_RIGHT .) if
possible.

Table 4-4: Audio Channel Mapping

Field Name Description
OMX_AUDIO_ChannelNone Unused or empty
OMX_AUDIO_ChannelLF Left front
OMX_AUDIO_ChannelRF Right front
OMX_AUDIO_ChannelCF Center front
OMX_AUDIO_ChannelLS Left surround
OMX_AUDIO_ChannelRS Right surround
OMX_AUDIO_ChannelLFE Low frequency effects
OMX_AUDIO_ChannelCS Back surround
OMX_AUDIO_ChannelLR Left rear
OMX_AUDIO_ChannelRR Right rear

4.1.7.2 Functionality
The OMX_AUDIO_PARAM_PCMMODETYPE structure sets the parameters of PCM audio.

4.1.8 OMX_AUDIO_PARAM_MP3TYPE
The OMX_AUDIO_PARAM_MP3TYPE structure is used to set or query the current or
default settings for the MPEG Layer-3 (MP3) codec component using the
OMX_GetParameter function. It is also used to set the parameters of the MP3 codec
component using the OMX_SetParameter function. The index specified for this

 149

structure is OMX_IndexParamAudioMp3 when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_MP3TYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_MP3TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nAudioBandWidth;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
 OMX_AUDIO_MP3STREAMFORMATTYPE eFormat;
} OMX_AUDIO_PARAM_MP3TYPE;

4.1.8.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MP3TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nBitRate is the bit rate of the encoded MP3 audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nSampleRate is the sample rate of the encoded or decoded audio.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should
limit the audio signal. Use the value 0 to let encoder decide.

Mode Description
OMX_AUDIO_ChannelModeStereo Two channels. The bit rate

allocation between the
two channels changes
according to each
channel’s information.

OMX_AUDIO_ChannelModeJointStereo A mode that takes
advantage of what is
common between the two
channels for higher
compression gain.

 150

Mode Description
OMX_AUDIO_ChannelModeDual Two mono channels. Each

channel is encoded with
half the bit rate of the
overall bit rate.

OMX_AUDIO_ChannelModeMono Mono channel mode.

Field Name Description
OMX_AUDIO_MP3StreamFormatMP1Layer3 MPEG1 Layer 3 stream format.
OMX_AUDIO_MP3StreamFormatMP2Layer3 MPEG2 Layer 3 stream format.
OMX_AUDIO_MP3StreamFormatMP2_5Layer3 MPEG2.5 Layer 3 stream format.

4.1.8.2 Functionality
The OMX_AUDIO_PARAM_MP3TYPE structure sets the parameters of the MP3 codec.

4.1.9 OMX_AUDIO_PARAM_AACPROFILETYPE
The OMX_AUDIO_PARAM_AACPROFILETYPE structure is used to set or query the
current or default settings for the MPEG AAC codec component using the
OMX_GetParameter function. It is also used to set the parameters of the AAC codec
component using the OMX_SetParameter function. The index specified for this
structure is OMX_IndexParamAudioAac when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_AACPROFILETYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_AACPROFILETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nSampleRate;
 OMX_U32 nBitRate;
 OMX_U32 nAudioBandWidth;
 OMX_U32 nFrameLength;
 OMX_U32 nAACtools;
 OMX_U32 nAACERtools;
 OMX_AUDIO_AACPROFILETYPE eAACProfile;
 OMX_AUDIO_AACSTREAMFORMATTYPE eAACStreamFormat;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
} OMX_AUDIO_PARAM_AACPROFILETYPE;

 151

4.1.9.1 Parameter Definitions
The parameters for the OMX_AUDIO_PARAM_AACPROFILETYPE structure are defined
as follows.

• nPortIndex is a read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nSampleRate is the sample rate of the encoded or decoded audio.

• nBitRate is the bit rate of the encoded AAC audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should
limit the audio signal. Use the value 0 to let the encoder decide.

• nFrameLength is the frame length of the codec in audio samples per channel.
The value can be 1024 (AAC) or 960 (AAC-LC), 2048 (HE-AAC), 512 or 480
(AAC-LD). Use the value 0 to let encoder decide.

Define Name Description
OMX_AUDIO_AACToolNone No AAC tools allowed (encoder

configuration) or active (optional
decoder information output).

OMX_AUDIO_AACToolMS Mid/Side (MS) joint coding tool.
OMX_AUDIO_AACToolIS Intensity Stereo (IS) tool.
OMX_AUDIO_AACToolTNS Temporal Noise Shaping (TNS) tool.
OMX_AUDIO_AACToolPNS MPEG-4 Perceptual Noise Substitution

(PNS) tool.
OMX_AUDIO_AACToolLTP MPEG-4 Long Term Prediction (LTP)

tool.
OMX_AUDIO_AACToolAll All AAC tools allowed or active.

Define Name Description
OMX_AUDIO_AACERNone No AAC ER tools allowed/used
OMX_AUDIO_AACERVCB11 Virtual Code Books for AAC section

data (VCB11)
OMX_AUDIO_AACERRVLC Reversible Variable Length Coding

(RVLC)
OMX_AUDIO_AACERHCR Huffman Codeword Reordering (HCR)
OMX_AUDIO_AACERAll All AAC ER tools allowed/used

Field Name Description
OMX_AUDIO_AACObjectNull Null - not used
OMX_AUDIO_AACObjectMain AAC Main object/profile
OMX_AUDIO_AACObjectLC AAC Low Complexity

object/profile
(MPEG-4: AAC profile)

OMX_AUDIO_AACObjectSSR AAC Scalable Sample Rate
object/profile

OMX_AUDIO_AACObjectLTP AAC Long Term Prediction
object

OMX_AUDIO_AACObjectHE High Efficiency AAC
(object type SBR, MPEG-4:
HE-AAC profile)

OMX_AUDIO_AACObjectScalable AAC Scalable object
OMX_AUDIO_AACObjectERLC ER AAC Low Complexity

object
(Error Resilient AAC-LC)

OMX_AUDIO_AACObjectLD AAC Low Delay object
(Error Resilient)

OMX_AUDIO_AACObjectHE_PS AAC High Efficiency with
Parametric Stereo coding
(HE-AAC v2, object type
PS)

 152

 153

Field Name Description
OMX_AUDIO_AACStreamFormatMP2ADTS MPEG-2 AAC Audio Data Transport

Stream format
OMX_AUDIO_AACStreamFormatMP4ADTS MPEG-4 AAC Audio Data Transport

Stream format
OMX_AUDIO_AACStreamFormatMP4LOAS Low Overhead Audio Stream format
OMX_AUDIO_AACStreamFormatMP4LATM Low Overhead Audio Transport

Multiplex
OMX_AUDIO_AACStreamFormatADIF Audio Data Interchange Format
OMX_AUDIO_AACStreamFormatMP4FF AAC inside MPEG-4/ISO File Format
OMX_AUDIO_AACStreamFormatRAW AAC Raw Format (access units)

4.1.9.2 Functionality
The OMX_AUDIO_PARAM_AACPROFILETYPE structure sets the parameters of the
AAC codec.

4.1.10 OMX_AUDIO_PARAM_VORBISTYPE
The OMX_AUDIO_PARAM_VORBISTYPE structure is used to set or query the current or
default settings for the Vorbis codec component of the Ogg Vorbis format using the
OMX_GetParameter function. It is also used to set the parameters of the Vorbis codec
component using the OMX_SetParameter function. The index specified for this
structure is OMX_IndexParamAudioVorbis when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_VORBISTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_VORBISTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nAudioBandWidth;
 OMX_S32 nQuality;
 OMX_BOOL bManaged;
 OMX_BOOL bDownmix;
} OMX_AUDIO_PARAM_VORBISTYPE;

 154

4.1.10.1

4.1.10.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_VORBISTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nBitRate is the bit rate of the encoded Vorbis audio. If the bit rate is variable or
unknown, this parameter has the value 0. Encoding is set to the bit rate closest to
the specified value in bits per second (bps).

• nMinBitRate sets the minimum bit rate in bps.

• nMaxBitRate sets the maximum bit rate in bps.

• nSampleRate is the sample rate of the encoded or decoded audio. Use the
value 0 for variable or unknown sampling rate.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should
limit the audio signal. Use the value 0 to let encoder decide.

• nQuality sets the encoding quality between -1 (low) and 10 (high). In the
default mode of operation, the quality level is 3. The normal quality range is 0-10.

• bManaged sets the bit rate management mode. This turns off the normal variable
bit rate (VBR) encoding but allows the encoder to enforce hard or soft bit rate
constraints. This mode can be slower and may also be of lower quality; it is
primarily useful for streaming.

• bDownmix sets the downmix input from stereo to mono. This parameter has no
effect on non-stereo streams. This parameter is useful for lower bit-rate encoding.

Functionality
The OMX_AUDIO_PARAM_VORBISTYPE structure sets the parameters of the Vorbis
codec.

4.1.11 OMX_AUDIO_PARAM_WMATYPE
The OMX_AUDIO_PARAM_WMATYPE structure is used to set or query the current or
default settings for the Windows Media® audio codec component using the
OMX_GetParameter function. It is also used to set the parameters of the Windows
Media audio codec component using the OMX_SetParameter function. When calling
either the OMX_GetParameter or the OMX_SetParameter functions, the index
specified for this structure is OMX_IndexParamAudioWma.

OMX_AUDIO_PARAM_WMATYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_WMATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;

 155

 OMX_U16 nChannels;
 OMX_U32 nBitRate;
 OMX_AUDIO_WMAFORMATTYPE eFormat;
 OMX_AUDIO_WMAPROFILETYPE eProfile;
 OMX_U32 nSamplingRate;
 OMX_U16 nBlockAlign;
 OMX_U16 nEncodeOptions;
 OMX_U32 nSuperBlockAlign;
} OMX_AUDIO_PARAM_WMATYPE;

4.1.11.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_WMATYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• nBitRate is the bit rate of the encoded Windows Media audio. If the bit rate is
variable or unknown, this parameter has a value 0.

Field Name Description
OMX_AUDIO_WMAFormatUnused The version of the Windows Media audio codec is

either not applicable or is unknown.
OMX_AUDIO_WMAFormat7 Windows Media audio version 7.
OMX_AUDIO_WMAFormat8 Windows Media audio version 8.
OMX_AUDIO_WMAFormat9 Windows Media audio version 9.
OMX_AUDIO_WMAFormatMax For future versions of Windows Media audio

codecs.

Field Name Description
OMX_AUDIO_WMAProfileUnused The profile of the Windows Media audio codec is

either not applicable or is unknown.
OMX_AUDIO_WMAProfileL1 Windows Media audio version 9 profile L1.
OMX_AUDIO_WMAProfileL2 Windows Media audio version 9 profile L2.
OMX_AUDIO_WMAProfileL3 Windows Media audio version 9 profile L3.

• nSamplingRate is the sampling rate of the source data.

• nBlockAlign is the block alignment, or block size, in bytes of the audio codec.

• nEncodeOptions is WMA Type-specific data.

 156

• nSuperBlockAlign is WMA Type-specific data.

4.1.12 OMX_AUDIO_PARAM_RATYPE
The OMX_AUDIO_PARAM_RATYPE structure is used to set or query the current or
default settings for the RealAudio® codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioRa.

OMX_AUDIO_PARAM_RATYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_RATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nSamplingRate;
 OMX_U32 nBitsPerFrame;
 OMX_U32 nSamplePerFrame;
 OMX_U32 nCouplingQuantBits;
 OMX_U32 nCouplingStartRegion;
 OMX_U32 nNumRegions;
 OMX_AUDIO_RAFORMATTYPE eFormat;
} OMX_AUDIO_PARAM_RATYPE;

4.1.12.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_RATYPE are defined as follows.

• nPortIndex: is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• nSamplingRate is the sampling rate of the source data.

• nBitsPerFrame is the value for bits per frame.

• nSamplePerFrame is the value for samples per frame.

• nCouplingQuantBits is the number of coupling quantization bits in the
stream.

• nCouplingStartRegion is the coupling start region in the stream.

• nNumRegions is the number of regions value.

https://community.helixcommunity.org/realcodecs/#RealAudio

 157

Field Name RA Format Descriptions
OMX_AUDIO_RAFormatUnused Format unused or unknown
OMX_AUDIO_RA8 RealAudio 8 audio codec
OMX_AUDIO_RA9 RealAudio 9 audio codec
OMX_AUDIO_RA10_AAC MPEG-4 AAC codec for bitrates of more than

128kbps
OMX_AUDIO_RA10_CODEC RealAudio codec for bitrates less than 128

kbps
OMX_AUDIO_RA10_LOSSLESS RealAudio Lossless
OMX_AUDIO_RA10_MULTICHANNEL RealAudio Multichannel
OMX_AUDIO_RA10_VOICE RealAudio Voice for bitrates below 15 kbps.

4.1.12.2 Functionality
The OMX_AUDIO_PARAM_RATYPE structure sets the parameters of the RealAudio
codec.

4.1.13 OMX_AUDIO_PARAM_SBCTYPE
The Subband codec (SBC) is a mandatory audio codec for applications that support the
Bluetooth™ Advance Audio Distribution Profile (A2DP). The A2DP codec algorithm is
designed to obtain high quality audio at medium bit rates with a low computational
complexity.

The OMX_AUDIO_PARAM_SBCTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioSbc.

OMX_AUDIO_PARAM_SBCTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_SBCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nBlocks;
 OMX_U32 nSubbands;
 OMX_U32 nBitPool;
 OMX_BOOL bEnableBitrate;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
 OMX_AUDIO_SBCALLOCMETHODTYPE eSBCAllocType;
} OMX_AUDIO_PARAM_SBCTYPE;

 158

4.1.13.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_SBCTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• nBitRate is the bit rate of the encoded SBC audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nSampleRate is the sample rate of the source data. If the sample rate is
variable or unknown, this parameter has the value 0.

• nBlocks is the block length with which the stream has been encoded.

• nSubbands is the number of frequency subbands.

• nBitPool is the size of the bit allocation pool used for encoding the stream.

• bEnableBitrate is the Boolean value to use nBitRate or nBitPool.

• eChannelMode is the audio channel mode.

Field Name Description
OMX_AUDIO_SBCAllocMethodLoudness Loudness allocation method
OMX_AUDIO_SBCAllocMethodSNR Signal-to-noise ratio (SNR) allocation

method

4.1.13.2 Functionality
This OMX_AUDIO_PARAM_SBCTYPE structure configures the parameters of the SBC
codec.

4.1.14 OMX_AUDIO_PARAM_ADPCMTYPE
Adaptive Differential PCM (ADPCM) is a waveform coding generic algorithm. It can be
implemented in many ways and with different rates.

The OMX_AUDIO_PARAM_ADPCMTYPE structure is used to set or query the current or
default settings for the ADPCM codec component using the OMX_GetParameter
function. It is also used to set the parameters of the ADPCM codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioAdpcm.

OMX_AUDIO_PARAM_ADPCMTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_ADPCMTYPE {

 159

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitsPerSample;
 OMX_U32 nSampleRate;
} OMX_AUDIO_PARAM_ADPCMTYPE;

4.1.14.1

4.1.14.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_ADPCMTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• nBitsPerSample is the number of bits per sample of audio.

• nSampleRate is the sampling rate of the source data. Use the value 0 for
variable or unknown sampling rate.

Functionality
The OMX_AUDIO_PARAM_ADPCMTYPE structure sets the parameters of a generic
ADPCM codec.

4.1.15 OMX_AUDIO_PARAM_G723TYPE
ITU G.723.1 is a standard speech codec that has two rates, 5.3 and 6.3 kbps, and is used
in video telephony. The input sampling rate is 8 kHz.

The OMX_AUDIO_PARAM_G723TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG723.

OMX_AUDIO_PARAM_G723TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_G723TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_AUDIO_G723RATE eBitRate;
 OMX_BOOL bHiPassFilter;
 OMX_BOOL bPostFilter;
} OMX_AUDIO_PARAM_G723TYPE;

4.1.15.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G723TYPE are defined as follows.

 160

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• bDTX enables Discontinuous Transmission according to Annex A of the standard.

Field Name Description
OMX_AUDIO_G723ModeUnused Rate unused or unknown
OMX_AUDIO_G723ModeLow 5.3 kbps
OMX_AUDIO_G723ModeHigh 6.3 kbps

• bHiPassFilter enables high-pass filter preprocessing in the encoder.

• bPostFilter enables post filter processing.

4.1.15.2 Functionality
The OMX_AUDIO_PARAM_G723TYPE structure sets the parameters of the ITU-G.723.1
codec.

4.1.16 OMX_AUDIO_PARAM_G726TYPE
ITU G.726 is a standard ADPCM waveform codec having four rates. The rate of 32 kbps
is the most used rate and identical to an older standard, ITU G.721. The input sampling
rate is 8 kHz.

The OMX_AUDIO_PARAM_G726TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG726.

OMX_AUDIO_PARAM_G726TYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_G726TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_AUDIO_G726MODE eG726Mode;
} OMX_AUDIO_PARAM_G726TYPE;

4.1.16.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G726TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

 161

• nChannels is the number of channels of audio (mono, stereo).

Field Name Description
OMX_AUDIO_G726ModeUnused Rate unused or unknown
OMX_AUDIO_G726Mode16 16 kbps
OMX_AUDIO_G726Mode24 24 kbps
OMX_AUDIO_G726Mode32 32 kbps (equals G.721)
OMX_AUDIO_G726Mode40 40 kbps

4.1.16.2 Functionality
The OMX_AUDIO_PARAM_G726TYPE structure sets the parameters of the ITU-G.726
codec.

4.1.17 OMX_AUDIO_PARAM_G729TYPE
ITU G.729 is a standard speech codec with a coding rate of 8 kbps that is used in various
applications. The input sampling rate is 8 kHz. A bit-compatible, low-complexity version
is called G.729 appendix A (or G.729A). Support for DTX is described in annex B of the
G.729 standard.

The OMX_AUDIO_PARAM_G729TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG729.

OMX_AUDIO_PARAM_G729TYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_G729TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_AUDIO_G729TYPE eBitType;
} OMX_AUDIO_PARAM_G729TYPE;

4.1.17.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G729TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

 162

• bDTX enables Discontinuous Transmission when Annex B of the standard is used.

Field Name Description
OMX_AUDIO_G729 G.729 without annexes
OMX_AUDIO_G729A G.729 with annex A
OMX_AUDIO_G729B G.729 with annex B
OMX_AUDIO_G729AB G.729 with annexes A and B

4.1.17.2 Functionality
The OMX_AUDIO_PARAM_G729TYPE structure sets the parameters of the ITU-G.729
codec.

4.1.18 OMX_AUDIO_PARAM_AMRTYPE
The Adaptive Multi-Rate coder is defined in 3GPP standards as having two main
versions:

• Narrow Band (AMR-NB), where the sampling rate is 8 kHz. It is defined in
standards 26.07x and 26.09x. This version is used in cellular phones and other
wireless devices mainly for speech conversation.

• Wide Band (AMR-WB), where the sampling rate is 16 kHz. It is defined in
standards 26.17x and 26.19x, and in ITU G.722.2. This version is used in cellular
phones and other wireless devices mainly for streaming and voice-over-IP (VoIP)
communication.

The OMX_AUDIO_PARAM_AMRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioAmr.

OMX_AUDIO_PARAM_AMRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_AMRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_AUDIO_AMRBANDMODETYPE eAMRBandMode;
 OMX_AUDIO_AMRDTXMODETYPE eAMRDTXMode;
 OMX_AUDIO_AMRFRAMEFORMATTYPE eAMRFrameFormat;
} OMX_AUDIO_PARAM_AMRTYPE;

 163

4.1.18.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_AMRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• nBitrate is the bit rate of the encoded AMR audio. This parameter is a read
only parameter used to query the current bitrate of the audio. If the bit rate is
variable or unknown, this parameter has the value 0.

Field Name Description
OMX_AUDIO_AMRBandModeUnused Rate unused or unknown
OMX_AUDIO_AMRBandModeNB0 4.75 kbps
OMX_AUDIO_AMRBandModeNB1 5.15 kbps
OMX_AUDIO_AMRBandModeNB2 5.9 kbps
OMX_AUDIO_AMRBandModeNB3 6.7 kbps
OMX_AUDIO_AMRBandModeNB4 7.4 kbps
OMX_AUDIO_AMRBandModeNB5 7.95 kbps
OMX_AUDIO_AMRBandModeNB6 10.2 kbps
OMX_AUDIO_AMRBandModeNB7 12.2 kbps
OMX_AUDIO_AMRBandModeWB0 6.6 kbps
OMX_AUDIO_AMRBandModeWB1 8.85 kbps
OMX_AUDIO_AMRBandModeWB2 12.65 kbps
OMX_AUDIO_AMRBandModeWB3 14.25 kbps
OMX_AUDIO_AMRBandModeWB4 15.85 kbps
OMX_AUDIO_AMRBandModeWB5 18.25 kbps
OMX_AUDIO_AMRBandModeWB6 19.85 kbps
OMX_AUDIO_AMRBandModeWB7 23.05 kbps
OMX_AUDIO_AMRBandModeWB8 23.85 kbps

• eAMRDTXMode identifies the AMR Discontinuous Transmission mode and
voice activity detection (VAD) type. Table 4-19 describes the modes and types.

Table 4-19: Adaptive Multi-Rate Discontinuous Transmission Mode and VAD Type

Field Name Description
OMX_AUDIO_AMRDTXModeUsed DTX used or unused
OMX_AUDIO_AMRDTXModeOnVAD1 Use Type 1 VAD
OMX_AUDIO_AMRDTXModeOnVAD2 Use Type 2 VAD

 164

Field Name Description
OMX_AUDIO_AMRDTXModeOnAuto VAD type automatic
OMX_AUDIO_AMRDTXasEFR DTX frames as EFR

(3GPP 26.101, frame type equals 8,9,10)

• eAMRFrameFormat identifies the encoded frame format. Table 4-20 shows the
frame formats.

Table 4-20: Encoded Frame Format

Field Name Description
OMX_AUDIO_AMRFrameFormatConformance Standard test-sequence format

(3GPP 26.074)
OMX_AUDIO_AMRFrameFormatIF1 Interface format 1

(NB- 3GPP 26.101, sec. 4
 WB- 3GPP 26.201, sec. 4)

OMX_AUDIO_AMRFrameFormatIF2 Interface format 2
(NB- 3GPP 26.101, annex A
 WB- 3GPP 26.201, annex A)

OMX_AUDIO_AMRFrameFormatFSF File Storage format
(RFC 3267, sec. 5)

OMX_AUDIO_AMRFrameFormatRTPPayload RTP payload format
(RFC 3267, sec. 4)

OMX_AUDIO_AMRFrameFormatITU ITU frame format

4.1.18.2 Functionality
The OMX_AUDIO_PARAM_AMRTYPE structure sets the parameters of the AMR codec.

4.1.19 OMX_AUDIO_PARAM_GSMFRTYPE
The GSM Full-Rate codec is defined in ETSI standards 06.1x and 06.3x, which became
3GPP standards 26.01x and 26.03x.

The GSM Full-Rate coder is used in legacy GSM cellular phones. The sampling rate is 8
kHz. The encoded speech has a rate of 13 kbps, or 260 bits per frame of 20 milliseconds.
The coding algorithm is RPE-LTP.

 The OMX_AUDIO_PARAM_GSMFRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioGsm_FR.

OMX_AUDIO_PARAM_GSMFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_GSMFRTYPE {
 OMX_U32 nSize;

 165

 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter ;
} OMX_AUDIO_PARAM_GSMFRTYPE;

4.1.19.1

4.1.19.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMFRTYPE as defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.031, 46.032).

• bHiPassFilter enables high-pass filter processing

Functionality
The OMX_AUDIO_PARAM_GSMFRTYPE structure sets the parameters of the GSM Full-
Rate codec.

4.1.20 OMX_AUDIO_PARAM_GSMEFRTYPE
The GSM Enhanced Full-Rate codec is defined in ETSI standards 06.5x, 06.6x, and
06.8x; these standards became 3GPP standards 26.05x, 26.06x, and 26,08x.

The GSM Enhanced Full-Rate codec is used in GSM cellular phones. The sampling rate
is 8 kHz. The encoded speech has a rate of 12.2 kbps, or 244 bits per frame of 20
milliseconds. Each coded frame is augmented by 16 error-protection bits that provide the
complement of 260 bits, which is the same as the Full Rate codec. However this
augmentation is performed outside of the speech coder. The coding algorithm is ACELP.

 The OMX_AUDIO_PARAM_GSMEFRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function. It
is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioGsm_EFR.

OMX_AUDIO_PARAM_GSMEFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_GSMEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_GSMEFRTYPE;

4.1.20.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMEFRTYPE are defined as follows.

 166

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.041, 46.042).

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.20.2 Functionality
The OMX_AUDIO_PARAM_GSMEFRTYPE structure sets the parameters of the GSM
Enhanced Full-Rate codec.

4.1.21 OMX_AUDIO_PARAM_GSMHRTYPE
The GSM Half-Rate codec is defined in ETSI standards 06.2x and 06.4x; these standards
became 3GPP standards 26.02x and 26.04x.

The GSM Half-Rate codec is used in GSM cellular phones. The sampling rate is 8 kHz.
The encoded speech has a rate of 5.6 kbps, or 112 bits per frame of 20 milliseconds. The
coding algorithm is VSELP.

The OMX_AUDIO_PARAM_GSMHRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioGsm_HR.

OMX_AUDIO_PARAM_GSMHRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_GSMHRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_GSMHRTYPE;

4.1.21.1

4.1.21.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMHRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.041, 46.042).

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

Functionality
The OMX_AUDIO_PARAM_GSMHRTYPE structure sets the parameters of the GSM Half-
Rate codec.

 167

4.1.22 OMX_AUDIO_PARAM_TDMAFRTYPE
The TDMA Full-Rate codec is defined in theTIA/EIA-136-420 American cellular
standard, also referred to as IS-136. It is a legacy codec used in the American cellular
standard known as DAMPS.

The sampling rate is 8 kHz. The encoded speech has a rate of 7.95 kbps, or 159 bits per
frame of 20 milliseconds. The coding algorithm is VSELP.

The OMX_AUDIO_PARAM_TDMAFRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioTdma_FR.

OMX_AUDIO_PARAM_TDMAFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_TDMAFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_TDMAFRTYPE;

4.1.22.1

4.1.22.2

Parameter Definitions
The parameters of OMX_AUDIO_PARAM_TDMAFRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

Functionality
The OMX_AUDIO_PARAM_TDMAFRTYPE structure sets the parameters of the TDMA
Full-Rate codec.

4.1.23 OMX_AUDIO_PARAM_TDMAEFRTYPE
The TDMA Enhanced Full-Rate codec is defined in the TIA/EIA-136-410 American
cellular standard, which is also referred to as IS-641, DAMPS-EFR. It is the codec used
in the American cellular standard known as DAMPS.

The sampling rate is 8 kHz. The encoded speech has a rate of 7.4 kbps, or 148 bits per
frame of 20 milliseconds. The coding algorithm is ACELP.

 168

 The OMX_AUDIO_PARAM_TDMAEFRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function. It
is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioTdma_EFR.

OMX_AUDIO_PARAM_TDMAEFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_TDMAEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_TDMAEFRTYPE;

4.1.23.1

4.1.23.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_TDMAEFRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

Functionality
The OMX_AUDIO_PARAM_TDMAEFRTYPE structure sets the parameters of the TDMA
Enhanced Full-Rate codec.

4.1.24 OMX_AUDIO_PARAM_PDCFRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27B. It is the legacy codec
used in the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 6.7 kbps, or 134 bits per
frame of 20 milliseconds. The coding algorithm is VSELP.

The OMX_AUDIO_PARAM_PDCFRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioPdc_FR.

OMX_AUDIO_PARAM_PDCFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_PDCFRTYPE {
 OMX_U32 nSize;

 169

 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCFRTYPE;

4.1.24.1

4.1.24.2

Parameter Definitions
The parameters for OMX_AUDIO_PARAM_PDCFRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

Functionality
The OMX_AUDIO_PARAM_PDCFRTYPE structure sets the parameters of the PDC Full-
Rate codec.

4.1.25 OMX_AUDIO_PARAM_PDCEFRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27H. The codec is used in
the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 6.7 kbps, or 134 bits per
frame of 20 milliseconds. The coding algorithm is ACELP.

 The OMX_AUDIO_PARAM_PDCEFRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function. It
is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioPdc_EFR.

OMX_AUDIO_PARAM_PDCEFRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_PDCEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCEFRTYPE;

4.1.25.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_PDCEFRTYPE are defined as follows.

 170

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.25.2 Functionality
The OMX_AUDIO_PARAM_PDCEFRTYPE structure sets the parameters of the PDC
Enhanced Full-Rate codec.

4.1.26 OMX_AUDIO_PARAM_PDCHRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27C. The codec is used in
the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 3.45 kbps, or 138 bits per
frame of 40 milliseconds. The coding algorithm is PSI-CELP.

 The OMX_AUDIO_PARAM_PDCHRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioPdc_HR.

OMX_AUDIO_PARAM_PDCHRTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_PDCHFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCHFRTYPE;

4.1.26.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_PDCHRTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

 171

4.1.26.2 Functionality
The OMX_AUDIO_PARAM_PDCHRTYPE structure sets the parameters of the PDC Full-
Rate codec.

4.1.27 OMX_AUDIO_PARAM_QCELP8TYPE
The QCELP (lower rate) variable rate codec is defined in the TIA/EIA-96 standard. It is
the legacy codec used in the CDMA cellular standard, mainly in Korea and North
America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate called Rate 1 of 8
kbps, or 160 bits per frame of 20 milliseconds. The codec can work on lower rates,
namely Rates 1/2, 1/4, and 1/8, depending on the speech activity and channel capacity.
Rate 1 adds 11 parity bits per frame, so its rate becomes 8.55 kbps.

The coding algorithm is QCELP.

 The OMX_AUDIO_PARAM_QCELP8TYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function. It
is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioQcelp8.

OMX_AUDIO_PARAM_QCELP8TYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_QCELP8TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_u32 nChannels;
 OMX_U32 nBitRate;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
} OMX_AUDIO_PARAM_QCELP8TYPE;

4.1.27.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_QCELP8TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• nBitRate is the bit rate of the audio stream. If the bit rate is unknown, this
parameter has the value 0.

• eCDMARate is the frame rate or type. Table 4-21 shows the frame rate values.

 172

Table 4-21: QCELP8 Frame Rate Values

Field Name Description
OMX_AUDIO_CDMARateBlank Blank frame
OMX_AUDIO_CDMARateFull Rate 1
OMX_AUDIO_CDMARateHalf Rate ½
OMX_AUDIO_CDMARateQuarter Rate ¼
OMX_AUDIO_CDMARateEighth Rate 1/8
OMX_AUDIO_CDMARateErasure Erasure frame (due to channel errors)

• nMinBitRate is the minimal restriction on the encoder for the current frame.
The value is 1, 2, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame.
The value is 1, 2, 3, or 4. This value shall be greater than or equal to the minimal
rate. The default value is 4.

4.1.27.2 Functionality
The OMX_AUDIO_PARAM_QCELP8TYPE structure sets the parameters of the QCELP8
codec.

4.1.28 OMX_AUDIO_PARAM_QCELP13TYPE
The QCELP (high-rate) variable rate codec is defined in the TIA/EIA-733 standard. It is
the codec that is used in the high-rate service option of CDMA cellular standard, mainly
in Korea and North America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate called Rate 1 of 13.3
kbps, or 266 bits per frame of 20 milliseconds. The codec can work on lower rates,
namely Rates 1/2, 1/4, and 1/8, depending on the capacity of the speech activity channel.

The coding algorithm is QCELP.

The OMX_AUDIO_PARAM_QCELP13TYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function. It
is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioQcelp13.

OMX_AUDIO_PARAM_QCELP13TYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_QCELP13TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;

 173

 OMX_U32 nMaxBitRate;
} OMX_AUDIO_PARAM_QCELP13TYPE;

4.1.28.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_QCELP13TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• eCDMARate is the frame rate or type. Table 4-22 shows the frame rate values.
Table 4-22: QCELP13 Frame Rate Values

Field Name Description
OMX_AUDIO_CDMARateBlank Blank frame
OMX_AUDIO_CDMARateFull Rate 1
OMX_AUDIO_CDMARateHalf Rate ½
OMX_AUDIO_CDMARateQuarter Rate ¼
OMX_AUDIO_CDMARateEighth Rate 1/8
OMX_AUDIO_CDMARateErasure Erasure frame (due to channel errors)

• nMinBitRate is the minimal restriction on the encoder for the current frame.
The value is 1, 2, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame.
The value is 1, 2, 3, or 4. The value shall be greater than or equal to the minimal
rate. The default value is 4.

4.1.28.2 Functionality
The OMX_AUDIO_PARAM_QCELP13TYPE structure sets the parameters of the
QCELP13 codec.

4.1.29 OMX_AUDIO_PARAM_EVRCTYPE
The Enhanced Variable Speech Coder is defined in the TIA/EIA-127 standard. It is the
codec used in the CDMA cellular standard, mainly in Korea and North America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate, called Rate 1, of
8.55 kbps, or 171 bits per frame of 20 milliseconds. The codec can work on lower rates,
namely Rate 1/2 and 1/8, depending on the speech activity and the channel capacity.

The coding algorithm is RCELP.

 The OMX_AUDIO_PARAM_EVRCTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter

 174

function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioEvrc.

OMX_AUDIO_PARAM_EVRCTYPE is defined as follows.
 typedef struct OMX_AUDIO_PARAM_EVRCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_BOOL bRATE_REDUCon;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_BOOL bHiPassFilter;
 OMX_U32 bNoiseSuppressor;
 OMX_BOOL nPostFilter;
} OMX_AUDIO_PARAM_EVRCTYPE;

4.1.29.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_EVRCTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• eCDMARate is the frame rate or type. Table 4-23 shows the frame rate values.
Table 4-23: Enhanced Variable Speech Frame Rate Values

Field Name Description
OMX_AUDIO_CDMARateBlank Blank frame
OMX_AUDIO_CDMARateFull Rate 1
OMX_AUDIO_CDMARateHalf Rate ½
OMX_AUDIO_CDMARateEighth Rate 1/8
OMX_AUDIO_CDMARateErasure Erasure frame (due to channel errors)

• bRATE_REDUCon specifies if rate reduction is required

• nMinBitRate is the minimal restriction on the encoder for the current frame.
The value is 1, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame.
The value is 1, 3, or 4. The value shall be greater than or equal to the minimal rate.
The default value is 4.

• bHiPassFilter enables high-pass filter processing.

• bNoiseSuppressor enables the encoder's noise suppressor preprocessing as a
part of the encoder.

• bPostFilter enables post filter processing.

 175

4.1.29.2 Functionality
The OMX_AUDIO_PARAM_EVRCTYPE structure sets the parameters of the Enhanced
Variable Speech Coder (EVRC) speech codec.

4.1.30 OMX_AUDIO_PARAM_SMVTYPE
The Selectable Mode Vocoder (SMV) is defined in 3GPP2 standard C.S0030-2. It is the
codec used in the CDMA2000 cellular standard.

The sampling rate is 8 kHz. The encoded speech has a maximal rate, called Rate 1, of
8.55 kbps, or 171 bits per frame of 20 milliseconds. It can work on lower rates, namely
Rates 1/2, 1/4, and 1/8, depending on the speech activity and the channel capacity.

The coding algorithm is eX-CELP.

 The OMX_AUDIO_PARAM_SMVTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioSmv.

OMX_AUDIO_PARAM_SMVTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_SMVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_BOOL bRATE_REDUCon;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_BOOL bHiPassFilter;
 OMX_U32 bNoiseSuppressor;
 OMX_BOOL nPostFilter;
} OMX_AUDIO_PARAM_SMVTYPE;

4.1.30.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_SMVTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• eCDMARate is the frame rate or type. Table 4-24 identifies the frame rate values.
Table 4-24: Selectable Mode Vocoder Frame Rate Values

Field Name Description
OMX_AUDIO_CDMARateBlank Blank frame
OMX_AUDIO_CDMARateFull Rate 1

 176

Field Name Description
OMX_AUDIO_CDMARateHalf Rate ½
OMX_AUDIO_CDMARateEighth Rate 1/8
OMX_AUDIO_CDMARateErasure Erasure frame (due to channel errors)

• bRATE_REDUCon specifies if rate reduction is required

• nMinBitRate is the minimal restriction on the encoder for the current frame.
The value is 1, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for current frame. The
value is 1, 3, or 4. The value shall be greater than or equal to the minimal rate.
The default value is 4.

• bHiPassFilter enables high-pass filter processing.

• bNoiseSuppressor enables the encoder's noise suppressor preprocessing as a
part of the encoder.

• bPostFilter enables post filter processing.

4.1.30.2 Functionality
The OMX_AUDIO_PARAM_SMVTYPE structure sets the parameters of the Selectable
Mode Vocoder codec.

4.1.31 OMX_AUDIO_PARAM_MIDITYPE
The OMX_AUDIO_PARAM_MIDITYPE structure is used to set or query the initial basic
parameters of the MIDI engine. The parameters define the number of output channels of
PCM audio, the maximum polyphony that the device supports, and whether the default
soundbank is loaded at initialization.

OMX_AUDIO_PARAM_MIDITYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_MIDITYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nFileSize;
 OMX_BU32 sMaxPolyphony;
 OMX_BOOL bLoadDefaultSound;
 OMX_AUDIO_MIDIFORMATTYPE eMidiFormat;
} OMX_AUDIO_PARAM_MIDITYPE;

4.1.31.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MIDITYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nFileSize is the size of the MIDI file data in bytes. This field shall be
specified by the IL client or the component configuring this port before data is
accepted.

• sMaxPolyphony specifies the range of simultaneous polyphonic voices that are
supported. Since this parameter is of type OMX_BU32 (a bounded, unsigned 32-
bit integer; see OMX_Types.h), it allows the querying and setting of minimum,
nominal, and maximum values. A value of zero indicates that the default
polyphony of the device is used.

• bLoadDefaultSound is a Boolean value that indicates whether the default
soundbank is it to be loaded at initialization.

• eMidiFormat is an enumeration for the format of the MIDI file. Table 4-25
shows the MIDI file format.

Table 4-25: MIDI File Format

Field Name Description
OMX_AUDIO_MIDIFormatUnknown MIDI format is unknown or not used.
OMX_AUDIO_MIDIFormatSMF0 Standard MIDI File format 0

OMX_AUDIO_MIDIFormatSMF1 Standard MIDI File format 1
OMX_AUDIO_MIDIFormatSMF2 Standard MIDI File format 2
OMX_AUDIO_MIDIFormatSPMIDI SP-MIDI
OMX_AUDIO_MIDIFormatXMF0 XMF type 0
OMX_AUDIO_MIDIFormatXMF1 XMF type 1
OMX_AUDIO_MIDIFormatMobileXMF Mobile XMF (XMF type 2)
OMX_AUDIO_MIDIFormatMax Allowance for expansion in the

number of MIDI file formats

4.1.32 OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE
The OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE structure is used to set or
query the parameters required for loading and unloading user-specified MIDI
downloadable soundbanks (DLS). This structure contains a major exception to the
memory rules used in OpenMAX IL: It includes a pointer to data, namely the DLS,
which is outside the structure. This is because DLS soundbanks can grow to upwards of
400 kB in some cases. Without this exception, the implementations would be forced to
make redundant copies of these large soundbanks, wasting valuable system resources.

OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE is defined as follows.

 177

 178

typedef struct OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nDLSIndex;
 OMX_U32 nDLSSize;
 OMX_PTR pDLSData;
 OMX_AUDIO_MIDISOUNDBANKTYPE eMidiSoundBank;
OMX_AUDIO_MIDISOUNDBANKLAYOUTTYPE eMidiSoundBankLayout;
} OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE;

4.1.32.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• nDLSIndex is the DLS file index to be loaded.

• nDLSSize is the size of the DLS in bytes.

• pDLSData is the pointer to the DLS file data.

• eMidiSoundBank is an enumeration for the various types of MIDI DLS
soundbanks. Table 4-26 identifies the MIDI soundbanks.

Table 4-26: MIDI Soundbanks

Field Name Description
OMX_AUDIO_MIDISoundBankUnused Unused/unknown soundbank type
OMX_AUDIO_MIDISoundBankDLS1 DLS 1
OMX_AUDIO_MIDISoundBankDLS2 DLS 2
OMX_AUDIO_MIDISoundBankMobileDLSBase Mobile DLS, using the base functionality
OMX_AUDIO_MIDISoundBankMobile
 DLSPlusOptions

Mobile DLS, using the specification-
defined optional feature set

OMX_AUDIO_MIDISoundBankMax Allowance for expansion in the number
of soundbank types

• eMidiSoundBankLayout is an enumeration for the various layouts of MIDI
DLS soundbanks. Bank layout describes how the bank most significant bit (MSB)
and least significant bit (LSB) are used in the DLS instrument definitions
soundbank Table 4-27 shows the MIDI soundbank layouts.

Table 4-27: MIDI Soundbank Layouts

Field Name Description
OMX_AUDIO_MIDISoundBankLayoutUnused Unknown/unused soundbank layout type.
OMX_AUDIO_MIDISoundBankLayoutGM GS layout based on bank MSB 0x00.
OMX_AUDIO_MIDISoundBankLayoutGM2 General MIDI 2 layout using MSB

0x78/0x79, LSB 0x00.

 179

Field Name Description
OMX_AUDIO_MIDISoundBankLayoutUser Does not conform to any bank numbering

standards.
OMX_AUDIO_MIDISoundBankLayoutMax Allowance for expansion in the number of

soundbank layout types.

4.1.33 OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE
The OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure is used to set the
parameters for live MIDI events and Maximum Instantaneous Polyphony (MIP)
messages, which are part of the SP-MIDI standard. The
OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure does not specify the
format of MIDI events or MIP messages; it simply provides an array for the MIDI events
or the MIP message buffer. The MIDI engine can parse this array and process it
appropriately.

OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nMidiEventSize;
 OMX_U8 nMidiEvents[1];
} OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE;

4.1.33.1

4.1.33.2

Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE are defined
as follows.

• nPortIndex is the read-only value containing the index of the port.

• nMidiEventSize is the size of the immediate MIDI events or MIP message in
bytes.

• nMidiEvents is the MIDI event array to be rendered immediately, or an array
for the MIP message buffer, where the size is indicated by nMidiEventSize.

Post-processing Conditions
The live MIDI event array is rendered by the MIDI engine, or the MIP message contained
in the buffer is processed.

4.1.34 OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE
The OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE structure is used to
query and set the parameters for soundbank/program pairs in a given MIDI channel. It
will be called once for each of the 16 MIDI channels. Note that the entire MIDI stream

 180

goes to a single port. One-to-one mapping does not occur between ports and MIDI
channels.

OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_U16 nIDProgram;
 OMX_U16 nIDSoundBank;
 OMX_U32 nUserSoundBankIndex;
} OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE;

4.1.34.1

4.1.34.2

Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE are
defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannel refers to a MIDI channel. Valid channel values are 1 to 16.

• nIDProgram refers to a MIDI program. Valid program ID range is 1 to 128.

• nIDSoundBank is the soundbank ID.

• nUserSoundBankIndex is the user soundbank index. The index makes access
to soundbanks easier if multiple banks are present.

Post-processing Conditions
The specified MIDI channel has a soundbank and program associated with it.

4.1.35 OMX_AUDIO_CONFIG_MIDICONTROLTYPE
The OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure is used to query and set the
parameters for controlling the rate and the looping (repeated playback) of MIDI playback.

OMX_AUDIO_CONFIG_MIDICONTROLTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDICONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BS32 sPitchTransposition;
 OMX_BU32 sPlayBackRate;
 OMX_BU32 sTempo ;
 OMX_U32 nMaxPolyphony;
 OMX_U32 nNumRepeat;
 OMX_U32 nStopTime;
 OMX_U16 nChannelMuteMask;
 OMX_U16 nChannelSoloMask;
 OMX_U32 nTrack0031MuteMask;

 181

 OMX_U32 nTrack3263MuteMask;
 OMX_U32 nTrack0031SoloMask;
 OMX_U32 nTrack3263SoloMask;
} OMX_AUDIO_CONFIG_MIDICONTROLTYPE;

4.1.35.1

4.1.35.2

Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDICONTROLTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• sPitchTransposition is the pitch transposition in semitones, stored as
Q22.10 format, based on the Java MMAPI (JSR-135) requirement. As it is a
bounded value type (OMX_BS32), it allows the querying and setting of a range of
values, including minimum, actual, and maximum.

• sPlayBackRate is the relative playback rate, stored as a Q14.17 fixed-point
number based on the JSR-135 requirement. As it is a bounded value type
(OMX_BU32), it allows the querying and setting of a range of values, including
minimum, actual, and maximum.

• sTempo is the tempo in beats per minute (BPM), stored as a Q22.10 fixed-point
number based on the JSR-135 requirement. As it is a bounded value type
(OMX_BS32), it allows the querying and setting of a range of values, including
minimum, actual, and maximum.

• nMaxPolyphony specifies the maximum number of simultaneous polyphonic
voices, which is the maximum run-time polyphony. A value of zero indicates that
the default polyphony of the device is used.

• nNumRepeat specifies the number of times to repeat the playback.

• nStopTime is the time in milliseconds to indicate when playback will stop
automatically. This value is set to zero if not used.

• nChannelMuteMask is a 16-bit mask for channel mute status.

• nChannelSoloMask is a 16-bit mask for channel solo status.

• nTrack0031MuteMask is a 32-bit mask for track mute status for tracks 0-31.

• nTrack3263MuteMask is a 32-bit mask for track mute status for tracks 32-63.

• nTrack0031SoloMask is a 32-bit mask for track solo status for tracks 0-31.

• nTrack3263SoloMask is a 32-bit mask for track mute status for tracks 32-63.

Post-processing Conditions
In case of a OMX_SetConfig call using the
OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure, the parameters required to
control MIDI playback are set. In case of a OMX_GetConfig call using the

 182

OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure, the MIDI IL client can
determine the parameters controlling MIDI playback.

4.1.36 OMX_AUDIO_CONFIG_MIDISTATUSTYPE
The OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure is used to query the current
status of the MIDI playback. As such, it can be used only by an OMX_GetConfig call.
The OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure returns all of the parameters
that characterize the current status of the MIDI engine.

OMX_AUDIO_CONFIG_MIDISTATUSTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDISTATUSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U16 nNumTracks;
 OMX_U32 nDuration;
 OMX_U32 nPosition;
 OMX_BOOL bVibra;
 OMX_U32 nNumMetaEvents;
 OMX_U32 nNumActiveVoices;
 OMX_AUDIO_MIDIPLAYBACKSTATETYPE eMIDIPlayBackState;
} OMX_AUDIO_CONFIG_MIDISTATUSTYPE;

4.1.36.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDISTATUSTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nNumTracks is a read-only field that identifies the number of MIDI tracks in
the file. Note that this parameter will have a valid value only when the entire file
has been parsed and buffered. An OMX_GetConfig call issued before the entire
file has been processed will not contain the correct number of MIDI tracks.

• nDuration is the length of the currently open MIDI resource in milliseconds.
As with nNumTracks, this parameter will have a meaningful value only after
the entire file has been buffered.

• nPosition is the current position in milliseconds of the MIDI resource being
played.

• bVibra is a Boolean value that indicates if a vibra track exists in the file. This
parameter will return a meaningful value only after the entire file has been
buffered. The value returned when in the middle of the file cannot be relied upon.

• nNumMetaEvents is the total number of MIDI meta events in the currently
open MIDI resource. This parameter will return a valid value only after the entire
file is buffered. The value returned when in the middle of the file cannot be relied
upon.

• nNumActiveVoices is the number of active voices in the currently playing
MIDI resource, or the current polyphony level. This parameter may not return a
meaningful value until the entire file is parsed and buffered.

• eMIDIPlayBackState is the enumeration for the MIDI playback state. Table
 4-28 describes the payback states.

Table 4-28: MIDI Playback States

Field Name Description
OMX_AUDIO_MIDIPlayBackStateUnknown Unknown/unused MIDI playback

state, or state does not map to one
of the defined states.

OMX_AUDIO_MIDIPlayBackStateClosed
 Engaged

No MIDI resource is currently
open. The MIDI engine is
currently processing MIDI events.

OMX_AUDIO_MIDIPlayBackStateParsing A MIDI resource is open and is
being primed. The MIDI engine is
currently processing MIDI events.

OMX_AUDIO_MIDIPlayBackStateOpen
 Engaged

A MIDI resource is open and
primed but not playing. The MIDI
engine is currently processing
MIDI events. The transition to this
state is only possible from the
OMX_AUDIO_MIDIPlayBackSta
tePlaying state when the 'playback
head' reaches the end of media
data or the playback stops due to a
stop time setting.

OMX_AUDIO_MIDIPlayBackStatePlaying A MIDI resource is open and
currently playing. The MIDI
engine is currently processing
MIDI events.

OMX_AUDIO_MIDIPlayBackStatePlaying
 Partially

Best-effort playback due to
SP-MIDI/DLS resource constraints

OMX_AUDIO_MIDIPlayBackStatePlaying
 Silently

Due to system resource constraints
and SP-MIDI content constraints,
there is currently no audible MIDI
content during playback. The
situation may change if resources
are freed later.

OMX_AUDIO_MIDIPlayBackStateMax Allowance for expansion in the
number of playback states.

4.1.37 OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE
MIDI meta events are like audio metadata, except that they are interspersed with the
MIDI content throughout the file and not localized in the header. As such, it is necessary

 183

 184

to retrieve information about these meta-events from the engine as it encounters these
meta events within the MIDI content. Component vendors are not required to enumerate
all types of meta events; vendors can choose the meta events they want to support. Meta
events are enumerated in the same order that they are detected in the MIDI file. Meta
event data will always be provided as binary data, as it is present in the MIDI file.

The OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE structure is used to query the
meta event, its track number, and the size of the meta event data using
OMX_GetConfig. This allows the application to quickly determine meta events of
interest. If the application requires the meta event data, the
OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure, which is defined in
section 4.1.38, needs to be used in a second OMX_GetConfig call.

OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_U8 nMetaEventType;
 OMX_U32 nMetaEventSize;
 OMX_U32 nTrack;
 OMX_U32 nPosition;
} OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE;

4.1.37.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• nIndex is the index of the meta event. Meta events will be numbered 0 to N-1,
where N is the number of meta events that the MIDI decoder reports.

• nMetaEventType is the meta event type. The values are 0-127.

• nMetaEventSize is the size of the meta event in bytes.

• nTrack is the track number for the meta event.

• nPosition is the position of the meta event in milliseconds.

4.1.38 OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE
The OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure is typically used
by the IL client via an OMX_GetConfig call to retrieve the meta event data, after the
type, size and track number of the meta event have been determined by a previous
OMX_GetConfig call using the OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE
structure defined in section 4.1.37 above. The IL client is responsible for sizing the
structure appropriately so that it can hold the meta event data.

 185

OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_U32 nMetaEventSize;
 OMX_U8 nData[1];
} OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE;

4.1.38.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE are defined
as follows.

• nPortIndex is the read-only value containing the index of the port.

• nIndex is the index of the meta event. Meta events are numbered 0 to N-1,
where N is the number of meta events that the MIDI decoder reports.

• nMetaEventSize is the size of the meta event in bytes.

• nData is an array of one or more bytes of meta data as indicated by the
nMetaEventSize field.

4.1.39 OMX_AUDIO_CONFIG_VOLUMETYPE
The OMX_AUDIO_CONFIG_VOLUMETYPE structure is used to adjust the audio volume
for a port.

OMX_AUDIO_CONFIG_VOLUMETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_VOLUMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bLinear;
 OMX_BS32 sVolume;
} OMX_AUDIO_CONFIG_VOLUMETYPE;

4.1.39.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_VOLUMETYPE are defined as follows.

• nPortIndex: is the read-only value containing the index of the port.

• bLinear is a Boolean to indicate if the volume is to be set on a linear (0-100) or
a logarithmic scale (millibel, which is abbreviated mB). This is a read-only
parameter.

• sVolume is the linear volume setting in the range 0-100, or the logarithmic
volume setting for this port. The values for volume are in millibel (abbreviated
mB, where 1 millibel = 1/100 decibel) relative to a gain of 1 (i.e., the output is the

 186

same as the input level). Values are in mB from nMax (maximum volume) to
nMin (minimum volume, typically negative). Since the volume is voltage and not
a power, it takes a setting of -600 mB to decrease the volume by half. If a
component cannot accurately set the volume to the requested value, it shall set the
volume to the closest value below the requested value. When getting the volume
setting, the current actual volume shall be returned.

4.1.40 OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE
The OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE structure is used to adjust the
audio volume for a channel via the OMX_IndexConfigAudioChannelVolume
config.

OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_BOOL bLinear;
 OMX_BS32 sVolume;
 OMX_BOOL bIsMIDI;
} OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE;

4.1.40.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• nChannel is the channel to select in the range 0 to N-1 using OMX_ALL to
apply volume settings to all channels.

• bLinear is the volume to be set on a linear scale (0-100) or a logarithmic scale
(mB).

• sVolume is the linear volume setting in the range 0-100 or the logarithmic
volume setting for this port. The values for volume are in millibel (abbreviated
mB, where 1 millibel = 1/100 dB) relative to a gain of 1 (i.e., the output is the
same as the input level). Values are in mB from nMax (maximum volume) to
nMin (minimum volume, typically negative). Since the volume is voltage and not
a power, it takes a setting of -600 mB to decrease the volume by half. If a
component cannot accurately set the volume to the requested value, it shall set the
volume to the closest value below the requested value. When getting the volume
setting, the current actual volume shall be returned.

• bIsMIDI is OMX_TRUE if nChannel refers to a MIDI channel, or
OMX_FALSE otherwise.

 187

4.1.41 OMX_AUDIO_CONFIG_BALANCETYPE
The OMX_AUDIO_CONFIG_BALANCETYPE structure defines the audio left-right
balance adjustment for a port.

OMX_AUDIO_CONFIG_BALANCETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_BALANCETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nBalance;
} OMX_AUDIO_CONFIG_BALANCETYPE;

4.1.41.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_BALANCETYPE are as follows.

• nPortIndex is the read-only value containing the index of the port. Select the
input port to set just that port's balance. Select the output port to adjust the master
balance.

• nBalance is the balance setting for this port. The values are -100 to 100, where
-100 indicates all left, and no right.

4.1.42 OMX_AUDIO_CONFIG_MUTETYPE
The OMX_AUDIO_CONFIG_MUTETYPE structure adjusts the audio mute for a port.

OMX_AUDIO_CONFIG_MUTETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MUTETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bMute;
} OMX_AUDIO_CONFIG_MUTETYPE;

4.1.42.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MUTETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port. Select the
input port to set just that port's mute setting. Select the output port to adjust the
master mute.

• bMute identifies whether the port is muted (OMX_TRUE) or playing normally
(OMX_FALSE).

4.1.43 OMX_AUDIO_CONFIG_CHANNELMUTETYPE
The OMX_AUDIO_CONFIG_CHANNELMUTETYPE structure adjusts the audio mute for
a channel.

 188

OMX_AUDIO_CONFIG_CHANNELMUTETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_CHANNELMUTETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_BOOL bMute;
 OMX_BOOL bIsMIDI;
} OMX_AUDIO_CONFIG_CHANNELMUTETYPE;

4.1.43.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHANNELMUTETYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port. Select the
input port to set just that port's mute setting. Select the output port to adjust the
master mute.

• nChannel is the channel to select in the range 0 to N-1. Use OMX_ALL to apply
volume settings to all channels.

• bMute identifies whether port is muted (OMX_TRUE) or playing normally
(OMX_FALSE).

• bIsMIDI identifies whether the channel is a MIDI channel. The values are
OMX_TRUE if nChannel refers to a MIDI channel, OMX_FALSE if otherwise.

4.1.44 OMX_AUDIO_CONFIG_LOUDNESSTYPE
The OMX_AUDIO_CONFIG_LOUDNESSTYPE structure is used to enable or disable the
loudness audio effect, which boosts the bass and the high frequencies to compensate for
the limited hearing range of humans at the extreme ends of the audio spectrum. The
setting can be changed using the OMX_SetConfig function. The current state can be
queried using the OMX_GetConfig function. When calling either OMX_SetConfig
or OMX_GetConfig, the index specified for this structure is
OMX_IndexConfigAudioLoudness.

OMX_AUDIO_CONFIG_LOUDNESSTYPE is defined as follows.
 typedef struct OMX_AUDIO_CONFIG_LOUDNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bLoudness;
} OMX_AUDIO_CONFIG_LOUDNESSTYPE;

4.1.44.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_LOUDNESSTYPE are defined as follows.

 189

• nPortIndex is the read-only value containing the index of the port.

• bLoudness enable the loudness if set to OMX_TRUE or disables the loudness
effect if set to OMX_FALSE.

4.1.45 OMX_AUDIO_CONFIG_BASSTYPE
The OMX_AUDIO_CONFIG_BASSTYPE structure is used to enable or disable the low-
frequency level (bass) audio effect, and to set or query the current bass level. The setting
can be changed using the OMX_SetConfig function, and the current state can be
queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioBass.

OMX_AUDIO_CONFIG_BASSTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_BASSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_S32 nBass;
} OMX_AUDIO_CONFIG_BASSTYPE;

4.1.45.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_BASSTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the bass-level setting if set to OMX_TRUE or disables the bass-
level setting if set to OMX_FALSE.

• nBass is the bass-level setting for the port, as a continuous value from -100 to 100.
The value –100 means minimum bass level, zero means no change in level, and 100
represents the maximum low-frequency boost.

4.1.46 OMX_AUDIO_CONFIG_TREBLETYPE
The OMX_AUDIO_CONFIG_TREBLETYPE structure is used to enable or disable the
high-frequency level (treble) audio effect, and to set or query the current level. The
setting can be changed using the OMX_SetConfig function, and the current state can
be queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioTreble.

OMX_AUDIO_CONFIG_TREBLETYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_TREBLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_S32 nTreble;

 190

} OMX_AUDIO_CONFIG_TREBLETYPE;

4.1.46.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_TREBLETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the treble level setting if set to OMX_TRUE or disables the
treble level setting if set to OMX_FALSE.

• nTreble is the treble-level setting for the port, as a continuous value from -100
to 100. The value -100 means minimum high-frequency level, zero means no
change in level, and 100 represents the maximum high-frequency boost.

4.1.47 OMX_AUDIO_CONFIG_EQUALIZERTYPE
The OMX_AUDIO_CONFIG_EQUALIZERTYPE structure is used to set or query the
current parameters of the graphic equalizer (EQ) effect. The settings can be changed
using the OMX_SetConfig function, and the current state can be queried using the
OMX_GetConfig function. When calling either function, the index specified for this
structure is OMX_IndexConfigAudioEqualizer.

An equalizer modifies the audio signal by frequency-dependent amplification or
attenuation. A graphic EQ typically lets the user control the character of sound by
controlling the levels of several fixed-frequency bands. The bands are characterized by
their center and crossover frequencies.

In practice, the calling application or framework is often first interested in the number of
bands that the EQ implementation supports. This number can be queried by a single call
to OMX_GetConfig with sBandIndex set to zero. The query results in the same data
structure with the maximum value of sBandIndex filled with N-1, where N is the
number of frequency bands. The same structure will also contain the frequency and level
limits for the first band. Similar queries for the rest of the bands yield the information
needed, for example, to construct a user interface for the equalizer.

OMX_AUDIO_CONFIG_EQUALIZERTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_EQUALIZERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BU32 sBandIndex;
 OMX_BU32 sCenterFreq;
 OMX_BS32 sBandLevel;
} OMX_AUDIO_CONFIG_EQUALIZERTYPE;

4.1.47.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_EQUALIZERTYPE are defined as follows.

 191

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the EQ effect if set to OMX_TRUE or disables the EQ effect if
set to OMX_FALSE.

• sBandIndex is the index of the band to be set or retrieved. The upper limit is
N-1, where N is the number of bands. The lower limit is 0.

• sCenterFreq is the center frequencies in Hz. This is a read-only element and is
used by the caller to determine the lower, center, and upper frequency of this band.

• sBandLevel is the band level in millibels.

4.1.48 OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE
The OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure is used to enable or
disable the stereo widening audio effect, and to set or query the current strength of the
effect. The setting can be changed using the OMX_SetConfig function, and the current
state can be queried using the OMX_GetConfig function. When calling either function,
the index specified for this structure is OMX_IndexConfigAudioStereoWidening.

Stereo widening is a special case of the “audio virtualizer” effect, and is designed to
remove the inside-the-head effect in headphone listening, or to extend the stereo image
beyond the physical loudspeaker span in loudspeaker reproduction.

OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_AUDIO_STEREOWIDENINGTYPE eWideningType;
 OMX_U32 nStereoWidening;
} OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE;

4.1.48.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the stereo widening effect if set to OMX_TRUE or disables
the stereo widening effect if set to OMX_FALSE.

• eWideningType is the stereo widening processing type, as shown in Table
 4-29.

 192

Table 4-29: Stereo Widening Processing Type

Field Name Description
OMX_AUDIO_StereoWideningHeadphones Stereo widening for

headphones.
OMX_AUDIO_StereoWideningLoudspeakers Stereo widening for

two closely spaced
loudspeakers.

OMX_AUDIO_StereoWideningMax Allowance for
expansion in the
number of stereo
widening types.

• nStereoWidening is the stereo widening setting for the port, as a continuous
value from 0 (minimum effect) to 100 (maximum effect). If the component can
implement only a discrete set of presets (say, only on or off), it may round the value
to a nearest available setting. When getting the setting, the exact current value shall
be returned.

4.1.49 OMX_AUDIO_CONFIG_CHORUSTYPE
The OMX_AUDIO_CONFIG_CHORUSTYPE structure is used to enable or disable the
chorus audio effect, and to set or query the current parameters of the effect. The settings
can be changed using the OMX_SetConfig function, and the current state can be
queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioChorus.

Chorus is an audio effect that presents a sound, such as a vocal track, as though it was
performed by two or more singers simultaneously. The effect is produced by feeding the
sound through one or more delay lines with time-variant lengths, and summing the
delayed signals with the original, non-delayed sound. The length of each delay line is
modulated by a low-frequency signal. Modulation waveform and stereo output details are
implementation dependent.

OMX_AUDIO_CONFIG_CHORUSTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_CHORUSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BU32 sDelay;
 OMX_BU32 sModulationRate;
 OMX_U32 nModulationDepth;
 OMX_BU32 nFeedback;
} OMX_AUDIO_CONFIG_CHORUSTYPE;

4.1.49.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHORUSTYPE are defined as follows.

 193

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the chorus effect if set to OMX_TRUE or disables the chorus
effect if set to OMX_FALSE.

• sDelay is the average delay in milliseconds.

• sModulationRate is the rate of modulation in mHz.

• nModulationDepth is the depth of modulation as a percentage of delay zero-
to-peak. The range of values is 0-100.

• nFeedback is the feedback from the chorus output to the input in percentage.

4.1.50 OMX_AUDIO_CONFIG_REVERBERATIONTYPE
The OMX_AUDIO_CONFIG_REVERBERATIONTYPE structure is used to enable or
disable the reverberation effect, and to set or query the current parameters of the effect.
The settings can be changed using the OMX_SetConfig function, and the current state
can be queried using the OMX_GetConfig function. When calling either function, the
index specified for this structure is OMX_IndexConfigAudioReverberation.

The reverberation effect models the effect of a room (room response) to the sound. The
room response is divided into three sections: direct path, early reflections, and late
reverberation. This division and the effect parameters are essentially the same as used in
the Interactive 3D Audio Rendering Guidelines – Level 2.0 by the Interactive Audio
Special Interest Group (IASIG) of the MIDI Manufacturers Association (MMA). For
more information on this specification, see http://www.iasig.org/pubs/3dl2v1a.pdf.

OMX_AUDIO_CONFIG_REVERBERATIONTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_REVERBERATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BS32 sRoomLevel;
 OMX_BS32 sRoomHighFreqLevel;
 OMX_BS32 sReflectionsLevel;
 OMX_BU32 sReflectionsDelay;
 OMX_BS32 sReverbLevel;
 OMX_BU32 sReverbDelay;
 OMX_BU32 sDecayTime;
 OMX_BU32 nDecayHighFreqRatio;
 OMX_U32 nDensity;
 OMX_U32 nDiffusion;
 OMX_BU32 sReferenceHighFreq;
} OMX_AUDIO_CONFIG_REVERBERATIONTYPE;

4.1.50.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_REVERBERATIONTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the reverberation effect if set to OMX_TRUE or disables the
reverberation effect if set to OMX_FALSE.

• sRoomLevel is the intensity level for the whole room effect, including both
early reflections and late reverberation, in millibels.

• sRoomHighFreqLevel is the attenuation in millibels at high frequencies
relative to the intensity at low frequencies.

• sReflectionsLevel is the intensity level of early reflections, which are
relative to the room level value, in millibels.

• sReflectionsDelay is the time delay in milliseconds of the first reflection
relative to the direct path.

• sReverbLevel is the intensity level in millibels of late reverberation relative to
the room level.

• sReverbDelay is the time delay in milliseconds from the first early reflection
to the beginning of the late reverberation section.

• sDecayTime is the late reverberation decay time in milliseconds at low
frequencies, defined as the time needed for the reverberation to decay by 60 dB.

• nDecayHighFreqRatio is the ratio of high-frequency decay time relative to
low-frequency decay time as percentage in the range 0–100.

• nDensity is the modal density in the late reverberation decay as a percentage.
The range of values is 0-100.

• nDiffusion is the echo density in the late reverberation decay as a percentage.
The range of values is 0-100.

• sReferenceHighFreq is the reference high frequency in Hertz. This is the
frequency used as the reference for all of the high-frequency parameter settings.

4.1.51 OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE
The OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE structure is used to enable or
disable echo canceling, which removes undesired echo from speech or audio. The setting
can be changed using the OMX_SetConfig function, and the current state can be
queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioEchoCancelation.

OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;

 194

 195

 OMX_AUDIO_ECHOCANTYPE eEchoCancelation;
} OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE;

4.1.51.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eEchoCancelation is the enumeration for enabling/disabling echo
cancellation and selecting the mode, as shown in Table 4-30.

Table 4-30: Echo Cancellation Values

Field Name Description
OMX_AUDIO_EchoCanOff Echo cancellation is disabled.
OMX_AUDIO_EchoCanNormal Echo cancellation normal

operation; echo from handset
plastics and face.

OMX_AUDIO_EchoCanHFree Echo cancellation optimized for
hands-free operation.

OMX_AUDIO_EchoCanCarKit Echo cancellation optimized for
car kit (longer echo).

OMX_AUDIO_EchoCanMax Allowance for expansion with
additional types.

4.1.52 OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE
The OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE structure is used to enable or
disable noise reduction processing, which removes undesired noise from audio. The
setting can be changed using the OMX_SetConfig function, and the current state can
be queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioNoiseReduction.

OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bNoiseReduction;
} OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE;

4.1.52.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• bNoiseReduction enables noise reduction processing if set to OMX_TRUE
or disables noise reduction processing if set to OMX_FALSE.

4.2 Image and Video Common
This section describes the parameter and configuration details for ports in the video and
image domains. These parameter and configurations details are specified in the
OMX_IVCommon.h header.

4.2.1 Uncompressed Data Formats
Both image and video ports operate on compressed and uncompressed data. The formats
for uncompressed pixel data are common to both image and video. Table 4-31 lists the
uncompressed formats.

Table 4-31: Uncompressed Data Formats

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_FormatUnused Placeholder value when format is

unknown, or specified using a
vendor-specific means.

OMX_COLOR_FormatMonochrome 1 bit per pixel monochrome.
OMX_COLOR_FormatL2 2 bit per pixel luminance.
OMX_COLOR_FormatL4 4 bit per pixel luminance.
OMX_COLOR_FormatL8 8 bit per pixel luminance.
OMX_COLOR_FormatL16 16 bit per pixel luminance.
OMX_COLOR_FormatL24 24 bit per pixel luminance.
OMX_COLOR_FormatL32 32 bit per pixel luminance.
OMX_COLOR_Format8bitRGB332 8 bits per pixel RGB format with

colors stored as Red 7:5, Green 4:2,
and Blue 1:0.

OMX_COLOR_Format12bitRGB444 12 bits per pixel RGB format with
colors stored as Red 11:8, Green 7:4,
and Blue 3:0.

OMX_COLOR_Format16bitARGB4444 16 bits per pixel ARGB format with
colors stored as Alpha 15:12, Red
11:8, Green 7:4, and Blue 3:0.

OMX_COLOR_Format16bitARGB1555 16 bits per pixel ARGB format with
colors stored as Alpha 15, Red
14:10, Green 9:5, and Blue 4:0.

OMX_COLOR_Format16bitRGB565 16 bits per pixel RGB format with
colors stored as Red 15:11, Green
10:5, and Blue 4:0.

 196

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_Format16bitBGR565 16 bits per pixel BGR format with

colors stored as Blue 15:11, Green
10:5, and Red 4:0.

OMX_COLOR_Format18bitRGB666 18 bits per pixel RGB format with
colors stored as Red 17:12, Green
11:6, and Blue 5:0.

OMX_COLOR_Format18BitBGR666 18 bits per pixel BGR format with
colors stored as Blue 17:12, Green
11:6, and Red 5:0.

OMX_COLOR_Format18BitARGB1665 18 bits per pixel ARGB format with
colors stored as Alpha 17, Red
16:11, Green 10:5, and Blue 4:0.

OMX_COLOR_Format19BitARGB1666 19 bits per pixel ARGB format with
colors stored as Alpha 18, Red
17:12, Green 11:6, and Blue 5:0.

OMX_COLOR_Format24bitRGB888 24 bits per pixel RGB format with
colors stored as Red 23:16, Green
15:8, and Blue 7:0.

OMX_COLOR_Format24bitBGR888 24 bits per pixel BGR format with
colors stored as Blue 23:16, Green
15:8, and Red 7:0.

OMX_COLOR_Format24bitARGB1887 24 bits per pixel ARGB format with
colors stored as Alpha 23, Red
22:15, Green 14:7, and Blue 6:0.

OMX_COLOR_Format24bitARGB6666 24 bits per pixel ARGB format with
colors stored as Alpha 23:18, Red
17:12, Green 11:6, and Blue 5:0

OMX_COLOR_Format24bitABGR6666 24 bits per pixel ARGB format with
colors stored as Alpha 23:18, Blue
17:12, Green 11:6, and Red 5:0

OMX_COLOR_Format25bitARGB1888 25 bits per pixel ARGB format with
colors stored as Alpha 24, Red
23:16, Green 15:8, and Blue 7:0.

OMX_COLOR_Format32bitBGRA8888 32 bits per pixel ARGB format with
colors stored as Alpha 31:24 Red
23:16, Green 15:8, and Blue 7:0.

OMX_COLOR_Format32bitARGB8888 24 bits per pixel ABGR format with
colors stored as Alpha 31:24, Blue
23:16, Green 15:8, and Red 7:0.

 197

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_FormatYUV411Planar YUV planar format, organized with

three separate planes for each color
component, namely Y, U, and V
appearing in this order. U and V
pixels are sub-sampled by a factor of
four both horizontally and vertically.

OMX_COLOR_FormatYUV411PackedPlanar YUV planar format, organized with
three separate planes for each color
component, namely Y, U, and V. U
and V pixels are sub-sampled by a
factor of four both horizontally and
vertically. This format differs from
OMX_COLOR_FormatYUV411Pl
anar in that each slice of data shall
contain a plane of Y, U, and V data
in this order, whereas the
OMX_COLOR_FormatYUV411Pl
anar format transfers each plane in
its entirety.

OMX_COLOR_FormatYUV420Planar YUV planar format, organized with
three separate planes for each color
component, namely Y, U, and V
appearing in this order. U and V
pixels are sub-sampled by a factor of
two both horizontally and vertically.

OMX_COLOR_FormatYUV420PackedPlanar YUV planar format, organized with
three separate planes for each color
component, namely Y, U, and V. U
and V pixels are sub-sampled by a
factor of two both horizontally and
vertically. This format differs from
OMX_COLOR_FormatYUV420Pl
anar in that each slice of data shall
contain a plane of Y, U, and V data
in this order, whereas the
OMX_COLOR_FormatYUV420Pl
anar format transfers each plane in
its entirety.

OMX_COLOR_FormatYUV420SemiPlanar YUV planar format, organized with a
first plane containing Y pixels, and a
second plane containing U and V
pixels interleaved with the first U
value first. U and V pixels are sub-
sampled by a factor of two both
horizontally and vertically.

 198

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_FormatYUV420PackedSemiPlanar YUV planar format, organized with a

first plane containing Y pixels, and a
second plane containing U and V
pixels interleaved with the first U
value first. U and V pixels are sub-
sampled by a factor of two both
horizontally and vertically.
This format differs from
OMX_COLOR_FormatYUV420Se
miPlanar in that each slice of data
shall contain a plane of Y, U and V
data, whereas the
OMX_COLOR_FormatYUV420Se
miPlanar format transfers each plane
in its entirety.

OMX_COLOR_FormatYUV422Planar YUV planar format, organized with
three separate planes for each color
component, namely Y, U, and V
appearing in this order.

OMX_COLOR_FormatYUV422PackedPlanar YUV planar format, organized with
three separate planes for each color
component, namely Y, U, and V.
This format differs from
OMX_COLOR_FormatYUV422Pl
anar in that each slice of data shall
contain a plane of Y, U, and V data
in this order, whereas the
OMX_COLOR_FormatYUV422Pl
anar format transfers each plane in
its entirety.

OMX_COLOR_FormatYUV422SemiPlanar YUV planar format, organized with a
first plane containing Y pixels and a
second plane containing U and V
pixels interleaved with the first U
value first.

 199

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_FormatYUV422PackedSemiPlanar YUV planar format, organized with a

first plane containing Y pixels, and a
second plane containing U and V
pixels interleaved with the first U
value first. U and V pixels are sub-
sampled by a factor of two
horizontally.
This format differs from
OMX_COLOR_FormatYUV422Se
miPlanar in that each slice of data
shall contain a plane of Y, U and V
data, whereas the
OMX_COLOR_FormatYUV422Se
miPlanar format transfers each plane
in its entirety.

OMX_COLOR_FormatYCbYCr 16 bits per pixel YUV interleaved
format organized as YUYV (i.e.,
YCbYCr).

OMX_COLOR_FormatYCrYCb 16 bits per pixel YUV interleaved
format organized as YVYU (i.e.,
YCrYCb).

OMX_COLOR_FormatCbYCrY 16 bits per pixel YUV interleaved
format organized as UYVY (i.e.,
CbYCrY).

OMX_COLOR_FormatCrYCbY 16 bits per pixel YUV interleaved
format organized as VYUY (i.e.,
CrYCbY).

OMX_COLOR_FormatYUV444Interleaved 12 bits per pixel YUV format with
colors stores as Y 11:8, U 7:4, and V
3:0.

OMX_COLOR_FormatRawBayer8bit SMIA 8-bit raw Bayer pattern
camera format.

OMX_COLOR_FormatRawBayer10bit SMIA 10-bit raw Bayer pattern
camera format.

OMX_COLOR_FormatRawBayer8bitcompressed SMIA compressed 8-bit camera
output format.

4.2.2 Minimum Buffer Payload Size for Uncompressed Data
Uncompressed image and video data have a minimum buffer payload size. The minimum
buffer payload size is determined by the nSliceHeight and nStride fields of the
port definition structure. nStride indicates the width of a span in bytes; when negative,
it indicates the data is bottom-up instead of the top-down). nSliceHeight indicates
the number of spans in a slice.

 200

The minimum buffer payload size can be easily calculated as the absolute value of
(nSliceHeight * nStride).

4.2.3 Buffer Payload Requirements for Uncompressed Data
Each image or video port on a component shall meet several requirements for buffer
payloads of uncompressed image and video data. These requirements are in place to
enable components from different vendors to inter-operate together correctly, and are
collectively referred to as inter-op.

The requirements are as follows:

• Each non-empty buffer payload shall contain at least one full slice, unless it
contains the end of the image (which may not be aligned to a integer multiple of
slice height). For example, if the image height is 100 and the slice height is 16,
the last slice of the image will contain only four spans.

• Each non-empty buffer payload shall contain an integer multiple of slice height.

• When the uncompressed image data format is planar, data from two different
planes cannot reside in the same buffer payload. This means that a component
shall pass a full plane in its entirety in one or more buffers, followed by another
plane starting in a different buffer.

• An exception to the above requirement exists for the packed planar uncompressed
formats, OMX_COLOR_FormatYUV420PackedPlanar,
OMX_COLOR_FormatYUV420PackedSemiPlanar,
OMX_COLOR_FormatYUV411PackedPlanar,
OMX_COLOR_FormatYUV422PackedPlanar,and
OMX_COLOR_FormatYUV422PackedSemiPlanar. For each of these
uncompressed formats, each buffer payload contains a slice of the Y, U, and V
planes. The slices are always ordered Y, U, and V. The nSliceHeight refers
to the slice height of the Y plane. The slice height of the U and V planes are
derived from the slice height for the Y plane based upon for the format. For
example, for OMX_COLOR_FormatYUV420PackedPlanar with a
nSliceHeight of 16, a buffer payload shall contain 16 spans of Y followed by
8 spans of U (half the stride) and 8 spans of V (half the stride). This enables ports
that process planar data in slices to operate on all three planes simultaneously,
instead of forcing the ports to buffer the entire image before processing can begin.

4.2.4 Parameter and Configuration Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all of the standard index values used with the functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 4-32
describes the index values that relate to video.

 201

Table 4-32: Index Values for Video

Index Description
OMX_IndexParamCommonDeblocking Used with OMX_GetParameter and

OMX_SetParameter to access
OMX_PARAM_DEBLOCKINGTYPE. De-
blocking reduces the appearance of block-
like artifacts that appear in compressed
images or video streams.

OMX_IndexParamCommonSensorMode Used with OMX_GetParameter and
OMX_SetParameter to access
OMX_PARAM_SENSORMODETYPE. The
mode of the sensor controls the resolution
and frame rate of data captured by a
camera.

OMX_IndexParamCommonInterleave Used with OMX_GetParameter and
OMX_SetParameter to access
OMX_PARAM_INTERLEAVETYPE. This
feature is used to interleave plane or input
port data.

OMX_IndexConfigCommonColorFormat
 Conversion

Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_COLORCONVERSIONTY
PE. Color conversion programs the
coefficients used when converting pixel
data from RGB to YUV and visa-versa.

OMX_IndexConfigCommonScale Used with OMX_GetConfig and
OMX_SetConfig to access the
OMX_CONFIG_SCALEFACTORTYPE.
Scaling stretches or shrinks a rectangular
region of pixels.

OMX_IndexConfigCommonImageFilter Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_IMAGEFILTERTYPE.
Image filtering applies digital effects to a
video or image stream.

OMX_IndexConfigCommonColorEnhancement Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_COLORENHANCEMENTT
YPE. Color enhancement replaces U and
V values of a YUV image with specified
constant values to apply a color effect to
an image or video stream.

 202

Index Description
OMX_IndexConfigCommonColorKey Used with OMX_GetConfig and

OMX_SetConfig to access
OMX_CONFIG_COLORKEYTYPE. Color
keying performs per-pixel selection
between two sources with mixing image
or video data.

OMX_IndexConfigCommonColorBlend Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_COLORBLENDTYPE.
Color blending performs arithmetic
operations between two sources.

OMX_IndexConfigCommonFrame
 Stabilisation

Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_FRAMESTABTYPE.

OMX_IndexConfigCommonRotate Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_ROTATIONTYPE.
Rotation rotates video or image frames
clockwise by a specified angle.

OMX_IndexConfigCommonMirror Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_MIRRORTYPE.
Mirroring reflects video or image frames
along the horizontal and vertical axes.

OMX_IndexConfigCommonOutputPosition Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_POINTTYPE. The output
position indicates the location of a video
or image stream relative to another image
or video stream. The output position is
also used to indicate the location of a
video or image stream relative to an
output device such as an LCD display.

OMX_IndexConfigCommonInputCrop Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_RECTTYPE. Crops the
image or video stream to the specified
rectangle.

OMX_IndexConfigCommonOutputCrop Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_RECTTYPE. Crops the
image or video stream to the specified
rectangle.

 203

Index Description
OMX_IndexConfigCommonDigitalZoom Used with OMX_GetConfig and

OMX_SetConfig to access
OMX_CONFIG_SCALEFACTORTYPE.
Digital zoom implements a camera zoom
feature digitally.

OMX_IndexConfigCommonOpticalZoom Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_SCALEFACTORTYPE.
Optical zoom “zooms” an image in or out
using a lens on a camera.

OMX_IndexConfigCommonWhiteBalance Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_WHITEBALCONTROLTY
PE. White balance performs color
correction so that a white object appears
truly white and not a tint of the color of
the light source.

OMX_IndexConfigCommonExposure Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_EXPOSURECONTROLTY
PE. Exposure controls the image sensor
exposure when capturing images or
streaming video.

OMX_IndexConfigCommonContrast Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_CONTRASTTYPE.
Contrast controls the relative difference
between pixels in video or image data.

OMX_IndexConfigCommonBrightness Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_BRIGHTNESSTYPE.
Brightness controls the luminosity of the
pixels in video or image data.

OMX_IndexConfigCommonBacklight Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_BACKLIGHTTYPE.
Backlight controls the strength of the
backlight, and the time that the backlight
is turned on.

OMX_IndexConfigCommonGamma Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_GAMMATYPE. Gamma
corrects for the non-linear intensity of
pixels on a display relative to the digital
value of the pixel for video or image data.

 204

Index Description
OMX_IndexConfigCommonSaturation Used with OMX_GetConfig and

OMX_SetConfig to access
OMX_CONFIG_SATURATIONTYPE.
Saturation controls the hue intensity of
video or image data.

OMX_IndexConfigCommonLightness Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_LIGHTNESSTYPE.
Lightness controls the non-linear response
to the brightness of pixels in video or
image data.

OMX_IndexConfigCommonExclusionRect Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_RECTTYPE. This feature
enables a component to exclude a specific
region from rendering to save on
processing, resulting in higher
performance and lower power
consumption. This configuration is often
used in video conferencing where a
section of the decoded input stream is
covered by a preview of the viewer’s
image.

OMX_IndexConfigCommonPlaneBlend Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_PLANEBLENDTYPE.
This feature controls the blending of
multiple input sources or ports into a
single destination.

OMX_IndexConfigCommonTransitionEffect Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_TRANSITIONEFFECTT
YPE.

OMX_IndexConfigCommonDithering Used with OMX_GetConfig and
OMX_SetConfig to access
OMX_CONFIG_DITHERTYPE. Dithering
is used when performing color space
conversion from a color format that has a
higher precision to a color format with a
lower precision.
OMX_CONFIG_EXPOSUREVALUETYPE
. Query or config the exposure value of
the camera.

OMX_IndexConfigCommonExposureValue

 205

 206

Index Description
OMX_IndexConfigCommonOutputSize OMX_FRAMESIZETYPE.

Query or config the frame size of an
output video sink region.

OMX_IndexParamCommonExtraQuantData OMX_OTHER_EXTRADATATYPE
Used to enable or query the generation of
extra payload information consisting of
quantization information.

OMX_IndexConfigCaptureMode OMX_CONFIG_CAPTUREMODETYPE
Query or config the capture mode of a
camera.

OMX_IndexAutoPauseAfterCapture OMX_CONFIG_BOOLEANTYPE
Query or config the auto pause
mechanism after capturing is complete for
a camera.

OMX_IndexConfigCapturing OMX_CONFIG_BOOLEANTYPE.
Query a component if it is capturing data.

OMX_IndexConfigCommonFocusRegion OMX_CONFIG_FOCUSREGIONTYPE
Query or config the focus
regions of interest.

OMX_IndexConfigCommonFocusStatus OMX_CONFIG_FOCUSSTATUSTYPE
Query the focus status of the
individual focus regions.

4.2.5 OMX_PARAM_DEBLOCKINGTYPE
De-blocking is used to reduce the appearance of block-like artifacts that appear in
compressed images or video streams.

OMX_PARAM_DEBLOCKINGTYPE is defined as follows.
typedef struct OMX_PARAM_DEBLOCKINGTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDeblocking;
} OMX_PARAM_DEBLOCKINGTYPE;

4.2.5.1 Parameters
The parameters for OMX_PARAM_DEBLOCKINGTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bDeblocking is a Boolean value that enables or disables de-blocking.

 207

4.2.6 OMX_PARAM_INTERLEAVETYPE
Interleaving is used to interleave or de-interleave pixel data between multiple ports.
When interleaving, a component uses pixel data from multiple input ports to merge into a
single output port. When de-interleaving, a component uses pixel data from a single input
port, splitting the color channels into separate output ports.

For example, a input port receiving 16-bit RGB can de-interleave R, G, and B color
channels to three separate output ports, where the output ports are formatted as
monochrome.

Similarly, a component could interleave three luminance ports containing Y, U, and V
data into a single output port formatted as YUV420.

The OMX_PARAM_INTERLEAVETYPE structure interleaves pixel data.
OMX_PARAM_INTERLEAVETYPE is defined as follows.
typedef struct OMX_PARAM_INTERLEAVETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_U32 nInterleavePortIndex;
} OMX_PARAM_INTERLEAVETYPE;

4.2.6.1 Parameters
The parameters for OMX_PARAM_INTERLEAVETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnable is a Boolean value that enables interleaving.

• nInterleavePortIndex indicates the port to interleave or de-interleave with.
When nPortIndex is an input port, nInterleavePortIndex contains the
output port to interleave with. When nPortIndex is an output port,
nInterleavePortIndex contains the input port to de-interleave with.

4.2.7 OMX_PARAM_SENSORMODETYPE
The sensor mode is used to specify the frame rate and resolution that an image sensor or
camera uses to capture image or video. The sensor mode is distinctly separate from the
port on a video source, which may modify the resolution of the data produced by the
image sensor.

OMX_PARAM_SENSORMODETYPE is defined as follows.
typedef struct OMX_PARAM_SENSORMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nFrameRate;

 208

 OMX_BOOL bOneShot;
 OMX_FRAMESIZETYPE sFrameSize;
} OMX_PARAM_SENSORMODETYPE;

4.2.7.1 Parameters
The parameters for OMX_PARAM_SENSORMODETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nFrameRate is the frame rate is in frames per second. This value is represented
in Q16 format. The value 0x0 is used to indicate the frame rate is unknown,
variable, or is not needed.

• bOneShot is a Boolean value that enables or disables one shot mode.

• sFrameSize is the resolution of the image sensor mode.

4.2.8 OMX_CONFIG_COLORCONVERSIONTYPE
Color conversion is used to specify the coefficients when converting image or video pixel
data from YUV to RGB and visa-versa.

Converting from RGB to YUV format uses the following standard formulae:

Y = 0.299R + 0.587G + 0.114B

U = -0.147R - 0.289G + 0.436B

V = 0.615R - 0.515G - 0.100B

Converting from YUV to RGB format uses the following standard formulae:

R = Y + 1.140V

G = Y - 0.395U - 0.581V

B = Y + 2.032U

The color matrix and color offset specified in the color conversion allow for the
coefficients used when converting from RGB to YUV and visa-versa to be programmed
explicitly.

OMX_CONFIG_COLORCONVERSIONTYPE is defined as follows.
typedef struct OMX_CONFIG_COLORCONVERSIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 xColorMatrix[3][3];
 OMX_S32 xColorOffset[4];
}OMX_CONFIG_COLORCONVERSIONTYPE;

4.2.8.1 Parameters
The parameters for OMX_CONFIG_COLORCONVERSIONTYPE are defined as follows.

 209

• nPortIndex is the read-only field indicating the index of the port.

• xColorMatrix[3][3] is the color conversion matrix when converting from
RGB to YUV in Q16 format with the following standard formulae:

Y = Yr*R + Yg*G + Yb*B
U = Ur*R – Ug*G + Ub*B
V = Vr*R – Vg*G – Vb*B

Each constant is represented in the 3x3 matrix as:

Yr Yg Yb
Ur Ug Ub
Vr Vg Vb

Y constants are in the first row, followed by U and V constants in subsequent
rows. All constants multiplied against red color values are in the first column
followed by green and blue color constants, as follows
xColorMatrix[1][1] = Yr
xColorMatrix[3][3] = Vb,
xColorMatrix[1][3] = Yb

• xColorOffset[4] is the color conversion vector when converting from YUV
to RGB in Q16 format. The standard formulae are as follows:

R = Y + C1*U
G = Y – C2*U – C3*V
B = Y – C4*V

Each constant is represented in the array:

C1 C2 C3 C4

4.2.9 OMX_CONFIG_SCALEFACTORTYPE
Scaling is used to stretch or shrink video or image data on the specified input or output
port.

OMX_CONFIG_SCALEFACTORTYPE is defined as follows.
typedef struct OMX_CONFIG_SCALEFACTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 xWidth;
 OMX_S32 xHeight;
}OMX_CONFIG_SCALEFACTORTYPE;

4.2.9.1 Parameters
The parameters for OMX_CONFIG_SCALEFACTORTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

 210

• xWidth is the scaling in the horizontal direction in Q16 format (i.e., signed
15.16 fixed pointed format). For example, a scaling factor of 0x10000 would not
change the width, but a scaling factor of 0x8000 would scale the width by 50%.

• xHeight is the scaling in the vertical direction in Q16 format (i.e., signed 15.16
fixed pointed format). For example, a scaling factor of 0x10000 would not change
the height, but a scaling factor of 0x20000 would scale the height by 200%.

4.2.10 OMX_CONFIG_IMAGEFILTERTYPE
Image filtering is used to apply digital effects to video or image data on the specified port.

OMX_CONFIG_IMAGEFILTERTYPE is defined as follows.
typedef struct OMX_CONFIG_IMAGEFILTERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGEFILTERTYPE eImageFilter;
} OMX_CONFIG_IMAGEFILTERTYPE;

4.2.10.1 Parameters
The parameters for OMX_CONFIG_IMAGEFILTERTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eImageFilter is the enumerated valued indicating the image filter used. Table
 4-33 details the values that can be selected for the image filter.

Table 4-33: Image Filter Values

OMX_IMAGEFILTERTYPE
Enumerated Value

Description

OMX_ImageFilterNone Used to disable image filtering.
OMX_ImageFilterNoise Filters data to remove noise from the image.
OMX_ImageFilterEmboss Filters data to give an embossed appearance (stamped

from the rear for a raised effect along edges).
OMX_ImageFilterNegative Filters data to negate colors.
OMX_ImageFilterSketch Filters data to give the appearance of having been

sketched by an artist.
OMX_ImageFilterOilPaint Filters data to appear as if it were hand painted using a

brush with oil paints.
OMX_ImageFilterHatch Filters data to appear as if it were printed on a

material with a grain.
OMX_ImageFilterGpen Filters data to appear as if it were drawn with a pen.
OMX_ImageFilterAntialias Filters data to anti-alias pixels so as to sharpen edges

in the image or video stream.

 211

OMX_IMAGEFILTERTYPE
Enumerated Value

Description

OMX_ImageFilterDeRing Filters data to remove erroneous artifacts introduced
by inherent limitations of the numerical processing of
digital image data.

OMX_ImageFilterSolarize Filters data to create a solarization effect.

4.2.11 OMX_CONFIG_COLORENHANCEMENTTYPE
Color enhancement is applied to image or video data in YUV formats, where the U and V
color components of each pixel are replaced with the specified values. Replacement
occurs for each pixel and every frame. This enables a component to add specified color
hues to the data. For example, this configuration can be used to convert color image or
video data to sepia tone.

OMX_CONFIG_COLORENHANCEMENTTYPE is defined as follows.
typedef struct OMX_CONFIG_COLORENHANCEMENTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bColorEnhancement;
 OMX_U8 nCustomizedU;
 OMX_U8 nCustomizedV;
 } OMX_CONFIG_COLORENHANCEMENTTYPE;

4.2.11.1 Parameters
The parameters for OMX_CONFIG_COLORENHANCEMENTTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bColorEnhancement is the Boolean value that enables or disables color
enhancement.

• nCustomizedU is a value for replacing the U color component of each pixel.
The range of values is 0-255. Practical values are in the range of 16-240.

• nCustomizedV is the value for replacing the V color component of each pixel.
The range of values is 0-255. Practical values are in the range of 16-240.

4.2.12 OMX_CONFIG_COLORKEYTYPE
Color keying is used to perform per-pixel selection between two sources when mixing
image or video data.

OMX_CONFIG_COLORKEYTYPE is defined as follows.

 212

typedef struct OMX_CONFIG_COLORKEYTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nARGBColor;
 OMX_U32 nARGBMask;
} OMX_CONFIG_COLORKEYTYPE;

4.2.12.1

4.2.13.1

Parameters
The parameters for OMX_CONFIG_COLORKEYTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nARGBColor indicates a 32-bit color used for keying, where bits 0-7 are blue,
bits 15-8 are green, bits 24-16 are red, and bits 31-24 are for alpha. The 32-bit
ARGB color is converted to the RGB color format of the port before performing
keying operations.

• nARGBMask indicates a 32-bit logical AND mask, which is converted to the
RGB color format of the port before performing keying operations.

4.2.13 OMX_CONFIG_COLORBLENDTYPE
Color blending is used to perform arithmetic operations between two sources when
mixing image or video data. If more than one input port (representing a plane) on a
component is using this config, it should be used in conjunction with
OMX_CONFIG_PLANEBLENDTYPE to specify the Z-order of the different ports via
the nDepth field.

OMX_CONFIG_COLORBLENDTYPE is defined as follows.

Parameters
The parameters for OMX_CONFIG_COLORBLENDTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nRGBAlphaConstant is the 32-bit per color channel constant alpha value for
blending when the eColorBlend is set to OMX_ColorBlendAlphaConstant on
an input port. If defined on an output port, the nRGBAlphaConstant value is
written as the per pixel alpha value in the composed image (if the output format

typedef struct OMX_CONFIG_COLORBLENDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nRGBAlphaConstant;
 OMX_COLORBLENDTYPE eColorBlend;
} OMX_CONFIG_COLORBLENDTYPE;

supports per pixel alpha). If eColorBlend is OMX_ColorBlendAlphaPerPixel
is defined, the nRGBAlphaConstant value is ignored and the alpha
coefficients for the output buffer are taken from the corresponding alpha values of
the lowest nDepth (=highest value) input plane.
A value of 0 means fully transparent and a value of 1 (0xFFFFFFFF) means
opaque.

• eColorBlend is the enumerated value indicating the color blend operation used.
eColorBlend is only valid when set on ports representing the image source
input (highest nDepth (=lowest value) plane) or on the composed plane. If set on
an output port, assuming the output format supports per pixel alpha, the
nRGBAlphaConstant value is taken (with eColorBlend =
OMX_ColorBlendAlphaConstant) or the alpha value of the lowest nDepth plane
is taken (eColorBlend = OMX_ColorBlendAlphaPerPixel), as per pixel alpha
value in the composed image. Note in the latter case a) if the input (alpha) format
does not equal the composed image (alpha) format, the implicit color space
conversion takes care of re-calculating the alpha value, and b) if the input format
does not have an alpha value, the per pixel alpha value of the composed plane is
set to non-transparant. Table 4-34 details the values that can be selected for color
blending.

Table 4-34: Color Blending Values

OMX_COLORBLENDTYPE Enumerated
Value

Description

OMX_ColorBlendNone Disables color blending.
OMX_ColorBlendAlphaConstant Blends source and destination using the

function (alpha_constant * source) +
((1 – alpha_constant) * destination),
where the alpha constant is specified
for the entire operation.

OMX_ColorBlendAlphaPerPixel Blends source and destination using the
function (alpha * source) + ((1 – alpha)
* destination), where the alpha value is
per pixel.

OMX_ColorBlendAlternate Alternates between selecting source
and destination pixels (i.e.,
checkerboard of source and destination
pixels)..

OMX_ColorBlendAnd Combines source and destination pixels
using the function (source &
destination).

OMX_ColorBlendOr Combines source and destination pixels
using the function (source |
destination).

OMX_ColorBlendInvert Combines source and destination pixels
using the function ~(source).

 213

 214

4.2.14 OMX_FRAMESIZETYPE
Frame size is a generic structure used to indicate the size of a frame. This structure is
referred to by the OMX_PARAM_SENSORMODETYPE structure.

OMX_FRAMESIZETYPE is defined as follows.
typedef struct OMX_FRAMESIZETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nWidth;
 OMX_U32 nHeight;
} OMX_FRAMESIZETYPE;

4.2.14.1 Parameters
The parameters for OMX_FRAMESIZETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nWidth is the width of the rectangle in pixels.

• nHeight is the height of the rectangle in pixels.

4.2.15 OMX_CONFIG_ROTATIONTYPE
Rotation is applied to image or video data on a specified port. Components may support
rotation only on right angles such as 0°, 90°, 180°, and 270°, although components may
support arbitrary rotation angles. Values are interpreted as clockwise.

OMX_CONFIG_ROTATIONTYPE is defined as follows.
typedef struct OMX_CONFIG_ROTATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nRotation;
} OMX_CONFIG_ROTATIONTYPE;

4.2.15.1 Parameters
The parameters for OMX_CONFIG_ROTATIONTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nRotation is an integer value that represents the angle of rotation. Some
components may only support rotation on right angles such as 0°, 90°, 180°, and
270°. Rotation is clockwise.

4.2.16 OMX_CONFIG_MIRRORTYPE
Mirroring is applied to pixel or image data on a specified port. The data can be mirrored
in the horizontal direction, vertical direction, or both horizontal and vertical directions.

 215

OMX_CONFIG_MIRRORTYPE is defined as follows.
typedef struct OMX_CONFIG_MIRRORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_MIRRORTYPE eMirror;
} OMX_CONFIG_MIRRORTYPE;

4.2.16.1 Parameters
The parameters for OMX_CONFIG_MIRRORTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eMirror contains the enumerated values indicating the mirroring applied to
image or video data. OMX_MirrorNone is used to disable mirroring or have no
mirroring. Table 4-35 identifies the mirroring values.

Table 4-35: Mirror Type Values

OMX_MIRRORTYPE
Enumerated Value

Description

OMX_MirrorNone Disables mirroring (i.e., no mirroring).
OMX_MirrorHorizontal Mirrors pixels in the horizontal direction. Hence, pixel at

0,1 is swapped with pixel W,1 where W is the width of
the image.

OMX_MirrorVertical Mirrors pixels in the vertical direction. Hence, pixel at
1,0 is swapped with pixel 1,H where H is the height of
the image.

OMX_MirrorBoth Mirrors pixels in the horizontal and vertical directions.
Hence, pixel at 0, 0 is swapped with pixel W,H where W
is the width of the image and H is the height of the
image.

4.2.17 OMX_CONFIG_POINTTYPE
A point is used to specify the location of image or video data on a port relative to another
source image or video stream.

OMX_CONFIG_POINTTYPE is defined as follows.
typedef struct OMX_CONFIG_POINTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nX;
 OMX_S32 nY;
} OMX_CONFIG_POINTTYPE;

 216

4.2.17.1 Parameters
The parameters for OMX_CONFIG_POINTTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nX is the X-coordinate location in pixels in the horizontal direction.

• nY is the Y-coordinate location in pixels in the vertical direction.

4.2.18 OMX_CONFIG_RECTTYPE
Rectangles are used with several configuration types to indicate orientation, position,
inclusion, or exclusion.

OMX_CONFIG_RECTTYPE is defined as follows.
typedef struct OMX_CONFIG_RECTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nLeft;
 OMX_S32 nTop;
 OMX_U32 nWidth;
 OMX_U32 nHeight;
} OMX_CONFIG_RECTTYPE;

4.2.18.1 Parameters
The parameters for OMX_CONFIG_RECTTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nLeft is the leftmost coordinate of the rectangle.

• nTop is the topmost coordinate of the rectangle.

• nWidth is the width of the rectangle in pixels.

• nHeight is the height of the rectangle in pixels.

4.2.19 OMX_CONFIG_FRAMESTABTYPE
Frame stabilization reduces motion blur during image capture or video recording. Frame
stabilization is most often associated with camera sensor source components, a camera
sensor filter, or a digital signal processor (DSP).

The frame stabilization feature compensates for the extremely unsteady nature of cameras
on handheld devices such as a cell phone or personal digital assistant (PDA).

OMX_CONFIG_FRAMESTABTYPE is defined as follows.

 217

typedef struct OMX_CONFIG_FRAMESTABTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bStab;
} OMX_CONFIG_FRAMESTABTYPE;

4.2.19.1 Parameters
The parameters for OMX_CONFIG_FRAMESTABTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bStab is the Boolean value that enables or disables frame stabilization.

4.2.20 OMX_CONFIG_WHITEBALCONTROLTYPE
White balance control is used with camera sensors to adjust the color temperature of the
image so that pure white appears as white in the image. This adjustment can be controlled
automatically or manually.

OMX_CONFIG_WHITEBALCONTROLTYPE is defined as follows.
typedef struct OMX_CONFIG_WHITEBALCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_WHITEBALCONTROLTYPE eWhiteBalControl;
} OMX_CONFIG_WHITEBALCONTROLTYPE;

4.2.20.1 Parameters
The parameters for OMX_CONFIG_WHITEBALCONTROLTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eWhiteBalControl is the enumerated valued indicating the type of white
balance control used. Table 4-36 details the values that can be selected for white
balance control.

Table 4-36: White Balance Control

OMX_WHITEBALCONTROLTYPE
Enumerated Value

Description

OMX_WhiteBalControlOff Disables exposure control.
OMX_WhiteBalControlAuto Automatic white balance control. The

color temperature of the captured image
or video stream is adjusted per frame
using a white reference from within each
frame.

OMX_WhiteBalControlSunLight Manual white balance control when the
sun provides the light source.

 218

OMX_WHITEBALCONTROLTYPE
Enumerated Value

Description

OMX_WhiteBalControlCloudy Manual white balance control when the
sun provides the light source through
clouds.

OMX_WhiteBalControlShade Manual white balance control when the
light source is the sun and the scene is in
the shade.

OMX_WhiteBalControlTungsten Manual white balance control when the
light source is tungsten.

OMX_WhiteBalControlFluorescent Manual white balance control when the
light source is fluorescent.

OMX_WhiteBalControlIncandescent Manual white balance control when the
light source is incandescent.

OMX_WhiteBalControlFlash Manual white balance control when the
light source is a flash.

OMX_WhiteBalControlHorizon Manual white balance control when the
light source is the sun on the horizon.

4.2.21 OMX_CONFIG_EXPOSURECONTROLTYPE
Exposure is used to control the image sensor exposure when capturing images or
streaming video.

OMX_CONFIG_EXPOSURECONTROLTYPE is defined as follows.
typedef struct OMX_CONFIG_EXPOSURECONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_EXPOSURECONTROLTYPE eExposureControl;
} OMX_CONFIG_EXPOSURECONTROLTYPE;

4.2.21.1 Parameters
The parameters for OMX_CONFIG_EXPOSURECONTROLTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eExposureControl is an enumerated value that selects the type of exposure
used. Table 4-37 details the values that can be selected for exposure.

Table 4-37: Exposure Control

OMX_EXPOSURECONTROLTYPE
Enumerated Value

Description

OMX_ExposureControlOff Disables exposure control
OMX_ExposureControlAuto Automatic exposure
OMX_ExposureControlNight Exposure at night

 219

OMX_EXPOSURECONTROLTYPE
Enumerated Value

Description

OMX_ExposureControlBackLight Exposure with backlight illuminating
the subject

OMX_ExposureControlSpotlight Exposure with a spotlight
illuminating the subject

OMX_ExposureControlSports Exposure for sports
OMX_ExposureControlSnow Exposure for the subject in snow
OMX_ExposureControlBeach Exposure for the subject at a beach
OMX_ExposureControlLargeAperture Exposure when using a large aperture

on the camera
OMX_ExposureControlSmallApperture Exposure when using a small

aperture on the camera

4.2.22 OMX_CONFIG_CONTRASTTYPE
Contrast controls the relative difference between the pixels. Contrast is applied to image
or video data on the specified port.

OMX_CONFIG_CONTRASTTYPE is defined as follows.
typedef struct OMX_CONFIG_CONTRASTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nContrast;
 } OMX_CONFIG_CONTRASTTYPE;

4.2.22.1 Parameters
The parameters for OMX_CONFIG_CONTRASTTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nContrast is the value for contrast. The range of values is -100 to 100. The
value 0x0 indicates no contrast change to pixel data.

4.2.23 OMX_CONFIG_BRIGHTNESSTYPE
Brightness controls the luminosity of the pixels in the video or image data. Brightness is
applied to the image or video data on the specified port.

OMX_CONFIG_BRIGHTNESSTYPE is defined as follows.
typedef struct OMX_CONFIG_BRIGHTNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nBrightness;
} OMX_CONFIG_BRIGHTNESSTYPE;

 220

4.2.23.1 Parameters
The parameters for OMX_CONFIG_BRIGHTNESSTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nBrightness is the value for brightness in the range 0% to 100%, where 0%
produces all black pixels and 100% produces entirely white.

4.2.24 OMX_CONFIG_BACKLIGHTTYPE
The backlight of a flat panel type of display such as a liquid crystal display (LCD) or a
thin film transistor (TFT) panel can be controlled using this configuration setting. The IL
client sets the percentage brightness of the backlight and the timeout before the backlight
automatically turns off.

OMX_CONFIG_BACKLIGHTTYPE is defined as follows.
typedef struct OMX_CONFIG_BACKLIGHTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nBacklight;
 OMX_U32 nTimeout;
} OMX_CONFIG_BACKLIGHTTYPE;

4.2.24.1 Parameters
The parameters for OMX_CONFIG_BACKLIGHTTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nBacklight is a value that represents the backlight brightness. The range of
values is 0% to 100%, where 0% is completely off and 100% is full backlight
intensity.

• nTimeout is the number of milliseconds before the backlight automatically
turns off. A value of 0x0 forces the backlight to remain on.

4.2.25 OMX_CONFIG_GAMMATYPE
Gamma is applied to the image or pixel data on the specified port to correct for the non-
linear response to the brightness of pixels on a display relative to the digital value of the
pixel. Gamma correction is typically applied when data is captured digitally by a camera
source, or when data is shown on a display device such as a panel, CRT, or TV.

OMX_CONFIG_GAMMATYPE is defined as follows.
typedef struct OMX_CONFIG_GAMMATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nGamma;
} OMX_CONFIG_GAMMATYPE;

 221

4.2.25.1 Parameters
The parameters for OMX_CONFIG_GAMMATYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nGamma is the display gamma expressed in Q16 format (usually in the 2.0 to 4.0
range). The value 0 is not allowed. The details of how gamma correction is done
is implementation-specific.

In general, an exponential relationship between the input and output pixel
intensities is assumed (i.e. Vout = Vin^nGamma) and the gamma correction
component is assumed to apply an inverse transfer function (i.e. Vgamma =
Vin^(1/nGamma)). It is also assumed that the same nGamma value applies to all
three color channels.

4.2.26 OMX_CONFIG_SATURATIONTYPE
Saturation is applied to image or pixel data on the specified port to control the hue
intensity.

OMX_CONFIG_SATURATIONTYPE is defined as follows.
typedef struct OMX_CONFIG_SATURATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nSaturation;
} OMX_CONFIG_SATURATIONTYPE;

4.2.26.1 Parameters
The parameters for OMX_CONFIG_SATURATIONTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nSaturation is the value for saturation. The range of values is -100 to 100.
The value 0x0 indicates no saturation change to pixel data. A value of -100
produces all black pixels, and a value of 100 produces all white pixels.

4.2.27 OMX_CONFIG_LIGHTNESSTYPE
Lightness is applied to image or pixel data on the specified port to control the non-linear
response to the brightness of pixels.

OMX_CONFIG_LIGHTNESSTYPE is defined as follows.
typedef struct OMX_CONFIG_LIGHTNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nLightness;
} OMX_CONFIG_LIGHTNESSTYPE;

 222

4.2.27.1

4.2.28.1

Parameters
The parameters for OMX_CONFIG_LIGHTNESSTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nLightness is the value for lightness. The range of values is -100 to 100. The
value 0x0 indicates no lightness change to pixel data. A value of -100 produces all
black pixels, and a value of 100 produces all white pixels.

4.2.28 OMX_CONFIG_PLANEBLENDTYPE
Plane blending is used to blend pixels from multiple sources into a single destination. The
plane depth is specified such that planes with lower numbers are on top of planes with
higher numbers. The blending of two planes with the same depth is undefined.

OMX_CONFIG_PLANEBLENDTYPE is defined as follows.

Parameters
The parameters for OMX_CONFIG_PLANEBLENDTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nDepth is the depth of the plane for the port. Lower values indicate higher
planes, and higher values indicate lower planes. By default, the depth value is the
same as the value of nPortIndex. The nDepth is only valid when set on an
input port and ignored when applied to an output port.

• nAlpha indicates the alpha value used when blending planes, if the blending
operation uses global alpha. When defined on an input port, the default blending
operation is (source_alpha * source_color) + ((1 – source_alpha) *
destination_color)), where the source is the plane associated with the config and
the destination is the blended result of all lower planes. If
OMX_CONFIG_COLORBLENDTYPE is defined on the output port, the associated
eColorBlend variable is used to determine the blending equation. For
information on blending operations, see section 4.2.13. If defined on an output
port, the nAlpha value is written as the per pixel alpha value in the end image (if
the output format supports per pixel alpha), after performing the regular alpha
calculations from the input ports if defined in combination.

typedef struct OMX_CONFIG_PLANEBLENDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nDepth;
 OMX_U32 nAlpha;
} OMX_CONFIG_PLANEBLENDTYPE;

 223

4.2.29 OMX_CONFIG_DITHERTYPE
Dithering is used when performing color format conversion where the source color
format has higher precision than the destination color format. Two standard types of
dithering are supported: OMX_DitherOrdered and
OMX_DitherErrorDiffusion. OMX_DitherOther provides a means for vendor-
specific dithering algorithms.

OMX_CONFIG_DITHERTYPE is defined as follows.
typedef struct OMX_CONFIG_DITHERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_DITHERTYPE eDither;
 } OMX_CONFIG_DITHERTYPE;

4.2.29.1 Parameters
The parameters for OMX_CONFIG_DITHERTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eDither is the type of dithering used when performing color format conversion.
Table 4-38 details the values that can be selected for dithering.

Table 4-38: Dithering Values

OMX_DITHERTYPE Enumerated Value Description
OMX_DitherNone Disables dithering
OMX_DitherOrdered Enables ordered dithering
OMX_DitherErrorDiffusion Enables error diffusion dithering
OMX_DitherOther Enables a vendor specific dithering

algorithm

4.2.30 OMX_CONFIG_EXPOSUREVALUETYPE
Exposure is the amount of light which falls upon the sensor of a digital camera. Shutter
speed, sensitivity, and aperature are adjusted to achieve optimal exposure of a scene.
Most digital cameras offer a variety of exposure modes, from fully-automatic to semi-
automatic to full manual mode.

OMX_CONFIG_EXPOSUREVALUETYPE is defined as follows.
typedef struct OMX_CONFIG_EXPOSUREVALUETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_METERINGTYPE eMetering;
 OMX_S32 xEVCompensation;
 OMX_U32 nApertureFNumber;
 OMX_BOOL bAutoAperture;
 OMX_U32 nShutterSpeedMsec;

 224

 OMX_BOOL bAutoShutterSpeed;
 OMX_U32 nSensitivity;
 OMX_BOOL bAutoSensitivity;
 } OMX_CONFIG_EXPOSUREVALUETYPE;

4.2.30.1 Parameters
The parameters for OMX_CONFIG_EXPOSUREVALUETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eMetering is the metering type to be used. Table 4-39 lists the valid metering
modes that can be used.

Table 4-39: Metering Modes

OMX_METERINGTYPE Enumerated Value Description
OMX_MeteringModeAverage Center weight average metering
OMX_MeteringModeSpot Spot (partial) metering
OMX_MeteringModeMatrix Matrix or evaluative metering

• xEVCompensation is the Exposure Value compensation defined in Q16
format.

• nApertureFNumber is the aperture f-stop setting defined in Q16 format. A
value of 2 implies a “f/2” setting. This setting is only valid for SetConfig if auto
aperature mode is not set.

• bAutoAperture is a Boolean value indicating if auto-aperture is to be enabled
and applied.

• nShutterSpeedMsec is the shutter speed specified in units of milliseconds.
This setting is only valid for SetConfig if auto shutter speed is not set.

• bAutoShutterSpeed is a Boolean value indicating if auto shutter speed is to
be enabled and applied.

• nSensitivity is the ISO sensitivity setting. A value of 100 implies a “ISO
100” setting. This setting is only valid for SetConfig if auto sensitivity is not set.

• bAutoSensitivity is a Boolean value indicating if auto sensitivity is to be
enabled and applied.

4.2.31 OMX_CONFIG_CAPTUREMODETYPE
Capture mode configuration is used to instruct the camera component how it shall behave
during the course of capturing: continous versus frame count limited capturing operations.

OMX_CONFIG_CAPTUREMODETYPE is defined as follows.
typedef struct OMX_CONFIG_CAPTUREMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;

 225

 OMX_U32 nPortIndex;
 OMX_BOOL bContinuous;
 OMX_BOOL bFrameLimited;
 OMX_U32 nFrameLimit;
 } OMX_CONFIG_CAPTUREMODETYPE;

4.2.31.1 Parameters
The parameters for OMX_CONFIG_CAPTUREMODETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bContinuous is a Boolean used to indicate the frame rate emission. If true then
ignore the port frame rate setting and emit captured frame data as quickly as
possible otherwise obey the port’s frame rate setting.

• bFrameLimited is a Boolean used to indicate if capturing shall be terminated
after the specified number of frames if true frame limited capture is enabled;
otherwise the port does not terminate capturing until instructed to do so by the
client.

• nFrameLimit is the limit on number of frames emitted during capturing, this
parameter is only valid if bFrameLimited is enabled.

4.2.32 OMX_CONFIG_BOOLEANTYPE
The OMX_CONFIG_BOOLEANTYPE structure contains generic Boolean configuration
information that may be used to set component level configuration settings rather than
port level configuration settings.

OMX_CONFIG_BOOLEANTYPE is defined as follows.
typedef struct OMX_CONFIG_BOOLEANTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_BOOL bEnabled;
} OMX_CONFIG_BOOLEANTYPE;

4.2.32.1 Parameters
The parameters for OMX_CONFIG_BOOLEANTYPE are defined as follows.

• bEnabled is a Boolean used to indicate if a configuration is to be enabled. The
configuration setting to be enabled is typically inherent in the name of the
configuration or parameter indice used with this structure.

For example, the OMX_IndexAutoPauseAfterCapture index will use the
OMX_CONFIG_BOOLEANTYPE structure to enable or disable the auto pause mechanism
after a capture request is completed.

 226

4.2.33 OMX_OTHER_EXTRADATATYPE
The OMX_OTHER_EXTRADATATYPE structure is used to describe the additional buffer
payload information included within the buffer. A buffer may contain multiple blocks of
extra data and thus multiple instances of this structure.

Each additional EXTRADATATYPE structure shall be required to be 32 bit address
aligned, and padding bytes may need to inserted in order to ensure this alignment.

The order of the additional information is not required to be pre-determined since a
component is expected to traverse the OMX_OTHER_EXTRADATATYPE structures to
determine the additional information of interest.

OMX_OTHER_EXTRADATATYPE is defined as follows.
typedef struct OMX_OTHER_EXTRADATATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_EXTRADATATYPE eType;
 OMX_U32 nDataSize;
 OMX_U8 data[1];
} OMX_OTHER_EXTRADATATYPE;

4.2.33.1 Parameters
The parameters for OMX_OTHER_EXTRADATATYPE are defined as follows.

• nSize is the size of the structure including data bytes and any padding necessary
to ensure 32bit alignment of the next OMX_OTHER_EXTRADATATYPE
structure.

• nPortIndex is the read-only value containing the index of the port.

• eType identifies the extra data payload type.
Table 4-40: Extra Data Payload Type Enumerated values

Enumerated Value Description
OMX_ExtraDataNone Indicates that this terminates the list of extra data

sections.
OMX_ExtraDataQuantization Indicates that the data payload contains quantization data.

• nDataSize identifies the size of supporting data in units of bytes. For the
OMX_OTHER_EXTRADATATYPE structure that terminates the list of extra data
sections, nDataSize will be zero.

• data is an array of one or more bytes of data as indicated by the nDataSize
field.

4.2.33.2 Sample code
The following diagram shows the arrangement of extra data sections in a buffer.

 Figure 4-3. Formatting of Extra Buffer Data

The following code sequence shows traversing the list of extra data sections.

/* Traverse the list of extra data sections */
 OMX_OTHER_EXTRADATATYPE *pExtra;
 OMX_U8 *pTmp = pBufferHdr->pBuffer + pBufferHdr->nOffset +
pBufferHdr->nFilledLen + 3;

 pExtra = (OMX_OTHER_EXTRADATATYPE *) (((OMX_U32) pTmp) & ~3);

 while(pExtra->eType != OMX_ExtraDataNone)
 {
 pExtra = (OMX_OTHER_EXTRADATATYPE *) (((OMX_U8 *) pExtra) +
pExtra->nSize);
 }

 227

 228

4.2.34 OMX_CONFIG_FOCUSREGIONTYPE
OMX_CONFIG_FOCUSREGIONTYPE is used to define the focus region of interest.

The OMX_CONFIG_FOCUSREGIONTYPE can be used with
OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE to define the focus control for a
specific focus region of interest.

OMX_CONFIG_FOCUSREGIONTYPE is defined as follows.
typedef struct OMX_CONFIG_FOCUSREGIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bCenter;
 OMX_BOOL bLeft;
 OMX_BOOL bRight;
 OMX_BOOL bTop;
 OMX_BOOL bBottom;
 OMX_BOOL bTopLeft;
 OMX_BOOL bTopRight;
 OMX_BOOL bBottomLeft;
 OMX_BOOL bBottomRight;
} OMX_CONFIG_FOCUSREGIONTYPE;

4.2.34.1 Parameters
The parameters for OMX_CONFIG_FOCUSREGIONTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bCenter specifies if the center region is to be used as the region of interest.

• bLeft specifies if the left region is to be used as the region of interest.

• bRight specifies if the right region is to be used as the region of interest.

• bTop specifies if the top region is to be used as the region of interest.

• bBottom specifies if the bottom region is to be used as the region of interest.

• bTopLeft specifies if the top left region is to be used as the region of interest.

• bTopRight specifies if the top right region is to be used as the region of interest.

• bBottomLeft specifies if the bottom left region is to be used as the region of
interest.

• bBottomRight specifies if the bottom right region is to be used as the region of
interest.

The FocusRegions should be interpreted as a direction. If more than 9 regions are
available by the hardware, the regions are mapped on the booleans above by combining
regions together according implementation choice. Therefore the IL-client should see the
region as a focus direction.

As an example, assume there are 9 focus measurement points, 3 in horizontal and 3 in
vertical direction.

Central direction: bCenter = true

bLeft, bCenter, bRight = true Horizontal direction:

bLeft, bCenter, bRight, bTop, bBottom =
true

Horizontal and vertical (cross)
direction:

All directions: All Booleans are true

As an example, assume there are 12 focus measurement points, 4 in horizontal and 3 in
vertical direction.

bCenter = true Central direction:

bTopLeft = true Top left direction

bRight, bBottomRight = true Right and bottom direction:

4.2.35 OMX_PARAM_FOCUSSTATUSTYPE
OMX_PARAM_FOCUSSTATUSTYPE is used to retrieve the focus status, including
detailed information on the region of interest. This structure is used in conjunction with
OMX_CONFIG_FOCUSREGIONTYPE.

 229

 230

OMX_PARAM_FOCUSSTATUSTYPE is defined as follows.
typedef struct OMX_PARAM_FOCUSSTATUSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_FOCUSSTATUSTYPE eFocusStatus;
 OMX_BOOL bCenterStatus;
 OMX_BOOL bLeftStatus;
 OMX_BOOL bRightStatus;
 OMX_BOOL bTopStatus;
 OMX_BOOL bBottomStatus;
 OMX_BOOL bTopLeftStatus;
 OMX_BOOL bTopRightStatus;
 OMX_BOOL bBottomLeftStatus;
 OMX_BOOL bBottomRightStatus;
} OMX_PARAM_FOCUSSTATUSTYPE;

4.2.35.1 Parameters
The parameters for OMX_CONFIG_FOCUSREGIONTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eFocusStatus specifies the image focus status.
Table 4-41: eFocus Status Types

Focus Status Focus Status Description
OMX_FocusStatusOff Focus request is disabled
OMX_FocusStatusRequest Focus request is currently being

processed.
OMX_FocusStatusReached Focus has been reached.
OMX_FocusStatusUnableToReach Focus is unreachable, the maximum is

too close to the average noise
OMX_FocusStatusLost Focus has been lost, the main subject

has moved in the scene

• bCenterStatus specifies the focus status for the center region of interest.

• bLeftStatus specifies the focus status for the left region of interest.

• bRightStatus specifies the focus status for the right region of interest.

• bTopStatus specifies the focus status for the top region of interest.

• bBottomStatus specifies the focus status for the bottom region of interest

• bTopLeftStatus specifies the focus status for the top left region of interest

• bTopRightStatus specifies the focus status for the top right region of interest

• bBottomLeftStatus specifies the focus status for the bottom left region of
interest

 231

• bBottomRightStatus specifies the focus status for the bottom right region of
interest

4.2.36 OMX_CONFIG_TRANSITIONEFFECTTYPE
A component may support producing output image or video frames based on two input
frames, where the sequence of the output frames forms a transition from one input frame
to the next.

OMX_CONFIG_TRANSITIONEFFECTTYPE is defined as follows.
typedef struct OMX_CONFIG_TRANSITIONEFFECTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_TRANSITIONEFFECTTYPE eEffect;
} OMX_CONFIG_TRANSITIONEFFECTTYPE;

4.2.36.1 Parameters
The parameters for OMX_CONFIG_TRANSITIONEFFECTTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the output port

• eEffect is the enumerated value indicating the transition effect to be used to
generate the output frames.

Table 4-42: eEffect Values

OMX_TRANSITIONEFFECTTYPE value Transition Description
OMX_EffectNone Used to disable or cancel

the current transition
effect.

OMX_EffectFadeFromBlack Fades from a solid black
frame to the desired input
frame.

OMX_EffectFadeToBlack Fades from the desired
input frame to a solid
black frame.

OMX_EffectUnspecifiedThroughConstantColor A vendor specific effect
from the first input frame
to the second using a
constant color frame mid
transition.

OMX_EffectDissolve Dissolves from the first
input frame to the second.

OMX_EffectWipe Wipes from the first input
frame to the second.

 232

OMX_TRANSITIONEFFECTTYPE value Transition Description
OMX_EffectUnspecifiedMixOfTwoScenes A vendor specific effect

from the first input frame
to the second. If multiple
vendor effects are
available, a random one
may be chosen.

4.3 Video
This section describes the parameter and configuration details for ports in the video
domain. These parameter and configuration details are specified in the omx_video.h
header.

4.3.1 General Enumerations
The OMX_VIDEO_CODINGTYPE enumeration defines the video coding types supported..
If OMX_VIDEO_CodingUnused is selected, then the coding selection shall be done in
a vendor-specific way. Table 4-43 shows the OpenMAX IL-supported video compression
formats.

Table 4-43: Supported Video Compression Formats

Field Name Coding Type Descriptions References to
Standards

OMX_VIDEO_CodingUnused No coding applied. Use
eColorFormat

Not available

OMX_VIDEO_CodingAutoDetect Auto-detection by the OpenMAX
IL component

Not available

OMX_VIDEO_CodingMPEG2 MPEG-2, also known as H.262
video format

MPEG2

OMX_VIDEO_CodingH263 ITU H.263 video format H263

OMX_VIDEO_CodingMPEG4 MPEG-4 video format MPEG4

OMX_VIDEO_CodingWMV All versions of the Windows
Media video format

WMV

OMX_VIDEO_CodingRV All versions of the RealVideo®
format

RV

OMX_VIDEO_CodingAVC ITU H.264/AVC video format H264

OMX_VIDEO_CodingMJPEG Motion JPEG video format MJPEG

OMX_VIDEO_CodingMax Maximum value N/A

The OMX_VIDEO_PICTURETYPE enumeration defines the video picture types
supported. Table 4-44 describes the supported video picture types.

Table 4-44: Supported Video Picture Types

Field Name Picture Type Descriptions
OMX_VIDEO_PictureTypeI General I-frame type
OMX_VIDEO_PictureTypeP General P-frame type
OMX_VIDEO_PictureTypeB General B-frame type
OMX_VIDEO_PictureTypeSI H.263 SI-frame type
OMX_VIDEO_PictureTypeSP H.263 SP-frame type
OMX_VIDEO_PictureTypeEI H.264 EI-frame type
OMX_VIDEO_PictureTypeEP H.264 EP-frame type
OMX_VIDEO_PictureTypeS MPEG-4 S-frame type
OMX_VIDEO_PictureTypeMax Maximum value

4.3.2 Parameter and Configuration Indices
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which
contains all of the standard index values used with the OpenMAX IL core functions
OMX_GetParameter, OMX_SetParameter, OMX_GetConfig, and
OMX_SetConfig.

The index values that relate to video are described in this section. For example,
OMX_IndexParamVideoPortFormat index is used with OMX_GetParameter
and OMX_SetParameter to access the OMX_VIDEO_PARAM_PORTFORMATTYPE.
Table 4-45 identifies the video indices.

Table 4-45: Video Indices

OpenMAX IL Indices
(OMX_Index.h)

Corresponding OpenMAX IL Video Structures
(OMX_Video.h)
OMX_VIDEO_PARAM_PORTFORMATTYPE OMX_IndexParamVideoPortFormat

OMX_VIDEO_PARAM_QUANTIZATIONTYPE OMX_IndexParamVideoQuantizationTable

OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE OMX_IndexParamVideoFastUpdate

OMX_VIDEO_PARAM_BITRATETYPE OMX_IndexParamVideoBitrate

OMX_VIDEO_PARAM_MOTIONVECTORTYPE OMX_IndexParamVideoMotionVector

OMX_VIDEO_PARAM_INTRAREFRESHTYPE OMX_IndexParamVideoIntraRefresh

OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE OMX_IndexParamVideoErrorCorrection

OMX_VIDEO_PARAM_VBSMCTYPE OMX_IndexParamVideoVBSMC

OMX_VIDEO_PARAM_MPEG2TYPE OMX_IndexParamVideoMpeg2

OMX_VIDEO_PARAM_MPEG4TYPE OMX_IndexParamVideoMpeg4

OMX_VIDEO_PARAM_WMVTYPE OMX_IndexParamVideoWmv

OMX_VIDEO_PARAM_RVTYPE OMX_IndexParamVideoRv

OMX_VIDEO_PARAM_AVCTYPE OMX_IndexParamVideoAvc

OMX_VIDEO_PARAM_H263TYPE OMX_IndexParamVideoH263

 233

OpenMAX IL Indices
(OMX_Index.h)

Corresponding OpenMAX IL Video Structures
(OMX_Video.h)

OMX_IndexParamVideoProfileLevelQuerySupported OMX_VIDEO_PARAM_PROFILELEVELTYPE
OMX_IndexParamVideoProfileLevelCurrent OMX_VIDEO_PARAM_PROFILELEVELTYPE

OMX_VIDEO_CONFIG_BITRATETYPE OMX_IndexConfigVideoBitrate

OMX_CONFIG_FRAMERATETYPE OMX_IndexConfigVideoFramerate

OMX_CONFIG_INTRAREFRESHVOPTYPE OMX_IndexConfigVideoIntraVOPRefresh

OMX_CONFIG_MACROBLOCKERRORMAPTYPE OMX_IndexConfigVideoIntraMBRefresh

OMX_CONFIG_MBERRORREPORTINGTYPE OMX_IndexConfigVideoMBErrorReporting

OMX_PARAM_MACROBLOCKSTYPE OMX_IndexParamVideoMacroblocksPerFrame

OMX_CONFIG_MACROBLOCKERRORMAPTYPE OMX_IndexConfigVideoMacroBlockErrorMap

OMX_VIDEO_PARAM_AVCSLICEFMO OMX_IndexParamVideoSliceFMO

OMX_VIDEO_CONFIG_AVCINTRAPERIOD OMX_IndexConfigVideoAVCIntraPeriod

OMX_VIDEO_CONFIG_NALSIZE OMX_IndexConfigVideoNalSize

4.3.3 Video Use Case Examples
Figure 4-4 depicts one possible set of components as well as the tunneling of ports for
these components to implement a H.263 video encoding scheme. This use case encodes
raw video into H.263 format and writes it to a file while previewing the captured video
on a display.

Figure 4-4. H.263 Video Encode Use Case

Figure 4-4 shows six components, namely the camera, the image filter, the splitter, the
H.263 video encoder, the file writer, and the video sink.

Figure 4-5 shows a more complex use case, which is video conferencing. This use case
supports simultaneous encoding and decoding of video streams. To simplify the use case,
the corresponding audio components are not included.

 234

Figure 4-5. Video Conferencing Use Case

Raw video is encoded to H.263 format and then transmitted via a video uplink to the far-
side conferencing participant. At the same time, a H.263 video stream is received from
the far-side participant via a video downlink and decoded to raw video format before
being mixed into a pre-determined presentation layout via the video mixer such that both
the local participant’s video and far-side participant’s video are displayed via the local
video sink.

4.3.4 OMX_VIDEO_PORTDEFINITIONTYPE
The PortDefinition structure defines all of the parameters necessary for the compliant
component to set up an input or an output video path. If additional information is needed
to define the parameters of the port such as frame rate and bit rate, additional structures
shall be sent. For example, to change the bit rate, send the
OMX_VIDEO_PARAM_BITRATETYPE structure to supply the extra parameters for the
port. The number of video paths for input and output will vary by the type of the video
component.

The OMX_VIDEO_PORTDEFINITIONTYPE structure can query the current or default
definition of a video port or set the definition of a video port for a component. The
OMX_VIDEO_PORTDEFINITIONTYPE structure is included as part of the
OMX_PARAM_PORTDEFINITIONTYPE structure, it is accessed via the
OMX_GetParameter function or the OMX_GetParameter function using the
OMX_IndexParamPortDefinition index.

OMX_VIDEO_PORTDEFINITIONTYPE is defined as follows.
typedef struct OMX_VIDEO_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_U32 nFrameWidth;
 OMX_U32 nFrameHeight;
 OMX_S32 nStride;
 OMX_U32 nSliceHeight;
 OMX_U32 nBitrate;
 OMX_U32 xFramerate;
 OMX_BOOL bFlagErrorConcealment;

 235

 236

 OMX_VIDEO_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
 OMX_NATIVE_WINDOWTYPE pNativeWindow;
} OMX_VIDEO_PORTDEFINITIONTYPE;

4.3.4.1 Parameters
The parameters for OMX_VIDEO_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the MIME type of data for the port. If a MIME type string buffer
is not supplied this parameter shall be set to NULL.

• pNativeRender is a platform specific reference for a render object. When the
port is on a display sink component, this field is interpreted as a platform specific
native display object when non-NULL. If NULL, the component uses the
pNativeWindow field.

• nFrameWidth is the width of the data in pixels. If the value is 0x0 for an input
port, the component will automatically detect and configure the width. For output
ports, the width will be detected during OMX_SetupTunnel.

• nFrameHeight is the height of the data in pixels. If the value is 0x0 for an
input port, the component will automatically detect and configure the height. For
output ports, the height will be detected during OMX_SetupTunnel.

• nStride is a read-write field indicating the number of bytes per span of an
image, where nStride is the amount added to go from span N to span N+1. A
negative value for nStride indicates that the data is stored bottom-to-top
instead of top-to-bottom. The value for nStride shall not be 0x0.

The nStride default shall be determined by the component. There are cases
however when the default value for nStride does not match the stride
requirements of a used buffer, or that of a tunneled port.

Components shall validate the stride parameter when the port is enabled, or when
the component is commanded from the loaded state to the idle state. The
component may fail the transition if the specified stride is not supported.

• nSliceHeight is a read-only field containing the slice height parameter used
when processing uncompressed image data. Buffers received on the port shall
contain integer multiples of slices. For more information on the minimum buffer
payload for uncompressed data, see section 4.2.2.

• nBitrate is the bit rate in bits per second of the frame to be used on the port if
the data is compressed. The value 0x0 is used if the bit rate is unknown, variable
or is not needed.

• xFramerate is the frame rate is in frames per second. This value is represented
in Q16 format. The frame rate specified is that used on the port if the data is not
compressed. The value 0x0 is used to indicate the frame rate is unknown, variable,
or is not needed.

• bFlagErrorConcealment is a Boolean value that enables or disables error
concealment if it is supported by the port.

• eCompressionFormat is the compression format used on the port. If the
coding is being used to specify the ENCODE type, then additional work shall be
done to configure the exact flavor of the compression to be used. For decode
cases where the user application cannot differentiate between MPEG-4 and H.264
bit streams, the codec is responsible for the compression format. When
OMX_VIDEO_CodingUnused is specified, the eColorFormat field is valid.
For possible coding types, see Table 4-43.

• eColorFormat is the color format of the data for the port. This field is invalid
unless the eCompressionFormat is OMX_VIDEO_CodingUnused. For
more information on color format types, see Table 4-35.

• pNativeWindow is a platform specific reference for a windows object when
being processed as part of a video sink component, otherwise this field is 0.

4.3.5 OMX_VIDEO_PARAM_PORTFORMATTYPE
OMX_VIDEO_PARAM_PORTFORMATTYPE is the structure for the port format
parameter. It enumerates the various data input/output formats supported by the port.

OMX_VIDEO_PARAM_PORTFORMATTYPE can be used with both
OMX_GetParameter and OMX_SetParameter. In the OMX_GetParameter case,
the caller specifies all fields and the OMX_GetParameter call returns the value of
eFormat. The value of nIndex is the range 0 to N-1, where N is the number of
formats supported by the port. There is no need for the port to report N, as the caller can
determine N by enumerating all the formats supported by the port. Each port shall
support at least one format. If there are no more formats, OMX_GetParameter returns
OMX_ErrorNoMore (i.e., nIndex is supplied where the value is N or greater). Ports
supply formats in order of preference, which means that higher preference formats are
provided with lower values of nIndex.

On OMX_SetParameter, the field in nIndex is ignored. If the format is supported,
it is set as the format of the port, and the default values for the format are programmed
into the port definition type as a side effect. This allows the caller to query the default
values for the format without having to know them in advance.

OMX_VIDEO_PARAM_PORTFORMATTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_VIDEO_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
 OMX_U32 xFramerate;
} OMX_VIDEO_PARAM_PORTFORMATTYPE;

 237

 238

4.3.5.1 Parameters
The parameters for OMX_VIDEO_PARAM_PORTFORMATTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nIndex indicates the enumeration index for the format from 0x0 to N-1.

• eCompressionFormat is the compression format used on the port. If the
coding is being used to specify the ENCODE type, then additional work shall be
done to configure the exact flavor of the compression to be used. For decode
cases where the user application cannot differentiate between MPEG-4 and H.264
bit streams, the codec is responsible for the compression format. When
OMX_VIDEO_CodingUnused is specified, the eColorFormat field is valid.
For possible coding types, see Table 4-43.

• eColorFormat is the color format of the data for the port. This field is invalid
unless the eCompressionFormat is OMX_VIDEO_CodingUnused. For
more information on color format types, see Table 4-31: Uncompressed Data
Formats

• xFramerate indicates the desired full frame rate is frames per second. This
value is represented in Q16 format

4.3.6 OMX_VIDEO_PARAM_QUANTIZATIONTYPE
Quantization controls the compression used during the discrete cosine transform (DCT)
step of video encoding. This generic structure is shared between several video standards.
The structure allows independent settings of quantization factors for I, P, and B video
frames. The structure is not applicable to variable bit rate encoding or constant rate
encoding. Not all video standards support independent settings of quantization factors for
different frame types.

OMX_VIDEO_PARAM_QUANTIZATIONTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_QUANTIZATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nQpI;
 OMX_U32 nQpP;
 OMX_U32 nQpB;
} OMX_VIDEO_PARAM_QUANTIZATIONTYPE;

4.3.6.1 Parameters
The parameters for OMX_VIDEO_PARAM_QUANTIZATIONTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• nQpI is the quantization parameter for I frames.

 239

• nQpP is the quantization parameter for P frames.

• nQpB is the quantization parameter for bi-directional (B) frames).

4.3.6.2 Dependencies
This parameter is only applicable to certain video encoders, which include MPEG-2 and
MPEG-4.

4.3.7 OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE
Video fast update is a shared parameter between multiple video encoding standards (for
example, H.261 and H.263) that specifies fast update parameters for the video encoder.

OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnableVFU;
 OMX_U32 nFirstGOB;
 OMX_U32 nFirstMB;
 OMX_U32 nNumMBs;
} OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE;

4.3.7.1

4.3.7.2

Parameters
The parameters for OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnableVFU is a Boolean value that enables or disables video fast update.

• nFirstGOB contains the number of the first row of macroblocks

• nFirstMB is the location of the first macroblock row relative to the first group
of blocks (GOB).

• nNumMBs The number of macroblocks to be refreshed from the nFirstGOB and
nFirstMB.

Dependencies
This parameter is only applicable to certain video encoders, such as H.261 and H.263.

4.3.8 OMX_VIDEO_PARAM_BITRATETYPE
Video encode bit rate control for variable bit rate video encoders is shared between
multiple video encode standards, and is specified before starting video encoding.

OMX_VIDEO_PARAM_BITRATETYPE is defined as follows.

 240

typedef struct OMX_VIDEO_PARAM_BITRATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_CONTROLRATETYPE eControlRate;
 OMX_U32 nTargetBitrate;
} OMX_VIDEO_PARAM_BITRATETYPE;

4.3.8.1 Parameters
The parameters for OMX_VIDEO_PARAM_BITRATETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eControlRate is an enumerated value that sets the bit rate control. If enabled,
the type of bit rate control is specified as constant, variable, constant with frame
skipping, or variable with frame skipping. Table 4-46 enumerates the possible
video bit rate control types for OMX_VIDEO_CONTROLRATETYPE.

Table 4-46: Supported Video Bit Rate Control Types

Field Name Bit Rate Control Descriptions
OMX_Video_ControlRateDisable Disable – in this mode the encoder

will ignore nTargetBitrate
setting and use the appropriate Qp
(nQpI, nQpP, nQpB) values for
encoding

OMX_Video_ControlRateVariable Variable bit rate
OMX_Video_ControlRateConstant Constant bit rate – the encoder can

modify the Qp values to meet the
nTargetBitrate target

OMX_Video_ControlRateVariableSkipFrames Variable bit rate with frame skipping
OMX_Video_ControlRateConstantSkipFrames Constant bit rate with frame

skipping – the encoder cannot
modify the Qp values to meet the
nTargetBitrate target. Instead,
the encoder can drop frames to
achieve nTargetBitrate

OMX_Video_ControlRateMax Maximum value

• nTargetBitrate is the target bit rate for video encoding in units of bits per
second.

4.3.8.2 Dependencies
This parameter is only applicable to certain video encoders. For some video encode
standards, the bit rate is specified as part of the standard and is not programmable (i.e.,
value can only be queried).

 241

4.3.9 OMX_VIDEO_PARAM_MOTIONVECTORTYPE
The motion vector parameters used during video encoding are programmable for certain
video standards. These parameters can be shared between multiple video standards
algorithms, although certain fields only pertain to particular video standards.

OMX_VIDEO_PARAM_MOTIONVECTORTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_MOTIONVECTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_MOTIONVECTORTYPE eAccuracy;
 OMX_BOOL bUnrestrictedMVs;
 OMX_BOOL bFourMV;
 OMX_S32 sXSearchRange;
 OMX_S32 sYSearchRange;
} OMX_VIDEO_PARAM_MOTIONVECTORTYPE;

4.3.9.1 Parameters
The parameters for OMX_VIDEO_PARAM_MOTIONVECTORTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eAccuracy is an enumerated value that specifies the pixel accuracy of the
motion vector search during video encode. Accuracy is 1, 1/2, 1/4, or 1/8 pixel.
The eAccuracy setting indicates that all larger value motion vector search
ranges are also used (i.e., a value of 1/4 indicates motion vectors are also searched
on 1 and 1/2 intervals). Table 4-47 enumerates the possible video motion vector
types for OMX_VIDEO_MOTIONVECTORTYPE.

Table 4-47: Supported Video Motion Vector Types

Field Name Motion Vector Descriptions
OMX_Video_MotionVectorPixel Full pixel motion vectors
OMX_Video_MotionVectorHalfPel Half pixel motion vectors
OMX_Video_MotionVectorQuarterPel Quarter pixel motion vectors
OMX_Video_MotionVectorEighthPel Eighth pixel motion vectors
OMX_Video_MotionVectorMax Maximum value

• bUnrestrictedMVs is a Boolean value that enables unrestricted motion
vectors.

• bFourMV is a Boolean value enables using four motion vectors.

• sXSearchRange is the search range of the X motion vector in pixels for video
encoders where this is programmable. For example, a search range of 4 indicates
a ±4 search area both horizontally and vertically.

 242

• sYSearchRange is the search range of the Y motion vector in pixels for video
encoders where this is programmable. For example, a search range of 4 indicates
a ±4 search area both horizontally and vertically.

4.3.9.2 Dependencies
This parameter is only applicable to certain video encoders, which include MPEG2 and
MPEG4.

4.3.10 OMX_VIDEO_PARAM_INTRAREFRESHTYPE
OMX_VIDEO_PARAM_INTRAREFRESHTYPE contains common parameters for
controlling the intra-refresh rate for macroblocks during video encoding. Refresh causes
macroblocks of a video stream to be regularly encoded as reference macroblocks. This
enables a video decoder to eventually reconstruct a good video image from multiple
frames when data is lost or corrupted without receiving a new intra-coded frame.

OMX_VIDEO_PARAM_INTRAREFRESHTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_INTRAREFRESHTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_INTRAREFRESHTYPE eRefreshMode;
 OMX_U32 nAirMBs;
 OMX_U32 nAirRef;
 OMX_U32 nCirMBs;
} OMX_VIDEO_PARAM_INTRAREFRESHTYPE;

4.3.10.1 Parameters
The parameters for OMX_VIDEO_PARAM_INTRAREFRESHTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eRefreshMode is the enumeration for the type of intra-refresh mode. Table
 4-48 shows the possible values for OMX_VIDEO_INTRAREFRESHTYPE.

Table 4-48: Supported Video Intra-Refresh Types

Field Name Intra-Refresh
Descriptions

OMX_VIDEO_IntraRefreshCyclic Cyclic intra-refresh
OMX_VIDEO_IntraRefreshAdaptive Adaptive intra-refresh
OMX_VIDEO_IntraRefreshBoth Cyclic and Adaptive

intra-refresh
OMX_VIDEO_IntraRefreshMax Maximum value

• nAirMBs is the minimum number of macroblocks to refresh in a frame when
adaptive intra-refresh (AIR) is enabled.

 243

• nAirRef is the number of times a motion marked macroblock has to be intra-
coded.

• nCirMBs is the number of consecutive macroblocks to be coded as intra when
cyclic intra-refresh (CIR) is enabled.

4.3.10.2 Dependencies
This parameter is only applicable to certain video encoders, which includes MPEG4.

4.3.11 OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE
OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE contains common video encoding
standard parameters for handling error correction during video encoding.

OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnableHEC;
 OMX_BOOL bEnableResync;
 OMX_U32 nResynchMarkerSpacing;
 OMX_BOOL bEnableDataPartitioning;
 OMX_BOOL bEnableRVLC;
} OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE;

4.3.11.1

4.3.11.2

Parameters
The parameters for OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnableHEC is a Boolean value that enables or disables header extension codes.

• bEnableResync is a Boolean value that enables or disables resynchronization
markers.

• nResynchMarkerSpacing is the resynchronization marker interval in bits
applied to the stream.

• bEnableDataPartitioning is a Boolean value that enables or disables data
partitioning.

• bEnableRVLC is a Boolean value that enables or disables reversible variable-
length coding.

Dependencies
This parameter is only applicable to certain video encoders, which includes MPEG4.

 244

4.3.12 OMX_VIDEO_PARAM_VBSMCTYPE
OMX_VIDEO_PARAM_VBSMCTYPE contains common video encoding standard
parameters for selecting variable block size motion compensation during video encoding.

OMX_VIDEO_PARAM_VBSMCTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_VBSMCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL b16x16;
 OMX_BOOL b16x8;
 OMX_BOOL b8x16;
 OMX_BOOL b8x8;
 OMX_BOOL b8x4;
 OMX_BOOL b4x8;
 OMX_BOOL b4x4;
} OMX_VIDEO_PARAM_VBSMCTYPE;

4.3.12.1

4.3.12.2

Parameters
The parameters for OMX_VIDEO_PARAM_VBSMCTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• b16x16 is a Boolean value that enables or disables inter-block search in a 16 by
16 region of pixels

• b16x8 is a Boolean value that enables or disables inter-block search in a 16 by 8
region of pixels

• b8x16 is a Boolean value that enables or disables inter-block search in a 8 by 16
region of pixels

• b8x8 is a Boolean value that enables or disables inter-block search in a 8 by 8
region of pixels

• b8x4 is a Boolean value that enables or disables inter-block search in a 8 by 4
region of pixels

• b4x8 is a Boolean value that enables or disables inter-block search in a 4 by 8
region of pixels

• b4x4 is a Boolean value that enables or disables inter-block search in a 4 by 4
region of pixels

Dependencies
This parameter is only applicable to certain video encoders, which include MPEG4 and
other derivations of MPEG4.

 245

4.3.13 OMX_VIDEO_PARAM_H263TYPE
H.263 is a video standard defined by the ITU. Parameters for this video standard are
controlled using the OMX_VIDEO_PARAM_H263TYPE structure.

OMX_VIDEO_PARAM_H263TYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_H263TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_VIDEO_H263PROFILETYPE eProfile;
 OMX_VIDEO_H263LEVELTYPE eLevel;
 OMX_BOOL bPLUSPTYPEAllowed;
 OMX_U32 nAllowedPictureTypes;
 OMX_BOOL bForceRoundingTypeToZero;
 OMX_U32 nPictureHeaderRepetition;
 OMX_U32 nGOBHeaderInterval;
} OMX_VIDEO_PARAM_H263TYPE;

4.3.13.1 Parameters
The parameters for OMX_VIDEO_PARAM_H263TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• eProfile is the profile type supported for encoding and decoding H.263
content. Table 4-49 shows the possible H.263 video profile types for
OMX_VIDEO_H263PROFILETYPE.

Table 4-49: Supported H.263 Profile Types

Field Name H.263 Profile Descriptions
OMX_VIDEO_H263ProfileBaseline H.263 Baseline Profile: H.263 (V1), no

optional modes
OMX_VIDEO_H263ProfileH320Coding H.263 Coding Efficiency (H.320) Backward

Compatibility Profile: H.263+ (V2), includes
annexes I, J, L.4, and T

OMX_VIDEO_H263ProfileBackward
 Compatible

H.263 BackwardCompatible: Backward
Compatibility Profile: H.263 (V1), includes
annex F

OMX_VIDEO_H263ProfileISWV2 H.263 Interactive Streaming Wireless Profile:
H.263+ (V2), includes annexes I, J, K, and T

OMX_VIDEO_H263ProfileISWV3 H.263 Interactive Streaming Wireless Profile:
H.263++ (V3), includes profile 3 and annexes
V and W.6.3.8

Field Name H.263 Profile Descriptions
OMX_VIDEO_H263ProfileHigh
 Compression

H.263 Conversational High Compression
Profile: H.263++ (V3), includes profiles 1 and
2 and annexes D and U

OMX_VIDEO_H263ProfileInternet H.263 Conversational Internet Profile:
H.263++ (V3), includes profile 5 and annex K

OMX_VIDEO_H263ProfileInterlace H.263 Conversational Interlace Profile:
H.263++ (V3), includes profile 5 and annex
W.6.3.11

OMX_VIDEO_H263ProfileHighLatency H.263 High Latency Profile: H.263++ (V3),
includes profile 6 and annexes O.1 and P.5

OMX_VIDEO_H263ProfileMax Maximum value

• eLevel is the maximum processing level that an encoder or decoder supports for
a particular profile. Table 4-50 shows the possible H.263 video level types.

Table 4-50: Supported H.263 Level Types

Field Name H.263 Level Descriptions
OMX_VIDEO_H263Level10 H.263 level 10
OMX_VIDEO_H263Level20 H.263 level 20
OMX_VIDEO_H263Level30 H.263 level 30
OMX_VIDEO_H263Level40 H.263 level 40
OMX_VIDEO_H263Level45 H.263 level 45
OMX_VIDEO_H263Level50 H.263 level 50
OMX_VIDEO_H263Level60 H.263 level 60
OMX_VIDEO_H263Level70 H.263 level 70
OMX_VIDEO_H263LevelMax Maximum value

• bPLUSPTYPEAllowed is a Boolean value that enables or disables indication of
whether PLUSPTYPE (specified in the 1998 version of H.263) is allowed. This
applies to custom picture sizes or clock frequencies.

• nAllowedPictureTypes determines whether picture types are allowed in the
bit stream. For more information on picture types, see Table 4-44.

• bForceRoundingTypeToZero determines whether the value of the RTYPE
bit (bit 6 of MPPTYPE) is not constrained. Change the value of the RTYPE bit
for each reference picture in error-free communication.

• nPictureHeaderRepetition is the frequency of picture header repetition.

• nGOBHeaderInterval is the interval of non-empty GOB headers in units of
GOBs. A value of zero for this parameter indicates that all GOB headers will be
empty.

 246

 247

4.3.13.2 Dependencies
This parameter is only applicable when the port is configured for H.263.

4.3.14 OMX_VIDEO_PARAM_MPEG2TYPE
OMX_VIDEO_PARAM_MPEG2TYPE contains MPEG2 video parameters for controlling
MPEG2 video encode.

OMX_VIDEO_PARAM_MPEG2TYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_MPEG2TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_VIDEO_MPEG2PROFILETYPE eProfile;
 OMX_VIDEO_MPEG2LEVELTYPE eLevel;
} OMX_VIDEO_PARAM_MPEG2TYPE;

4.3.14.1 Parameters
The parameters for OMX_VIDEO_PARAM_MPEG2TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• eProfile is the maximum processing level that an encoder or decoder supports
for a particular profile. Table 4-51 shows the possible MPEG-2 video profile types
in OMX_VIDEO_MPEG2PROFILETYPE.

Table 4-51: Supported MPEG-2 Profile Types

Field Name MPEG-2 Profile Descriptions
OMX_VIDEO_MPEG2ProfileSimple Simple profile
OMX_VIDEO_MPEG2ProfileMain Main profile
OMX_VIDEO_MPEG2Profile422 4:2:2 profile
OMX_VIDEO_MPEG2ProfileSNR SNR profile
OMX_VIDEO_MPEG2ProfileSpatial Spatial profile
OMX_VIDEO_MPEG2ProfileHigh High profile
OMX_VIDEO_MPEG2ProfileMax Maximum value

• eLevel is the maximum processing level that an MPEG-2 encoder or decoder
supports for a particular profile. Table 4-52 shows the possible MPEG-2 video
level types in OMX_VIDEO_MPEG2LEVELTYPE.

 248

Table 4-52: Supported MPEG-2 Level Types

Field Name MPEG-2 Level Descriptions
OMX_VIDEO_MPEG2LevelLL Low level
OMX_VIDEO_MPEG2LevelML Main level
OMX_VIDEO_MPEG2LevelH14 High 1440 level
OMX_VIDEO_MPEG2LevelHL High level
OMX_VIDEO_MPEG2LevelMax Maximum level

4.3.14.2 Dependencies
This parameter is only applicable when the port is configured for MPEG-2.

4.3.15 OMX_VIDEO_PARAM_MPEG4TYPE
OMX_VIDEO_PARAM_MPEG4TYPE contains the MPEG-4 video parameters for
controlling MPEG-4 video encoding and decoding.

OMX_VIDEO_PARAM_MPEG4TYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_MPEG4TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nSliceHeaderSpacing;
 OMX_BOOL bSVH;
 OMX_BOOL bGov;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_U32 nIDCVLCThreshold;
 OMX_BOOL bACPred;
 OMX_U32 nMaxPacketSize;
 OMX_U32 nTimeIncRes;
 OMX_VIDEO_MPEG4PROFILETYPE eProfile;
 OMX_VIDEO_MPEG4LEVELTYPE eLevel;
 OMX_U32 nAllowedPictureTypes;
 OMX_U32 nHeaderExtension;
 OMX_BOOL bReversibleVLC;
} OMX_VIDEO_PARAM_MPEG4TYPE;

4.3.15.1 Parameters
The parameters for OMX_VIDEO_PARAM_MPEG4TYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nSliceHeaderSpacing is the number of macroblocks in a slice (H263+
Annex K). This value shall be zero if not used.

• bSVH is a Boolean value that enables or disables short header mode.

• bGov is a Boolean value that enables or disables group of VOP (GOV), where
VOP is the abbreviation for video object planes.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• nIDCVLCThreshold is the value of the intra-DC variable-length coding (VLC)
threshold.

• bACPred is the Boolean value that enables or disables AC prediction.

• nMaxPacketSize is the maximum size of the packet in bytes.

• nTimeIncRes is the VOP time increment resolution for MPEG-4. This value is
interpreted as described in the MPEG-4 standard.

• eProfile is the profile used for MPEG-4 encoding or decoding. Table 4-53
shows the possible MPEG-4 video profile types in
OMX_VIDEO_MPEG4PROFILETYPE.

Table 4-53: Supported MPEG-4 Profile Types

Field Name MPEG-4 Profile Descriptions
OMX_VIDEO_MPEG4ProfileSimple MPEG-4 Simple Profile, Levels 1-3
OMX_VIDEO_MPEG4ProfileSimpleScalable MPEG-4 Simple Scalable Profile,

Levels 1-2
OMX_VIDEO_MPEG4ProfileCore MPEG-4 Core Profile, Levels 1-2
OMX_VIDEO_MPEG4ProfileMain MPEG-4 Main Profile, Levels 2-4
OMX_VIDEO_MPEG4ProfileNbit MPEG-4 N-bit Profile, Level 2
OMX_VIDEO_MPEG4ProfileScalableTexture MPEG-4 Scalable Texture Profile,

Level 1
OMX_VIDEO_MPEG4ProfileSimpleFace MPEG-4 Simple Face Animation

Profile, Levels 1-2
OMX_VIDEO_MPEG4ProfileSimpleFBA MPEG-4 Simple Face and Body

Animation (FBA) Profile, , Levels 1-2
OMX_VIDEO_MPEG4ProfileBasicAnimated MPEG-4 Basic Animated Texture

Profile, Levels 1-2
OMX_VIDEO_MPEG4ProfileHybrid MPEG-4 Hybrid Profile, Levels 1-2
OMX_VIDEO_MPEG4ProfileAdvancedRealTime MPEG-4 Advanced Real Time Simple

Profiles, Levels 1-4
OMX_VIDEO_MPEG4ProfileCoreScalable MPEG-4 Core Scalable Profile,

Levels 1-3
OMX_VIDEO_MPEG4ProfileAdvancedCoding MPEG-4 Advanced Coding

Efficiency Profile, Levels 1-4
OMX_VIDEO_MPEG4ProfileAdvancedCore MPEG-4 Advanced Core Profile,

Levels 1-2

 249

 250

Field Name MPEG-4 Profile Descriptions
OMX_VIDEO_MPEG4ProfileAdvancedScalable MPEG-4 Advanced Scalable Texture,

Levels 2-3
OMX_VIDEO_MPEG4ProfileAdvancedSimple MPEG-4 Advanced Simple Profile
OMX_VIDEO_MPEG4ProfileMax Maximum value

• eLevel is the maximum processing level that an encoder or decoder supports for
a particular MPEG-4 profile. Table 4-54 shows the possible MPEG-4 video level
types in OMX_VIDEO_MPEG4LEVELTYPE.

Table 4-54: Supported MPEG-4 Level Types

Field Name MPEG-4 Level Descriptions
OMX_VIDEO_MPEG4Level0 Level 0
OMX_VIDEO_MPEG4Level0b Level 0b
OMX_VIDEO_MPEG4Level1 Level 1
OMX_VIDEO_MPEG4Level2 Level 2
OMX_VIDEO_MPEG4Level3 Level 3
OMX_VIDEO_MPEG4Level4 Level 4
OMX_VIDEO_MPEG4Level4a Level 4a
OMX_VIDEO_MPEG4Level5 Level 5
OMX_VIDEO_MPEG4LevelMax Max level

• nAllowedPictureTypes identifies the picture types allowed in the bit stream.
For more information on picture types, see Table 4-44: Supported Video Picture
Types.

• nHeaderExtension specifies the number of consecutive video packets
between header extension codes (conversely, insert a header extension code every
nHeaderExtension number of packets).

• bReversibleVLC is a Boolean value that enables or disables the use of
reversible variable-length coding

4.3.15.2 Dependencies
This parameter is only applicable when the port is configured for MPEG-4.

4.3.16 OMX_VIDEO_PARAM_WMVTYPE
OMX_VIDEO_PARAM_WMVTYPE contains common standard video decoder parameters
that control Windows Media formats, including WMV7, WMV8, and WMV9.

OMX_VIDEO_PARAM_WMVTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_WMVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;

 251

 OMX_U32 nPortIndex;
 OMX_VIDEO_WMVFORMATTYPE eFormat;
} OMX_VIDEO_PARAM_WMVTYPE;

4.3.16.1 Parameters
The parameters for OMX_VIDEO_PARAM_WMVTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eFormat is the enumerated format of the data stream. Table 4-55 shows the
possible Windows Media video format types for
OMX_VIDEO_WMVFORMATTYPE.

Table 4-55: Supported Windows Media Video Format Types

Field Name Windows Media Video
Format Descriptions

OMX_VIDEO_WMVFormatUnused Format unused or
unknown

OMX_VIDEO_WMVFormat7 Windows Media video
format 7

OMX_VIDEO_WMVFormat8 Windows Media video
format 8

OMX_VIDEO_WMVFormat9 Windows Media video
format 9

OMX_VIDEO_WMVFormatMax Maximum level

4.3.16.2 Dependencies
This parameter is only applicable when the port is configured for Windows Media video.

4.3.17 OMX_VIDEO_PARAM_RVTYPE
OMX_VIDEO_PARAM_RVTYPE contains common standard video decoder parameters
that control RealVideo formats, including RealVideo 8 and RealVideo 9.

OMX_VIDEO_PARAM_RVTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_RVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_RVFORMATTYPE eFormat;
 OMX_U16 nBitsPerPixel;
 OMX_U16 nPaddedWidth;
 OMX_U16 nPaddedHeight;
 OMX_U32 nFrameRate;
 OMX_U32 nBitstreamFlags;
 OMX_U32 nBitstreamVersion;
 OMX_U32 nMaxEncodeFrameSize;
 OMX_BOOL bEnablePostFilter;

 252

 OMX_BOOL bEnableTemporalInterpolation;
 OMX_BOOL bEnableLatencyMode;
} OMX_VIDEO_PARAM_RVTYPE;

4.3.17.1 Parameters
The parameters for OMX_VIDEO_PARAM_RVTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• eFormat is the video format. Table 4-56 shows the possible RealVideo video
format types in OMX_VIDEO_RVFORMATTYPE.

Table 4-56: Supported RealVideo Format Types

Field Name RV Format Descriptions
OMX_VIDEO_RVFormatUnused Format unused or unknown
OMX_VIDEO_RVFormat8 RealVideo 8 format
OMX_VIDEO_RVFormat9 RealVideo 9 format
OMX_VIDEO_RVFormatG2 RealVideo G2 format

• nBitsPerPixel is the number of bits per pixel coded in the frame.

• nPaddedWidth is the padded width in pixels of a video frame.

• nPaddedWidth is the padded width in pixels of a video frame.

• nFrameRate is the rate of the video in frames per second as a 32-bit fixed point
value in which the upper 16 bits are the integer part and the lower 16 bits are the
fractional part.

• nBitstreamFlags is a 32 bit integer containing flags which provide internal
information about the bitstream to the codec. These will be interpreted differently
depending on the bitstream format and version.

• nBitstreamVersion is a 32 bit integer containing the bitstream version.

• nMaxEncodeFrameSize is the size in bytes of the largest encoded frame
(defined only for OMX_VIDEO_RVFormat9).

• bEnablePostFilter is a Boolean value that enables or disables the post filter.

• bEnableTemporalInterpolation a Boolean value that enables or
disables the temporal interpolation.

• bEnableLatencyMode is a Boolean value that enables or disables the decoder
from displaying a decoded frame until it has detected that no enhancement layer
frames or dependent B frames will be coming. This detection usually occurs when
a subsequent non-B frame is encountered.

 253

4.3.17.2 Dependencies
This parameter is only applicable when the port is configured for RealVideo.

4.3.18 OMX_VIDEO_PARAM_AVCTYPE
MPEG4 P10 Advanced Video Coding (AVC) is commonly referred to as H.264 which is
a video standard defined by the Joint Video Team (JVT). Parameters for this video
standard are controlled using the OMX_VIDEO_PARAM_AVCTYPE structure.

OMX_VIDEO_PARAM_AVCTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_AVCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nSliceHeaderSpacing;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_BOOL bUseHadamard;
 OMX_U32 nRefFrames;
 OMX_U32 nRefIdx10ActiveMinus1;
 OMX_U32 nRefIdx11ActiveMinus1;
 OMX_BOOL bEnableUEP;
 OMX_BOOL bEnableFMO;
 OMX_BOOL bEnableASO;
 OMX_BOOL bEnableRS;
 OMX_VIDEO_AVCPROFILETYPE eProfile;
 OMX_VIDEO_AVCLEVELTYPE eLevel;
 OMX_U32 nAllowedPictureTypes;
 OMX_BOOL bFrameMBsOnly;
 OMX_BOOL bMBAFF;
 OMX_BOOL bEntropyCodingCABAC;
 OMX_BOOL bWeightedPPrediction;
 OMX_U32 nWeightedBipredicitonMode;
 OMX_BOOL bconstIpred ;
 OMX_BOOL bDirect8x8Inference;
 OMX_BOOL bDirectSpatialTemporal;
 OMX_U32 nCabacInitIdc;
 OMX_VIDEO_AVCLOOPFILTERTYPE eLoopFilterMode;

} OMX_VIDEO_PARAM_AVCTYPE;

4.3.18.1 Parameters
The parameters for OMX_VIDEO_PARAM_AVCTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nSliceHeaderSpacing is the number of macroblocks in a slice. This value is
set to 0x0 when not used.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• bUseHadamard is a Boolean value that enables or disables the Hadamard
transform.

• nRefFrames is the number of reference frames in the range 1 to 16 that are
used for inter-motion search.

• nRefIdx10ActiveMinus1 is the picture parameter set reference frame index,
which is the index into the reference frame buffer of the trailing frames list. This
value supports B frames.

• nRefIdx11ActiveMinus1 is the picture parameter set reference frame index,
which is the index into the reference frame buffer of the forward frames list. This
value supports B frames.

• bEnableUEP is a Boolean value that enables or disables unequal error
protection. This parameter is only applicable if data partitioning is enabled.

• bEnableFMO is a Boolean value that enables or disables flexible macroblock
ordering.

• bEnableASO is a Boolean value that enables or disables for arbitrary slice
ordering.

• bEnableRS is a Boolean value enables or disables sending redundant slices.

• eProfile is the profile used for the types of AVC encoding or decoding that
are supported. Table 4-57 shows the possible AVC video profile types in
OMX_VIDEO_AVCPROFILETYPE.

Table 4-57: Supported AVC Profile Types

Field Name AVC Profile Descriptions
OMX_VIDEO_AVCProfileBaseline Baseline profile
OMX_VIDEO_AVCProfileMain Main profile
OMX_VIDEO_AVCProfileExtended Extended profile
OMX_VIDEO_AVCProfileHigh High profile
OMX_VIDEO_AVCProfileHigh10 High 10 profile
OMX_VIDEO_AVCProfileHigh422 High 4:2:2 profile
OMX_VIDEO_AVCProfileHigh444 High 4:4:4 profile
OMX_VIDEO_AVCProfileMax Maximum value

• eLevel is the maximum processing level that an AVC encoder or decoder
supports for a particular profile. Table 4-58 shows the possible AVC video level
types in OMX_VIDEO_AVCLEVELTYPE.

Table 4-58: Supported AVC Level Types

Field Name AVC Level Descriptions
OMX_VIDEO_AVCLevel1 AVC level 1
OMX_VIDEO_AVCLevel1b AVC level 1b

 254

Field Name AVC Level Descriptions
OMX_VIDEO_AVCLevel11 AVC level 1.1
OMX_VIDEO_AVCLevel12 AVC level 1.2
OMX_VIDEO_AVCLevel13 AVC level 1.3
OMX_VIDEO_AVCLevel2 AVC level 2
OMX_VIDEO_AVCLevel21 AVC level 2.1
OMX_VIDEO_AVCLevel22 AVC level 2.2
OMX_VIDEO_AVCLevel3 AVC level 3
OMX_VIDEO_AVCLevel31 AVC level 3.1
OMX_VIDEO_AVCLevel32 AVC level 3.2
OMX_VIDEO_AVCLevel4 AVC level 4
OMX_VIDEO_AVCLevel41 AVC level 14.1
OMX_VIDEO_AVCLevel42 AVC level 4.2
OMX_VIDEO_AVCLevel5 AVC level 5
OMX_VIDEO_AVCLevel51 AVC level 5.1
OMX_VIDEO_AVCLevelMax Maximum value

• nAllowedPictureTypes identifies the allowed picture types in the bit stream.

• bFrameMBsOnly is a Boolean value indicating that every coded picture of the
coded video sequence is a coded frame containing only frame macroblocks.

• bMBAFF is a Boolean value that enables or disables macroblock adaptive frame
and field (MBAFF) support within a picture.

• bEntropyCodingCABAC is a Boolean value that enables or disables the
entropy decoding method.

• bWeightedPPrediction is a Boolean value that enables or disables
weighted prediction applied to P and SP slices.

• nWeightedBipredicitonMode is the default weighted prediction applied to
B slices.

• bconstIpred is a Boolean value that enables or disables intra-prediction.

• bDirect8x8Inference specifies the method used in the derivation process
for luma motion vectors for B_Skip, B_Direct_16x16, and
B_Direct_8x8 as specified in subclause 8.4.1.2 of the AVC spec.

• bDirectSpatialTemporal is a flag that indicates the spatial or temporal
direct mode used in B-slice coding, which is related to
bDirect8x8Inference . Spatial direct mode is the default.

• nCabacInitIdx is the index used to initialize Context-based Adaptive Binary
Arithmetic Coding (CABAC) contexts.

 255

 256

• eLoopFilterMode enables or disables the AVC loop filter. Table 4-59 shows
the possible AVC video coding loop filter types in
OMX_VIDEO_AVCLOOPFILTERTYPE.

Table 4-59: Supported AVC Loop Filter Types

Field Name AVC Loop Filter Level Descriptions
OMX_VIDEO_AVCLoopFilterEnable Enables AVC loop filter
OMX_VIDEO_AVCLoopFilterDisable Disables AVC loop filter
OMX_VIDEO_AVCLoopFilterDisable
 SliceBoundary

Disables AVC loop filter on slice boundary

OMX_VIDEO_AVCLevelMax Maximum level

4.3.18.2 Dependencies
This parameter is only applicable when the port is configured for AVC.

4.3.19 OMX_VIDEO_CONFIG_BITRATETYPE
The video encoder’s bit rate setting may be updated while the video encoder is actively
encoding, the OMX_VIDEO_CONFIG_BITRATETYPE structure contains the parameters
for updating the video bit rate.

OMX_VIDEO_CONFIG_BITRATETYPE is defined as follows.
typedef struct OMX_VIDEO_CONFIG_BITRATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nEncodeBitrate;
} OMX_VIDEO_CONFIG_BITRATETYPE;

4.3.19.1 Parameters
The parameters for OMX_VIDEO_CONFIG_BITRATETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nEncodeBitrate is the target bit rate for the video encoding in units of bits
per sencond.

4.3.20 OMX_CONFIG_FRAMERATETYPE
The video encoder’s frame rate setting may be updated while the video encoder is
actively encoding, the OMX_CONFIG_FRAMERATETYPE structure contains the
parameters for updating the video frame rate.

OMX_CONFIG_FRAMERATETYPE is defined as follows.
typedef struct OMX_CONFIG_FRAMERATETYPE {
 OMX_U32 nSize;

 257

 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 xEncodeFramerate;
} OMX_CONFIG_FRAMERATETYPE;

4.3.20.1 Parameters
The parameters for OMX_CONFIG_FRAMERATETYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• xEncodeFramerate is the frame rate for the video encoding in units of frames
per second. This value is represented in Q16 format

4.3.21 OMX_CONFIG_INTRAREFRESHVOPTYPE
The OMX_CONFIG_INTRAREFRESHVOPTYPE structure is used to force the next video
frame to be encoded as an I-VOP.

OMX_CONFIG_INTRAREFRESHVOPTYPE is defined as follows.
typedef struct OMX_CONFIG_INTRAREFRESHVOPTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL IntraRefreshVOP;
} OMX_CONFIG_INTRAREFRESHVOPTYPE;

4.3.21.1 Parameters
The parameters for OMX_CONFIG_INTRAREFRESHVOPTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• IntraRefreshVOP is a Boolean value used to indicate if the next frame is to
be encoded as an I VOP.

4.3.22 OMX_CONFIG_MACROBLOCKERRORMAPTYPE
The OMX_CONFIG_MACROBLOCKERRORMAPTYPE structure is used to force some of
all of the macroblocks within the next video frame to be encoded as Intra macroblocks.

Typically the map of the macroblocks requested to be refreshed as intra macroblocks
correlates to macroblock decoding errors encountered during a video telephony use case
on the remote device.

OMX_CONFIG_MACROBLOCKERRORMAPTYPE is defined as follows.
typedef struct OMX_CONFIG_MACROBLOCKERRORMAPTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;

 258

 OMX_U32 nErrMapSize;
 OMX_U8 ErrMap[1];
} OMX_CONFIG_MACROBLOCKERRORMAPTYPE;

4.3.22.1

4.3.22.2

4.3.22.3

Parameters
The parameters for OMX_CONFIG_MACROBLOCKERRORMAPTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• nErrMapSize is the size of the macroblock map containing the refresh
information, this parameter is specified in units of bytes.

• ErrMap contains the map of the macroblocks within the frame that are to be
refreshed as intra macroblocks. The array contains one or more bytes as indicated
by the nErrMapSize field

The format of the macroblock map is a bit mapped string of values that
corresponds to each macroblock within the video frame, when the bit value is set
it indicates that the corresponding macroblock is to be refreshed as an intra
macroblock.

As an example, a video frame having a resolution of 176x144 contains 99
macroblocks thus the macroblock map will contain 99 bit mapped values
identifying each and every macroblock within the frame (the nErrMapSize
parameter will contain a size of 13 – rounded up to the nearest byte boundary). Bit
0 of the macroblock map refers to macroblock 0 within the video frame, bit 1
refers to macroblock 1 and so on.

The error map information is cumulative between frames; it is to be cleared:

o Upon each OMX_GetConfig request.

o Each time an Intra Frame is detected. The error map information is to
include any macroblock errors found within the Intra frame.

Dependencies
The parameter may only be used to get the macroblock error map information using
OMX_GetConfig at any time that the component is in the OMX_StateExecuting state.

Error Conditions
On processing the OMX_CONFIG_MACROBLOCKERRORMAPTYPE structure, the
following error conditions can occur:

• OMX_ErrorMbErrorsInFrame when macroblock errors are found within a
frame.

 259

When macroblock errors are encountered during the processing, the component
will issue an OMX_EventError event with the value
OMX_ErrorMbErrorsInFrame notifying the IL client of this occurrence.

4.3.23 OMX_PARAM_MACROBLOCKSTYPE
The OMX_PARAM_MACROBLOCKSTYPE structure is used to report the number of
macroblocks available within the current video stream’s frame.

OMX_PARAM_MACROBLOCKSTYPE is defined as follows.
typedef struct OMX_PARAM_MACROBLOCKSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nMacroblocks;
} OMX_PARAM_MACROBLOCKSTYPE;

4.3.23.1

4.3.23.2

Parameters
The parameters for OMX_PARAM_MACROBLOCKSTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nMacroblocks is the number of macroblocks available within the video frame.

Dependencies
The parameter may only be used to query the number of macroblocks within the video
frame using OMX_GetParameter at any time that the component is in the
OMX_StateExecuting state.

4.3.24 OMX_CONFIG_MBERRORREPORTINGTYPE
The OMX_CONFIG_MBERRORREPORTINGTYPE structure is used to enable or disable
the macroblock error reporting support.

The macroblock error map information is queryied from the video decoder with
OMX_GetConfig using OMX_IndexConfigVideoMacroBlockErrorMap and
the OMX_CONFIG_MACROBLOCKERRORMAPTYPE structure.

OMX_CONFIG_MBERRORREPORTINGTYPE is defined as follows.
typedef struct OMX_CONFIG_MBERRORREPORTINGTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnabled;
} OMX_CONFIG_MBERRORREPORTINGTYPE;

 260

4.3.24.1 Parameters
The parameters for OMX_CONFIG_MBERRORREPORTINGTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• bEnabled is a Boolean value indicating to enable to disable the macroblock
error reporting support.

4.3.25 OMX_VIDEO_PARAM_PROFILELEVELTYPE
The OMX_VIDEO_PARAM_PROFILELEVELTYPE structure is used to query the video
encoders and decoders for their supported profiles and associated levels when used with
the OMX_IndexParamVideoProfileLevelQuerySupported.

In addition the structure may also be used to query or set the profile and level of the video
stream that is currently being processed, this is achieved using
OMX_IndexParamVideoProfileLevelCurrent

OMX_VIDEO_PARAM_PROFILELEVELTYPE is defined as follows.
typedef struct OMX_VIDEO_PARAM_PROFILELEVELTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 eProfile;
 OMX_U32 eLevel;
 OMX_U32 nProfileIndex;
} OMX_VIDEO_PARAM_PROFILELEVELTYPE;

4.3.25.1 Parameters
The parameters for OMX_VIDEO_PARAM_PROFILELEVELTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eProfile is the profile setting as associated with the
eCompressionFormat parameter.

• eLevel is the profile level setting as associated with the
eCompressionFormat and eProfile parameters.

The caller is required to type cast both the eProfile and eLevel parameters
to the proper data enumeration types prior to interpreting the parameter
information. The type casting is to be based on the eCompressionFormat
parameter defined as per the port definition.Table 4-60 shows the profile and level
type casting parameters.

Table 4-60: Profile and Level Type Casting

Coding Type Profile Type Level Type
OMX_VIDEO_CodingMPEG2 OMX_VIDEO_MPEG2PROFILETYPE OMX_VIDEO_MPEG2LEVELTYPE

Coding Type Profile Type Level Type
OMX_VIDEO_CodingH263 OMX_VIDEO_H263PROFILETYPE OMX_VIDEO_H263LEVELTYPE

OMX_VIDEO_CodingMPEG4 OMX_VIDEO_MPEG4PROFILETYPE OMX_VIDEO_MPEG4LEVELTYPE

OMX_VIDEO_CodingWMV OMX_VIDEO_WMVFORMATTYPE Not Applicable

OMX_VIDEO_CodingRV OMX_VIDEO_RVFORMATTYPE Not Applicable

OMX_VIDEO_CodingAVC OMX_VIDEO_AVCPROFILETYPE OMX_VIDEO_AVCLEVELTYPE

• eProfileIndex is used to enumerate the supported profiles. The caller
specifies all fields and the OMX_GetParameter call returns the value of the
supported profile and level. The value of nProfileIndex goes from 0 to N-1,
where N is the number of profiles supported by the port. The port does not need to
report N as the caller can determine N by enumerating all the formats supported
by the port. Each port shall support at least one profile. If there are no more
profiles, OMX_GetParameter returns OMX_ErrorNoMore.

Table 4-61: ProfileLevel Call Details

Action Index Description
OMX_IndexParamVideoProfileLevel
 QuerySupported

Query for
supported
profiles and
levels

Multiple calls with increasing
values of nProfileIndex will
enumerate the supported
profiles until
OMX_ErrorNoMore is
returned.
With each successful call, a
supported profile will be
identified with the maximum
supported associated level
setting.

OMX_IndexParamVideoProfileLevel
 Current

Query the
profile and
level for the
current stream

eCompressionFormat,
eProfile and eLevel will
return the current stream’s
information.
The nProfileIndex
parameter is an ignored
parameter.

OMX_IndexParamVideoProfileLevel
 Current

Configure the
encoder to use
a specific
profile and
level for the
current stream

eCompressionFormat,
eProfile and eLevel will
contain the requested settiins
to be used as part of the
encoding.
The nProfileIndex
parameter is an ignored
parameter.

 261

 262

4.3.25.2 Dependencies
The parameter using the index OMX_IndexParamVideoProfileLevelCurrent
may be queried using OMX_GetParameter or set using OMX_SetParameter at any
time that the component is initialized.

4.3.26 OMX_VIDEO_PARAM_AVCSLICEFMO
The OMX_VIDEO_PARAM_AVCSLICEFMO structure is used to enable and configure the
Flexible Macroblock Ordering (FMO) slice modes within the AVC video encoder.

OMX_VIDEO_PARAM_AVCSLICEFMO is defined as follows.
typedef struct OMX_VIDEO_PARAM_AVCSLICEFMO {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U8 nNumSliceGroups;
 OMX_U8 nSliceGroupMapType;
 OMX_VIDEO_SLICEMODETYPE eSliceMode;
} OMX_VIDEO_PARAM_AVCSLICEFMO;

4.3.26.1 Parameters
The parameters for OMX_VIDEO_PARAM_AVCSLICEFMO are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nNumSliceGroups specifies the number of slice groups that can be supported
in the encode session. This parameter is enabled when FMO mode is enabled,
refer to OMX_VIDEO_PARAM_AVCTYPE for enabling FMO mode support.

The setting information for this parameter is direcly related to the functionality as
specified within the ITU H.264/AVC specification and is dependent on the video
profile currently in use.

The currently defined parameter range settings are listed in Table 4-62.
Table 4-62: AVC Parameter Range Settings

Video Profile Range
OMX_VIDEO_AVCProfileBaseline 0 to 7
OMX_VIDEO_AVCProfileMain 0
OMX_VIDEO_AVCProfileExtended 0 to 7
OMX_VIDEO_AVCProfileHigh 0
OMX_VIDEO_AVCProfileHigh10 0
OMX_VIDEO_AVCProfileHigh422 0
OMX_VIDEO_AVCProfileHigh444 0

• nSliceGroupMapType specifies the type of slice groupings that is to be used
during encoding.

 263

The setting information for this parameter is direcly related to the functionality as
specified within the ITU H.264/AVC specification.

The currently defined parameter settings are:
Table 4-63: Slice Group Map Type Values

Slice Group
Map Value

Description

0 Indicates interleaves slices.
1 Indicates a dispersed macroblock allocation
2 Indicates to explicitly assign a slice group to each macroblock in

raster scan order
3 Indicates one or more “foreground” slice groups and a “leftover”

slice group
4 Indicates changing slice groups.
5 Indicates changing slice groups.
6 Indicates changing slice groups.

• eSliceMode specifies the type of slice that is to be used for encoding the frame.
Table 4-64: Slice Mode Type Casting

Slice Mode AVC Slice Mode Description
OMX_VIDEO_SLICEMODE_AVCDefault Normal frame encoding, one slice per frame
OMX_VIDEO_SLICEMODE_AVCMBSlice NAL mode based on number of macroblocks

per slice
OMX_VIDEO_SLICEMODE_AVCByteSlice NAL Mode based on number of bytes per slice.

4.3.27 OMX_VIDEO_CONFIG_AVCINTRAPERIOD
The OMX_VIDEO_CONFIG_AVCINTRAPERIOD structure is used to enable and
configure the IDR and Intra periodicity for the AVC encoder during an encoding session.

OMX_VIDEO_CONFIG_AVCINTRAPERIOD is defined as follows.
typedef struct OMX_VIDEO_CONFIG_AVCINTRAPERIOD {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIDRPeriod;
 OMX_U32 nPFrames;
} OMX_VIDEO_CONFIG_AVCINTRAPERIOD;

4.3.27.1 Parameters
The parameters for OMX_VIDEO_CONFIG_AVCINTRAPERIOD are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

 264

• nIDRPeriod defines the periodicity of IDR occurrence. This specifies coding a
frame as IDR after every nPFrames of intra frames. If this parameter is set to 0,
only the first frame of the encode session is an IDR frame.

• nPFrames sprecifies coding of a frame as Intra (non-inclusive of the first frame)
after every nPFrames of Inter frames.

4.3.28 OMX_VIDEO_CONFIG_NALSIZE
The OMX_VIDEO_CONFIG_NALSIZE structure is used to specify the size of a NAL
unit for the AVC encoder during an encoding session.

OMX_VIDEO_CONFIG_NALSIZE is defined as follows.
typedef struct OMX_VIDEO_CONFIG_NALSIZE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nNaluBytes;
} OMX_VIDEO_CONFIG_NALSIZE;

4.3.28.1 Parameters
The parameters for OMX_VIDEO_CONFIG_NALSIZE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nNaluBytes specifies the number of bytes of data to be contained in the current
NAL Units.

4.4 Image
This section describes the parameter and configuration details for components and ports
in the image domain. These parameter and configuration details are specified in the
OMX_Image.h header file.

4.4.1 Parameter and Configuration Indices
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all standard index values used core functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 4-65 shows
the index values that relate to imaging.

Table 4-65: Image Indices

OpenMAX IL Indices (OMX_Index.h) Corresponding OpenMAX IL Image Structures
(OMX_Image.h)

OMX_IndexParamImagePortFormat OMX_IMAGE_PARAM_PORTFORMATTYPE

OMX_IndexParamImageInit OMX_PORT_PARAM_TYPE

OMX_IndexParamFlashControl OMX_IMAGE_PARAM_FLASHCONTROLTYPE

OpenMAX IL Indices (OMX_Index.h) Corresponding OpenMAX IL Image Structures
(OMX_Image.h)
OMX_IMAGE_PARAM_FLASHCONTROLTYPE OMX_IndexConfigFlashControl

OMX_IndexConfigFocusControl OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE

OMX_IMAGE_PARAM_QFACTORTYPE OMX_IndexParamQFactor

OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPEOMX_IndexParamQuantizationTable

OMX_IndexParamHuffmanTable OMX_IMAGE_PARAM_HUFFMANTTABLETYPE

For example, OMX_IndexParamImagePortFormat index is used with
OMX_GetParameter and OMX_SetParameter to access
OMX_IMAGE_PARAM_PORTFORMATTYPE.

4.4.2 Image Use Case Example

Figure 4-6 depicts one possible set of tunneled components and associated ports to
implement a JPEG encoder with pre- and post-processing. This use case encodes an
image to a file while allowing a preview of the captured image via a display.

Figure 4-6. Image Filtering and JPEG Encoding Use Case

 265

Figure 4-6 shows six components, namely the camera, the image filter, the splitter, the
JPEG encoder, the file writer, and the image sink.

4.4.3 OMX_IMAGE_PORTDEFINITIONTYPE
OMX_IMAGE_PORTDEFINITIONTYPE is the data structure that is used to define an
image path. The number of image paths for input and output will vary by the type of the
image component:

• Input (also known as source) has zero inputs and one output.

• Splitter has one input and two or more outputs.

• Processing element has one input and one output.

• Mixer has two or more inputs and one output.

• Output (also known as sink) has one input and zero outputs.

The OMX_IMAGE_PORTDEFINITIONTYPE structure can query the current or default
definition of an image port or set the definition of an image port for a component. The
OMX_IMAGE_PORTDEFINITIONTYPE structure is included as part of the
OMX_PARAM_PORTDEFINITIONTYPE structure, it is accessed via the
OMX_GetParameter function or the OMX_GetParameter function using the
OMX_IndexParamPortDefinition index.

OMX_IMAGE_PORTDEFINITIONTYPE is defined as follows.
typedef struct OMX_IMAGE_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_U32 nFrameWidth;
 OMX_U32 nFrameHeight;
 OMX_S32 nStride;
 OMX_U32 nSliceHeight;
 OMX_BOOL bFlagErrorConcealment;
 OMX_IMAGE_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
 OMX_NATIVE_WINDOWSTYPE pNativeWindow;
} OMX_IMAGE_PORTDEFINITIONTYPE;

 266

 267

4.4.3.1 Parameters
The parameters for OMX_IMAGE_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the multipurpose Internet mail extensions (MIME) type of data
on the port. If a MIME type string buffer is not supplied this parameter shall be
set to NULL.

• pNativeRender is the read-only platform specific reference for a display
synchronization; otherwise this field is 0. This parameter is ignored on
OMX_SetParameter calls.

• nFrameWidth is the width of frame to be used on the port if uncompressed
format is used. Use 0 for unknown, no preference, or variable.

• nFrameHeight is the height of the frame to be used on the port if
uncompressed format is used. Use 0 for unknown, no preference, or variable.

• nStride is a field containing the number of bytes per span of an image, which
indicates the number of bytes to get from span N to span N+1. A negative value
for nStride indicates the data is stored bottom-to-top instead of top-to-bottom.

Normally the stride parameter is determined by the component, there are cases
however when the stride parameter may need to be updated based on external
buffer stride requirements.

An example of such a case includes when IL clients submit buffers to the
component for processing, the IL client may have differing stride requirements
from the component port.

By allowing the flexibility for the stride to be modified, the component and
ILclient may negotiate a common stride setting to suit each other needs and in
turn possibly improve the performance of processing the buffer.

• nSliceHeight is a read-only field containing the slice height parameter used
when processing uncompressed image data. Buffers received on the port shall
contain integer multiples of slices. For more information on minimum buffer
payload for uncompressed data, see section 4.2.2.

• bFlagErrorConcealment is a flag indicating that the OpenMAX IL
component supports error concealment. This flag is returned by a component
upon invoking OMX_GetParameter; it is ignored on OMX_SetParameter
calls.

• eCompressionFormat is the enumeration describing the compression format
used on the port. When OMX_IMAGE_CodingUnused is specified, the
eColorFormat field is valid. Table 4-66 shows the supported image
compression formats.

 268

Table 4-66: Supported Image Compression Formats

Field Name Compression Format Description Reference to
Standard

OMX_IMAGE_CodingUnused No coding applied, use
eColorFormat

Not available

OMX_IMAGE_CodingAutoDetect Auto detection by the OpenMAX
IL component

Not available

OMX_IMAGE_CodingJPEG JPEG/JFIF image format JPEG

OMX_IMAGE_CodingJPEG2K JPEG 2000 image format JPEG2K

OMX_IMAGE_CodingEXIF EXIF image format EXIF

OMX_IMAGE_CodingTIFF TIFF image format TIFF

OMX_IMAGE_CodingGIF Graphics image format GIF

OMX_IMAGE_CodingPNG PNG image format PNG

OMX_IMAGE_CodingLZW LZW image format LZW

OMX_IMAGE_CodingBMP Windows Bitmap format BMP

OMX_IMAGE_CodingMax Maximum value Not available

• eColorFormat is the decompressed color format used for the port. This field is
valid only when the eCompressionFormat field is set to
OMX_IMAGE_CodingUnused.

• pNativeWindow is a platform specific reference for a windows object when
being processed within as part of a video sink component, otherwise this field is 0
and ignored.

4.4.4 OMX_IMAGE_PARAM_PORTFORMATTYPE
OMX_IMAGE_PARAM_PORTFORMATTYPE is used to enumerate the various data
input/output format supported by the port.

OMX_IMAGE_PARAM_PORTFORMATTYPE is defined as follows.
typedef struct OMX_IMAGE_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_IMAGE_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
} OMX_IMAGE_PARAM_PORTFORMATTYPE;

4.4.4.1 Parameters
The parameters for OMX_IMAGE_PARAM_PORTFORMATTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nIndex indicates the enumeration index for the format from 0x0 to N-1.

 269

• eCompressionFormat is an enumeration describing the compression format
used on the port. When OMX_IMAGE_CodingUnused is specified, the
eColorFormat field is valid. For enumerations regarding
OMX_IMAGE_CODINGTYPE, see Table 4-66.

• eColorFormat is the decompressed color format used for the port. This field is
valid only when the eCompressionFormat field is set to
OMX_IMAGE_CodingUnused. For enumerations on
OMX_COLOR_FORMATTYPE, see section 4.2.

4.4.5 OMX_IMAGE_PARAM_FLASHCONTROLTYPE
The OMX_IMAGE_PARAM_FLASHCONTROLTYPE structure defines the mode of
operation for flash control and configuration.

OMX_IMAGE_PARAM_FLASHCONTROLTYPE is defined as follows.
typedef struct OMX_IMAGE_PARAM_FLASHCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_FLASHCONTROLTYPE eFlashControl;
} OMX_IMAGE_PARAM_FLASHCONTROLTYPE;

4.4.5.1 Parameters
The parameters for OMX_IMAGE_PARAM_FLASHCONTROLTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eFlashControl is an enumeration for the flash control modes. Table 4-67
shows the supported image flash controls.

Table 4-67: Supported Image Flash Controls

Field Name Flash Control Description
OMX_IMAGE_FlashControlOn Strobe at every shot
OMX_IMAGE_FlashControlOff Strobe off
OMX_IMAGE_FlashControlAuto Strobe according to environment light
OMX_IMAGE_FlashControlRedEyeReduction Pre-shot strobes
OMX_IMAGE_FlashControlFillin Flash for background/

foreground effect
OMX_IMAGE_FlashControlTorch Flash is always on
OMX_IMAGE_FlashControlMax Maximum value

 270

4.4.6 OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE
OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE controls the focus mode and range.
This structure can be used with OMX_CONFIG_FOCUSREGIONTYPE to specify thye
focus regions of interest.

OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE is defined as follows.
typedef struct OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_FOCUSCONTROLTYPE eFocusControl;
 OMX_U32 nFocusSteps;
 OMX_U32 nFocusStepIndex;
} OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE;

4.4.6.1 Parameters
The parameters for OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eFocusControl is an enumeration that specifies the image focus controls.
Table 4-68 shows the supported image focus controls.

Table 4-68: Supported Image Focus Controls

Field Name Focus Control Description
OMX_IMAGE_FocusControlOn Focus control On

Focus adjustments are being
performed manually by the
user.

Focus status determination
is performed by the
component and status is
provided via
OMX_PARAM_FOCUSSTATUSTYPE
(OMX_IndexConfigCommonFocus
Status)

Field Name Focus Control Description
OMX_IMAGE_FocusControlOff Focus control off

Focus adjustments are being
performed manually by the
user.

Focus status determination
is performed manually
(visually inspection via
viewfinder) by the user.

OMX_IMAGE_FocusControlAuto Auto focus control on

Focus adjustments are being
performed automatically and
continuously by the
component until a capture
request is issued.

Focus status determination
is performed by the
component and status is
provided via
OMX_PARAM_FOCUSSTATUSTYPE
(OMX_IndexConfigCommonFocus
Status)

OMX_IMAGE_FocusControlAutoL
ock

Auto focus control with
lock support on

Focus adjustment is locked
to the current focus
adjustment setting.

Focus status determination
is performed by the
component and status is
provided via
OMX_PARAM_FOCUSSTATUSTYPE
(OMX_IndexConfigCommonFocus
Status).
The focus status request
for this mode continually
reflects the focus status
upon receiving this lock
focus request.

Note: the IL-client can use OMX_IndexConfigCommonFocusRegion to
change the focus area in any of the above modes.

 271

 272

• nFocusSteps is a value that specifies the number of steps that the focus can
take on. The range is 0 mm to infinity.

• nFocusStepIndex defines the current position of the focus.

4.4.7 OMX_IMAGE_PARAM_QFACTORTYPE
OMX_IMAGE_PARAM_QFACTORTYPE determines the quality factor for JPEG
compression, which controls the tradeoff between image quality and size. Q Factor
provides a simpler means of controlling the JPEG compression quality than directly
programming quantization tables for chroma and luma.

OMX_IMAGE_PARAM_QFACTORTYPE is defined as follows.
typedef struct OMX_IMAGE_PARAM_QFACTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nQFactor;
} OMX_IMAGE_PARAM_QFACTORTYPE;

4.4.7.1 Parameters
The parameters for OMX_IMAGE_PARAM_QFACTORTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nQFactor is a compression quality factor value in the range 1–100. A factor of
1 produces the smallest, worst quality images, and a factor of 100 produces the
largest, best quality images. A typical default is 75 for small, good quality images.

4.4.8 OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE
OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE provides JPEG quantization
tables, which are used to determine DCT compression for YUV data.
OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE is an alternative to specifying Q
factor, providing exact control of compression.

OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE is defined as follows.
typedef struct OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_QUANTIZATIONTABLETYPE eQuantizationTable;
 OMX_U8 nQuantizationMatrix[64];
} OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE;

4.4.8.1 Parameters
The parameters for OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE are defined as
follows.

 273

• nPortIndex is the read-only value containing the index of the port.

• eQuantizationTable is an enumeration for the quantization table type,
which defines luma or chroma table types. Table 4-69 shows the supported image
quantization table types.

Table 4-69: Supported Image Quantization Table Types

Field Name Quantization Table Description
OMX_IMAGE_QuantizationTableLuma Quantization table for the luma

coefficients
OMX_IMAGE_QuantizationTableChroma Quantization table for both the Cb and Cr

chroma coefficients
OMX_IMAGE_QuantizationTableChromaCb Quantization table for Cb chroma

coefficients only
OMX_IMAGE_QuantizationTableChromaCr Quantization table for Cr chroma

coefficients only
OMX_IMAGE_QuantizationTableMax Max value

• nQuantizationMatrix is the JPEG quantization table of coefficients stored
in increasing columns and then by rows of data (i.e., row 1,… row 8).
Quantization values are in the range 0–255 and are stored in linear order (i.e., the
component will zigzag the quantization table data internally if required).

4.4.8.2 Error Conditions
On processing the OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE structure, the
following error conditions can occur:

• OMX_ErrorSeperateTablesUsed when OMX_GetParameter function
is called using OMX_IMAGE_QuantizationTableChroma and separate
quantization tables are used for the Chroma (Cb and Cr) coefficients.

This error indicates that separate OMX_GetParameter function calls need to be
issued using OMX_IMAGE_QuantizationTableChromaCb and
OMX_IMAGE_QuantizationTableChromaCb to query for the separate chroma
coefficient quantization tables.

4.4.9 OMX_IMAGE_PARAM_HUFFMANTTABLETYPE
The OMX_IMAGE_PARAM_HUFFMANTTABLETYPE structure is used to set the
Huffman variable code length type used for JPEG.

OMX_IMAGE_PARAM_HUFFMANTTABLETYPE is defined as follows.
typedef struct OMX_IMAGE_PARAM_HUFFMANTTABLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_HUFFMANTABLETYPE eHuffmanTable;

 274

 OMX_U8 nNumberOfHuffmanCodeOfLength[16];
 OMX_U8 nHuffmanTable[256];
}OMX_IMAGE_PARAM_HUFFMANTTABLETYPE;

4.4.9.1 Parameters
The parameters for OMX_IMAGE_PARAM_HUFFMANTTABLETYPE are defined as
follows.

• nPortIndex is the read-only value containing the index of the port.

• eHuffmanTable is an enumeration for the Huffman table types. Table 4-70
shows the supported Huffman table types.

Table 4-70: Supported Huffman Table Types

Field Name Huffman Table Description
OMX_IMAGE_HuffmanTableAC Huffman table to be applied to Luma and Chroma

AC coefficients
OMX_IMAGE_HuffmanTableDC Huffman table to be applied to Luma and Chroma

DC coefficients
OMX_IMAGE_HuffmanTableACLuma Huffman table to be applied to Luma AC

coefficients only
OMX_IMAGE_HuffmanTableACChroma Huffman table to be applied to Chroma AC

coefficients only
OMX_IMAGE_HuffmanTableDCLuma Huffman table to be applied to Luma DC

coefficients only
OMX_IMAGE_HuffmanTableDCChroma Huffman table to be applied to Chroma DC

coefficients only
OMX_IMAGE_HuffmanTableMax Maximum value

• nNumberOfHuffmanCodeOfLength is a value in the range of 0–16 that
represents the number of Huffman codes of each possible length.

• nHuffmanTable is a value in the range of 0–255. The table sizes used for AC
and DC Huffman tables are 16 and 162.

4.4.9.2 Error Conditions
On processing the OMX_IMAGE_PARAM_HUFFMANTTABLETYPE structure, the
following error conditions can occur:

• OMX_ErrorSeperateTablesUsed when the OMX_GetParameter
function is called using OMX_IMAGE_HuffmanTableAC or
OMX_IMAGE_HuffmanTableDC and separate Huffman tables are used for the
Luma and Chroma coefficients.

This error indicates that separate OMX_GetParameter function calls need to be
issued using OMX_IMAGE_HuffmanTableACLuma and

OMX_IMAGE_HuffmanTableACChroma to obtain the AC coefficient information
and separate OMX_GetParameter function calls need to be issued using
OMX_IMAGE_HuffmanTableDCLuma and
OMX_IMAGE_HuffmanTableDCChroma to obtain the DC coefficient information.

 275

4.5 “Other” Domain
This section describes the concepts, structures, and configurations for the domain
designated as “other” and moniker distinguishing it from the audio, video and image
domains. The OMX_Other.h header specifies the parameters and configurations in detail.

Presently the other domain formalizes only a “time” data format and its associated
operation though other data formats may be formalized in the future. The time data
format exists to facilitate synchronization. To provide context to the definition of the time
data format, the following section explains OpenMAX IL’s synchronization mechanisms.

4.5.1 Parameters and Config Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all of the standard index values used with the functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 4-71
describes the index values that relate to Other Domain.

Table 4-71: Index Values for Other Domain

Index Description
OMX_IndexConfigTimeScale Used with OMX GetConfig and

OMX_SetConfig to access a
OMX_TIME_CONFIG_SCALETYPE
structure denoting the scale of the media
clock.

OMX_IndexConfigTimeClockState Used with OMX_GetConfig and
OMX_SetConfig to access a
OMX_TIME_CONFIG_CLOCKSTATETY
PE structure denoting the state of the
media clock.

OMX_IndexConfigTimeActiveRefClock Used with OMX_GetConfig and
OMX_SetConfig to access a
OMX_TIME_CONFIG_ACTIVEREFCLO
CKTYPE structure denoting the active
reference clock.

OMX_IndexConfigTimeCurrentMediaTime Used with OMX_GetConfig to query a
OMX_TIME_CONFIG_TIMESTAMPTYP
E structure denoting the current media
time.

OMX_IndexConfigTimeCurrentWallTime Used with OMX_GetConfig to query a
OMX_TIME_CONFIG_TIMESTAMPTYP
E structure denoting the current wall
clock time.

 276

 277

Index Description
OMX_IndexConfigTimeCurrentAudioReferen
ce

Used with OMX_SetConfig to set the
OMX_TIME_CONFIG_TIMESTAMPTYP
E structure denoting the current audio
reference clock time time.

OMX_IndexConfigTimeCurrentVideoReferen
ce

Used with OMX_SetConfig to set the
OMX_TIME_CONFIG_TIMESTAMPTYP
E structure denoting the current video
reference clock time time.

OMX_IndexConfigTimeMediaTimeRequest Used with OMX_SetConfig to request a
clock component operation using a
OMX_TIME_CONFIG_MEDIATIMEREQ
UESTTYPE structure.

OMX_IndexConfigTimeClientStartTime Used with OMX_SetConfig to set the
start time of the given client stream using
the
OMX_TIME_CONFIG_TIMESTAMPTYP
E structure.

OMX_IndexConfigTimePosition Used with OMX_GetConfig and
OMX_SetConfig to access a
OMX_TIME_CONFIG_SCALETYPE
structure denoting the current position in
time.

OMX_IndexConfigTimeSeekMode Used with OMX_GetConfig and
OMX_SetConfig to access a
OMX_TIME_CONFIG_SCALETYPE
structure denoting the current seek mode.

4.5.2 OMX_TIME_CONFIG_SEEKMODETYPE
A component’s seek mode defines the semantics it follows when an IL client requests a
change in position (via the OMX_IndexConfigTimePosition configuration).

OMX_TIME_CONFIG_SEEKMODETYPE is defined as follows.

4.5.2.1 Parameters
 The parameters for OMX_TIME_CONFIG_SEEKMODETYPE are defined as follows.

typedef struct OMX_TIME_CONFIG_SEEKMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_SEEKMODETYPE eType;
} OMX_TIME_CONFIG_SEEKMODETYPE;

 278

• eType is seek mode and must be a value from the
OMX_TIME_SEEKMODETYPE enumeration

Table 4-72: Seek Modes Defined by OMX_TIME_SEEKMODETYPE

Field Name Description
OMX_TIME_SeekFast Prefer seeking to an approximation of the requested seek

position over the actual seek position if it results in a faster
seek.

OMX_TIME_SeekAccurate Prefer seeking to the actual seek position over an
approximation of the requested seek position even if it results in
a slower seek.

4.5.3 OMX_TIME_CONFIG_TIMESTAMPTYPE
A timestamp represents a position in time relative to some clock. The
OMX_IndexConfigTimeCurrentWallTime,
OMX_IndexConfigTimeCurrentMediaTime,
OMX_IndexConfigTimeCurrentAudioReference, and
OMX_IndexConfigTimeCurrentVideoReference configurations leverage this
structure.

OMX_TIME_CONFIG_TIMESTAMPTYPE is defined as follows.

4.5.3.1 Parameters
 The parameters for OMX_TIME_CONFIG_TIMESTAMPTYPE are defined as follows.

• nPortIndex is the read-only value containing the index of the port.

• nTimestampType holds the actual timestamp value.

4.5.4 OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE
The media time request respresents a request for notification at the media time specified.

OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE is defined as follows.

typedef struct OMX_TIME_CONFIG_TIMESTAMPTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_TICKS nTimestampeType;
} OMX_TIME_CONFIG_TIMESTAMPTYPE;

 279

4.5.4.1

4.5.5.1

Parameters
 The parameters for OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE are defined
as follows.

• nPortIndex is the read-only value containing the index of the port.

• pClientPrivate client private data to disambiguate this media time from
others.

• nMediaTimestamp media time requested.

• nOffset amount of wall clock time by which this request should be fulfilled
early.

4.5.5 OMX_TIME_CONFIG_MEDIATIMETYPE
The media time structure is sent to a port either to fulfill a media time request or when the
clock state or scale has changed.

OMX_TIME_CONFIG_MEDIATIMETYPE is defined as follows.

Parameters
 The parameters for OMX_TIME_CONFIG_MEDIATIMETYPE are defined as follows.

• pClientPrivate client private data to disambiguate this media time from
others.

typedef struct OMX_TIME_MEDIATIMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nClientPrivate;
 OMX_TIME_UPDATETYPE eUpdateType;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;
 OMX_TICKS nWallTimeAtMediaTime;
 OMX_S32 xScale;
 OMX_TIME_CLOCKSTATE eState;
} OMX_TIME_MEDIATIMETYPE;

typedef struct OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_PTR pClientPrivate;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;
} OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE;

• eUpdateType designates reason for the this update was sent and must be a
value from the OMX_TIME_UPDATETYPE enumeration

Table 4-73: Media Time Update Types Defined by OMX_TIME_UPDATETYPE

Field Name Description
OMX_TIME_UpdateRequestFulfillment Update is the fulfillment of a media time

request.
OMX_TIME_UpdateScaleChanged Update to indicate the clock scale has

changed.
OMX_TIME_UpdateStateChanged Update to indicate the clock state has

changed.

• nMediaTimeStamp denotes the media time requested.

• nOffset designates amount of wall clock time by which this request was
actually fulfilled early.

• nWallTimeAtMediaTime denotes the wall time corresponding to
nMediaTimeStamp.

• xScale designates the current media time scale in Q16 format.

• eState designates the clock state and must be a value from the
OMX_TIME_CLOCKSTATE enumeration

Table 4-74: Clock States Defined by OMX_TIME_CLOCKSTATE

Field Name Description
OMX_TIME_ClockStateRunning Clock is running.
OMX_TIME_ClockStateWaitingForStartTime Clock is waiting until the prescribed

clients emit their start time.
OMX_TIME_ClockStateStopped Clock is stopped.

4.5.6 OMX_TIME_CONFIG_SCALETYPE
The clock scale config represents the current clock scale. It allows the IL client to query
and set the clock scale.

OMX_TIME_CONFIG_SCALETYPE is defined as follows.

typedef struct OMX_TIME_CONFIG_SCALETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_S32 xScale;
} OMX_TIME_CONFIG_SCALETYPE;

 280

 281

4.5.6.1

4.5.7.1

Parameters
 The parameters for OMX_TIME_CONFIG_SCALETYPE are defined as follows.

• xScale the scale of the media time in Q16 format.

4.5.7 OMX_TIME_CONFIG_CLOCKSTATETYPE
The clock state config represents the current state of the media clock. It allows the IL
client to set and query the clock state.

OMX_TIME_CONFIG_CLOCKSTATETYPE is defined as
follows.

Parameters
The parameters for OMX_TIME_CONFIG_CLOCKSTATETYPE are defined as follows.

• eState denotes the state of the media clock and must be a value in the
OMX_TIME_CLOCKSTATE enumeration.

• nStartTime designates the media time the media clock is inialized to.

• nOffset designates the time to offset the media time by.

• nOffset specifies a mask of OMX_CLOCKPORT values designating which
ports, if any, to wait on.

Table 4-75: Possible Clock Port Values

Field Name Value
OMX_CLOCKPORT0 0x00000001
OMX_CLOCKPORT1 0x00000002

OMX_CLOCKPORT2 0x00000004
OMX_CLOCKPORT3 0x00000008
OMX_CLOCKPORT4 0x00000010
OMX_CLOCKPORT5 0x00000020
OMX_CLOCKPORT6 0x00000040
OMX_CLOCKPORT7 0x00000080

 typedef struct OMX_TIME_CONFIG_CLOCKSTATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_CLOCKSTATE eState;
 OMX_TICKS nStartTime;
 OMX_TICKS nOffset;
 OMX_U32 nWaitMask;
} OMX_TIME_CONFIG_CLOCKSTATETYPE;

 282

4.5.8 OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE
The active reference clock structure represents the clock currently being used as a
reference for the media clock. It allows the IL client to set and query the currently active
reference clock.

OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE is defined as
follows.

4.5.8.1 Parameters
The parameters for OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE are defined as
follows.

• eClock denotes the currently active reference clock and must be a value in the
OMX_TIME_REFCLOCKTYPE enumeration.

Table 4-76: Reference Clock Enumeration

Field Name Value
OMX_TIME_RefClockNone No active reference clock.
OMX_TIME_RefClockAudio The audio clock is the active reference clock.
OMX_TIME_RefClockVideo The video clock is the active reference clock.

 typedef struct OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_REFCLOCKTYPE eClock;
} OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE;

5 OpenMAX IL Component Extension APIs

5.1 Description of the Extension Process
An OpenMAX IL component may support any setting defined in the OpenMAX IL
specification. Vendors can add to the list of parameters and configurations not included in
the standard header files. These additions are referred to as extensions.

Any extensions approved by Khronos are considered OpenMAX IL extensions. Any
extensions not approved by Khronos are vendor-defined extensions.

OpenMAX IL extensions are defined in a predefined set of extension header files,
namely:

• OMX_CoreExt.h: OpenMAX IL core extension API

• OMX_ComponentExt.h: OpenMAX IL component extension API

• OMX_AudioExt.h: OpenMAX IL audio domain extension data structures

• OMX_IVCommonExt.h: OpenMAX IL extension structures common to image
and video domains

• OMX_VideoExt.h: OpenMAX IL video domain extension data structures

• OMX_ImageExt.h: OpenMAX IL image domain extension data structures

• OMX_OtherExt.h : OpenMAX IL other domain extension data structures
(includes A/V synchronization extensions)

• OMX_IndexExt.h: Index of all OpenMAX IL extension data structures

• OMX_ContentPipeExt.h: Content pipe defined extensions

Any vendor that develops OpenMAX IL components may add to the list of standard
indexes a collection of one or more custom parameters or configuration indexes. Each
vendor-specific index shall have a value greater than the value of
OMX_IndexVendorStartUnused and less than the value of OMX_IndexMax - 1.
Each OpenMAX IL extension index has a value greater than the value of
OMX_IndexKhronosExtension and less than the value of
OMX_IndexVendorStartUnused – 1.

Each extension parameter or configuration index may apply to one of the four existing
domains, namely audio, video, image, and “other”. It may also apply a parameter or
configuration that does not belong to any known domain.

A vendor-specific extension index to a parameter or configuration may be defined by a
string and be reported in the component description documentation. The IL client may
obtain the index related to this property using the component function
OMX_GetExtensionIndex. This function provides a numeric index from a string

 283

 284

The numeric index can be used with the functions OMX_GetParameter and
OMX_SetParameter if the index regards a parameter, or with the functions
OMX_GetConfig and OMX_SetConfig if the index is a configuration index. The
nature of the parameter or configuration value should be documented in the extension
section of the component documentation. Khronos, or its designee, will maintain a
publicly-accessible registry of OpenMAX IL extensions. These extensions are baselined
to a version of an OpenMAX IL specification and may be promoted to a subsequent
release of the OpenMAX IL specification.

5.1.1 GetExtensionIndex
The OMX_GetExtensionIndex method will translate a vendor-specific configuration
or parameter string into an OpenMAX IL structure index. There is no requirement for the
component to support this command for the indexes already found in the
OMX_INDEXTYPE enumeration or in the anynomous enumeration in OMX_IndexExt.h,
thus reducing a component’s memory footprint. The component may support all vendor-
supplied extension indexes not found in the OMX_INDEXTYPE enumeration that it
supports. This is a blocking call. The component should return from this call within five
milliseconds.

The parameters for the OMX_GetExtensionIndex method are defined as follows.

Parameter Description

hComponent
[in]

The handle of the component to be accessed. This component handle is
returned by the call to the GetHandle function.

cParameterName
[in]

The string that the component will translate into a 32-bit index.
OMX_STRING shall be less than 128 characters long including the trailing
null byte.

pIndexType
[out]

A pointer to OMX_INDEXTYPE that receives the index value.

5.1.1.1

5.1.1.2

Prerequisites for This Method
This macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

Method Implementation
The following code defines the method implementation.
 OMX_ERRORTYPE (*GetExtensionIndex)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_STRING cParameterName,
 OMX_OUT OMX_INDEXTYPE* pIndexType);

5.1.2 Custom Data Structures
Each index refers to a structure or a memory area that stores the data for the parameter or
configuration. The vendor shall provide a data container that is a vendor-specific
structure within a vendor-specific header file. Khronos shall provide a data container that
is an OpenMAX IL extensions structure within one of the OpenMAX IL extension
header files. The header file is to be included by the component that implements the
extension feature, and by the IL client that uses the extension feature.

If the data container is simply a pointer to a memory area, the IL client shall know how to
manage the data. Each extension parameter shall be described in the component
description document and follows the convention of standard OpenMAX IL data
structures.

Each vendor-specific feature shall be documented in the component specifications, which
describe the relationship between the string that defines a property, which is used with
the GetExtensionIndex function, and the related data structure that corresponds to
the index returned from GetExtensionIndex for the string.

5.1.3 Enumerations
OpenMAX IL enumeration types, as specified in the standard OpenMAX IL header files,
may be extended using anonymous enum declarations in the OpenMAX IL extension or
vendor-specific header files.

Each OpenMAX IL extension enumeration has a value greater than
OMX_KhronosExtensions and smaller than OMX_VendorStartUnused – 1.
Each Vendor specific extension enumeration has a value greater than
OMX_VendorStartUnused and smaller than OMX_<enum>Max.

It may be necessary to cast the anonymous enum values to the standard OpenMAX IL
enumeration types explicitly to avoid compilation errors.

5.1.4 Promoting extensions to specification
Extensions may be promoted to the OpenMAX-IL specification in subsequent releases of
the OpenMAX-IL interface.

After promotion, the standard OpenMAX-IL header shall include a new standard
enumeration value, as well as the extended enumeration value that remains in the
OpenMAX IL extension file. It may be that both enumeration values point to the same
feature.

5.2 Examples of Using Extension Querying API
This section shows sample code for extension APIs.

5.2.1 Sample Code Showing Calling Sequence
The following sample code shows an example of calling an extension API.

 285

 /* Set the vendor-specific filename parameter
 on a reader */
 OMX_U32 eIndexParamFilename;
 OMX_PTR oFileName;

 OMX_GetExtensionIndex(
 hFileReaderComp,
 "OMX.CompanyXYZ.index.param.filename",
 &eIndexParamFilename);
 OMX_SetParameter(hComp, eIndexParamFilename, &oFileName);

This following code sample shows how to use a vendor-specific parameter. The code
passes a file name to a component. The file name string does not belong to any
OpenMAX IL domain; it used only for this example.
 /* Get the vendor-specific mp3 faster
 decoding feature settings */
 OMX_U32 eIndexParamFasterDecomp;
 OMX_CUSTOM_AUDIO_STRUCTURE oFasterDecompParams;

 OMX_GetExtensionIndex(
 hMp3DecoderComp,
 "OMX.CompanyXYZ.index.param.fasterdecomp",
 &eIndexParamFasterDecomp);
 OMX_GetParameter(hMp3DecoderComp, eIndexParamFasterDecomp,
 &oFasterDecompParams);

In this second example, a special parameter of an MP3 decoder is presented. The index
eIndexParamFasterDecomp is retrieved, and the related data structure is stored in
the oFasterDecompParams structure by the GetParameter function.

 286

6 Synchronization
This section specifies synchronization functionality including seeking and clock
component behavior.

6.1 Seeking Component
A component may be designated as a seeking component if it can change and report on its
position in the data stream that it is processing. For instance, an IL client may command a
seeking source component that retrieves an audio/video stream from a repository (for
example, a local or remote file) to begin emitting data from a different location in the
audio/video stream. Furthermore, an IL client may query the position that the source is
currently emitting.

6.1.1 Seeking Configurations
A seeking component shall support the following configurations:

• OMX_IndexConfigTimePosition, which passes
OMX_TIME_CONFIG_TIMESTAMPTYPE as a parameter. OMX_GetConfig
returns the timestamp of the data that the component is currently emitting.
OMX_SetConfig commands the component to seek the given timestamp.

• OMX_IndexConfigTimeSeekMode, which defines the manner in which the
seek component performs the seek. Table 6-1 shows the seek modes.

Table 6-1: Seek Modes

Seek Mode Interpretation
OMX_TIME_SeekModeFast Prefers seeking an approximation of the requested seek

position over the actual seek position if it results in a
faster seek.

OMX_TIME_SeekModeAccurate Prefers seeking to the requested seek position over an
approximation of the requested seek position even if it
results in a slower seek.

An arbitrary seek in a stream may request a target position whose data depends on data
that precedes it. For example, consider the case where an IL client requests seeking an
interframe in a video stream. Some amount of data prior to the target interframe shall be
decoded to reconstruct the target frame starting with the first intraframe preceding the
target. If fast mode is set, the seeking component may use the intraframe as an
approximation of the target and start displaying frames immediately at that intraframe. If
accurate mode is set, the seeking component decodes frames starting with the intraframe
but does not display frames until the target position.

 287

6.1.2 Seeking Buffer Flags
A seeking component communicates the role of certain buffers in the context of seeking
to its downstream components via special buffer flags. A buffer flag corresponds to the
first new logical data unit in a buffer, which is the first unit with its starting boundary
occurring in the buffer.

The special buffer flags of note are as follows.

• OMX_BUFFERFLAG_DECODEONLY: The seeking component sets this flag on a
buffer if the buffer shall be decoded but not displayed. In the example above, if
the seeking component is in accurate mode, it would set this flag on all frames
preceding the target interframe. A decoder component decodes but does not
propagate downstream a buffer marked decode only. A component that renders
data shall ignore any buffer with this flag set.

• OMX_BUFFERFLAG_STARTTIME: The seeking component sets this flag on the
buffer that carries the starting timestamp of the data stream. In the example above,
the seeking component would set this flag on the intraframe (i.e., the
approximation) when in fast seek mode and on the interframe (i.e., the original
target) when in accurate seek mode. When a clock component client receives a
buffer with this flag set, it performs an OMX_SetConfig call with
OMX_IndexConfigTimeClientStartTime on the clock component that is
sending the buffer’s timestamp. The transmission of the start time informs the
clock component that the client’s stream is ready for presentation and the
timestamp of the first data to be presented.

6.1.3 Seek Event Sequence
To implement a seek on a chain of components, an IL client shall perform the following
operations in order:

1. Pause the component through the use of OMX_SendCommand requesting a
state transition to OMX_StatePause.

2. Stop the clock component’s media clock through the use of OMX_SetConfig
on OMX_TIME_CONFIG_CLOCKSTATETYPE requesting a transition to
OMX_TIME_ClockStateStopped.

3. Seek to the desired location through the use of OMX_SetConfig on
OMX_IndexConfigTimePosition requesting the desired timestamp.

4. Flush all components.

5. Start the clock component’s media clock through the use of OMX_SetConfig
on OMX_TIME_CONFIG_CLOCKSTATETYPE requesting a transition to either
OMX_TIME_ClockStateRunning or
OMX_TIME_ClockStateWaitingForStartTime.

6. Un-pause the component through the use of OMX_SendCommand requesting a
state transition to OMX_StateExecuting.

 288

If the IL client requests a transition to OMX_TIME_ClockStateRunning, the clock
component immediately starts the media clock using the designated start time. This is a
simpler transition than going to OMX_TIME_ClockStateWaitingForStartTime but may
compromise synchronization at the start of playback after a seek operation since it
ignores the start times of the individual media streams.

If the IL client requests a transition to OMX_TIME_ClockStateWaitingForStartTime, it
designates which clock component clients to wait for. The clock component then waits
for these clients to send their start times via the
OMX_IndexConfigTimeClientStartTime configuration. Once all required
clients have responded, the clock component starts the media clock using the earliest
client start time. This approach ensures the following:

• All clients are ready to render data, eliminating any initial drift between streams.

• The media clock start time reflects the clocks of all clients and any adjustment
made by the seeking component.

6.2 Clock Component
OpenMAX IL defines a special component denoted the clock component to facilitate the
smooth and synchronized delivery or capture of audio and video streams as well as rate
control. The clock component takes one audio and one video reference clock as input,
from which it derives a media clock. The clock component shares the media time with the
clients with whom it is connected via clock ports (one clock port per client). The clock
component also exposes a mechanism for controlling the media clock and makes clients
aware of the rate control events via their clock ports.

6.2.1 Timestamps
All timestamps and durations are expressed as OMX_TICKS values as shown in the
following structure.
typedef struct OMX_TICKS
 {
 OMX_U32 nLowPart;
 OMX_U32 nHighPart;
} OMX_TICKS;

This structure shall be interpreted as a signed 64-bit value representing microseconds.
This representation accommodates the following:

• Positive and negative time values. Examples of negative time values include pre-
roll timestamp and time deltas.

• High-resolution timestamps (e.g., MPEG2 presentation timestamps based on a
90 kHz clock) and allow more accurate and synchronized delivery (e.g.,
individual audio samples delivered at 192 kHz).

• A large dynamic range of approximately plus or minus 26 million days; 32-bit
resolution provides a range of only about plus or minus 35 minutes.

 289

 290

Implementations with limited precision may convert the signed 64-bit value to a signed
32-bit value internally but risk loss of precision.

6.2.2 Media Clock
The clock component maintains a media clock that tracks the current position in the
media stream. The instantaneous media time is represented as the timestamp, relative to
the start of the stream, of the data being delivered or captured at that instant (e.g., the
current audio sample). Consequently, media time increases (corresponding to playing or
fast forwarding), decreases (corresponding to rewinding), or holds at some constant
(corresponding to pausing) according to the rate control applied to the media clock.

The clock component can be queried for the current media clock time using
OMX_GetConfig with the read-only index
OMX_IndexConfigTimeCurrentMediaTime and structure
OMX_TIME_CONFIG_TIMESTAMPTYPE. The current media clock time is written into
the nTimestamp field. This index must be used with the nPortIndex field as OMX_ALL,
since the media clock is not specific to any port.

6.2.2.1 Media Clock Scale
The clock component maintains the media time’s current scale factor, which corresponds
directly to the rate control applied on it. The scale is a Q16 value relative to a 1X forward
advancement of the media clock. Thus, scale ranges map to modes of playback, as shown
in Figure 6-1.

Figure 6-1. Mapping Time Scale Factors to Trick Modes

The IL client queries and sets the media clock’s scale via the
OMX_IndexConfigTimeScale configuration, passing the following structure:
typedef struct OMX_TIME_CONFIG_SCALETYPE {
OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_S32 xScale;
} OMX_TIME_CONFIG_SCALETYPE;

The clock component’s client components are notified of changes in scale via their clock
ports (see Clock Ports section for details).

0.0 -1.0 1.0

Paused Normal
Playback

Fast
Forward

Fast
Rewind

Slow
Forward

Slow
Rewind

Reverse
Playback

 291

6.2.2.2

6.2.2.3

Client Start Time
When a client is sent a start time (i.e., the timestamp of a buffer marked with the
OMX_BUFFERFLAG_STARTTIME flag), it sends the start time to the clock component
via OMX_SetConfig on OMX_IndexConfigTimeClientStartTime. This
action communicates to the clock component the following information about the client’s
data stream:

• The stream is ready.

• The starting timestamp of the stream, either at startup or after a seek.

The clock component maintains a start time for every client component via a set of
OMX_TIME_CONFIG_TIMESTAMPTYPE structures. When transitioned to
OMX_TIME_ClockStateWaitingForStartTime, the clock component waits on all start
times prescribed by the transition. This ensures proper synchronization at the beginning
of playback.

Media Clock State
The following structure represents the state of the clock component’s media clock:
typedef struct OMX_TIME_CONFIG_CLOCKSTATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_CLOCKSTATE eState;
 OMX_TICKS nStartTime;
 OMX_TICKS nOffset;
OMX_U32 nWaitMask;
} OMX_TIME_CONFIG_CLOCKSTATETYPE;

The nStartTime field specifies the media time when the clock was started or will be
started.

The nWaitMask field is a bit mask specifying the client components that the clock
component will wait on in the OMX_TIME_ClockStateWaitingForStartTime state. Bit
masks are defined as OMX_CLOCKPORT0 through OMX_CLOCKPORT7.

The nOffset field specifies the time by which to offset the media time. The clock
component factors this value into the calculation of media time, effectively adding the
offset to the media time reported to its clients. For example, a nOffset value of –x
implies a pre-roll of duration x.

The eState field contains one of the possible clock state values shown in Table 6-2:
Table 6-2: Clock State Values

OMX_TIME_CLOCKSTATE Value Interpretation
OMX_TIME_ClockStateRunning The media clock is running.
OMX_TIME_ClockStateWaitingForStartTime The media clock is waiting to run

until all designated clients emit their
start time.

OMX_TIME_ClockStateStopped The media clock is stopped.

An OMX_GetConfig execution using index OMX_IndexConfigTimeClockState
and structure OMX_TIME_CONFIG_CLOCKSTATETYPE queries the current clock state.

An OMX_SetConfig execution using index OMX_IndexConfigTimeClockState
and structure OMX_TIME_CONFIG_CLOCKSTATETYPE commands the clock
component to transition to the given state, effectively providing the IL client a
mechanism for starting and stopping the media clock. Figure 6-2 shows the clock state
transitions.

Figure 6-2. Clock State Transitions

Upon receiving OMX_SetConfig from the IL client that requests a transition to the
given state, the clock component will do the following:

• OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all
pending media time requests, clear and all client start times, and transition to the
stopped state. This transition is valid from all other states.

• OMX_TIME_ClockStateRunning: Immediately start the media clock using the given
start time and offset, and transition to the running state. This transition is valid from
all other states.

• OMX_TIME_ClockStateWaitingForStartTime: Transition immediately to the waiting
state, wait for all clients specified in nWaitMask to report their start time, start the
media clock using the minimum of all client start times and transition to
OMX_TIME_ClockStateRunning. This transition is only valid from the
OMX_TIME_ClockStateStopped state.

6.2.3 Wall Clock
The clock component maintains its own free running wall clock. It uses the wall clock to
extrapolate media time values from the periodic updates from the reference clock. An IL
client may query the current wall time via the
OMX_IndexConfigTimeCurrentWallTime configuration.

6.2.4 Reference Clocks
The clock component can accept both a video and an audio reference clock, supplied
respectively by a video component and an audio component. Each reference clock tracks

Running

Stopped

WaitingForStartTime

 292

 293

the media time at its associated component (i.e., the timestamp of the data currently being
processed at that component) and provides periodic references to the clock component
via OMX_SetConfig using OMX_IndexConfigTimeCurrentAudioReference
and OMX_IndexConfigTimeCurrentVideoReference and passing the
following structure:
typedef struct OMX_TIME_CONFIG_TIMESTAMPTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_TICKS nTimestamp;
} OMX_TIME_CONFIG_TIMESTAMPTYPE;

When the clock component receives a reference, it updates its internally maintained
media time with the reference. This action synchronizes the clock component with the
component that is providing the reference clock.

The IL client controls which reference clock the clock component uses (if any) via the
OMX_IndexConfigTimeActiveRefClock configuration and the following
structure:
typedef struct OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_REFCLOCKTYPE eClock;
} OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE;

Possible eClock values include those shown in Table 6-3:
Table 6-3: Reference Clock Values

OMX_TIME_REFCLOCKTYPE Value Interpretation
OMX_TIME_RefClockNone Not using a reference clock
OMX_TIME_RefClockAudio Using audio reference clock.
OMX_TIME_RefClockVideo Using video reference clock

In general, any time audio is rendered or captured, the IL client should prefer the audio
reference clock. Otherwise, the IL client should prefer the video reference.

6.2.4.1 Media Time Updates
A clock component sends a client a media time update, as either the fulfillment of a
request or a scale change notification, over its clock port via the following structure:
typedef struct OMX_TIME_MEDIATIMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nClientPrivate;
 OMX_TIME_UPDATETYPE eUpdateType;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;
 OMX_TICKS nWallTimeAtMediaTime;
 OMX_S32 xScale;
 OMX_TIME_CLOCKSTATE eState;

 294

} OMX_TIME_MEDIATIMETYPE;

• If the eUpdateType field indicates this is a request fulfillment message, the
nClientPrivate field contains the value of pClientPrivate from the
OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE structure used to signal
the request that this message is fulfilling. If the eUpdateType field indicates
this is scale or state change notification, the nClientPrivate field will be
zero.

• eUpdateType indicates the reason for the update and as one of the values
shown in Table 6-4:

Table 6-4: Update Types

OMX_TIME_UPDATETYPE Value Interpretation
OMX_TIME_UpdateRequestFulfillment Fulfillment of a media time request.
OMX_TIME_UpdateScaleChanged Notification of a scale change.
OMX_TIME_UpdateClockStateChanged Notification of a clock state change.

• The nMediaTimestamp field specifies the target media timestamp (if this is a
request fulfillment).

• The nOffset field specifies the distance in walltime between the current time
and the target time (if this is a request fulfillment).

• The nWallTimeAtMediaTime field specifies the walltime corresponding to
the target media timestamp (if this is a request fulfillment).

• The xScale field contains the scale of the media clock when the structure was
completed.

• The eState field contains the clock state of the media clock when the structure
was completed.

6.2.4.2 Media Time Request
A client requests the transmission of a particular timestamp via OMX_SetConfig on its
clock port using the OMX_IndexConfigTimeMediaTimeRequest configuration.
The following structure encapsulates a request:
typedef struct OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_PTR pClientPrivate;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;
} OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE;

The client’s request includes a timestamp, which is usually associated with some
operation (e.g., the presentation of a frame) that the client shall execute at that time.

 295

Conceptually, the clock component fulfills the request when the media time matches the
timestamp specified.

In practice, the client component may need the request fulfilled slightly earlier than the
timestamp specified. In this case, the client specifies the earlier time need of the
fulfillment via the nOffset field. nOffset specifies the desired difference between
the wall time when the timestamp actually occurs and the wall time when the request is to
be fulfilled. (The nOffset value should represent a relatively small interval, on the
order of a few milliseconds.) Note that, due to the way scale modifies the progression of
media time, a client cannot simply subtract the offset from the timestamp requested.

The request also includes a pointer to any private data that the client wants to associate
with it (e.g., a pointer to the frame to deliver at the given timestamp).

6.2.4.3 Media Time Request Fulfillment
When fulfilling a request, the OMX_TIME_MEDIATIMETYPE structure contains the
requested media time, the wall time that corresponds to that media time, and the offset in
wall time between when the media time will actually occur and when the request was
actually fulfilled.

Since some clock component implementations may have difficulty fulfilling the request
at exactly the time specified, the fulfillment may occur slightly earlier, leading to a
fulfillment offset larger than the one requested. The clock component shall fulfill the
request as close to the requested time as possible without being late. Figure 6-3 shows the
timeline for the request and fulfillment of a media time update.

Figure 6-3. Timeline for Request and Fulfillment of Media Time Update

Clock component
fulfills request

Client component
processes fulfillment

Requested
fulfillment

Client component makes
request

nOffset in request

nOffset in fulfillment

Client’s actual offset
(nWallTimeAtMediaTime –
current_wall_time)

WALL TIME

Target Timestamp
(nWallTimeAtMediaTime)

 296

When a client receives the fulfillment of a request, it may time any associated operation
(e.g., frame delivery) more precisely by waiting any of the remaining interval until the
timestamp itself. The client may estimate the interval until the timestamp actually occurs
by using nOffset directly, although this does not account for any delay between when
the clock component fulfilled the request and when the client began processing the
fulfillment. A client may obtain a more accurate estimate for this interval by taking the
difference between nWallTimeAtMediaTime and the clock component’s current wall
time, which is obtained via OMX_GetConfig on
OMX_IndexConfigTimeCurrentWallTime.

This interval should be small enough for the client to use its own wall clock to implement
the wait. The effect of any scale change during the interval or any drift between the clock
component’s wall clock and the client’s wall clocks should be negligible for so short a
duration.

6.2.4.4

6.2.4.5

Scale Change Notifications
A eUpdateType value of OMX_TIME_UpdateScaleChanged identifies a media
time update as a scale change notification.

The clock component alerts its clients to scale changes via media time updates for
optimization and data correction. For instance, during fast forward, a video component
might skip intra frames and an audio component might scale and pitch correct its samples
or drop them entirely. Nevertheless, components should never alter the presentation
timestamp associated with a media sample. Time scaling is always applied to the media
time, not the media samples.

A component that provides a reference clock shall watch for scale changes and behave
accordingly. In particular, it shall:

• Cease all data delivery and its reference clock when the scale is zero (i.e., paused).

• Resume data delivery and its reference clock when the scale changes to non-zero
(i.e., unpaused).

The xScale field contains the new scale. The nMediaTimestamp and
nWallTimeAtMediaTime fields contain the media and wall time, respectively, when
the scale change occurred. nOffset should reflect the difference, if any, between the
wall time of the scale change and the wall time of the transmission of the corresponding
media time update.

Clock State Change Notifications
A eUpdateType value of OMX_TIME_UpdateClockStateChanged identifies a
media time update as a scale change notification.

The clock component alerts its clients to clock state transitions via media time updates so
that they may take any action appropriate in that clock state. In particular:

• Any rendering component shall cease data delivery when the media clock
transitions into the stopped state.

 297

• Any client providing a reference clock shall use a media time request to time the
resumption of data delivery and, hence, its reference clock when the media clock
transitions into the running state

The eState field contains the new clock state. The nMediaTimestamp and
nWallTimeAtMediaTime fields contain the media and wall time, respectively, when
the clock change occurred. nOffset should reflect the difference, if any, between the
wall time of the state change and the wall time of the transmission of the corresponding
media time update.

6.2.5 Clock Component Implementation
The clock component is responsible for implementing the semantics described in this
section. Specifically the clock component should implement the following:

• Queries of its wall or media clock

• Queries of or changes to its media clock’s state or scale

• Queries of or changes to its active reference clock

• Client notification of scale changes

• Fulfillment of media time requests

• Updates from the reference clocks

This following discussion describes aspects of these obligations that are not implicit in
the preceding description of clock component semantics.

6.2.5.1 Deriving Media Time
The clock component derives the media time from the reference clock and the wall clock.
When the reference clock sends the clock component a time reference, Rnow, the clock
component queries the wall clock for its current value, Wnow. If an IL client specified an
offset when it started the clock component (e.g., to implement a pre-roll), then the clock
component adds this offset as Wnow + Offset. The clock component stores the ultimate
reference/wall time pair, representing the base of extrapolation, for later use as <Rbase,
Wbase> where:

Rbase = Rnow

Wbase = Wnow + Offset

The clock component calculates the instantaneous media time, Mnow, by querying the wall
clock, Wnow, and extrapolating from the last reference, modulated by the current scale,
Scale, as follows:

Mnow = Rbase + Scale * (Wnow – Wbase)

 298

6.2.5.2

6.2.5.3

Scale Changes
Upon invocation of a scale factor, Scale, the clock component first establishes a new base
of extrapolation by querying the current media time, Mnow, and the current wall time,
Wnow:

Rbase = Mnow

Wbase = Wnow

The clock component then notifies all client components of the new scale via a media
time update. It fills in the fields of the corresponding OMX_TIME_MEDIATIMETYPE
structure as follows:

• nClientPrivate = NULL

• nMediaTimestamp = Mnow

• nWallTimeAtMediaTime = Wnow

• xScale = Scale

Fulfilling Media Time Requests
A clock component’s approach to servicing media time requests is implementation
specific. Certain operating system constructs (e.g., timers) may be useful in avoiding the
expense of the spin locks associated with comparing requested times with the current
media time. Nevertheless, clock component implementers should be wary of any skew
between the clock component and the clock used by the operating system constructs that
compromise the timely, accurate fulfillment of requests.

The clock component shall account for any offset specified by the request. Assume a
requested timestamp of Mrequest, an offset Offsetrequest, and a scale factor of Scale. Instead
of comparing against Mrequest, the clock component should compare against the following:

Mrequest – (Offsetrequest * Scale)

Furthermore, the comparison between requested times and media time differ between
forward playback, backward, and paused playback. Specifically, the comparisons shown
in Table 6-5 should be used according to scale:

Table 6-5: Media Time Request Scale

Scale Fulfill request when
> 0.0 (forward playback) Mnow >= (Mrequest – (Offsetrequest * Scale))
< 0.0 (backward playback) Mnow <= (Mrequest – (Offsetrequest * Scale))
0.0 (paused) Never

6.2.6 Audio-Video File Playback Example Use Case
As an example, examine the playback of a file containing synchronized audio and video
as illustrated in Error! Reference source not found.. This example assumes that each
audio or video frame has a presentation timestamp associated with it. In this construction,
a file reader/de-multiplexing component feeds compressed audio and video streams to a
pair of decoders. The decoders send uncompressed data to an audio renderer and video
scheduler. The audio renderer delivers data to the hardware and the video scheduler will
send the data to the video renderer which will send the data to the hardware.

The audio renderer and video scheduler coordinate with the clock component to
implement smooth synchronized audio-video delivery. The audio renderer, video
scheduler and file demuxer are clients of the clock component (connected on their
respective clock ports) so they may watch for scale changes. The video scheduler also
uses the clock component to time delivery of video frames via media time requests.

Figure 6-4. Example Use Case of Audio-Video File Playback

The audio renderer and video scheduler act as the audio and video reference clocks, each
sending their reference times to the clock component as they deliver data.

In this example, the IL client uses the audio renderer as the reference clock at any time
audio data is being delivered during normal playback. Thus, the IL client does not need
to use the clock component to coordinate the delivery of audio data. It simply feeds new
data to the audio device whenever it can, provided that the current scale allows it. When
the audio device is presenting an audio buffer, the audio renderer emits the timestamp of
that buffer as a reference.

The video scheduler, however, shall coordinate with the clock component when
delivering video frames. For each frame that the video scheduler will deliver the frame to
the video renderer at a particular timestamp, the following occurs:

1. The video scheduler submits a media time request, referencing the frame data in
the private pointer and specifying fulfillment slightly earlier that the timestamp.

mt

uncomp.
audio

uncomp.
video

comp.
video

Audio Clock comp.
audio

File
Reader/
Demux

Decoder

Video
Renderer

Component

Video
Decoder

Audio
Renderer

mt

mt

Video
Scheduler

uncomp.
video

 299

2. The clock component fulfills the request when it becomes current via a media
time update to the video scheduler that references the original timestamp and
includes the private pointer.

3. The video scheduler receives the media time update, de-references the private
pointer to obtain the frame data, and delivers the frame to the video renderer.
The video scheduler uses an implementation-specific mechanism to wait the
remainder of the time until the timestamp before delivery (e.g., schedules a
hardware flip with the video driver).

The IL client controls the clock component via specialized configurations to start and
stop the media clock. To implement trick modes, the IL client sets the scale factor
configuration. When the clock component applies the scale to the calculation of media
time, it sends a media time update with the scale change to all of its clients.

The client components react to that scale change appropriately. When the scale is 0 (i.e.,
the media clock is paused), the audio renderer silences audio and ceases sending data.
Furthermore, in this example, the file demuxer might elect to ignore input during non-1X
playback.

If audio is effectively silenced during trick modes, the IL client may switch the active
reference clock from the audio reference to the video reference.

Finally, the IL client may query the current media time from the clock component to, for
instance, update the user interface such as through a progress bar.

 300

7 Container Parsing
This section describes container parsing including access to available streams and
metadata.

7.1 Parameter and Configuration Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which
contains all of the standard index values used with the functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 7-1
describes the index values that relate to file parsing.

Table 7-1: Index Values for File Parsing

Index Description
OMX_IndexParamNumAvailableStreams Specifies the number of alternative streams available

on a given output port.

The corresponding structure is
OMX_PARAM_U32TYPE.

OMX_IndexParamActiveStream Specifies the active stream (among those available) on
a given output port.

The corresponding structure is
OMX_PARAM_U32TYPE.

OMX_IndexParamMetadataKeyFilter Specifies whether a key (or all keys) are enabled or
disabled with respect to the metadata filter. An
enabled key is in the filter and metadata with this key
is retained for future potential querying.

The corresponding structure is
OMX_PARAM_METADATAFILTERTYPE.

OMX_IndexConfigMetadataItemCount Specifies number of metadata items associated with a
resource contained within a media file at a specific
scope.

The corresponding structure is
OMX_CONFIG_METADATAITEMCOUNTTYPE.

OMX_IndexConfigMetadataItem Specifies the contents of the metadata item indicated
by the given index or key.

The corresponding structure is
OMX_CONFIG_METADATAITEMTYPE.

 301

Index Description
OMX_IndexConfigContainerNodeCount Specifies the number of child nodes a given node

contains.

The corresponding structure is
OMX_CONFIG_CONTAINERNODECOUNTTYPE.

OMX_IndexConfigCounterNodeID Specifies the node id of specific node.

The corresponding structure is
OMX_CONFIG_CONTAINERNODEIDTYPE,

OMX_IndexParamMetadataFilterType Specifies the filters to be applied for the meta data
accesses

7.2 Format Detection
A particular container parser implementation supports a finite set of container formats,
yet the component might not definitively determine support for a particular datastream
until it attempts to parse the datastream. Therefore OpenMAX IL introduces the
following mechanisms for a parser to communicate its ability or inability to recognize the
format of a given datastream:

• The OMX_ErrorFormatNotDetected error. A component sends the client
this error (in the form of an OMX_EventError event passed via the
EventHandler callback) when it cannot parse or determine the format of the
given datastream.

• The OMX_EventPortFormatDetected event. A component sends the
client this event (via the EventHandler callback) when it has successfully
recognized a format and determined that it can support it.

The IL client may use these mechanisms (perhaps in conjuction with autodetect ports) to
determine whether a given parser is appropriate for a given datastream.

7.3 Port Streams
When parsing a datastream a component may discover multiple alternative streams
suitable for emission as output on a given output port. For instance, when parsing a video
stream muxed with synchronized audio, a parser component may discover the container
datastream includes several alternative languages represented as different audio streams
each a candidate for output out the same audio output port.

A port exposes the set of candidate streams as a “port stream”. If a port supports port
streams (e.g. a parser output port), discovering the port streams is part of that port’s
autodetect process. When the autodetect is completed (i.e. the component issues a
OMX_EventPortSettingsChanged event) such a port be ready to service queries
and writes on the following configs:

 302

• The OMX_IndexParamNumAvailableStreams config. This read only
parameter denotes the number of streams available on the port.

• The OMX_IndexParamActiveStream config. This read/write parameter
denotes the currently selected stream for the port.

The port populates its settings according to the currently selected stream. An IL client
may use thus use the OMX_IndexParamActiveStream parameter to both browse
the settings associated with each available streams and to ultimately select the final
stream for playback.

This may be performed by the IL client in the following way:

1. Instantiate the component and set any relevant configs/parameters (e.g.
identifying the target content)

2. Set all output ports where the IL client desires stream discovery to autodetect
and put the component into the OMX_StateExecuting state.

3. Wait until the port generates an OMX_EventPortSettingsChanged
event. This event indicates it has parser enough data to have discovered the
alternative streams.

4. Query the number of available streams for that port via
OMX_IndexParamNumAvailableStreams. For each possible stream set
that stream as active via OMX_IndexParamActiveStream. This will cause
the port to populate its settings according to the active stream. The IL client
may then discover the properties of the stream by reading the appropriate port
parameters.

5. After reading the properties of each stream, the IL client may select the one it
desires via OMX_IndexParamActiveStream.

7.4 Metadata Extraction
OpenMAX IL supports retrieving metadata items captured by a component. A metadata
item is defined as a key/value pair, where both key and value are buffers formatted using
specified character sets. OpenMAX IL enables an IL Client to perform the following
operations with regards to metadata:

• Specify an client-defined set of keys to filters which metadata items will be
captured by the component

• Scope a metadata query to seek particular elements of the content, inclusive of the
entire content

• Determine the number of distinct metadata items available at any given scope

• Retrieve all metadata items by iterating through all metadata items by available at
any given scope by index

• Retrieve a metadata value for a specific metadata key

 303

 304

7.4.1.1

7.4.1.2

7.4.1.3

7.4.1.4

Key/Value Query
OpenMAX IL supports the querying of key/value pair data captured by a component that
parses metadata via a set of component configs. The purpose of these configs is to enable
an IL Client client to determine how many metadata items are present at a given scope,
iterate through the items by index to retrieve the key/value data and query values for
specific keys.

Node Traversal
OpenMAX IL supports the traversal of metadata nodes captured by a component that
parses metadata via a set of component configs.

The purpose of these configs is to define a mechanism for obtaining a set of specifiers
which can be used to uniquely scope metadata searches to atomic elements, or ‘nodes’, of
data within a media file. Each node has a component-defined 'node ID' that the
component can use to uniquely locate the node within the media file. Note that a node ID
should be considered an opaque ID, therefore it need not have any intrinsic value or
meaning; it need only be a value that the component can use to uniquely set the scope of
a metadata search.

All media files contain exactly one 'root node’ whose node ID always has value
OMX_ALL; this represents the 'top-level' metadata associated with the media file. The
root node is the only node without a parent node. All other nodes have exactly one parent.

In general, the node traversal configs uses the term ‘node’ is used to represent a node for
which one wants to know the ID value, and the term ‘parent node’ is used to represent the
parent of one or more nodes for which one wants to know the ID value(s).

Key Filtering
OpenMAX IL supports the filtering of metadata captured by a component that parses
metadata via the OMX_IndexParamMetadataKeyFilter parameter. This
parameter allows the client to add or remove keys from the filter before the component
begins processing the data. A component will retain all metadata associated with keys in
the filter (so the IL client may query them later) and may safely ignore all keys not in the
filter.

Specifying Language/Country
The concepts of Language and Country for a metadata item exist in some but not all file
format metadata schemes. Where they do exist, most formats have only Language
(including ID3v2), whereas others combine Language and Country together into a single,
compound specifier. Only 3GPP has a standard metadata key that uses a Country
specifier but no Language (in ‘locl’ metadata items).

Because of the relatively rare usage of these features, at the API level we combine
Language and Country into a single compound Language-Country specifier, where
Language comes first and Country is optional, as per the HTTP specification (RFC 2068).
This approach accommodates all use cases; for example, “en” indicates English language

 305

content for all countries, “en-US” indicates English language content for the US, “en-
UK” indicates English language content for the UK, etc.

Individual requirements for Language and Country follow.

7.4.1.4.1

7.4.1.4.2

Language Codes
When accessing the value of a metadata item for which a language is specified, the client
shall be given the language specifier. When creating a metadata item for which a
language may be specified, or when changing its value, the client shall be able to indicate
the language used in the supplied value. This is necessary because some file formats
allow some metadata items to include a language specifier (this is usually limited to text,
though not necessarily; for example, images and sounds can also be in a particular
language). In some cases, there may be multiple, alternative versions of the same
metadata item in different languages, and in these cases the language specifier allows the
client application to select and present just the most appropriate version.

Public standards for Language specifiers include RFC 1766 / ISO 639.

Country Codes
Similar to the Language requirement: When accessing the value of a metadata item for
which a Country (geographic location) is specified, the client shall be given the Country
specifier. When creating a metadata item for which a Country may be specified, or when
changing its value, the client shall be able to indicate the Country to which the supplied
value applies.

Public standards for Country specifiers include ISO 3166.

7.5 Types and Structures

7.5.1 OMX_PARAM_U32TYPE
Parameters represented by unsigned 32 bit values (e.g.
OMX_IndexParamActiveStream) use the OMX_PARAM_U32TYPE which is
defined as follows:
typedef struct OMX_PARAM_U32TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nU32;
} OMX_PARAM_U32TYPE;

7.5.2 OMX_METADATACHARSETTYPE
The OMX_METADATACHARSETTYPE enumeration defines the range of possible
character sets (e.g. where a particular character is used to represent a metadata key).

Table 7-2: Supported Metadata Characterset Types

Value Name Character Set Description
OMX_MetadataCharsetUnknown Unknown character encoding
OMX_MetadataCharsetASCII ASCII
OMX_MetadataCharsetBinary Binary
OMX_MetadataCharsetCodePage1252 Microsoft Code Page 1252
OMX_MetadataCharsetUTF8 Unicode UTF-8
OMX_MetadataCharsetJavaConformantUTF8 Unicode UTF-8 (Java Conformant)
OMX_MetadataCharsetUTF7 Unicode UTF7
OMX_MetadataCharsetImapUTF7 Unicode UTF-7 per IETF RFC 2060
OMX_MetadataCharsetUTF16LE Unicode UTF-16 (Little Endian)
OMX_MetadataCharsetUTF16BE Unicode UTF-16 (Big Endian)
OMX_MetadataCharsetGB12345 GB 12345 (Chinese)
OMX_MetadataCharsetHZGB2312 HZ GB 2312 (Chinese)
OMX_MetadataCharsetGB2312 GB 2312 (Chinese)
OMX_MetadataCharsetGB18030 GB 18030 (Chinese)
OMX_MetadataCharsetGBK GBK (CP936) (Chinese)
OMX_MetadataCharsetBig5 Big 5 (Chinese)
OMX_MetadataCharsetISO88591 ISO-8859-1 (Latin1 – West European

languages)
OMX_MetadataCharsetISO88592 ISO-8859-2 (Latin2 – East European)
OMX_MetadataCharsetISO88593 ISO-8859-3 (Latin3 – South European)
OMX_MetadataCharsetISO88594 ISO-8859-4 (Latin4 – North European)
OMX_MetadataCharsetISO88595 ISO-8859-5 (Cyrillic)
OMX_MetadataCharsetISO88596 ISO-8859-6 (Arabic)
OMX_MetadataCharsetISO88597 ISO-8859-7 (Greek)
OMX_MetadataCharsetISO88598 ISO-8859-8 (Hebrew)
OMX_MetadataCharsetISO88599 ISO-8859-9 (Latin5 - Turkish)
OMX_MetadataCharsetISO885910 ISO-8859-10 (Latin6 – Nordic)
OMX_MetadataCharsetISO885913 ISO-8859-13 (Latin7 – Baltic Rim)
OMX_MetadataCharsetISO885914 ISO-8859-14 (Latin8 - Celtic)
OMX_MetadataCharsetISO885915 ISO-8859-15 (Latin9 – updates to

Latin1)
OMX_MetadataCharsetShiftJIS Shift-JIS (Japanese)
OMX_MetadataCharsetISO2022JP ISO-2022-JP (Japanese)
OMX_MetadataCharsetISO2022JP1 ISO-2022-JP-1 (Japanese)
OMX_MetadataCharsetISOEUCJP ISO EUC-JP (Japanese)
OMX_MetadataCharsetSMS7Bit SMS 7-bit

 306

7.5.3 OMX_METADATASCOPETYPE
The OMX_METADATASCOPETYPE structure is used to identify the type of the metadata
search scope that is being specified. A scope type value is used in conjunction with a
scope specifier value to identify the type of said specifier.

Table 7-3: Supported Metadata ScopeTypes

Value Name Client usage Component action
OMX_MetadataScopeAllLevels Search entire

piece of content—
scope specifier is
ignored

Search entire piece of content
for matching metadata.

OMX_MetadataScopeTopLevel Limit search
scope to root
level—scope
specifier is
ignored

Search only at the content’s
root level for matching
metadata. Root level is defined
as the only container level with
no logical parent.

OMX_MetadataScopePortLevel Limit search
scope to port
level—scope
specifier is the
port index for an
output port

Search for matches only among
those metadata items associated
with the media resource being
emitted from the indicated port.
If multiple streams can be
emitted from the indicated port,
the component will only search
for matching metadata
associated with the currently
active stream, as determined
using the port streams
mechanism.

OMX_MetadataScopeNodeLevel Search for matches only among
those metadata items explicitly
associated with the specified
container node and exclusive of
sub-nodes of the specified
container node.

Limit search
scope to container
file node level—
scope specifier is
a node ID.

7.5.4 OMX_CONFIG_METADATAITEMCOUNTTYPE
The IL Client uses the OMX_IndexConfigMetadataItemCount and the
OMX_CONFIG_METADATAITEMCOUNTTYPE structure to query a component for the
number of metadata items associated with a resource contained within a media file at a
specific scope.

OMX_CONFIG_METADATAITEMCOUNTTYPE is defined as follows.
typedef struct OMX_CONFIG_METADATAITEMCOUNTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_METADATASCOPETYPE eScopeMode;
 OMX_U32 nScopeSpecifier;

 307

 308

 OMX_U32 nMetadataItemCount;
} OMX_CONFIG_METADATAITEMCOUNTTYPE;

7.5.4.1

7.5.4.2

7.5.4.3

7.5.4.4

Parameter Definitions
The parameters for OMX_CONFIG_METADATAITEMCOUNTTYPE are defined as
follows.

• eScopeMode defines the type of scope being specified. See Section 10—
Implementing Buffer Sharing for usage.

• nScopeSpecifier is the value of the scope specifier. See Section 10—
Implementing Buffer Sharing for usage.

• nMetadataItemCount is the number of metadata items found at the scope
being queried.

Dependencies
The OMX_CONFIG_METADATAITEMCOUNTTYPE structure may be queried at any
time as generally allowed when calling OMX_GetConfig. However, it is possible the
count of metadata items at a given scope may change as the data being processed by the
component changes.

Functionality
The OMX_CONFIG_METADATAITEMCOUNTTYPE structure identifies the number of
metadata items in a particular scope.

OMX_METADATASEARCHMODETYPE
The OMX_METADATASEARCHMODETYPE enumeration lists the types of queries that can
be performed using the OMX_CONFIG_METADATAITEMTYPE structure.

As such the search mode specifies the usage of the other fields (input and output) of this
configuration structure.

Table 7-4: Supported Metadata Search Types

Value Name Client usage Component action
OMX_MetadataSearchValue
 SizeByIndex

Get metadata value size by
index
nMetadataItemIndex =
valid index for the given
scope

nValueMaxSize =
number of bytes needed to
hold value of the found
metadata item
(No actual Key or Value
data are returned, only the
size.)

Value Name Client usage Component action
OMX_MetadataSearchItem
 ByIndex

Get metadata key and value
by index

eKeyCharset = charset
of key data in nKey

nMetadataItemIndex =
valid index for the given
scope

nKeySizeUsed =
number of bytes used in
nKey

nValueMaxSize = size in
bytes of nValue buffer.

nKey = buffer containing
key data from the found
metadata item nValue = empty buffer at

least nValueMaxSize
bytes long

eValueCharset =
charset of value data in
nValue (Key buffer has fixed size.)
nValueSizeUsed =
number of bytes used in
nValue

nValue = buffer
containing value data from
the found metadata item
nMetadataItemIndex
= index of matching/found
metadata item

OMX_MetadataSearchNextItem
 ByKey

Get value of first, nth, or
next metadata item matching
a given key

eValueCharset =
charset of value data in
nValue

nMetadataItemIndex =
Valid index for the given
scope. To obtain the Nth
occurrence of the key, set to
N - 1. To obtain the first
occurrence of the key, set to
OMX_ALL.

nValueSizeUsed =
number of bytes used in
nValue
nValue = buffer
containing value data from
the found metadata item

eKeyCharset = charset of
key data in nData
nKeySizeUsed = number
of bytes used in nKey
nKey = buffer containing the
key data to match
nValueMaxSize = size in
bytes of allocated by client
to receive value data
nValue = empty buffer at
least nValueSize bytes long

7.5.5 OMX_CONFIG_METADATAITEMTYPE
The IL Client uses the OMX_IndexConfigMetadataItem and the
OMX_CONFIG_METADATAITEMTYPE structure to query a component for one metadata
item. It can be used to retrieve a metadata item either by index or by key, or to get the
size of a metadata item by index.

 309

 310

typedef struct OMX_CONFIG_METADATAITEMTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_METADATASCOPETYPE eScopeMode;
 OMX_U32 nScopeSpecifier;
 OMX_U32 nMetadataItemIndex;
 OMX_METADATASEARCHMODETYPE eSearchMode;
 OMX_METADATACHARSETTYPE eKeyCharset;
 OMX_U8 nKeySizeUsed;
 OMX_U8 nKey[128];
 OMX_METADATACHARSETTYPE eValueCharset;
 OMX_STRING sLanguageCountry;
 OMX_U32 nValueMaxSize;
 OMX_U32 nValueSizeUsed;
 OMX_U8 nValue[1];
} OMX_CONFIG_METADATAITEMTYPE;

7.5.5.1 Parameter Definitions
The parameters for OMX_CONFIG_METADATAITEMTYPE are defined as follows.

• eScopeMode defines the type of scope being specified.

• nScopeSpecifier is the value of the scope specifier.

• nMetadataItemIndex is the index of the metadata item being queried.

• eSearchMode is the type of query being performed.

• eKeyCharset is the OMX_METADATACHARSETTYPE of the key data within
nKey.

• nKeySizeUsed is number of bytes within nKey that are populated with key
data.

• nKey is the buffer of key data.

• eValueCharset is the OMX_METADATACHARSETTYPE of the value data
within nValue.

• sLanguageCountry is the combined language and country specifier.

• nValueMaxSize is the size in bytes of the nValue buffer. Note: when
nValueMaxSize is an input parameter and is a value less than the size of the
metadata value, an OMX_ErrorInsufficientResources error will be
returned and no output parameters will be populated.

• nValueSizeUsed is the number of bytes within nValue that are populated
with value data.

• nValue is the buffer of value data.

 311

7.5.5.2

7.5.5.3

Dependencies
The OMX_CONFIG_METADATAITEMTYPE structure may be queried at any time as
generally allowed when calling OMX_GetConfig. However, it can be possible that the
metadata item being sought may not yet be accessible if the corresponding portion of
content has not yet been processed by the component.

Functionality
The OMX_CONFIG_METADATAITEMTYPE structure identifies a particular metadata
item in a particular scope. The type of query performed by OMX_GetParameter is
defined by the eSearchMode field. Refer to Section 7.5.4.4 above for details.

7.5.6 OMX_PARAM_METADATAFILTERTYPE
The IL Client uses the OMX_IndexParamMetadataFilterType and
OMX_PARAM_METADATAFILTERTYPE parameter structure to specify the inclusion or
exclusion of a particular key, or of all keys using a given character set, in a component’s
filter of metadata keys. An IL client leverages writes to this parameter to enable or
disable a particular key or key character set, which effectively includes or excludes that
key or key character set from the set of metadata retained by the component for querying
later. An IL client may also leverage reads of this parameter to query the for the
inclusion/exclusion of keys from this filter. Metadata items may also be optionally
filtered for Language/Country code in combination with a particular key or key character
set.
typedef struct OMX_PARAM_METADATAFILTERTYPE
{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_BOOL bAllKeys;
 OMX_METADATACHARSETTYPE eKeyCharset;
 OMX_U32 nKeySizeUsed;
 OMX_U8 nKey [128];

OMX_U32 nLanguageCountrySizeUsed;
 OMX_U8 nLanguageCountry[128];
 OMX_BOOL bEnabled;
} OMX_PARAM_METADATAFILTERTYPE;

7.5.6.1 Parameter Definitions
The parameters for OMX_PARAM_METADATAFILTERTYPE are defined as follows.

• nVersion is the version of the structure.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• bAllKeys

 312

If this field is false, then only the particular specified key is included in the filter,
and the filter matches metadata items with the indicated language/country code (if
present). None of the other fields are ignored.

If this field is true and nKeySizeUsed is zero and eKeyCharset is
MetadataCharsetUnknown, then this structure refers to all possible keys in
all possible eKeyCharsets, and matches metadata items with the indicated
language/country codes (if present). The nKey field is ignored.

If this field is true and nKeySizeUsed is zero and eKeyCharset is not
MetadataCharsetUnknown, then this structure refers to all possible keys in
the specified eKeyCharset, and matches metadata items with the indicated
language/country code (if present). The nKey field is ignored.

• eKeyCharset – If nKeySizeUsed in not zero, then this must be used to
indicate the OMX_METADATACHARSETTYPE of the key data within nKey. If
nKeySizeUsed is zero, then all keys with this character set will be added to the
filter; the value MetadataCharsetUnknown will match all key character sets.

• nKeySizeUsed is number of bytes within nKey that are populated with key
data. If zero, there is no key associated with this metadata filter item (just an
eKeyCharset and/or language/country code). If this is not zero, then the
eKeyCharset must indicate the encoding of the key data in nKey.

• nKey is the buffer of key data.

• nLanguageCountrySizeUsed is the number of bytes within
nLanguageCountry that are populated with Language / Country code data. If
zero, there is no Language/Country code associated with this metadata filter item
(just a key).

• nLanguageCountry is the buffer of Language/Country code data.

• bEnabled if true then key is part of filter (e.g. retained for query later). If false
then key is not part of filter is the buffer of key data.

7.5.6.2

7.5.6.3

Dependencies
The OMX_PARAM_METADATAFILTERTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

Functionality
The OMX_PARAM_METADATAFILTERTYPE structure identifies whether a particular
metadata key or language/country code (or all metadata keys) are in the metadata filter
(that is, they are retained by the parser for potential querying later). An IL client may thus
leverage this structure and the OMX_IndexParamMetadataKeyFilter parameter
to set or get filter settings.

Table 7-5: Meta Data Key Access Use Cases

bAllKeys eKeyCharset bEnabled Use case Function
nKeySizeUsed
nKey,
nLanguageCountry
SizeUsed,
nLanguageCountry

SetParameter Add a key
and/or
language/countr
y code to the
filter

OMX_FALS
E

Specifies particular key
(and its encoding) being
added to filter, with
optional language/country
code

OMX_TRUE

SetParameter OMX_TRU
E

Required:
eKeyCharsetOptional:
nLanguageCountryS
izeUsed,
nLanguageCountry.
Others are not
applicable/ignored

Add all keys to
the filter (also
matches
language/countr
y code, if any);
if
eKeyCharset
is a known
encoding, then
only keys with
that encoding
are included in
the filter

OMX_TRUE

SetParameter Remove a key
and/or
language/countr
y code from the
filter

OMX_FALS
E

Specifies particular key
(and its encoding)being
removed from filter, with
optional language/country
code

OMX_FALSE

SetParameter OMX_TRU
E

Required:
eKeyCharset,
Optional:
nLanguageCountryS
izeUsed,
nLanguageCountry.
Others are not
applicable/ignored

Remove all
keys from the
filter (also
matches
language/countr
y code, if any) ;
if
eKeyCharset
is a known
encoding, only
keys with that
encoding are
included in the
filter

OMX_FALSE

GetParameter Query whether
a key and/or
language/countr
y code is part of
the filter

Not
applicable/ig
nored

Specifies particular key
(and its encoding) being
queried, with optional
language/country code

Output field
filled in by
GetParamete
r

 313

 314

7.5.6.4 Post-processing Conditions
The changes specified to the component’s metadata filter (i.e. the enabling or disabling of
keys) are applied upon the return of a OMX_SetParameter call when used with the
OMX_CONFIG_METADATAITEMTYPE structure. The component retains only the
cumulative set of keys specified as enabled in the filter.

7.5.7 OMX_CONFIG_CONTAINERNODECOUNTTYPE
The IL Client uses the OMX_IndexConfigContainerNodeCount and the
OMX_CONFIG_CONTAINERNODECOUNTTYPE structure to query a parent node for the
number of nodes it contains.
typedef struct OMX_CONFIG_CONTAINERNODECOUNTTYPE
{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_BOOL bAllKeys;
 OMX_U32 nParentNodeID;
 OMX_U32 nNumNodes;
} OMX_CONFIG_CONTAINERNODECOUNTTYPE;

7.5.7.1

7.5.7.2

7.5.7.3

Parameter Definitions
The parameters for OMX_CONFIG_CONTAINERNODECOUNTTYPE are defined as
follows.

• nParentNodeID is the node ID for the node being queried. To specify the
media file’s root node, use the value OMX_ALL

• nNumNodes is the number of nodes contained by the indicated parent node.

Dependencies
The OMX_CONFIG_CONTAINERNODECOUNTTYPE structure may be queried at any
time as generally allowed when calling OMX_GetConfig. However, it is possible that
the count of nodes returned by this query may change if the component is actively
processing data.

Functionality
The OMX_CONFIG_CONTAINERNODECOUNTTYPE structure identifies the node count
on given a node ID.

7.5.8 OMX_CONFIG_CONTAINERNODEIDTYPE
The IL Client uses the OMX_IndexConfigCounterNodeID and the
OMX_CONFIG_CONTAINERNODEIDTYPE structure to obtain information about a
specific node.

 315

typedef struct OMX_CONFIG_CONTAINERNODEIDTYPE
{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_BOOL bAllKeys;
 OMX_U32 nParentNodeID;
 OMX_U32 nNodeIndex;
 OMX_U32 nNodeID;
 OMX_STRING cNodeName;
 OMX_BOOL bIsLeafType;
} OMX_CONFIG_CONTAINERNODEIDTYPE;

7.5.8.1

7.5.8.2

7.5.8.3

Parameter Definitions
The parameters for OMX_CONFIG_CONTAINERNODEIDTYPE are defined as follows.

• nParentNodeID is the node ID for the node being queried. To specify the
media file’s root node, use the value OMX_ALL

• nNodeIndex is the index of this node.

• nNodeID is the node ID for this node.

• cNodeName name of this node. It is an OMX_STRING less than 128 characters
long including the trailing null byte.

• bIsLeafType indicates whether this node may be a parent to other nodes. If the
component does not know whether this node is a parent or not, the component
will return OMX_FALSE.

Dependencies
The OMX_CONFIG_CONTAINERNODEIDTYPE structure may be queried at any time as
generally allowed when calling OMX_GetConfig. However, it is possible that if the
underlying data has changed the node being sought may no longer be accessible.

Functionality
The OMX_CONFIG_CONTAINERNODEIDTYPE structure identifies the properties of the
node which is the specified child of the specified parent node.

8 Standard Components
In the interest of facilitating strict component portability, OpenMAX IL defines a set of
standard components. Each standard component definition associates specific interface
criteria and functionality to the named standard component. To the extent these
definitions are adhered to by clients and components, this allow one IL client to operate
seamlessly with component implementations from multiple vendors and allows one
component to operate seamlessly across multiple IL clients.

This section defines the set of OpenMAX IL standard components including:

• The hierarchy of standard component definitions.

• The mechanism for exposing standard components to an IL client.

• The definition of all standard classes and standard components.

8.1 Hierarchy of Standard Component Definition
OpenMAX IL establishes two constructs for the hierarchical definition of the set of
standard components:

• Standard component class: a category of standard components that share the same
ports and high level functionality.

• Standard component: an instance of a standard component class that has the same
ports and high level functionality as the class but that specifies the supported
formats, parameters, and configs on those ports as well as the specific
functionality of the component.

Thus OpenMAX IL divides the set of all standard components into classes of similar
components, formally defining the characteristics of each class in terms of the ports it
exposes and its overall function. Within each class, OpenMAX IL identifies specific
standard components, formally definining the formats, parameters, and config operations
supported on each port as well the specific type of functionality the individual component
supports.

For instance, OpenMAX IL defines an audio_decoder class that represents all
components that receive encoded audio on a single audio input port and emit decoded
audio on single audio output. Furthermore, the audio_decoder class contains a standard
component definition for each audio format: audio_decoder.aac, audio_decoder.amr,
audio_decoder.amr, etc.

The difference in functionality between components in the previous example is the
specific format of audio decoding implemented. However, the differences between
components in a single class may also be distinguished in terms of their specific
functionality. Each component in the audio_processing class, for example, operates on
the same format (i.e. pcm audio) but implements different effects, e.g.
audio_processing.pcm.stereo_widening_loudspeakers.

 316

Thus, generally speaking, a component class defines a category of functionality and each
component in that class implements one specific type of functionality within that
category.

8.1.1 Standard Component Class Definition
The definition of a standard component class consists of:

• Name: The name of the standard component class.

• Description: Descrition of high level functionality.

• The set of ports exposed including the following information for each port:

o Index: the index of the port.

o Domain: the port’s domain (audio, video, image, or other).

o Direction: the ports direction (input or output).

o Description: a description of the port’s functionality relative to the
component.

8.1.2 Standard Components Definition
The definition of a standard component consists of:

• Name: The name of the standard component.

• Description: Description of the specific functionality implemented by the
component.

• For each port:

• Index: The index of the described port.

• Description: Description of the functionality implemented by the port relative
to the component.

• Parameters and Configs: A list of supported OpenMAX IL parameters and
configs including including the following information for each.

o Index: The index value of the parameter or config used from the
OMX_INDEXTYPE enumeration.

o Access: The read/write access of the parameter/config which is a any
combination of the following:

 Read: IL client is querying a component value via
GetParameter or GetConfig. The component will fill in
the appropriate fields of the structure passed.

 Write: IL client is setting a component value via
SetParameter or SetConfig. The IL client will fill in the
appropriate fields of the structure passed.

 317

o Description: Description of the parameter or config’s function relative
to the port.

8.2 Component Role
A component implementation may support one or more roles. We define a role as the
behavior of component acting according to a particular standard component definition.
The name of the standard component defining the behavior identifies the role.

For example a given component implementation named
“OMX.CompanyXYZ.MyAudioDecoder” might support the following roles:

 audio_decoder.mp3

 audio_decoder.aac

 audio_decoder.amr

When this component implementation is in the audio_decoder.mp3 role it obeys the
definition of the audio_decoder.mp3 standard component. It shall, for example, expose
the defined audio input and output ports, support the mandated configs and parameter on
those ports, and populate the mandated defaults on those configs and parameters.

Via the mechanisms defined the below, the core extracts information about which roles
are supported by which component implementation and, using this information, provides
two convenient functions for the IL client to query about such support. Furthermore, a
component implementation allows an IL client to select the role which defines its
behavior.

8.2.1 ComponentRoleEnum
The ComponentRoleEnum component function allows the IL core to query a
component for all the roles it supports. This function allows the IL Core to service
OMX_GetComponentsOfRole and OMX_GetRolesOfComponent calls. An
efficient IL Core will likely cache the role information it extracts from components (e.g.
at installation) to avoid instantiating a component during
OMX_GetComponentsOfRole and OMX_GetRolesOfComponent calls.

ComponentRoleEnum enumerates (one role at a time) the component roles that a
component supports.
OMX_ERRORTYPE (*ComponentRoleEnum)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_STRING cRole,
 OMX_IN U32 nIndex);

Parameters include:

• hComponent : The handle of the component that executes the call

• cRole: The name of the specified role. The role name string has a limit of 128
bytes (including ‘\0’).

 318

• nIndex: The index of the role being queried.

8.2.2 OMX_PARAM_COMPONENTROLETYPE
The OMX_PARAM_COMPONENTROLETYPE structure represents the current role of the
component that may be queried and set via the
OMX_IndexParamStandardComponentRole parameter. This enables the IL client
to set the role of the component. The component populates defaults according to the
specified role:
typedef struct OMX_PARAM_COMPONENTROLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U8 cRole[OMX_MAX_STRINGNAME_SIZE];
}OMX_PARAM_COMPONENTROLETYPE;

Parameters include:

• cRole: name of the role (i.e. name of the standard component defining current
behavior).

OMX_MAX_STRINGNAME_SIZE is defined to have a value of 128.

8.2.3 OMX_GetRolesOfComponent
The function that enables the IL client to query all the roles fulfilled by a given a
component.
OMX_ERRORTYPE OMX_GetRolesOfComponent (
 OMX_STRING compName,
 OMX_U32 *pNumRoles,
 OMX_U8 **roles);

Parameters include:

• compName: This is the name of the component being queried about.

• pNumRoles: This is used both as input and output. On input it bounds the size of
the input structure. On output it specifies how many roles were retrieved.

• roles: This is a list of the names of all standard components implemented on the
specified physical component name. If this pointer is NULL this function
populates the pNumRoles field with the number of roles the component supports
and ignores the roles field. This allows the client to properly size the roles array
on a subsequent call.

8.2.4 OMX_GetComponentsOfRole
The OMX_GetComponentsOfRole function that enables the IL client to query the
names of all installed components that support a given role.
OMX_ERRORTYPE OMX_GetComponentsOfRole (
 OMX_STRING role,

 319

OMX_U32 *pNumComps,
OMX_STRING **compNames);

Parameters include:

• role: The name of the specified role.

• pNumComps: This is used both as input and output. On input it bounds the size of
the input structure. On output it specifies how many names were retrieved.

• compNames: This is a list of the names of all physical components that
implement the specified standard component name. If this pointer is NULL this
function populates the pNumComps field with the number of components that
support the given role and ignores the compNames field. This allows the client to
properly size the compNames field on a subsequent call.

8.3 Mandatory Port Parameters
Across all standard components, OpenMAX IL 1.1 mandates support for certain
parameters. Specifically:

• All standard components shall support the following parameters:
o OMX_IndexParamPortDefinition

o OMX_IndexParamCompBufferSupplier

o OMX_IndexParamAudioInit

o OMX_IndexParamImageInit

o OMX_IndexParamVideoInit

o OMX_IndexParamOtherInit

• All audio ports on a standard component shall support the following parameters:
o OMX_IndexParamAudioPortFormat

• All video ports on a standard component shall support the following parameters
o OMX_IndexParamVideoPortFormat

• All image ports on a standard component shall support the following parameters:
o OMX_IndexParamImagePortFormat

• All other ports on a standard component shall support the following parameters:
o OMX_IndexParamOtherPortFormat

These requirements apply to all component described in this section though, for the sake
of brevity, they have not been repeated for each standard class and component
specification.

 320

8.4 Notation Used
The standard component definitions use certain conventions in their notation.
Specifically:

• “APB” denotes the audio port base which is defined to be the
nStartPortNumber value returned on a query of the
OMX_IndexParamAudioInit param.

• “IPB” denotes the image audio port base which is defined to be the
nStartPortNumber value returned on a query of the
OMX_IndexParamImageInit param.

• “VPB” denotes the video port base which is defined to be the
nStartPortNumber value returned on a query of the
OMX_IndexParamVideoInit param.

• “OPB” denotes the other port base which is defined to be the
nStartPortNumber value returned on a query of the
OMX_IndexParamOtherInit param.

Furthermore, when a field of a parameter or config is specified all the listed values in the
‘Description’ column shall be supported and the italisized value shall be the default. A
component that supports multiple standard component roles shall populate its fields with
default settings according to the current role.

All parameter and config settings specified indicate the minimum settings that the
components shall support to be catergorized as a standard components.

8.5 Video and Image Order of Operations
As part of the Video and Image domain, features have been defined that will apply data
transform operations to data payloads. These data transforms consist of cropping, rotation,
mirroring and scaling.

Depending on the ordering of the transforms applied to the data payload varying results
will be produced. In order for the IL Client to deterministically achieve a desired output
among standard components that support such operations, the order of the these
transforms applied to the data payload on a per port basis shall be as follows:

1. Cropping

2. Rotation

3. Mirroring

4. Scaling

This order is to be applied by components that support all or a subset of transforms.

For example:

• If a port within standard component A supports all four transforms then the order
will be cropping followed by rotation followed by mirroring followed by scaling

 321

 322

• If a port within standard component B supports just three of the transforms –
cropping, rotation and scaling – then the order will be cropping followed by
rotation followed by scaling

Implementations of standard components supporting these transforms are not required to
internally implement these transforms as outlined, rather the standard component
implementations need to apply the operations to the payload in the logical order outlined
such that a deterministic output is achieved.

This ordering of operations provides consistency for the IL client between different
standard component implementations. It does not dictate the implementation of those
components.

8.6 Standard Audio Components

8.6.1 Audio Decoder Class
Name audio_decoder
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

8.6.1.1 AAC Decoder Component
Name audio_decoder.aac
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAAC

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingAAC

Port Index APB+0
OMX_IndexParamAudioAac r/w nChannels =

 2 (stereo)
 1 (mono)

nSampleRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

nBitRate = up to 288Kbps per channel

eAACProfile =
OMX_AUDIO_AACObjectLC
OMX_AUDIO_AACObjectHE
OMX_AUDIO_AACObjectHE_PS

eAACStreamFormat =
OMX_AUDIO_AACStreamFormatMP2A
DTS
OMX_AUDIO_AACStreamFormatMP4
ADTS
OMX_AUDIO_AACStreamFormatADI
F
OMX_AUDIO_AACStreamFormatRA
W (headerless)

eChannelMode =
OMX_AUDIO_ChannelModeStereo
OMX_AUDIO_ChannelModeMono

Port Index APB+1
Description Emits decoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

 323

 324

Port Index APB+1
OMX_IndexParamAudioPcm r/w nChannels =

 2 (stereo)
 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate =
 48000
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.1.2 AMR-NB Decoder Component
Name audio_decoder.amrnb
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAMR

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingAMR

Port Index APB+0
OMX_IndexParamAudioAmr r/w nChannels = 1

nBitRate =
 4750
 5150
 5900
 6700
 7400
 7950
 10200
 12200

OMX_AUDIO_PARAM_AMRTYPE::
OMX_AUDIO_AMRBANDMODETYP
E =
 OMX_AUDIO_AMRBandModeNB0
 OMX_AUDIO_AMRBandModeNB1
 OMX_AUDIO_AMRBandModeNB2
 OMX_AUDIO_AMRBandModeNB3
 OMX_AUDIO_AMRBandModeNB4
 OMX_AUDIO_AMRBandModeNB5
 OMX_AUDIO_AMRBandModeNB6
 OMX_AUDIO_AMRBandModeNB7

eAMRDTXMode =
OMX_AUDIO_AMRDTXModeOff
OMX_AUDIO_AMRDTXModeOnVA
D1
OMX_AUDIO_AMRDTXModeOnVA
D2

eAMRFrameFormat =
OMX_AUDIO_AMRFrameFormatConf
ormance
OMX_AUDIO_AMRFrameFormatIF1
OMX_AUDIO_AMRFrameFormatIF2
OMX_AUDIO_AMRFrameFormatFSF
OMX_AUDIO_AMRFrameFormatRTP
Payload

Port Index APB+1
Description Emits decoded audio.

Index Access Description Required
Parameters/ OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.
Configs eEncoding =

OMX_AUDIO_CodingPCM

 325

 326

Port Index APB+1
OMX_IndexParamAudioPortFormat r/w eEncoding =

OMX_AUDIO_CodingPCM
OMX_IndexParamAudioPcm r/w nChannels = 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate = 8000

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.1.3 AMR-WB Decoder Component
Name audio_decoder.amrwb
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAMR

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingAMR

Port Index APB+0
OMX_IndexParamAudioAmr r/w nChannels = 1

nBitRate =
 6600
 8850
 12650
 14250
 15850
 18250
 19850
 23050
 23850

OMX_AUDIO_PARAM_AMRTYPE::
OMX_AUDIO_AMRBANDMODETYP
E =
 OMX_AUDIO_AMRBandModeWB0
 OMX_AUDIO_AMRBandModeWB1
 OMX_AUDIO_AMRBandModeWB2
 OMX_AUDIO_AMRBandModeWB3
 OMX_AUDIO_AMRBandModeWB4
 OMX_AUDIO_AMRBandModeWB5
 OMX_AUDIO_AMRBandModeWB6
 OMX_AUDIO_AMRBandModeWB7
 OMX_AUDIO_AMRBandModeWB8

eAMRDTXMode =
OMX_AUDIO_AMRDTXModeOff
OMX_AUDIO_AMRDTXModeOnVA
D1
OMX_AUDIO_AMRDTXModeOnVA
D2

eAMRFrameFormat =
OMX_AUDIO_AMRFrameFormatConf
ormance
OMX_AUDIO_AMRFrameFormatIF1
OMX_AUDIO_AMRFrameFormatIF2
OMX_AUDIO_AMRFrameFormatFSF
OMX_AUDIO_AMRFrameFormatRTP
Payload

Port Index APB+1
Description Emits decoded audio.
Required Index Access Description

 327

 328

Port Index APB+1
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Parameters/
Configs

OMX_IndexParamAudioPcm r/w nChannels = 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate = 16000

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.1.4 MP3 Decoder Component
Name audio_decoder.mp3
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingMP3

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingMP3

Port Index APB+0
OMX_IndexParamAudioMp3 r/w nChannels =

 2 (stereo)
 1 (mono)

nSampleRate =
 32000
 44100
 48000

nBitRate =
 80000 to 320000

eChannelMode =
OMX_AUDIO_ChannelModeStereo
OMX_AUDIO_ChannelModeJointStere
o
OMX_AUDIO_ChannelModeDual
OMX_AUDIO_ChannelModeMono

eFormat =
OMX_AUDIO_MP3StreamFormatMP1L
ayer3

Port Index APB+1
Description Emits decoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

 329

 330

Port Index APB+1
OMX_IndexParamAudioPcm r/w nChannels =

 2 (stereo)
 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate =
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.1.5 Real Audio Decoder Component
Name audio_decoder.ra
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding = OMX_AUDIO_CodingRA

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding = OMX_AUDIO_CodingRA

 331

Port Index APB+0
OMX_IndexParamAudioRa r/w nChannels =

 2 (stereo)
 1 (mono)

nBitRate =
 8000 to 96000 bps

nSamplingRate =
 8000,
 11025,
 22050
 44100

nSample PerFrame = 256, 512, 1024

eFormat =
OMX_AUDIO_RA10_CODEC

Port Index APB+1
Description Emits decoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPcm r/w nChannels =
 2 (stereo)
 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate =
 44100
 8000
 11025
 22050

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.1.6 WMA Decoder Component
Name audio_decoder.wma

Name audio_decoder.wma
Description Decodes the given compressed audio stream into an uncompressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts encoded audio.

Ports

APB+1 audio output Emits decoded audio.

Port Index APB+0
Description Accepts encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingWMA

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingWMA

Required
Parameters/
Configs

OMX_IndexParamAudioWma r/w nChannels =
 2 (stereo)
 1 (mono)

nBitRate = 5000 to 385000 bps

eFormat =
OMX_AUDIO_WMAFormat9
OMX_AUDIO_WMAFormat8
OMX_AUDIO_WMAFormat7

nSamplingRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

Port Index APB+1
Description Emits decoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

 332

 333

Port Index APB+1
OMX_IndexParamAudioPcm r/w nChannels =

 2 (stereo)
 1 (mono)

eNumData =
OMX_NumericalDataSigned

nSampleRate =
 48000
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

nBitPerSample = 16

8.6.2 Audio Encoder Class
Name audio_encoder
Description Encodes the giiven audio stream into a compressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts audio for encoding.

Ports

APB+1 audio output Emits encoded audio.

8.6.2.1 AAC Encoder Component
Name audio_encoder.aac
Description Encodes the giiven audio stream into a compressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts audio for encoding.

Ports

APB+1 audio output Emits encoded audio.

Port Index APB+0
Description Accepts audio for encoding.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.
eEncoding =
OMX_AUDIO_CodingPCM

Port Index APB+0
OMX_IndexParamAudioPortFormat r/w eEncoding =

OMX_AUDIO_CodingPCM
OMX_IndexParamAudioPcm r/w Specify/query the sampling rate and

number of channels.

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

Port Index APB+1
Description Emits encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAAC

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingAAC

 334

 335

Port Index APB+1
OMX_IndexParamAudioAac r/w nChannels =

 2 (stereo)
 1 (mono)

nSampleRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

nBitRate = at least 288Kbps per channel

nAudioBandWidth = 0

nFrameLength = 0

eAACProfile =
OMX_AUDIO_AACObjectLC
OMX_AUDIO_AACObjectHE
OMX_AUDIO_AACObjectHE_PS

eAACStreamFormat =
OMX_AUDIO_AACStreamFormatMP2A
DTS
OMX_AUDIO_AACStreamFormatMP4
ADTS
OMX_AUDIO_AACStreamFormatADI
F
OMX_AUDIO_AACStreamFormatRA
W (headerless)

eChannelMode =
OMX_AUDIO_ChannelModeStereo
OMX_AUDIO_ChannelModeMono

8.6.2.2 AMR-NB Encoder Component
Name audio_encoder.amrnb
Description Encodes the giiven audio stream into a compressed audio stream.

Index Domain Direction Description
APB+0 audio input Accepts audio for encoding.

Ports

APB+1 audio output Emits encoded audio.

Port Index APB+0
Description Accepts audio for encoding.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPcm Specify/query the sampling rate and
number of channels.

r/w

nChannels = 1 (Mono)

eNumData =
OMX_NumericalDataSigned

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate = 8000

ePCMMode =
OMX_AUDIO_PCMModeLinear

Port Index APB+1
Description Emits encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAMR

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat eEncoding =
OMX_AUDIO_CodingAMR

r/w

 336

 337

Port Index APB+1
OMX_IndexParamAudioAmr r/w nChannels = 1

nBitRate =
 4750
 5150
 5900
 6700
 7400
 7950
 10200
 12200

OMX_AUDIO_PARAM_AMRTYPE::
OMX_AUDIO_AMRBANDMODETYP
E =
 OMX_AUDIO_AMRBandModeNB0
 OMX_AUDIO_AMRBandModeNB1
 OMX_AUDIO_AMRBandModeNB2
 OMX_AUDIO_AMRBandModeNB3
 OMX_AUDIO_AMRBandModeNB4
 OMX_AUDIO_AMRBandModeNB5
 OMX_AUDIO_AMRBandModeNB6
 OMX_AUDIO_AMRBandModeNB7

eAMRDTXMode =
OMX_AUDIO_AMRDTXModeOff
OMX_AUDIO_AMRDTXModeOnVA
D1
OMX_AUDIO_AMRDTXModeOnVA
D2

eAMRFrameFormat =
OMX_AUDIO_AMRFrameFormatConf
ormance
OMX_AUDIO_AMRFrameFormatIF1
OMX_AUDIO_AMRFrameFormatIF2
OMX_AUDIO_AMRFrameFormatFSF
OMX_AUDIO_AMRFrameFormatRTP
Payload
OMX_AUDIO_AMRFrameFormatRTP
Payload

8.6.2.3 AMR-WB Encoder Component
Name audio_encoder.amrwb
Description Encodes the giiven audio stream into a compressed audio stream.

Index Domain Direction Description Ports
APB+0 audio input Accepts audio for encoding.

Name audio_encoder.amrwb
APB+1 audio output Emits encoded audio.

Port Index APB+0
Description Accepts audio for encoding.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPcm Specify/query the sampling rate and
number of channels.

r/w

nChannels = 1 (Mono)

eNumData =
OMX_NumericalDataSigned

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate = 16000

ePCMMode =
OMX_AUDIO_PCMModeLinear

Port Index APB+1
Description Emits encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingAMR

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat eEncoding =
OMX_AUDIO_CodingAMR

r/w

 338

 339

Port Index APB+1
OMX_IndexParamAudioAmr r/w nChannels = 1

nBitRate =
 6600
 8850
 12650
 14250
 15850
 18250
 19850
 23050
 23850

OMX_AUDIO_PARAM_AMRTYPE::
OMX_AUDIO_AMRBANDMODETYP
E =
 OMX_AUDIO_AMRBandModeWB0
 OMX_AUDIO_AMRBandModeWB1
 OMX_AUDIO_AMRBandModeWB2
 OMX_AUDIO_AMRBandModeWB3
 OMX_AUDIO_AMRBandModeWB4
 OMX_AUDIO_AMRBandModeWB5
 OMX_AUDIO_AMRBandModeWB6
 OMX_AUDIO_AMRBandModeWB7
 OMX_AUDIO_AMRBandModeWB8

eAMRDTXMode =
OMX_AUDIO_AMRDTXModeOff
OMX_AUDIO_AMRDTXModeOnVA
D1
OMX_AUDIO_AMRDTXModeOnVA
D2

eAMRFrameFormat =
OMX_AUDIO_AMRFrameFormatConf
ormance
OMX_AUDIO_AMRFrameFormatIF1
OMX_AUDIO_AMRFrameFormatIF2
OMX_AUDIO_AMRFrameFormatFSF
OMX_AUDIO_AMRFrameFormatRTP
Payload
OMX_AUDIO_AMRFrameFormatRTP
Payload

8.6.2.4 MP3 Encoder Component
Name audio_encoder.mp3
Description Encodes the giiven audio stream into a compressed audio stream.

Name audio_encoder.mp3
Index Domain Direction Description
APB+0 audio input Accepts audio for encoding.

Ports

APB+1 audio output Emits encoded audio.

Port Index APB+0
Description Accepts audio for encoding.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPcm Specify/query the sampling rate and
number of channels.

r/w

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

Port Index APB+1
Description Emits encoded audio.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingMP3

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat eEncoding =
OMX_AUDIO_CodingMP3

r/w

 340

 341

Port Index APB+1
OMX_IndexParamAudioMp3 r/w nChannels =

 2 (stereo)
 1 (mono)

nBitRate =
 80000 to 320000 bps

nSampleRate =
 32000
 44100
 48000

nAudioBandWidth = 0

eChannelMode =
OMX_AUDIO_ChannelModeStereo
OMX_AUDIO_ChannelModeJointStere
o
OMX_AUDIO_ChannelModeDual
OMX_AUDIO_ChannelModeMono

8.6.3 Audio Mixer Class
The PCM format endianness is left to be native, meaning it can be either big endian or
little endian depending on the underlying hardware. Endianness conversions, if needed,
are left outside the standard audio post processing components.

Name audio_mixer
Description Accetps multiple (N) audio streams, mixes them into a single stream, and emits the

resulting stream as output.
Index Domain Direction Description
APB+0 audio output Emits audio stream resulting from mixing.

Ports

APB+1
to
APB+N

audio input Accepts audio stream for mixing.

8.6.3.1 PCM Mixer Component
Name audio_mixer.pcm
Description Performs mixing of multiple audio input channels to 1 audio output mixing.

Index Domain Direction Description
APB+0 audio output Emits audio stream resulting from mixing.

Ports

APB+1
to
APB+N

audio input Accepts audio stream for mixing.

Port Index APB+0

Port Index APB+0
Description Emits audio stream resulting from mixing.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPcm r/w Specify/query the sampling rate and
number of channels.

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

eEndian = « Native »

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 8000,
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping[0]=
OMX_AUDIO_ChannelLF (stereo)
OMX_AUDIO_ChannelCF (mono)
eChannelMapping[1]=
OMX_AUDIO_ChannelRF (stereo)

OMX_IndexConfigAudioVolume r/w bLinear = OMX_FALSE
sVolume = Configurable

Required
Parameters/
Configs

OMX_IndexConfigAudioMute bMute = OMX_FALSE r/w
OMX_TRUE

 342

Port Index APB+1 to APB+N
Description Accepts audio for mixing.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPcm r/w Specify/query the sampling rate and
number of channels.

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

eEndian = « Native »

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 8000,
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping[0]=
OMX_AUDIO_ChannelLF (stereo)
OMX_AUDIO_ChannelCF (mono)
eChannelMapping[1]=
OMX_AUDIO_ChannelRF (stereo)

Required
Parameters/
Configs

OMX_IndexConfigAudioVolume r/w bLinear = OMX_FALSE
sVolume = Configurable

 343

 344

Port Index APB+1 to APB+N
OMX_IndexConfigAudioMute r/w bMute = OMX_FALSE

OMX_TRUE

8.6.4 Audio Reader Class
Name audio_reader
Description Reads an audio filestream and emits contained audio stream.

Index Domain Direction Description Ports
APB+0 audio output Emits audio stream found in filestream.

8.6.4.1 Binary Audio Reader Class
Name audio_reader.binary
Description Blindly reads any audio filestream (e.g. an MP3 file) irrespective of format and emits

contained elementary audio stream.
Index Domain Direction Description Ports
APB+0 audio output Emits audio stream found in filestream.

8.6.5 Audio Renderer Class
The PCM format endianness is left to be native, meaning it can be either big endian or
little endian depending on the underlying hardware. Endianness conversions, if needed,
are left outside the standard audio post processing components.

Name audio_renderer
Description Renders a given audio stream.

Index Domain Direction Description
APB+0 audio input Accepts audio for presentation.

Ports

OPB+0 other/time input Accepts time updates

8.6.5.1 PCM Renderer Component
Name audio_renderer.pcm
Description Renders a given audio stream.

Index Domain Direction Description
APB+0 audio input Accepts audio for presentation.

Ports

OPB+0 other/time input Accepts time updates

Port Index APB+0
Description Accepts audio for rendering.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the audio port settings.

eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Port Index APB+0
OMX_IndexParamAudioPcm Specify/query the sampling rate and

number of channels.
r/w

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

eEndian = « Native »

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping[0]=
OMX_AUDIO_ChannelLF (stereo)
OMX_AUDIO_ChannelCF (mono)
eChannelMapping[1]=
OMX_AUDIO_ChannelRF (stereo)

OMX_IndexConfigAudioVolume r/w bLinear = OMX_FALSE
sVolume = Configurable

OMX_IndexConfigAudioMute bMute = OMX_FALSE r/w
OMX_TRUE

Port Index OPB+0
Description Accepts media time updates. Provides mechanism for audio renderer component

to query for media time. Audio renderer can provide the audio reference clock to
the clock component which facilitates synchronization of other processing (e.g.
video rendering) to audio rendering..

 345

 346

8.6.6 Audio Writer Class
Name audio_writer
Description Writes given audio stream to an audio filestream.

Index Domain Direction Description Ports
APB+0 audio input Accepts audio stream to be written to the audio

filestream.

8.6.6.1 Binary Audio Writer Class
Name audio_writer.binary
Description Blindly writes given elementary audio stream to an audio filestream (e.g. an

MP3 file) irrespective of format.
Index Domain Direction Description Ports
APB+0 audio input Accepts audio stream to be written to the audio

filestream.

8.6.7 Audio Capturer Class
The PCM format endianness is left to be native, meaning it can be either big endian or
little endian depending on the underlying hardware. Endianness conversions, if needed,
are left outside the standard audio post processing components.

Name audio_capturer
Description Emits an audio stream from an audio source.

Index Domain Direction Description
APB+0 audio output Emits source’s audio stream.

Ports

OPB+0 other/time input Receives media time updates/provides access to
clock component.

8.6.7.1 PCM Audio Capturer
Name audio_capturer.pcm
Description Emits an audio stream from an audio source.

Index Domain Direction Description
APB+0 audio output Emits source’s audio stream.

Ports

OPB+0 other/time input Receives media time updates/provides access to
clock component.

Port Index APB+0
Description Accepts audio for rendering.

Index Access Description
OMX_IndexParamPortFormat r/w Specify/query the sampling rate and

number of channels.
eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamPortDefinition r/w eEncoding =
OMX_AUDIO_CodingPCM

Port Index APB+0
OMX_IndexParamAudioPcm Specify/query the sampling rate and

number of channels.

nChannels =
 2 (Stereo)
 1 (Mono)

eNumData =
OMX_NumericalDataSigned

eEndian = « Native »

bInterleaved = OMX_TRUE

nBitPerSample = 16

nSamplingRate =
 8000
 11025
 12000
 16000
 22050
 24000
 32000
 44100
 48000

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping[0]=
OMX_AUDIO_ChannelLF (stereo)
OMX_AUDIO_ChannelCF (mono)
eChannelMapping[1]=
OMX_AUDIO_ChannelRF (stereo)

OMX_IndexConfigAudioVolume r/w bLinear = OMX_FALSE
sVolume = Configurable

OMX_IndexConfigAudioMute bMute = OMX_FALSE r/w
OMX_TRUE

Port Index OPB+0
Description Accepts media time updates. Provides mechanism for audio capturer component

to query for media time. Audio capturer can provide the audio reference clock to
the clock component which facilitates synchronization of other processing (e.g.
video capture) to audio capture.

 347

 348

8.6.7.2 Audio Capture Use Case
An IL client using an audio source to capture an audio stream may do so via the
following steps:

1. Instantiate the audio source component and any co-operating components

2. Set audio source settings:

3. Set the desired characteristics of the captured audio stream (e.g. sampling rate,
channels)

4. Set the gain via the volume/mute controls

5. Establish any necessary tunnels between the audio source component and other
components (e.g. an audio encoder tunneling with the capture port).

6. Select the clock component’s active reference clock. In a use case with audio
capture this is normally the audio clock as provided by the audio capturer.

7. Transition all components to the OMX_StateIdle state. Then transition the
audio source component to the OMX_StatePause state, and transition all other
components to the OMX_StateExecuting state. Although all other components
are ready for capture, the audio source’s output port is not yet emitting data.

8. To initiate capture transition the audio source component to the
OMX_StateExecuting state. If using a clock component start the clock
component. The audio source component will begin emitting captured audio of
the prescribed characteristics.

9. To terminate capture transition the audio source component to the
OMX_StatePause state. The audio source component will cease emitting
captured audio.

8.6.8 Audio processor class
Name audio_processor
Description Processes a raw audio stream

Index Domain Direction Description
APB+0 audio input Accepts raw audio.

Ports

APB+1 audio output Emits raw audio

8.6.8.1 Properties that apply to all audio processing components
Sample rate conversions are not mandated. When the sampling rate of the input port is
changed, the output port sampling rate shall automatically change to the same value.

The PCM format endianness is left to be native, meaning it can be either big endian or
little endian depending on the underlying hardware. Endianness conversions, if needed,
are left outside the standard audio post processing components.

Port Index APB+0
Description Accepts raw audio.
Required Index Access Description

Port Index APB+0
OMX_IndexParamPortDefinition r/w eDomain = OMX_PortDomainAudio

format.eEncoding =
OMX_AUDIO_CodingPCM

OMX_IndexParamAudioPortFormat r/w eEncoding =
OMX_AUDIO_CodingPCM

Parameters/
Configs

OMX_IndexParamAudioPcm r/w nChannels = 2 (Stereo)

eNumData =
OMX_NumericalDataSigned

eEndian = <native>

bInterleaved = True

nBitPerSample = 16

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping =
OMX_AUDIO_ChannelLF,
OMX_AUDIO_ChannelRF

Port Index APB+1
Description Emits raw audio.

Index Access Description
OMX_IndexParamPortDefinition r eDomain = OMX_PortDomainAudio

format.eEncoding =
OMX_AUDIO_CodingPCM

Required
Parameters/
Configs

OMX_IndexParamAudioPortFormat eEncoding =
OMX_AUDIO_CodingPCM

r

 349

 350

Port Index APB+1
OMX_IndexParamAudioPcm r nChannels = 2 (Stereo)

eNumData =
OMX_NumericalDataSigned

eEndian = <native>

bInterleaved = True

nBitPerSample = 16

ePCMMode =
OMX_AUDIO_PCMModeLinear

eChannelMapping =
OMX_AUDIO_ChannelLF,
OMX_AUDIO_ChannelRF

8.6.8.2 Stereo widening loudspeakers
Headphone and loudspeaker versions of this standard component are separated to better
support multi-components and to allow vendors to implement just one of the two
algorithm variations.

In case the implementation supports only one single value for the nStereoWidening
field of the OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure, that value
shall be 100, and the component shall always return 100 as the value for the field for all
OMX_GetConfig calls. See Section 4.1.48—
OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE .

Name audio_processor.pcm.stereo_widening_loudspeakers
Description Adds stereo widening to a raw audio stream.

Index Domain Direction Description
APB+0 audio input Accepts raw audio.

Ports

APB+1 audio output Emits raw audio

Port Index APB+0
Description Accepts raw audio.

Index Access Description Required
Parameters/
Configs

OMX_ IndexParamAudioPcm r/w nBitPerSample = 16
nSamplingRate = 16000, 22050, 24000,
32000, 44100, 48000 Hz

Port Index APB+1
Description Emits raw audio.
Required Index Access Description

 351

Port Index APB+1
OMX_IndexConfigAudioStereoWiden
ing

r/w bEnable = False, True
eWideningType =
OMX_AUDIO_StereoWideningLoudspe
akers

Parameters/
Configs

OMX_IndexParamAudioPcm r nBitPerSample = 16
nSamplingRate = 16000, 22050, 24000,
32000, 44100, 48000 Hz

8.6.8.3 Stereo widening headphones
In case the implementation supports only one single value for the nStereoWidening
field of the OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure, that value shall
be 100, and the component shall always return 100 as the value for the field for all
OMX_GetConfig calls. See Section 4.1.48—
OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE .

Name audio_processor.pcm.stereo_widening_headphones
Description Adds stereo widening to a raw audio stream.

Index Domain Direction Description
APB+0 audio input Accepts raw audio.

Ports

APB+1 audio output Emits raw audio

Port Index APB+0
Description Accepts raw audio.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamAudioPcm r/w nBitPerSample = 16
nSamplingRate = 16000, 22050, 24000,
32000, 44100, 48000 Hz

Port Index APB+1
Description Emits raw audio.

Index Access Description
OMX_IndexConfigAudioStereoWiden
ing

r/w bEnable = False, True
eWideningType =
OMX_AUDIO_StereoWideningHeadph
ones

Required
Parameters/
Configs

OMX_IndexParamAudioPcm r nBitPerSample = 16
nSamplingRate = 16000, 22050, 24000,
32000, 44100, 48000 Hz

8.6.8.4 Reverberation
Name audio_processor.pcm.reverberation
Description Adds reverberation to a raw audio stream.

Index Domain Direction Description Ports
APB+0 audio input Accepts raw audio.

 352

Name audio_processor.pcm.reverberation
APB+1 audio output Emits raw audio

Port Index APB+0
Description Accepts raw audio.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamAudioPcm r/w nBitPerSample = 16
nSamplingRate = 44100, 48000 Hz

Port Index APB+1
Description Emits raw audio.

Index Access Description
OMX_IndexConfigAudioReverberati
on

r/w bEnable = False, True
Required
Parameters/
Configs

OMX_IndexParamAudioPcm r nBitPerSample = 16
nSamplingRate = 44100, 48000 Hz

8.6.8.5 Chorus
Name audio_processor.pcm.chorus
Description Adds chorus to a raw audio stream.

Index Domain Direction Description
APB+0 audio input Accepts raw audio.

Ports

APB+1 audio output Emits raw audio

Port Index APB+0
Description Accepts raw audio.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamAudioPcm r/w nBitPerSample = 16
nSamplingRate = 44100, 48000 Hz

Port Index APB+1
Description Emits raw audio.

Index Access Description
OMX_IndexConfigAudioChorus r/w bEnable = False, True

Required
Parameters/
Configs

OMX_IndexParamAudioPcm r nBitPerSample = 16
nSamplingRate = 44100, 48000 Hz

8.6.8.6 Equalizer
Equalizer band count is encoded into the name for convenience, so that the IL Client can
choose the preferred equalizer, if multiple exists, without loading the components.

 353

Name audio_processor.pcm.equalizer
Description Does equalization on a raw audio stream.

Index Domain Direction Description
APB+0 audio input Accepts raw audio.

Ports

APB+1 audio output Emits raw audio

Port Index APB+0
Description Accepts raw audio.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamAudioPcm r nBitPerSample = 16
nSamplingRate = 44100, 48000 Hz

Port Index APB+1
Description Emits raw audio.

Index Access Description
OMX_IndexConfigAudioEqualizer r/w bEnable = False, True

sBandLevel = [-1200, 1200]
OMX_IndexParamAudioPcm r nBitPerSample = 16

nSamplingRate = 44100, 48000 Hz
OMX_IndexConfigAudioLoudness r/w bLoudness = False, True
OMX_IndexConfigAudioBass r/w bEnable = False, True

nBass = [-100, 100]

Required
Parameters/
Configs

OMX_IndexConfigAudioTreble r/w bEnable = False, True
nTreble = [-100, 100]

8.7 Standard Image Components

8.7.1 Image Decoder Class
Name image_decoder
Description Decodes the given compressed image data stream into an uncompressed image data

stream..
Index Domain Direction Description
IPB+0 image input Accepts encoded image data.

Ports

IPB+1 image output Emits decoded image data.

8.7.1.1 JPEG Decoder
Name image_decoder.JPEG
Description Decodes the given compressed image data stream into an uncompressed image data

stream..
Index Domain Direction Description
IPB+0 image input Accepts encoded image data.

Ports

IPB+1 image output Emits decoded image data.

Port Index IPB+0

Port Index IPB+0
Description Accepts encoded image data.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the image port settings.

nFrameWidth = 640

nFrameHeight = 480

eCompressionFormat =
OMX_IMAGE_CodingJPEG

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamImagePortFormat r/w Specify/query the image format.
eCompressionFormat =
OMX_IMAGE_CodingJPEG

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamQuantizationTable r/w eQuantizationTable=
OMX_IMAGE_QuantizationTableLuma
OMX_IMAGE_QuantizationTableChro
ma

nQuantizationMatrix = configureable

Required
Parameters/
Configs

OMX_IndexParamHuffmanTable r/w eHuffmanTable =
OMX_IMAGE_HuffmanTableAC
OMX_IMAGE_HuffmanTableDC

nNumberOfHuffmanCodeOfLength =
configurable

nHuffmanTable = configurable

Port Index IPB+1
Description Emits decoded image data.

Index Access Description Required
Parameters/ OMX_IndexParamPortDefinition r/w Specify/query the image port settings.
Configs nFrameWidth = 640

nFrameHeight = 480

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

 354

 355

Port Index IPB+1
OMX_IndexParamVideoPortFormat r/w Specify/query the image format.

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.7.2 Image Encoder Class
Name image_encoder
Description Encodes the given image data stream into a compressed format.

Index Domain Direction Description
IPB+0 image input Accepts image data for encoding.

Ports

IPB+1 image output Emits compressed image data.

8.7.2.1 JPEG Encoder
Name image_encoder.JPEG
Description Encodes the given image data stream into a compressed format.

Index Domain Direction Description
IPB+0 image input Accepts image data for encoding.

Ports

IPB+1 image output Emits compressed image data.

Port Index IPB+0
Description Accepts image data for encoding.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the image port settings.

nFrameWidth = 640

nFrameHeight = 480

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the image format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index IPB+1
Description Emits compressed image data.
Required Index Access Description

 356

Port Index IPB+1
OMX_IndexParamPortDefinition r/w Specify/query the image port settings.

nFrameWidth = 640(same as input)

nFrameHeight = 480(same as input)

eCompressionFormat =
OMX_IMAGE_CodingJPEG

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamImagePortFormat r/w Specify/query the image format.
eCompressionFormat =
OMX_IMAGE_CodingJPEG

eColorFormat =
OMX_COLOR_FormatUnused

Parameters/
Configs

OMX_IndexParamQuantizationTable r/w eQuantizationTable=
OMX_IMAGE_QuantizationTableLuma
OMX_IMAGE_QuantizationTableChro
ma

nQuantizationMatrix = configureable

8.7.3 Image Reader Class
Name image_reader
Description Read an image filestream and emits the contained image stream.

Index Domain Direction Description Ports
IPB+0 image output Emits image stream found in filestream.

8.7.3.1 Binary Image Reader Class
Name image_reader.binary
Description Blindly reads any image filestream (e.g. a JPG file) irrespective of the format and emits

contained elementary image stream.
Index Domain Direction Description Ports
IPB+0 image output Emits image stream found in filestream.

8.7.4 Image Writer Class
Name image_writer
Description Writes given image stream to an image filestream.

Index Domain Direction Description Ports
IPB+0 image input Accepts image stream to be written to the image

filestream.

 357

8.7.4.1 Binary Image Writer Class
Name image_writer.binary
Description Blindly writes given elementary image stream to an image filestream (e.g. a JPG file)

irrespective of format.
Index Domain Direction Description Ports
IPB+0 image input Accepts image stream to be written to the image

filestream.

8.8 Standard Video Components

8.8.1 Video Decoder Class
Name video_decoder
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description
VPB+0 video input Accepts encoded video.

Ports

VPB+1 video output Emits decoded video.

8.8.1.1 H.263 Decoder Component
Name video_decoder.h263
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description
VPB+0 video input Consumes compressed video content.

Ports

VPB+1 video output Produces uncompressed raw video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamPortDefinition r/w Specify/query the video port settings.
nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingH263

eColorFormat =
OMX_COLOR_FormatUnused

 358

Port Index VPB+0
OMX_IndexParamVideoPortFormat r/w Specify/query the video format.

eCompressionFormat =
OMX_VIDEO_CodingH263

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoH263 r eProfile =
OMX_VIDEO_H263ProfileBaseline

eLevel= OMX_VIDEO_H263Level10

bPLUSPTYPEAllowed = OMX_FALSE

bForceRoundingTypeToZero =
OMX_TRUE

OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

OMX_IndexParamVideoProfileLevel
Current

r Query current profile/level pair.

Port Index VPB+1
Description Produces uncompressed raw video.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.8.1.2 AVC Decoder Component
Name video_decoder.avc
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description
VPB+0 video input Consumes compressed video content.

Ports

VPB+1 video output Produces uncompressed raw video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingAVC

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingAVC

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoAvc r eProfile =
OMX_VIDEO_AVCProfileBaseline

eLevel = OMX_VIDEO_AVCLevel1

OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

Required
Parameters/
Configs

OMX_IndexParamVideoProfileLevel
Current

r Query current profile/level pair.

Port Index VPB+1
Description Produces uncompressed raw video.

Index Access Description Required
Parameters/ OMX_IndexParamPortDefinition r/w Specify/query the video port settings.
Configs nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

 359

 360

Port Index VPB+1
OMX_IndexParamVideoPortFormat r/w Specify/query the video format.

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.8.1.3 MPEG4 Video Decoder Component
Name video_decoder.mpeg4
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description
VPB+0 video input Consumes compressed video content.

Ports

VPB+1 video output Produces uncompressed raw video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingMPEG4

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingMPEG4

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoMpeg4 r/w eProfile =
OMX_VIDEO_MPEG4ProfileSimple

eLevel = OMX_VIDEO_MPEG4Level1

OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

Required
Parameters/
Configs

OMX_IndexParamVideoProfileLevel
Current

r Query current profile/level pair.

 361

Port Index VPB+1
Description Produces uncompressed raw video.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.8.1.4 Real Video Decoder Component
Name video_decoder.rv
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description
VPB+0 video input Consumes compressed video content.

Ports

VPB+1 video output Produces uncompressed raw video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamPortDefinition r/w Specify/query the video port settings.
nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingRV

eColorFormat =
OMX_COLOR_FormatUnused

 362

Port Index VPB+0
OMX_IndexParamVideoPortFormat r/w Specify/query the video format.

eCompressionFormat =
OMX_VIDEO_CodingRV

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoRv r/w Specify/query Real Video specific
parameters.
eFormat =
OMX_VIDEO_RVFormat8
OMX_VIDEO_RVFormat9

bEnablePostFilter =
OMX_TRUE
OMX_FALSE

bEnableLatencyMode =
OMX_TRUE
OMX_FALSE

Port Index VPB+1
Description Produces uncompressed raw video.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.8.1.5 WMV Decoder Component
Name video_decoder.wmv
Description Decodes the given compressed video stream into an uncompressed video stream.

Index Domain Direction Description Ports
VPB+0 video input Consumes compressed video content.

Name video_decoder.wmv
VPB+1 video output Produces uncompressed raw video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingWMV

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingWMV

eColorFormat =
OMX_COLOR_FormatUnused

Required
Parameters/
Configs

OMX_IndexParamVideoWmv Specify/query Real Video specific
parameters.

r/w

eFormat =
OMX_VIDEO_WMVFormat7
OMX_VIDEO_WMVFormat8
OMX_VIDEO_WMVFormat9

Port Index VPB+1
Description Produces uncompressed raw video.

Index Access Description Required
Parameters/ OMX_IndexParamPortDefinition r/w Specify/query the video port settings.
Configs nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

 363

 364

Port Index VPB+1
OMX_IndexParamVideoPortFormat r/w Specify/query the video format.

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.8.2 Video Encoder Class
Name video_encoder
Description Encodes the given uncompressed video stream into a compressed format.

Index Domain Direction Description
VPB+0 video input Accepts video for encoding.

Ports

VPB+1 video output Emits encoded video.

8.8.2.1 H.263 Encoder Component
Name video_encoder.h263
Description Encodes the given uncompressed video stream into a compressed format.

Index Domain Direction Description
VPB+0 video input Consumes the uncompressed raw video content.

Ports

VPB+1 video output Produces compressed video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index VPB+1
Description Produces cmpressed video.
Required Index Access Description

Port Index VPB+1
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingH263

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingH263

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoBitrate r/w eControlRate =
OMX_Video_ControlRateConstant
OMX_Video_ControlRateDisable
OMX_Video_ControlRateVariable

nTargetBitrate = 64000

OMX_IndexParamVideoErrorCorrect
ion

r/w bEnableHEC = OMX_TRUE

bEnableResync = OMX_TRUE

nResynchMarkerSpacing =
Configureable(0 to 0xFFFFFFFF)

OMX_IndexParamVideoH263 eProfile =
OMX_VIDEO_H263ProfileBaseline

eLevel= OMX_VIDEO_H263Level10

nPFrames = 0 to 0xffffffff

bPLUSPTYPEAllowed = OMX_FALSE

bForceRoundingTypeToZero =
OMX_TRUE

nGOBHeaderInterval = 1 to 9

Parameters/
Configs

OMX_IndexConfigVideoFramerate r/w Specify/query target framerate
xFrameRate = 15

 365

 366

Port Index VPB+1
OMX_IndexConfigVideoBitrate r/w Specify/query target bitrate

nBitRate = 64000
OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

OMX_IndexParamVideoProfileLevel
Current

r/w Specify/query current profile/level pair.

8.8.2.2 AVC Encoder Component
Name video_encoder.avc
Description Encodes the given uncompressed video stream into a compressed format.

Index Domain Direction Description
VPB+0 video input Consumes the uncompressed raw video content.

Ports

VPB+1 video output Produces compressed video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index VPB+1
Description Produces cmpressed video.
Required Index Access Description

Port Index VPB+1
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingAVC

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingAVC

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoBitrate r/w eControlRate =
OMX_Video_ControlRateConstant
OMX_Video_ControlRateDisable
OMX_Video_ControlRateVariable

nTargetBitrate = 64000

Parameters/
Configs

OMX_IndexParamVideoAvc eProfile =
OMX_VIDEO_AVCProfileBaseline

r/w

eLevel = OMX_VIDEO_AVCLevel1

nSliceHeaderSpacing = Configureable

nPFrames = 0 to 0xffffffff

bUseHadamard = OMX_TRUE

nRefFrames = 1

bEnableFMO = OMX_FALSE

bEnableASO = OMX_FALSE

bWeightedPPrediction= OMX_FALSE

bconstIpred = OMX_FALSE

 367

 368

Port Index VPB+1
OMX_IndexConfigVideoFramerate r/w Specify/query target framerate

xFrameRate = 15
OMX_IndexConfigVideoBitrate r/w Specify/query target bitrate

nBitRate = 64000
OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

OMX_IndexParamVideoProfileLevel
Current

r/w Specify/query current profile/level pair.

8.8.2.3 MPEG4 Video Encoder Component
Name video_encoder.mpeg4
Description Encodes the given uncompressed video stream into a compressed format.

Index Domain Direction Description
VPB+0 video input Consumes the uncompressed raw video content.

Ports

VPB+1 video output Produces compressed video.

Port Index VPB+0
Description Consumes compressed video content.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index VPB+1
Description Produces cmpressed video.
Required Index Access Description

Port Index VPB+1
OMX_IndexParamPortDefinition r/w Specify/query the video port settings.

nFrameWidth = 176

nFrameHeight = 144

nBitRate = 64000

xFrameRate = 15

eCompressionFormat =
OMX_VIDEO_CodingMPEG4

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoPortFormat r/w Specify/query the video format.
eCompressionFormat =
OMX_VIDEO_CodingMPEG4

eColorFormat =
OMX_COLOR_FormatUnused

OMX_IndexParamVideoBitrate r/w eControlRate =
OMX_Video_ControlRateConstant
OMX_Video_ControlRateDisable
OMX_Video_ControlRateVariable

nTargetBitrate = 64000

Parameters/
Configs

OMX_IndexParamVideoMpeg4 eProfile =
OMX_VIDEO_MPEG4ProfileSimple

r/w

eLevel = OMX_VIDEO_MPEG4Level1
nSliceHeaderSpacing = Configureable

bSVH = OMX_FALSE

bGov = Configureable

nPFrames = 0 to 0xffffffff

nIDCVLCThreshold = 0

bACPred = OMX_TRUE

nHeaderExtension = 1 to 99

bReversibleVLC = OMX_FALSE

 369

 370

Port Index VPB+1
OMX_IndexConfigVideoFramerate r/w Specify/query target framerate

xFrameRate = 15
OMX_IndexConfigVideoBitrate r/w Specify/query target bitrate

nBitRate = 64000
OMX_IndexParamVideoProfileLevel
QuerySupported

r Query supported profile/level pair by
index.

OMX_IndexParamVideoProfileLevel
Current

r/w Specify/query current profile/level pair.

8.8.3 Video Reader Class
Name video_reader
Description Reads a video filestream and emits the contained video stream.

Index Domain Direction Description Ports
VPB+0 video output Emits video stream found in filestream.

8.8.3.1 Binary Video Reader Component
Name video_reader.binary
Description Blindly reads any video filestream (e.g. a M4V file) irrespective of format and emits

contained elementary video stream.
Index Domain Direction Description Ports
VPB+0 video output Emits video stream found in filestream.

8.8.4 Video Scheduler Class
Name video_scheduler
Description Times the delivery of video frames according to their timestamps.

Index Domain Direction Description
VPB+0 video input Accepts video.
VPB+1 video output Emits timed video.

Ports

OPB+0 other/time input Accepts time updates.

8.8.4.1 Video Scheduler Component
Name video_scheduler.binary
Description Times the delivery of video frames according to their timestamps.

Index Domain Direction Description
VPB+0 video input Accepts video.
VPB+1 video output Emits timed video.

Ports

OPB+0 other/time input Accepts time updates.

Port Index OPB+0
Description Accepts media time updates to facilitate accurate emission of a frame at the

timestamp for the frame (i.e. in the buffer header). Also provides mechanism for
video scheduler to query for media time.

 371

8.8.5 Video Writer Class
Name video_writer
Description Writes given video stream to a video filestream.

Index Domain Direction Description Ports
VPB+0 video input Accepts video stream to be written to the video

filestream.

8.8.5.1 Binary Video Writer Class
Name video_writer.binary
Description Blindly writes given elementary video stream to an video filestream (e.g. an

M4V file) irrespective of format.
Index Domain Direction Description Ports
VPB+0 video input Accepts video stream to be written to the video

filestream.

8.9 Other Standard Components

8.9.1 Camera Class
Name camera
Description Emits preview/viewfinder video and captured video according to settings.

Index Domain Direction Description
VPB+0 video output Emits preview/viewfinder video.
VPB+1 video output Emits captured video.

Ports

OPB+0 other/time input Receives media time update/provides access to
clock component.

8.9.1.1 YUV Camera Component
Name camera.yuv
Description Emits preview/viewfinder video and captured video according to settings.

Index Domain Direction Description
VPB+0 video output Emits preview/viewfinder video.
VPB+1 video output Emits captured video.

Ports

OPB+0 other/time input Receives media time update/provides access to
clock component.

Port Index OMX_ALL
Description Properties that apply to all ports.
Required Index Access Description

Port Index OMX_ALL
OMX_IndexParamCommonSensorMode r/w Specifies the sensor mode. The

bOneShot field indicates whether the
camera will emit a single frame or a
stream of frames when capturing. The
camera resolution should be left as the
default value. So the camera may set the
resolution according to resolution of
output ports.

OMX_IndexConfigCommonWhiteBalan
ce

r/w Specifies white balance

OMX_IndexConfigCommonDigitalZoo
m

r/w Specifies digital zoom

OMX_IndexConfigCommonExposureVa
lue

r/w Specifies exposure value compensation

OMX_IndexConfigCapturing

r/w Specifies whether the camera is emitting
captured data or not.

Parameters/
Configs

OMX_IndexAutoPauseAfterCapture Specifies whether the camera will
automatically transition to
OMX_StatePaused after the Capturing
boolean is cleared (e.g. to facilitate a
frozen viewfinder).

r/w

Port Index VPB+0
Description Emits preview/viewfinder video when the camera component is executing.

Index Access Description
OMX_IndexParamPortDefinition r/w Specifies preview’s resolution and

framerate.
nFrameWidth = 320

nFrameHeight = 240

nStride = 320

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat eCompressionFormat =
OMX_VIDEO_CodingUnused

r/w

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index VPB+1

 372

 373

Port Index VPB+1
Description Emits captured video when the camera component is capturing where the

number of output frames depends on the sensor mode. If the sensor mode is set
to one shot then this port only emits a one frame per capture. Output may be
interpreted as raw image.

Formats OMX_VIDEO_CodingUnused
Index Access Description Required

Parameters/
Configs

OMX_IndexParamPortDefinition r/w Specifies emitted video’s resolution and
framerate.
nFrameWidth = 640

nFrameHeight = 480

nStride = 640

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index OPB+0
Description Accepts media time updates. Provides mechanism for camera component to

query for media time. Camera component can detect drift between camera clock
and media clock (which may use the audio capturer as a master) and correct
timestamps on outgoing frames to compensate. In use case where two cameras
are used (e.g. one pointed at user and one pointed away) this provides a
consistent media time for timestamps across switches between cameras during
capture.

8.9.1.2 Video Capture Use Case

An IL client using a camera to capture a video stream may do so via the following steps:

1. Instantiate the camera component and any co-operating components.

2. Set camera parameters:

a. Set capture port resolution and frame-rate according to desired values of
captured stream

b. Set viewfinder port resolution and frame-rate (e.g. according to desired
values of preview window)

c. Clear the one shot bit of the sensor mode to indicate that the camera
should emit a stream of multiple frames, i.e. a video stream. The IL client
should leave the sensor resolution at the default allowing the camera to

 374

pick a sensor resolution appropriate to the resolution settings of the
viewfinder and capture ports.

d. Set other camera settings (e.g. exposure value compensation, white
balance, zoom, etc).

e. Set or clear auto pause after capture accordingly. If auto pause is set the
component will pause and the viewfinder will freeze after a capture.

3. Establish any necessary tunnels between the camera component and other
components (e.g. a display component tunneling with the viewfinder port or a
video encoder tunneling with the capture port).

4. Select the clock component’s active reference clock. If the camera is used in
concert with an audio capturer the audio clock will be the active reference clock
(i.e. be the master clock) to facilitate synchronized audio/video capture.
Otherwise the video clock provided by the camera will be the active reference
clock.

5. Transition all components to the OMX_StateIdle state and then to the
OMX_StateExecuting state. The viewfinder port should now be actively
emitting preview frames.

6. To initiate video capture set the capturing bit. The capture port will emit
captured frames at the frame rate specified. If using a clock component start the
clock component. Timestamps applied to video frames will follow the media
time to facilitate consistent timestamp authoring between audio and video
capture. The viewfinder will continue to emit frames.

7. To terminate video capture clear the capturing bit. The capture port will cease
the emission of frames. If set to auto pause the component will pause and the
viewfinder will cease the emission of frames. This effectively freezes any
associated preview window to the last frame emitted which should be identical
to the last frame emitted by the capture port. If auto pause is clear then the
viewfinder continues emitting preview frames.

8. If the component is paused and the viewfinder is frozen after a capture then the
IL client manually unfreezes the viewfinder by transitioning the component to
OMX_StateExecuting when appropriate (e.g. after the captured video has been
stored by the application).

Note that this sequence of calls can also be used to implement a sequence of consecutive
image captures. In the case of a sequence of stills the IL client simply sets the frame rate
on the capture port to accommodate the desired interim between captured stills, uses a
JPEG encoder instead of an MPEG encoder, and terminates the capture after the desired
number of stills have been captured.

8.9.1.3 Still Image Capture

An IL client using a camera to capture an image may do so via the following steps:

1. Instantiate the camera component and any co-operating components

2. Set camera parameters:

a. Set capture port resolution according to desired values of captured image.

b. Set viewfinder port resolution and frame-rate (e.g. according to desired
values of preview window).

c. Set the one shot bit of the sensor mode to indicate that the camera should
emit a single frame, i.e. an image frame. The IL client should leave the
sensor resolution at the default allowing the camera to pick a sensor
resolution appropriate to the resolution settings of the viewfinder and
capture ports.

d. Set other camera settings (e.g. exposure value compensation, white
balance, zoom, etc).

e. Set or clear auto pause after capture accordingly. If auto pause is set the
component will pause and the viewfinder will freeze after a capture.

3. Establish any necessary tunnels between the camera component and other
components (e.g. a display component tunneling with the viewfinder port or a
image encoder tunneling with the capture port).

4. Transition all components to the OMX_StateIdle state and then to the
OMX_StateExecuting state. The viewfinder port should now be actively
emitting preview frames and the capture port is not transmitting any frames, it
is paused.

5. With the viewfinder port enabled, the IL client now has the opportunity to
performaing any zoom and focus related actions.

6. To signal image capture set the capturing bit. The capture port will emit a single
captured frame and then the component will immediately clear the capturing
bit. If set to auto pause after capture the component will transition itself to the
OMX_StatePaused state and the viewfinder will cease the emission of frames.
This effectively freezes any associated preview window to the captured image
frame. If auto pause is clear then the viewfinder continues emitting preview
frames.

7. If the component is paused and the viewfinder is frozen after a capture then the
IL client manually unfreezes the viewfinder by transitioning the component to
OMX_StateExecuting when appropriate (e.g. after the captured image has been
stored by the application).

8.9.2 Clock Class
Name clock
Description Implements the OpenMAX IL clock component (add reference to existing

section in spec describing the clock component), the component may expose
support for 1 to N ports.

Ports Index Domain Direction Description

 375

 376

Name clock
OPB+0
to
(OPB+N-
1)

other/time output Emits time updates.

8.9.2.1 Clock Component
Name clock.binary
Description Implements the OpenMAX IL clock component.

Port Index OPB+0 to (OPB+N-1)
Description Emits time updates.
Formats OMX_OTHER_FormatTime

Index Access Description
OMX_IndexConfigTimeScale Read,

write
Query or set current scale applied to
the media time.

OMX_IndexConfigTimeClockState Read,
write

Query or set current clock state.

OMX_IndexConfigTimeActiveRefClo
ck

Read,
write

Query or set the active reference
clock.

OMX_IndexConfigTimeCurrentMedia
Time

Read Query current media time.

OMX_IndexConfigTimeCurrentWallT
ime

Read Query current wall clock time.

OMX_IndexConfigTimeCurrentAudio
Reference

Write Set the instantaneous audio reference
clock value.

OMX_IndexConfigTimeCurrentVideo
Reference

Write Set the instantaneous video reference
clock value.

OMX_IndexConfigTimeMediaTimeReq
uest

Write Make a media time request.

Required
Parameters/
Configs

OMX_IndexConfigTimeClientStartT
ime

Write Set the start time of a client stream.

8.9.3 Container Demuxer Class
Name container_demuxer
Description Parses a container filestream, demuxes its elementary streams, and emits them as

independent video, image and audio streams.
Index Domain Direction Description
APB+0 audio output Emits demuxed audio stream.
VPB+0 video output Emits demuxed video stream.

Ports

OPB+0 other/time input Receives media time upates/provides access to
clock component.

Port Index OMX_ALL
Description Properties that apply to all ports.

Port Index OMX_ALL
Index Access Description
OMX_IndexConfigTimePosition r/w Specifies the position in the

container format content.
OMX_IndexConfigTimeSeekMode r/w Specifies the manner in which a seek

will be carried out (quickly or
precisely).

Required
Parameters/
Configs

OMX_IndexParamContentURI r/w Specify/query the current target
content.

Port Index APB+0
Description Emits demuxed audio stream.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of

the audio stream.
OMX_IndexParamNumAvailableStrea
ms

r Query the number of available audio
streams for this port given current
content.

Required
Parameters/
Configs

OMX_IndexParamActiveStream r/w Specify/query the active audio
stream by index where indices are
numbered from 0 to the number of
available streams.

Port Index VPB+0
Description Emits demuxed video stream.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of

the video stream.
OMX_IndexParamNumAvailableStrea
ms

r Query the number of available video
streams for this port given current
content.

Required
Parameters/
Configs

OMX_IndexParamActiveStream r/w Specify/query the active video
stream by index where indices are
numbered from 0 to the number of
available streams.

Port Index OPB+0
Description Accepts media time updates. Provides mechanism for component to query for

media time. The demuxer obeys changes in the media time to implement trick
modes. For instance a negative media time scale factor indicates rewind which
implies the demuxer shall retrieve data in reverse order.

 377

 378

8.9.3.1 Playback Use Case

An IL client using a container parser to playback content may do so via the following
steps:

1. Instantiate the container demuxer component.

2. Set any relevant container demuxer settings:

3. Specify the target content

4. set all outputs to autodetect

5. Execute the component until all each port generates an
OMX_EventPortSettingsChanged event. For each port that generates
this event:

a. Query the number of available streams for that port and examine the
properties of each available stream by making each active and reading the
port parameters.

b. Make the desired stream active.

6. Instantiate the set of co-operating components appropriate to the format settings
of the parser’s output ports.

7. Establish any necessary tunnels between the container parser and component
and other components (e.g. an audio decoder tunneling with the audio port or a
video decoder tunneling with the video port).

8. Select the clock component’s active reference clock. In a use case with audio
this is normally the audio clock as provided by the audio renderer.

9. Transition all components to the OMX_StateIdle state then the
OMX_Executing state. If using a clock component start the clock component.
The container demuxer will emit the relevant elementary streams facilitating
playback.

10. To change the playback rate (i.e. facilitate trick modes) change the media clock
scale factor to the appropriate value (e.g. 2.0 implies 2x forward playback and -
1.0 implies 1x reverse playback). The clock component will inform the
container demuxer of the scale change and the demuxer will retrieve and emit
data in a manner appropriate the scale (e.g. in reverse for negative scales or
skipping interframes in extreme fast forward).

11. To seek to a particular location the IL client sets the position on the container
demux.

8.9.3.2 3GP Demuxer Component
The standard 3GP demuxer component shall support Release 6 of the 3GP format
including basic profile (all other profiles are optional).

 379

8.9.3.3

8.9.3.4

ASF Demuxer Component
The standard ASF demuxer component shall support ASF version 1.2, Revision 1.20.03
(dated December 2004)

Real Demuxer Component
The standard Real Demuxer shall support parsing of the Real container format.

8.9.4 Container Muxer Class
Name container_muxer
Description Given independent video, image, and audio streams muxes them into a container

filestream.
Index Domain Direction Description
APB+0 audio input Accepts audio stream for muxing.

Ports

VPB+0 video input Accepts video stream for muxing.

Port Index OMX_ALL
Description Properties that apply to all ports.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamContentURI

r/w Specify/query the current target
content.

8.9.4.1 3GP Muxer Component
The standard 3GP muxer component shall support Release 6 of the 3GP format including
basic profile (all other profiles are optional).

8.9.5 Image/Video Processor Class
Name iv_processor
Description Performs some processing on a raw image/video stream.

Index Domain Direction Description
VPB+0 video input Accepts video for processing.

Ports

VPB+1 video output Emits processed video.

8.9.5.1 YUV Image/Video Processor
Name iv_processor.yuv
Description Performs some processing on a raw image/video stream.

Index Domain Direction Description
VPB+0 video input Accepts video for processing.

Ports

VPB+1 video output Emits processed video.

Port Index VPB+0

Port Index VPB+0
Description Accepts video for processing.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the

video stream.
nFrameWidth = 640

nFrameHeight = 480

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Port Index VPB+1
Description Emits processed video.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the

video stream.
nFrameWidth = 640

nFrameHeight = 480
(output width and height imply scale if
different then input width and height)

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

OMX_IndexParamVideoPortFormat r/w eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexConfigCommonRotate Specify/query rotation. Rotation is
always performed prior to mirror.

r/w

nRotation =
 0
 90 (-270)
 180 (-180)
 270 (-90)

 380

Port Index VPB+1
OMX_IndexConfigCommonMirror r/w eMirror =

 OMX_MirrorNone
 OMX_MirrorVertical
 OMX_MirrorHorizontal
 OMX_MirrorBoth

OMX_IndexConfigCommonInputCrop Cropping shall be specified within frame
boundaries:

r/w

0<= nLeft <= frame width -1
0<= nTop <= frame height -1
0<= nWidth <= frame width
0<= nHeight <= frame height
Cropping is 16-byte aligned.

8.9.6 Image/Video Renderer Class
Name iv_renderer
Description Displays a given raw image/video stream.

Index Domain Direction Description Ports
VPB+0 video input Accepts video for display.

Common to all renderers:
Port Index VPB+0
Description Accepts video rendering.

Index Access Description
OMX_IndexConfigCommonRotate r/w Specify/query rotation. Rotation is

always performed prior to mirror.
nRotation =
 0
 90 (-270)
 180 (-180)
 270 (-90)

OMX_IndexConfigCommonMirror r/w eMirror =
 OMX_MirrorNone
 OMX_MirrorVertical
 OMX_MirrorHorizontal
 OMX_MirrorBoth

OMX_IndexConfigCommonScale r/w xWidth = downscale factors of 2
xHeight = downscale factors of 2

Required
Parameters/
Configs

OMX_IndexConfigCommonInputCrop Cropping shall be specified within frame
boundaries:

r/w

0<= nLeft <= frame width -1
0<= nTop <= frame height -1
0<= nWidth <= frame width
0<= nHeight <= frame height
Cropping is 16-byte aligned.

 381

 382

8.9.6.1 YUV Overlay Image/Video Renderer
Name iv_renderer.yuv.overlay
Description Displays a given raw yuv image/video stream using overlays.

Index Domain Direction Description Ports
VPB+0 video input Accepts video for display.

Port Index VPB+0
Description Accepts video rendering.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the

video stream.
nFrameWidth = 176

nFrameHeight = 220

nStride = 176

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.9.6.2 YUV BLTter Image/Video Renderer
Name iv_renderer.yuv.blter
Description Displays a given raw yuv image/video stream via bitBLTs.

Index Domain Direction Description Ports
VPB+0 video input Accepts video for display.

Port Index VPB+0
Description Accepts video rendering.
Required Index Access Description

 383

Port Index VPB+0
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the

video stream.
nFrameWidth = 176

nFrameHeight = 220

nStride = 176

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_FormatYUV420Planar

8.9.6.3 RGB Overlay Image/Video Renderer
Name iv_renderer.rgb.overlay
Description Displays a given raw rgb image/video stream using overlays.

Index Domain Direction Description Ports
VPB+0 video input Accepts video for display.

Port Index VPB+0
Description Accepts video rendering.

Index Access Description Required
Parameters/
Configs

OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the
video stream.
nFrameWidth = 176

nFrameHeight = 220

nStride = 352 (176 pixels @ 16 bpp)

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_Format16bitRGB565

 384

Port Index VPB+0
OMX_IndexParamVideoPortFormat r/w eCompressionFormat =

OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_Format16bitRGB565

8.9.6.4 RGB BLTter Image/Video Renderer
Name iv_renderer.rgb.blter
Description Displays a given raw rgb image/video stream vis bitBLTS.

Index Domain Direction Description Ports
VPB+0 video input Accepts video for display.

Port Index VPB+0
Description Accepts video rendering.

Index Access Description
OMX_IndexParamPortDefinition r/w Specify/query the characteristics of the

video stream.
nFrameWidth = 176

nFrameHeight = 220

nStride = 352 (176 pixels @ 16 bpp)

nSliceHeight = 16

eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_Format16bitRGB565

Required
Parameters/
Configs

OMX_IndexParamVideoPortFormat r/w eCompressionFormat =
OMX_VIDEO_CodingUnused

eColorFormat =
OMX_COLOR_Format16bitRGB565

9 Content Pipes

9.1 Rationale
Streaming media processing requires efficient data flow in and out of a media processing
object.

For instance, in the playback use case a container format parser/demuxer typically pulls
source data in a manner that assumes reads on a local file. Likewise, in the recording use
case, a container format combiner/muxer typically pushes final data in a manner that
assumes writes on a local file. Such “file access” is usually synchronous and includes
some high frequency reads/writes of small size as well as random access.

In some cases, the content from which source data is pulled from or which final data is
pushed to is not local or is not from a file. This conventional approach to this use case,
often referred to as “data” streaming, leverages queues of large input or output buffers of
linear data transferred asynchronously. This model is at odds with the model parsers and
combiners expect. If conventional streaming is used then reconciling the two transfer
models involves inefficient (and unnecessary) memory copies, waiting, and complexity.

9.2 Concept
We eliminate the inconsistency of these models by constructing a data access abstraction
interface for pulling source data and pushing final data that lends itself to the needs of
parsers and combiners. Rather than restricting ourselves to “file access” and the
connotations it implies we use a more generalized notion of “content piping”.

A “content pipe” is an abstraction for any mechanism of accessing content data (i.e.
pulling content data in or pushing content data out). This abstraction is not tied any
particular implementation. A pipe may be implemented, for example, as a local file, a
remote file, a broadcast stream, memory buffers, intermediate data from derived from
persistent data, etc. A pipe needn’t be limited to a single method of providing access. For
instance a single pipe may provide via both local files and remote files, or through
multiple transport protocols. A system may include one or many pipes.

9.3 Implementation
Since content pipe functions are synchronous, the implementation of the pipe interface is
local even if the content itself is remote. This may entail a local agent acting as a broker
between asynchronously pushed buffers from remote content and a pipe client (e.g. a
parser) that must synchronously pull in data of varying sizes. Such an agent would
maintain both the complex/elastic connection between the remote content and a local
cache (which entails careful synchronization) as well as the simple/rigid connection
between the local cache and the parser (which as a pull interface lacks complex
synchronization).

 385

 386

Note that the synchronous pull based transfer implied by content pipe interface implies
neither that the physical connection to the content nor the propagation of the data beyond
the client be synchronous and pull-based. For example consider the example of an
OpenMAX IL parser component reading from either a remote file or a local one. The
parser is provided the interface it requires, the mechanism to satisfy the pipe is
completely abstracted and may actually use asynchronous data transfers, and the
downstream data transfer is completely unaffected.

Figure 9-1. Content Pipe Operation

9.4 Definition

9.4.1 Content Access and Manipulation
The pipe interface includes functions for opening, creating and closing content handles:
CPResult (*Open)(CPhandle *hContent, CPstring szURI, CP_ACCESSTYPE eAccess);

CPResult (*Close)(CPhandle hContent);

CPResult (*Create)(CPhandle *hContent, CPstring szURI);

Because content parsers and muxers operate as though they are accessing files directly, a
pipe’s data access functions are modeled on conventional file access. These include

Server Mobile device

Stream
pipe Parser Local

File
Cache

Synchronous
reads (pull)

Asynchronous
buffers (push)

decoder

OMX IL based
communication

Remote
File

C
o
n
t
e
n
t

P
i
p
e

I
n
t
e
r
f
a
c
e

Parser decoder

OMX IL based
communication

File
pipe

Local
File

Synchronous
reads (pull)

OR…

functions for reading and writing data using client buffers and setting/retrieving the
read/write position within the content:
CPResult (*SetPosition)(CPhandle hContent, CPint nOffset, CP_ORIGINTYPE
eOrigin);

CPResult (*GetPosition)(CPhandle hContent, *pPosition);

CPResult (*Read)(CPhandle hContent, CPbyte *pData, CPuint nSize);

CPResult (*Write)(CPhandle hContent, CPbyte *pData, CPuint nSize);

9.4.2 Streaming Support
This proposal recognizes that the source content may be remotely located and streamed
during processing to a position of local accessibility (e.g. a local cache of remote content).
The pipe interface includes a set of functions to accommodate such scenarios.

The CheckAvailableBytes function queries if a given number of bytes are
available. This allows the client to check for the availability of enough bytes to satisfy a
large section of parsing prior to beginning the parsing. This allows a pipe implementation
to stream data to a local cache.
CPResult (*CheckAvailableBytes)(CPhandle hContent, CPuint nBytesRequested,
CP_CHECKBYTESRESULTTYPE *eResult);

If the bytes are not immediately available the pipe will call the client via the provided
callback when they are. This callback mechanism also includes events for data overflow
and a pipe disconnection (e.g. if the connection with a remote source is lost). See the
CP_EVENTTYPE enumeration for details.

The ReadBuffer function reads a large area of data using the pipe implementation’s
memory. If a pipe implementation is streaming remote data to a local cache the desired
data will already reside in local memory prior to a call on this function. This function
avoids the memory copy that would be required if the client provided the memory pointer.
Instead, this function allows the pipe implementation to provide the memory pointer.
CPResult (*ReadBuffer)(CPhandle hContent, CPbyte **ppBuffer, CPuint *nSize,
CPbool bForbidCopy);

This necessitates a ReleaseReadBuffer function to release a buffer acquired via
ReadBuffer
CPResult (*ReleaseReadBuffer)(CPhandle hContent, CPbyte *pBuffer);

The WriteBuffer function to writes a large area of data using the pipe
implementation’s memory without imposing an unnecessary copy.
CPResult (*GetWriteBuffer)(CPhandle hContent, CPbyte **ppBuffer, CPuint
nSize);

This necessitates the GetWriteBuffer function to acquire a write buffer for use with
WriteBuffer.
CPResult (*WriteBuffer)(CPhandle hContent, CPbyte *pBuffer, CPuint
nFilledSize);

 387

 388

9.4.3 Enumerations

9.4.3.1 CP_ORIGINTYPE
The CP_ORIGINTYPE enumeration defines all the origin types used by the
SetPosition method of the CP_PIPETYPE from which the indicated position is
relative.

Table 9-1: Content Pipe Origin Types

Value Description
CP_OriginBegin Origin is the beginning of content, specifically the first byte of the

content’s data stream.
CP_OriginCur Origin is the current position within the content.
CP_OriginEnd Origin is the beginning of content, specifically the last byte of the

content’s data stream.

9.4.3.2 CP_ACCESSTYPE
The CP_ACCESSTYPE enumeration defines all the access types used by the Open
method of the CP_PIPETYPE.

Table 9-2: Content Pipe Access Types

Value Description
CP_AccessRead Access type is read only.
CP_AccessWrite Access type is write only.
CP_AccessReadWrite Access type is both read and write.

9.4.3.3 CP_CHECKBYTESRESULTTYPE
The CP_CHECKBYTESRESULTTYPE enumeration defines all possible results of a call
to the CheckAvailableBytes method of the CP_PIPETYPE.

Table 9-3: Content Pipe CheckAvailableBytes Result Types

Value Description
CP_CheckBytesOk There are at least the requested number of bytes

available.
CP_CheckBytesNotReady The pipe is still retrieving bytes and presently

lacks sufficient bytes. Client will be called when
sufficient bytes are available.

CP_CheckBytesInsufficientBytes The pipe has retrieved all bytes but those available
are less than those requested.

CP_CheckBytesAtEndOfStream The pipe has reached the end of the stream and no
more bytes are available.

CP_CheckBytesOutOfBuffers All read/write buffers are currently in use.

 389

9.4.3.4 CP_EVENTTYPE
The CP_EVENTTYPE enumeration defines events a content pipe may send to its client
via a registered ClientCallback function.

Table 9-4: Content Pipe Event Types

Value Description
CP_BytesAvailable Bytes requested in a CheckAvailableBytes call which were

formally unavailable are now available. The iParam parameter of
the callback contains the number of bytes currently available.

CP_Overflow The pipe has more data than it has space to store. The iParam
parameter of the callback is unused.

CP_PipeDisconnected The pipe been disconnected. The iParam parameter of the callback
is unused.

9.4.4 CP_PIPETYPE Methods
The CP_PIPETYPE structures includes the methods below expressed as function
pointers. Since OpenMAX IL shares the content pipe definition with other APIs (e.g.
OpenMAX AL), the content pipe methods return OpenKODE error codes.
Thus CPResult may the value zero indicating success or one the values defined in
Appendix B.

9.4.4.1 Open
The Open method opens the specified content stream with the specified access type:
CPresult (*Open)(
 CPHandle* hContent,
 CPstring szURI,
 CP_ACCESSTYPE eAccess);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EACCES, KD_EBADF, KD_EHOSTUNREACH, KD_EINVAL,
KD_EIO, KD_EISDIR, KD_EMFILE, and KD_ENOENT.

The parameters are as follows.

Parameter Description

hContent
[out]

Pointer receiving the new content handle corresponding to the
specified URI opened with the specified access type.

szURI
[in]

URI specifying the location of the content.

eAccess
[in]

Desired access to the content.

 390

9.4.4.2 Close
The Close method closes the specified content handle:
CPresult (*Close)(
 CPHandle hContent);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Content handle to be closed.

9.4.4.3 Create
The Create method creates the specified content stream and returns a handle to it:
CPresult (*Create)(
 CPHandle* hContent,
 CPstring szURI);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EACCES, KD_EBADF, KD_EHOSTUNREACH, KD_EINVAL,
KD_EIO, KD_EISDIR, KD_EMFILE, KD_ENOENT, and KD_EEXIST.

The parameters are as follows.

Parameter Description

hContent
[out]

Pointer receiving the new content handle corresponding to the
specified URI opened with the specified access type.

szURI
[in]

URI specifying the desired location of the content.

9.4.4.4 CheckAvailableBytes
The CheckAvailableBytes method verifies that the specified number of bytes are
available for reading or writing depending on access type.
CPresult (*CheckAvailableBytes)(
 CPHandle hContent,
 Cpuint nBytesRequested,
 CP_CHECKBYTESRESULTTYPE *eResult);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

 391

Parameter Description

hContent
[in]

Handle of content to check.

nBytesRequested
[in]

The desired number of bytes. Result will depend on whether this
number of bytes is actually available currently.

eResult
[out]

Result of check (see definition of
CP_CHECKBYTERESULTTYPE).

9.4.4.5 SetPosition
The SetPosition method moves the pipe’s byte position within a piece of content to
the specified location.
CPresult (*SetPosition)(
 CPhandle hContent,
 CPint nOffset,
 CP_ORIGINTYPE eOrigin);

This is a blocking call. The pipe should return from this call within 20 milliseconds
although returning from this function does not necessarily imply data from the new
position is immediately available. Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

nOffset
[in]

Offset of desired byte position relative to the specified origin.

eOrigin
[in]

Origin from relative to which the offset applies.

9.4.4.6 GetPosition
The GetPosition method returns the pipe’s byte position within a piece of content.
CPresult (*GetPosition)(
 CPhandle hContent,
 CPuint *pPosition);

This is a blocking call. The pipe should return from this call within 5 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

 392

Parameter Description

pPosition
[out]

Current byte position of the pipe within the specified content.

9.4.4.7 Read
The Read method retrieves data of the specified size from the content stream and
advances the content pointer by the size of the data. Note that the pipe client provides the
pointer to accept the data. This function is therefore appropriate for small high frequency
reads.
CPresult (*Read)(
 CPhandle hContent,
 CPbyte *pData,
 CPuint nSize);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

pData
[out]

Client specified pointer to receive data.

nSize
[in]

Number of bytes to read.

9.4.4.8 ReadBuffer
The ReadBuffer method retrieves a buffer allocated by the pipe containing the
requested number of bytes from the content stream. The content pointer advances by the
number of bytes read. Note that the pipe itself provides the pointer to the data. This
function is therefore appropriate for large low frequency reads. The client shall call
ReleaseReadBuffer when done with the buffer to return it to the pipe.

In some cases he requested block might not reside in contiguous memory within the pipe
implementation. For instance, if the pipe leverages a circular buffer then the requested
block might straddle the boundary of the circular buffer. By default a pipe
implementation performs a copy in this case to provide the block to the pipe client in one
contiguous buffer. If, however, the client sets bForbidCopy, then the pipe returns only
those bytes preceding the memory boundary. Here the client may retrieve the data in
segments over successive calls.
CPresult (*ReadBuffer)(
 CPhandle hContent,
 CPbyte **ppBuffer,
 CPuint *nSize,

 393

 CPbool bForbidCopy);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

ppBuffer
[out]

Pointer to receive pipe supplied data buffer.

nSize
[in/out]

Prior to call: number of bytes to read. After call: number of bytes
actually read.

bForbidCopy
[in]

If set the pipe shall never perform a copy opting instead to provide
less bytes than in requested.

9.4.4.9 ReleaseReadBuffer
The ReleaseReadBuffer returns a buffer previously acquired via a ReadBuffer.
CPresult (*ReleaseReadBuffer)(
 CPhandle hContent,
 CPbyte *pBuffer);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

pBuffer
[in]

Pipe supplied read buffer being released (i.e. returned to pipe).

9.4.4.10 Write
The Write method writes data of the specified size to the content stream and advances
the content pointer by the size of the data. Note that the pipe client provides the pointer to
accept the data. This function is therefore appropriate for small high frequency writes.
CPresult (*Write)(
 CPhandle hContent,
 CPbyte *data,
 CPuint nSize);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, KD_EACCES, and KD_EIO.

 394

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

pData
[out]

Client specified pointer to data.

nSize
[in]

Number of bytes to write.

9.4.4.11 GetWriteBuffer
The GetWriteBuffer method acquires a buffer allocated by the pipe corresponding to
the next set of bytes to be written to the content and of the specified size. Note that the
pipe itself provides the pointer to the data. This function is therefore appropriate for large
low frequency writes. The client shall call WriteBuffer when done with the buffer to
commit the write and return the buffer to the pipe.
CPresult (*GetWriteBuffer)(
 CPhandle hContent,
 CPbyte **ppBuffer,
 CPuint *nSize);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, KD_EACCES, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

ppBuffer
[out]

Pointer to receive pipe supplied data buffer.

nSize
[in]

Size of requested write buffer in bytes.

9.4.4.12 WriteBuffer
The WriteBuffer method commits a write buffer previously acquired via a
GetWriteBuffer, returns the write buffer to the pipe, and advances the write pointer
by the size of the committed data.
CPresult (*WriteBuffer)(
 CPhandle hContent,
 CPbyte *pBuffer,
 CPuint nFilledSize);

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, KD_EACCES, and KD_EIO.

 395

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

pBuffer
[in]

Pipe supplied data buffer containing data to commit.

nFilledSize
[in]

Size of actual bytes to commit (from beginning of buffer).

/** Register a per-handle client callback with the content pipe. */
 CPresult (*RegisterCallback)(CPhandle hContent, CPresult
(*ClientCallback)(CP_EVENTTYPE eEvent, CPuint iParam));

9.4.4.13 RegisterCallback
The RegisterCallback method registers an client event callback for a given content
handle with the pipe.
CPresult (*RegisterCallback)(
 CPhandle hContent,
 CPresult (*ClientCallback)(
 CP_EVENTTYPE eEvent,
 CPuint iParam));

This is a blocking call. The pipe should return from this call within 20 milliseconds.
Relevant errors include: KD_EINVAL, and KD_EIO.

The parameters are as follows.

Parameter Description

hContent
[in]

Handle of content.

ClientCallback
[in]

Event callback to register.

9.5 Acquiring a Content Pipe
We define a content pipe is defined as an interface so that more than one pipe may be
implemented on a system and so that pipes may be passed from one part of the system to
another. A media processing object uses a pipe as a mechanism to access content (as
identified via a URI). The media processing object acquires a content pipe either through
the system or from the client.

 396

9.5.1 Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which
contains all standard index values used with the the functions OMX_GetParameter,
OMX_SetParameter. Table 9-5 describes the index values that relate to Content Pipes.

Table 9-5: Index Values for Content Pipe

Index Description
OMX_IndexParamContentURI OMX_PARAM_CONTENTURITYPE.

Specifies the content by URI.
OMX_IndexParamCustomContentPipe OMX_PARAM_CONTENTPIPETYPE.

Specifies the client content pipe.

9.5.2 OMX_PARAM_CONTENTURITYPE
An OpenMAX IL component parameter which specifies the URI of a component’s target
content.

OMX_PARAM_CONTENTURITYPE is defined as follows.
typedef struct OMX_PARAM_CONTENTURITYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U8 contentURI[1];
} OMX_PARAM_CONTENTURITYPE;

9.5.2.1 Parameters
The parameters for OMX_PARAM_CONTENTURITYPE are defined as follows.

• contentURI specifies the URI name, including any terminating bytes(s).

Note: The nSize parameters indicates the total size of the structure including the size of
the contentURI parameter.

9.5.3 OMX_PARAM_CONTENTPIPETYPE
An OpenMAX IL component parameter which specifies the content pipe used by the
component to access content:

OMX_PARAM_CONTENTPIPETYPE is defined as follows.
typedef struct OMX_PARAM_CONTENTPIPETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_HANDLETYPE hPipe;
} OMX_PARAM_CONTENTPIPETYPE;

 397

9.5.3.1 Parameters
The parameters for OMX_PARAM_CONTENTPIPETYPE are defined as follows.

• hPipe specifies handle of the custome content pipe.

9.5.4 Acquiring a Content Pipe from the IL Core
A OpenMAX IL Core method for acquiring a content pipe for a given URI. A
component that requires a content pipe should always retrieve the pipe via this method
unless the OpenMAX IL Client overrides the content pipe with a OMX_SetParameter
call using the OMX_IndexParamCustomContentPipe parameter.

FillBufferDone is defined as follows.
OMX_ERRORTYPE OMX_GetContentPipe(
 OMX_OUT OMX_HANDLETYPE *hPipe,
 OMX_IN OMX_STRING szURI)

The parameters are as follows.

Parameter Description

hPipe
[out]

The handle of the content pipe being retrieved.

szURI
[in]

A URI string that associates the content pipe to be retrieved.

9.5.5 Content Pipe Related Errors
A set of OpenMAX IL error codes dedicated to failures associated with accessing
content:

Error Description
OMX_ErrorContentPipeOpenFailed The content pipe open

operation failed.
OMX_ErrorContentPipeCreationFailed The content pipe creation

operation failed.

9.6 Example Use Cases

9.6.1 Playback/Parser Use Case:
Consider the playback use case where a media processing object is responsible for
parsing data from piece of source content. The following steps occur:

1. The client specifies the source content to the object, e.g. by URI.

2. The client optionally specifies the mechanism for accessing the source content
(i.e. the content pipe) to the object.

3. If the client does not specify the content pipe to the object, the object must
acquire a pipe itself (e.g. via an OpenMAX IL Core function or some
implementation specific mechanism).

4. At the appropriate time the object opens the content specified by the client
using the content pipe.

5. The object performs reads on the source content using the content pipe, parses
that content, and plays it.

6. At the appropriate time the object closes the content using the content pipe.

9.6.2 Recording/Combiner Use Case:
Consider the recording use case where a media processing object is responsible for
emitting final data (perhaps muxed and packaged by a “combiner”) to a piece of content.
The following steps occur:

1. The client specifies the destination content to the object, e.g. by URI.

2. The client optionally specifies the mechanism for accessing the destination
content (i.e. the content pipe) to the object.

3. If the client does not specify the content pipe to the object, the object must
acquire a pipe itself (e.g. via an OpenMAX IL Core function or some
implementation specific mechanism).

4. At the appropriate time the object opens the content specified by the client
using the content pipe.

5. The object performs writes on the destination content using the content pipe
sending muxed/packaged data to it after capture said data.

6. At the appropriate time the object closes the content using the content pipe.

 398

 399

10 Implementing Buffer Sharing
Buffer sharing is implemented on a tunnel within a component and is transparent to other
components. The non-supplier port is unaware whether the supplier’s component
allocated the buffers itself or re-used buffers from another of its ports. Furthermore, the
supplier is unaware of whether the non-supplier’s component will re-use the buffers that
the supplier provided.

A tunnel between any two ports represents a dependency between those ports. Buffer
sharing extends that dependency so that all ports that share the same set of buffers form
an implicit dependency chain. Exactly one port in that dependency chain allocates the
buffers shared by all of them.

If a component chooses to share buffers, its implementation may fulfill the tunnels
requirements by doing the following:

• Provide re-used buffers on some supplier ports.

• Account for the needs of shared ports when communicating buffer requirements
on ports.

• Internally pass a buffer from an input port to an output port between an
OMX_EmptyThisBuffer call and its corresponding EmptyBufferDone call.

OpenMAX IL defines external component semantics to be compatible with sharing,
although it does not explicitly require that a component support sharing. This section
discusses the implementation of those semantics in the context of buffer sharing. If no
components are sharing buffers, the implementation reduces to a simpler set of steps and
obligations.

10.1.1.1 Component Transition from Loaded to Idle State with Sharing
During the OMX_SetupTunnel call, the two ports of a tunnel establish which port
(input or output) will act as the buffer supplier. Thus, when a component is commanded
to transition from loaded to idle, it is aware of the roles of all its supplier or non-supplier
ports.

When commanded to transition from loaded to idle, a component performs the following
operations in this order:

1. The component determines what buffering sharing it will implement, if any.
The following rules apply:

a) A component may re-use a buffer only from one of its one input ports on
one or more of its output ports or from one of its output ports on one of its
input ports.

b) Only a supplier port may re-use the buffers from another port.

c) A component sharing buffers over multiple output ports requires read-only
output port as shown in Figure 10-1.

 Input to supplier output(s) Output to supplier input

 No sharing to multiple inputs No sharing to non-suppliers

Figure 10-1. Possible Sharing Relationships

2. The component determines which of its supplier ports, if any, are also allocator
ports. A supplier port is also an allocator port only if it does not re-use buffers
from a non-supplier port on the same component (i.e., is not a sharing port).

Figure 10-2. Determining Allocators: a supplier port is a port with an arrow pointing away.

A non-supplier port is a port with an arrow pointing toward it. An arrow from one port
represents a sharing relationship. A port with boxes (buffers) adjacent to it represents an

allocator port.

3. The component allocates its buffers for each of its allocator ports as follows:

a) For each port that re-uses the allocator ports buffer, the allocator port
determines the buffer requirements of the sharing port. See obligation A
below.

b) The allocator port determines the buffer requirements of its tunneled port
via an OMX_GetParameter call. See obligation B below.

c) The allocator port allocates buffers according to the maximum of its own
requirements, the requirements of the tunneled port, and the requirement
of all of the sharing ports.

d) The allocator port informs the non-supplier port that it is tunneling with of
the actual number of buffers via an OMX_SetParameter call on

 400

OMX_IndexParamPortDefinition by setting the value of
nBufferCountActual appropriately. See obligation E below.

e) The allocator port shares its buffers with each sharing port that re-uses its
buffers. See obligation D below.

f) For every allocated buffer, the allocator port calls OMX_UseBuffer on
its tunneling port. See obligation C below.

A component shall also fulfill the following obligations:

A. For a sharing port to determine its requirements, the sharing port shall first call
OMX_GetParameter on its tunneled port to query for requirements and then
return the maximum of its own requirements and the requirements of the tunneled
ports.

B. When a non-supplier port receives an OMX_GetParameter call querying its
buffer requirements, the non-supplier port shall first determine the requirements
of all ports that re-use its buffers (see obligation A) and then return the maximum
of its own requirements and those of its ports.

C. When a non-supplier port receives an OMX_UseBuffer call from its tunneled
port, the non-supplier port shall share the buffer with all ports on that component
that re-use it.

D. When a port A shares a buffer with a port B on the same component where port B
re-uses the buffer of port A, then port B shall call OMX_UseBuffer and pass the
buffer on its tunneled port.

E. When a non-supplier port receives a OMX_SetParameter call on
OMX_IndexParamPortDefinition from its tunneled port, the non-supplier
port shall pass the nBufferCountActual field to any port that re-uses its
buffers. Likewise, each supplier port that receives the nBufferCountActual
field in this way shall pass the nBufferCount to its tunneled port by
performing an OMX_SetParameter call on
OMX_IndexParamPortDefinition. The actual number of buffers used
throughout the dependency chain is propagated in this way.

A component may transition from loaded to idle when all enabled ports have all the
buffers they require.

In practice, there could be a direct mapping between the following:

• Steps 1–3 discussed earlier and code in the loaded-to-idle case in the state
transition handler

• Obligation A and a subroutine to determine a shared ports buffer requirements

• Obligation B and the OMX_GetParameter implementation

• Obligation C and the OMX_UseBuffer implementation

• Obligation D and a subroutine to share a buffer from one port to another

 401

To clarify why conformity to these steps and obligations leads to proper buffer allocation,
consider the example illustrated in Figure 10-3. Note that this example is contrived to
exercise every step and obligation outlined above, and is therefore more complex then
most real use cases.

Figure 10-3. Example of Buffer Allocation with Sharing

This discussion focuses only on the transition of component 3 to idle; similar operations
occur inside the other components.

When the IL client commands component 3 to transition from loaded to idle, it follows
the following prescribed steps:

1. Component 3 notices that it can re-use port d’s buffers since port e is a supplier
port. Component 3 establishes a sharing relationship from port d to port e.

2. Component 3 decides that since port d is a supplier port that does not re-use
buffers, port d shall be an allocator port.

3. Component 3 allocates and distributes port d’s buffers:

a) Since port e will re-use the buffer of port d, component 3 determines the
buffer requirements of port e. In accordance with obligation A, port e calls
OMX_GetParameter on port f to determine its buffer requirements and
reports the requirements as the maximum between its own and those of
port f.

b) Port d calls OMX_GetParameter on port c to determine its buffer
requirements. In accordance with obligation B, port c shall determine the
buffer requirements of port b. In accordance with obligation A, port b
returns the maximum of its own requirements and the requirement of port
a (retrieved via OMX_GetParameter) when queried. Port c then returns
the maximum of its own requirements and the requirements that port b
returns.

c) Port d allocates buffers according to the maximum of its own requirements
and the requirements that ports c and e return. The resulting buffers are
effectively allocated according to the maximum requirements of ports a, b,
c, d, e, and f, all of which use the buffers of port d.

d) Since port e will re-use the buffers of port d, component 3 shares these
buffers with port e. In accordance with obligation D, port e calls
OMX_UseBuffer on port f for every buffer that is shared.

Component 2 Component 3

 c d e f

Component 1 Component 4

 a b

 402

 403

e) For each buffer allocated, port d calls OMX_UseBuffer on port c. In
accordance with obligation C, port c shares each buffer with port b. Port b,
in turn, obeys obligation D and calls OMX_UseBuffer on port a with the
buffer.

Since all ports of all components now have their buffers, all components may transition
to idle.

10.1.1.2 Protocol for Using a Shared Buffer
When an input port receives a shared buffer via an OMX_EmptyThisBuffer call, the
input port may re-use that buffer on an output port that it is sharing with the output port
by obeying the following rules:

• The output port calls OMX_EmptyThisBuffer on its tunneling port before the
input port sends the corresponding EmptyBufferDone call to its tunneling port.

• The input port does not call EmptyBufferDone until all output ports on which
the buffer is shared (i.e., via OMX_EmptyThisBuffer calls) return
EmptyBufferDone.

11 Appendix A – References
This appendix identifies provides references to documentation on standards and formats
presented in this document. The hyperlinks provide access to documents stored on
various websites. The references are organized according to the applicable type of media.

11.1 SPEECH

11.1.1 3GPP
3G TS 26.071AMR-NB "AMR speech Codec; General Description", Generation
Partnership Project (3GPP). And references therein.
3G TS 26.171AMR-WB "AMR Wideband Speech Codec; General Description",
Generation Partnership Project (3GPP). And references therein.
3G TS 46.051 "Enhanced Full Rate (EFR) speech processing functions;
General description", Generation Partnership Project (3GPP). And references
therein.

GSM-EFR

3G TS 46.001GSM-FR "Full rate speech; Processing functions", Generation Partnership
Project (3GPP). And references therein.
3G TS 46.002GSM-HR "Half rate speech; Processing functions", Generation
Partnership Project (3GPP). And references therein.

11.1.2 3GPP2
3GPP2-SMV, “Selectable Mode Vocoder (SMV) Service Option for
Wideband Spread Spectrum Communication Systems”, 3GPP2 C.S0030-0,
2004.

SMV

11.1.3 ARIB
RCR-27 EFRPDC-EFR , “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.4, 2003.
RCR-27 FRPDC-FR , “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.1, 2003.
RCR-27 HRPDC-HR , “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.2, 2003.

11.1.4 ITU
G.711 ITU-G711, “Pulse code modulation (PCM) of voice frequencies “, 1988.

ITU-G.723.1G.723.1 , “Dual rate speech coder for multimedia communications
transmitting at 5.3 and 6.3 kbit/s”, 1996.
ITU-G.726G.726 , “40, 32, 24, 16 kbit/s adaptive differential pulse code modulation
(ADPCM)”, 1990.

 404

http://www.3gpp.org/ftp/Specs/html-info/26071.htm
http://www.3gpp.org/ftp/Specs/html-info/26171.htm
http://www.3gpp.org/ftp/Specs/html-info/46051.htm
http://www.3gpp.org/ftp/Specs/html-info/46001.htm
http://www.3gpp.org/ftp/Specs/html-info/46002.htm
http://www.3gpp2.org/Public_html/specs/C.S0030-0_v3.0_040325.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.711
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.723.1
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.726

 405

G.729 ITU-G.729, “Coding of speech at 8 kbit/s using conjugate-structure algebraic-
code-excited linear-prediction (CS-ACELP)”’, 1996.

11.1.5 IETF

RFC3267
RFC3267: Real-Time Transport Protocol (RTP) Payload Format and File
Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multirate
Wideband (AMR WB) Audio Codecs.

11.1.6 TIA

EVRC ANSI/TIA-127-A-2004, “Enhanced Variable Rate Codec Speech Service
Option 3 for Wideband Spread Spectrum Digital Systems,” 2004.

QCELP8 ANSI/TIA/EIA-96-C-98, “Speech Service Option Standard for Wideband
Spread Spectrum Systems,” 1998.

QCELP13 ANSI/TIA-733-A-2004, “High Rate Speech Service Option 17 for Wideband
Spread Spectrum Communications Systems,” 2004.

TDMA-EFR ANSI/TIA/EIA-136-410-1-2001, “TDMA Cellular PCS - Radio Interface -
Enhanced Full-Rate Voice Codec, Addendum 1,” 2001.

TDMA-FR ANSI/TIA/EIA-136-420-99, “TDMA Cellular PCS, VSELP,” 1999.

11.2 AUDIO

11.2.1 ISO

HE-AAC v1
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio, Amendment 1: Bandwidth
extension”, November 2003.

HE-AAC v2
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio, Amendment 2: Parametric
coding for high-quality audio”, August 2004.

 MPEG-1
Audio

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3
"Coding of moving pictures and associated audio for digital storage media at
up to about 1.5 Mbit/s, Part 3: Audio", 1993.

 MPEG-2
Audio

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-3
“Information Technology - Generic Coding of Moving Pictures and
Associated Audio, Part 3: Audio", 1998.

MPEG-2 AAC
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-7
"Information Technology - Generic Coding of Moving Pictures and
Associated Audio, Part 7: MPEG-2 AAC", 2004.

MPEG-4 AAC
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio”, 2d Edition, December
2001.

http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.729
http://www.rfc-editor.org/rfc/rfc3267.txt
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA-127-A-2004
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA%2FEIA-96-C-98
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA-733-A-2004
http://www.tiaonline.org/standards/search.cfm?keyword=TIA%2FEIA-136-410-1-2001
http://www.tiaonline.org/standards/search.cfm?keyword=TIA%2FEIA-136-420-99
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36083&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36083&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36083&ICS1=35&ICS2=40&ICS3=

 406

11.2.2 MISC

I3DL2 Interactive 3-D Audio Rendering Guidelines - Level 2.0, Revision 1.0a. Interactive
Audio Special Interest Group, September 20, 1999.

 SBC de Bont, F., Groenewegen, M., and Oomen, W., “A High Quality Audio Coding System
at 128 kb/s”, 98th AES Convention, Feb. 25-28, 1995.

WMA Windows Media Audio

VOR
BIS

Vorbis codec

 RA Real Audio 10 Codec

 PCM Pulse-code Modulation

ADPC
M

Adaptive Differential PCM

RFC
1766 Tags for the Identification of Languages (http://www.ietf.org/rfc/rfc1766.txt)

ISO
639

Codes for the Representation of Names of Languages
(http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?
scope=CATALOGUE&keyword=&isoNumber=639&sortOrder=ISO&title=true&searc
h_type=ISO&search_term=639&languageCode=en)

ISO
3166

Codes for the Representation of Names of Countries and their Subdivisions
(http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?
scope=CATALOGUE&keyword=&isoNumber=3166&sortOrder=ISO&title=true&sear
ch_type=ISO&search_term=3166&languageCode=en)

11.3 SYNTHETIC AUDIO

11.3.1 MIDI

DLS 1 Downloadable Sounds Level 1 Specification, Version 1.1a, RP-016. MIDI
Manufacturers Association, Los Angeles, CA, USA, January 1999.

DLS 2

Downloadable Sounds Level 2 Specification, Version 1.0c, RP-025. MIDI
Manufacturers Association, Los Angeles, CA, USA, July 14 1999.
Downloadable Sounds Level 2.1 Specification (RP-025/Amd1), MIDI
Manufacturers Association, Los Angeles, CA, USA, January 2001.

General MIDI

The Complete MIDI 1.0 Detailed Specification, Document version 96.1,
MIDI Manufacturers Association, Los Angeles, CA, USA, 1996 (Contains
MIDI 1.0 Detailed Specification, MIDI Time Code, Standard MIDI Files
1.0, General MIDI System Level 1, MIDI Show Control 1.1, and MIDI
Machine Control)

General MIDI 2
General MIDI Level 2 Specification (Recommended Practice), v 1.1
(updated), RP-024. MIDI Manufacturers Association, Los Angeles, CA,
USA, September 2003.

http://www.iasig.org/pubs/3dl2v1a.pdf
http://www.aes.org/publications/preprints/lists/98.html
http://www.microsoft.com/windows/windowsmedia/9series/codecs/audio.aspx
http://www.vorbis.com/faq
http://www.realnetworks.com/products/codecs/realaudio.html
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/w/index.php?title=ADPCM&redirect=no
http://www.ietf.org/rfc/rfc1766.txt
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=639&sortOrder=ISO&title=true&search_type=ISO&search_term=639&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=639&sortOrder=ISO&title=true&search_type=ISO&search_term=639&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=639&sortOrder=ISO&title=true&search_type=ISO&search_term=639&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=3166&sortOrder=ISO&title=true&search_type=ISO&search_term=3166&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=3166&sortOrder=ISO&title=true&search_type=ISO&search_term=3166&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=3166&sortOrder=ISO&title=true&search_type=ISO&search_term=3166&languageCode=en
http://www.midi.org/about-midi/dls/abtdls.shtml
http://www.midi.org/about-midi/dls/dls2spec.shtml
http://www.midi.org/about-midi/gm/gm1_spec.shtml
http://www.midi.org/about-midi/specinfo.shtml#Document%20Ordering%20Instructions
http://www.midi.org/about-midi/gm/gm2_spec.shtml
http://www.midi.org/about-midi/gm/gm2_spec.shtml

General MIDI Lite Specification and Guidelines for Use in Mobile
GM Lite Applications, Version 1.0, RP-033. MIDI Manufacturers Association, Los

Angeles, CA, USA, October 5, 2001.
Mobile DLS Specification, RP-041Mobile DLS , MIDI Manufacturers Association, Los
Angeles, CA, USA, 2003.
Mobile XMF Content Format Specification, RP-042. MIDI Manufacturers
Association, Los Angeles, CA, USA, September 2004. Mobile XMF

(XMF type 2) XMF Meta File Format 2.0, RP-043. MIDI Manufacturers Association,
Los Angeles, CA, USA, September 2004.
Scalable Polyphony MIDI Specification, Version 1.0, RP-034. MIDI
Manufacturers Association, Los Angeles, CA, USA, February 2002
 SP-MIDI Scalable Polyphony MIDI Device 5-24 Voice Profile for 3GPP, Version
1.0, RP-035. MIDI Manufacturers Association, Los Angeles, CA, USA,
February 2002.
Type 0 and 1 XMF Files, RP-031. MIDI Manufacturers Association, Los
Angeles, CA, USA, 2001.

XMF type 0 and
1

XMF Meta File Format, Version 1.00b, RP-030. MIDI Manufacturers
Association, Los Angeles, CA, USA, October 2001.
XMF Meta File Format Updates v1.01, RP-039. MIDI Manufacturers
Association, Los Angeles, CA, USA, July 2003.

11.4 IMAGE

11.4.1 IETF
RFC804 IETF/RFC 804, "ITU Group 3 encoding: Modified Huffman and Modified Read

compression algorithms."
RFC1314 IETF/RFC 1314, "A File Format for the Exchange of Images in the Internet," 1992.
RFC2035 IETF/RFC 2305, "RTP Payload Format for JPEG-compressed Video," 1996.
RFC2083 IETF/RFC 2083, "PNG (Portable Network Graphics) Specification Version 1.0,"

1997.
RFC2160 IETF/RFC 2160, "Carrying PostScript in X.400 and MIME," 1998.
RFC2302 IETF/RFC 2302, "Tag Image File Format (TIFF), image/tiff MIME Sub-type

Registration," 1998.
RFC2306 IETF/RFC 2306, "Tag Image File Format (TIFF), F Profile for Facsimile," 1998.
RFC3250 IETF/RFC 3250, "Tag Image File Format Fax Extended (TIFF-FX), image/tiff-fx

MIME Sub-type Registration," 2002.
RFC3302 IETF/RFC 3302, "Tag Image File Format (TIFF) - image/tiff MIME Sub-type

Registration," 2002.
RFC3362 IETF/RFC 3362, "Real-time Facsimile (T.38), image/t38 MIME Sub-type

Registration," 2002.
RFC3745 IETF/RFC 3745, "MIME Type Registrations for JPEG 2000 (ISO/IEC 15444),"

2004.

 407

http://www.midi.org/about-midi/gm/gml_spec.shtml
http://www.midi.org/about-midi/gm/gml_spec.shtml
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/xmf/rp43spec(xmf2).pdf
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/xmf/index.shtml
ftp://ftp.rfc-editor.org/in-notes/rfc804.txt
ftp://ftp.rfc-editor.org/in-notes/rfc804.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1314.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2035.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2083.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2160.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2306.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3362.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3362.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3745.txt

RFC3950 IETF/RFC 3950, "Tag Image File Format Fax Extended (TIFF-FX), image/tiff-fx
MIME Sub-type Registration," 2005.

11.4.2 ISO
JPEG v1 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-1, "Digital

compression and coding of continuous-tone still images: Requirements and
guidelines," 1994.

JPEG v2 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-1/Cor 1,
"JPEG patent information update," 2005.

JPEG v3 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-3, "Digital
compression and coding of continuous-tone still images: Extensions," 1997.

JPEG v4 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-3/Amd 1,
"Provisions to allow registration of new compression types and versions in the
SPIFF header," 1999.

JPEG v5 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-4, "Digital
compression and coding of continuous-tone still images: Registration of JPEG
profiles, SPIFF profiles, SPIFF tags, SPIFF colour spaces, APPnmarkers,
SPIFF compression types and Registration Authorities (REGAUT)," 1999.

JPEG v6 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 11544, "Coded
representation of picture and audio information, Progressive bi-level image
compression," 1993.

JPEG LS v1 ISO/IEC JTC1/SC29/WG1 JPEG LS, International Standard IS 14495-1,
"Lossless and near-lossless compression of continuous-tone still images:
Baseline," 1999.

JPEG LS v2 ISO/IEC JTC1/SC29/WG1 JPEG LS, International Standard IS 14495-2,
"Lossless and near-lossless compression of continuous-tone still images:
Extensions," 2003.

JPEG 2000 v1 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-1,
"JPEG 2000 image coding system: Core coding system," Ed. 2, 2004.

JPEG 2000 v2 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-2,
"JPEG 2000 image coding system: Extensions," Ed. 1, 2004.

JPEG 2000 v3 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-6,
"JPEG 2000 image coding system, Part 6: Compound image file format," Ed.
1, 2003.

JPEG 2000 v4 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-12,
"JPEG 2000 image coding system, Part 12: ISO base media file format," Ed.
2, 2005.

11.4.3 ITU
T81 ITU-T T.81, "Digital compression and coding of continuous-tone still images,

Requirements and guidelines," 1992.
T82 ITU-T T.82, "Coded representation of picture and audio information,

Progressive bi-level image compression," 1993.
T84 v1 ITU-T T.84, "Digital compression and coding of continuous-tone still images:

 408

ftp://ftp.rfc-editor.org/in-notes/rfc3950.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3950.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41504&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25037&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25037&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=30961&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=30961&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22397&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22397&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37700&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37700&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37674&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33160&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=35458&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41827&ICS1=35&ICS2=40&ICS3=
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.81-199209-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.81-199209-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.82-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.82-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199607-I

Extensions," 1996.
T84 v2 ITU-T T.84/Amd 1, "Provisions to allow registration of new compression

types and versions in the SPIFF header," 1999.
T85 ITU-T T.85, "Application profile for Recommendation T.82, Progressive bi-

level image compression (JBIG coding scheme) for facsimile apparatus,"
1995.

T86 ITU-T T.86, "Digital compression and coding of continuous-tone still images:
Registration of JPEG Profiles, SPIFF Profiles, SPIFF Tags, SPIFF colour
Spaces, APPn Markers, SPIFF Compression types and Registration
Authorities (REGAUT)," 1998.

T87 ITU-T T.87, "Lossless and near-lossless compression of continuous-tone still
images, Baseline," 1998.

T88 v1 ITU-T T.88, "Coded representation of picture and audio information,
Lossy/lossless coding of bi-level images," 2000.

T88 v2 ITU-T T.88/Amd 1, "Encoder," 2003.
T88 v3 ITU-T T.88/Amd 2, "Extension of adaptive templates for halftone coding,"

2003.
T89 ITU-T T.89, "Application profiles for Recommendation T.88, Lossy/lossless

coding of bi-level images (JBIG2) for facsimile," 2001.

11.4.4 JEITA
EXIF JEITA, Japanese Electronics and Information Technology Industries

Association, “EXIF (Exchangeable Image File Format) 2.2”, 2002.

11.4.5 MIPI
CSI MIPI Camera WG, "CSI 2.0 Protocol Specification v.0.41", 2005.
DSI MIPI Display WG, "DSI Specification v.0.45", 2005.

11.4.6 Miscellaneous
BMP Microsoft Windows Bitmap (BMP) Format.
GIF87A GIF 87a, “Graphics Interchange Format, Version 87a,” 1987.
GIF89A GIF 89a, “Graphics Interchange Format, Version 89a,” 1989.
TIFF TIFF V.6.0, “Tagged Image File Format (TIFF) Specification, Version 6.0”.

11.4.7 SMIA
SMIA CCP2 SMIA CCP2, “Compact Camera Port 2 (CCP2) Specification 1.0.”
SMIA
CCP2/ER1

SMIA 1.0 CCP2/ER1, “Errata, Part 2 CCP2 Specification.”

SMIA FUNC SMIA Functional, “Functional specification 1.0.”
SMIA
FUNC/ER1

SMIA Functional 1.0/ER1, “Errata for Part 1 Functional Specification.”

 409

http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199607-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199904-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199904-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.85-199508-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.85-199508-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.87-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.87-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200306-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200306-I!Amd2
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.89-200109-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.89-200109-I
http://www.exif.org/Exif2-2.PDF
https://www.mipi.org/members/memberhome.asp?section_id=&parent_id=82
https://www.mipi.org/members/memberhome.asp?section_id=&parent_id=412
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/BMP.txt
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt
https://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf
http://www.smia-forum.org/members/documents/SMIA_CCP2_specification_1.0.pdf
http://www.smia-forum.org/members/documents/ecr0002_v1.pdf
http://www.smia-forum.org/members/documents/SMIA_Functional_specification_1.0.pdf
http://www.smia-forum.org/members/documents/ecr0001_v1.pdf

SMIA CHAR SMIA Characterisation 1.0/V.A, “Characterisation Specification 1.0, Rev A.”
SMIA SW/AP SMIA Software And Application 1.0, “Software And Application

Specification 1.0.”

11.4.8 W3C
PNG Portable Network Graphics (PNG) Specification (Second Edition), “Computer

graphics and image processing, Portable Network Graphics (PNG): Functional
specification,” 2003.

11.5 VIDEO

11.5.1 3GPP
MBMS v1 3GPP TS 26.346 "MBMS Protocols and Codecs," v.1.5.0.
MBMS v2 3GPP TS 22.146 "Technical Specification Group Services and System

Aspects; Multimedia Broadcast/Multicast Service." v.6.6.0.

11.5.2 AVS
AVS-M v1 AVS-M: Part 6 Video-Mobility, Stage 1: MMS service
AVS-M v2 AVS-M: Part 6 Video-Mobility, Stage 2: Streaming and conversational

services

11.5.3 DLNA
HNv1.0 DLNA HNv1.0, "Home Networked Device Interoperability Guidelines v1.0,"

2004.

11.5.4 ETSI
DVB-H v1 ETSI EN 302 304 V.1.1.1, DEN/JTC-DVB-155, "Digital Video Broadcasting

(DVB), Transmission System for Handheld Terminals (DVB-H)," 2004.
DVB-H v2 ETSI ETS 300 468, RE/JTC-DVB-18, "Digital Video Broadcasting (DVB),

Specification for Service Information (SI) in DVB systems," 1997.
DVB-H v3 ETSI EN 301 192 V.1.4.1, REN/JTC-DVB-157, "Digital Video Broadcasting

(DVB), DVB specification for data broadcasting," 2004.
DVB-H v4 ETSI TS 101 154 V.1.7.1, RTS/JTC-DVB-170, "Digital Video Broadcasting

(DVB), Implementation guidelines for the use of Video and Audio Coding in
Broadcasting Applications based on the MPEG-2 Transport Stream," 2005.

DVB-H v5 ETSI TS 101 154 V.1.5.1, RTS/JTC-DVB-122, "Digital Video Broadcasting
(DVB), Implementation guidelines for the use of Video and Audio Coding in
Broadcasting Applications based on the MPEG-2 Transport Stream," 2004.

DVB-H v6 ETSI TS 102 005 V.1.1.1, DTS/JTC-DVB-124, "Digital Video Broadcasting
(DVB), Specification for the use of video and audio coding in DVB services
delivered directly over IP," 2005.

 410

http://www.smia-forum.org/members/documents/SMIA_Characterisation_Specification_1.0_revA.pdf
http://www.smia-forum.org/members/documents/SMIA_Software_and_application_specification_1.0.pdf
http://www.smia-forum.org/members/documents/SMIA_Software_and_application_specification_1.0.pdf
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/

DVB-H v7 ETSI TS 102 154 V.1.2.1, RTS/JTC-DVB-123, "Digital Video Broadcasting
(DVB), Implementation guidelines for the use of Video and Audio Coding in
Contribution and Primary Distribution Applications based on the MPEG-2
Transport Stream," 2004.

11.5.5 IETF
RFC1889 IETF RFC 1889, "RTP: A Transport Protocol for Real-Time Applications,"

1996.
RFC2032 IETF RFC 2032, "RTP Payload Format for H.261 Video Streams," 1996.
RFC2038 IETF RFC 2038, "RTP Payload Format for MPEG1/MPEG2 Video," 1996.
RFC2190 IETF RFC 2190, "RTP Payload Format for H.263 Video Streams," 1997.
RFC2250 IETF RFC 2250, "RTP Payload Format for MPEG1/MPEG2 Video," 1998.
RFC2429 IETF RFC 2429, "RTP Payload Format for the 1998 Version of ITU-T Rec.

H.263 Video (H.263+)," 1998.
RFC2431 IETF RFC 2431, "RTP Payload Format for BT.656 Video Encoding," 1998.
RFC2435 IETF/RFC 2435, "RTP Payload Format for JPEG-compressed Video," 1998.
RFC3189 IETF RFC 3189, "RTP Payload Format for DV (IEC 61834) Video," 2002.
RFC3497 IETF RFC 3497, "RTP Payload Format for Society of Motion Picture and

Television Engineers (SMPTE) 292M Video", 2003.
RFC3551 IETF RFC 3551, "RTP Profile for Audio and Video Conferences with

Minimal Control," 2003.
RFC3984 IETF RFC 3984, "RTP Payload Format for H.264 Video", 2005.

11.5.6 ISO
MPEG-1
Visual

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-2,
"Coding of moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s, Part 2: Video," Ed. 1, 1993.

MPEG-2
Visual

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-2,
"Generic coding of moving pictures and associated audio information, Part 2:
Video," Ed. 2, 2000.

MPEG-4
Visual v1

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-1/Amd
7, “Use of AVC (Advanced Video Coding) in MPEG-4 systems," Ed. 1, 2004.

MPEG-4
Visual v2

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-2,
"Coding of audio-visual objects, Part 2: Visual," Ed. 3, 2004.

MPEG-4
Visual v3

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-10,
"Coding of audio-visual objects, Part 10: Advanced Video Coding," Ed. 2,
2004.

MPEG-4
Visual v4

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-15,
"Coding of audio-visual objects, Part 15: Advanced Video Coding (AVC) file
format," Ed. 1, 2004.

MPEG-21
Visual

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS TR 21000-1,
"Vision, Technologies and Strategy, Part 1," 2001.

MJPEG-2000 ISO/IEC JTC1/SC29/WG1 MJPEG, International Standard IS 15444-3,

 411

ftp://ftp.rfc-editor.org/in-notes/rfc1889.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2032.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2038.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2190.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2429.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2429.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2431.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2435.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3189.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3497.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3497.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3551.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3551.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3984.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22411&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22411&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31539&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31539&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38572&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39259&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40890&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38573&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38573&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40611&ICS1=35&ICS2=40&ICS3=

 412

v1 "JPEG 2000 image coding system, Part 3: Motion JPEG 2000," Ed. 1, 2002.
MJPEG-2000
v2

ISO/IEC JTC1/SC29/WG1 MJPEG, International Standard IS 15444-3/Amd
2, "Motion JPEG 2000 derived from ISO base media file format," Ed. 1, 2003.

11.5.7 ITU
H.261 ITU-T H.261, "Video codec for audiovisual services at p x 64 kbit/s," 1993.
H.262 ITU-T H.262, "Generic coding of moving pictures and associated audio

information: Video," 2000.
H.263 ITU-T H.263, "Video coding for low bit rate communication," 2005.
H.264 ITU-T H.264, "Advanced video coding for generic audiovisual services,"

2005.

11.5.8 MISC
 RV Real Video 10 Codec

WMV Windows Media Video

11.6 JAVA

11.6.1 Multimedia
JSR-135 JCP/JSR-135: Mobile Media API 1.1, 2003
JSR-234 JCP/JSR-234: Advanced Multimedia Supplements, 2005

11.6.2 Broadcast
JSR-272 JCP/JSR-272: Mobile Broadcast Service API for Handheld Terminals, 2005

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33875&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36927&ICS1=35&ICS2=40&ICS3=
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.261-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.262-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.262-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.263-200501-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.264-200503-P
http://www.realnetworks.com/products/codecs/realaudio.html
http://www.microsoft.com/windows/windowsmedia/9series/codecs/audio.aspx
http://www.jcp.org/aboutJava/communityprocess/final/jsr135
http://jcp.org/aboutJava/communityprocess/final/jsr234
http://www.jcp.org/en/jsr/detail?id=272

12 Appendix B – OpenKODE Error Codes
Since OpenMAX IL shares the content pipe definition with other APIs (e.g. OpenMAX
AL), the content pipe methods return OpenKODE error codes. This appendix provides a
reference of OpenKODE error codes.

Table 12-1: OpenKODE Error Codes

Value Description
Permission denied. KD_EACCES
Address in use. KD_EADDRINUSE
Resource unavailable, try again. KD_EAGAIN

KD_EBADF Bad file descriptor.
KD_EBUSY Device or resource busy.
KD_ECONNREFUSED Connection refused.
KD_ECONNRESET Connection reset.
KD_EDEADLK Resource deadlock would occur.
KD_EDESTADDRREQ Destination address required.
KD_ERANGE Mathematics argument out of range.
KD_EEXIST File exists.
KD_EFBIG File too large.
KD_EHOSTUNREACH Host is unreachable.
KD_EINVAL Invalid argument.
KD_EIO I/O error.
KD_EISCONN Socket is connected.
KD_EISDIR Is a directory.
KD_EMFILE Too many open files.
KD_ENAMETOOLONG Filename too long.
KD_ENOENT No such file or directory.
KD_ENOMEM Not enough space.
KD_ENOSPC No space left on device.
KD_ENOSYS Function not supported.
KD_ENOTCONN The socket is not connected.
KD_EPERM Operation not permitted.
KD_ETIMEDOUT Connection timed out.
KD_EILSEQ Illegal byte sequence.

OpenMAX IL 1.1.1 specified a number of OpenKODE error codes to be relevant that
were not retained in version 1.0 of OpenKODE specification. These error codes have
been deprecated in the 1.1.2 version of this specification. These error codes are:

 413

Table 12-1: Depricated OpenKODE Error Codes

Value Description
KD_ECONNABORTED Connection aborted.
KD_ENETDOWN Network is down.
KD_ENETUNREACH Network unreachable.
KD_ENOTSUP Not supported.

 414

	1 Overview
	1.1 Introduction
	1.1.1 About the Khronos Group
	1.1.2 A Brief History of OpenMAX

	1.2 The OpenMAX Integration Layer
	1.2.1 Key Features and Benefits
	1.2.2 Design Philosophy
	1.2.3 Software Landscape
	1.2.4 Stakeholders
	1.2.4.1 Silicon Vendors
	1.2.4.2 Independent Software Vendors
	1.2.4.3 Operating System Vendors
	1.2.4.4 Original Equipment Manufacturers

	1.2.5 The Interface
	1.2.5.1 Core
	1.2.5.2 Components

	1.3 Definitions
	1.4 Authors
	1.5 Features New to Version 1.1
	1.6 Backward Compatibility
	1.6.1 IL Client 1.0
	1.6.2 IL Client 1.1

	2 OpenMAX IL Introduction and Architecture
	2.1 OpenMAX IL Description
	2.1.1 Architectural Overview
	2.1.2 Key Vocabulary
	2.1.2.1 Key Definitions

	2.1.3 System Components
	2.1.3.1 Component Profiles

	2.1.4 Component States
	2.1.5 Component Architecture
	2.1.6 Communication Behavior
	2.1.7 Tunneled Buffer Allocation
	2.1.7.1 IL Client Component Setup
	2.1.7.2 Component Transition from Loaded to Idle State

	2.1.8 Port Reconnection
	2.1.9 Queues and Flush
	2.1.10 Marking Buffers
	2.1.11 Events and Callbacks
	2.1.12 Buffer Payload
	2.1.13 Buffer Flags and Timestamps
	2.1.14 Synchronization
	2.1.15 Rate Control
	2.1.16 Component Registration
	2.1.17 Resource Management
	2.1.17.1 Need for Resource Management
	2.1.17.2 Example Architecture
	2.1.17.3 Component Priorities
	2.1.17.4 Behavioral Rules
	2.1.17.5 Hardware Vendor-Specific Resource Manager
	2.1.17.6 Component Suspension

	2.1.18 Content Pipes
	2.1.19 File Parsing
	2.1.20 Video Decoder Error Mapping
	2.1.21 Buffer Payload Additional Information
	2.1.21.1 Buffer Data Formatting

	2.2 Endianness

	3 OpenMAX Integration Layer Control API
	3.1 OpenMAX IL Types
	3.1.1 Enumerations
	3.1.1.1 OMX_COMMANDTYPE
	3.1.1.2 OMX_STATETYPE
	3.1.1.2.1 OMX_StateLoaded
	3.1.1.2.1.1 OMX_StateLoaded to OMX_StateIdle

	3.1.1.2.2 OMX_StateIdle
	3.1.1.2.2.1 OMX_StateIdle to OMX_StateLoaded
	3.1.1.2.2.2 OMX_StateIdle to OMX_StateExecuting

	3.1.1.2.3 OMX_StateExecuting
	3.1.1.2.3.1 OMX_StateExecuting to OMX_StateIdle
	3.1.1.2.3.2 OMX_StateExecuting to OMX_StatePause

	3.1.1.2.4 OMX_StatePause
	3.1.1.2.5 OMX_StateWaitForResources
	3.1.1.2.5.1 OMX_StateWaitForResources to OMX_StateIdle

	3.1.1.2.6 OMX_StateInvalid

	3.1.1.3 OMX_ERRORTYPE
	3.1.1.4 OMX_EVENTTYPE
	3.1.1.4.1 OMX_EventCmdComplete
	3.1.1.4.2 OMX_EventError
	3.1.1.4.3 OMX_EventMark
	3.1.1.4.4 OMX_EventPortSettingsChanged
	3.1.1.4.5 OMX_EventBufferFlag
	3.1.1.4.6 OMX_EventResourcesAcquired
	3.1.1.4.7 OMX_EventComponentResumed
	3.1.1.4.8 OMX_EventDynamicResourcesAvailable

	3.1.1.5 OMX_BUFFERSUPPLIERTYPE

	3.1.2 Structures
	3.1.2.1 OMX_COMPONENTREGISTERTYPE
	3.1.2.2 OMX_COMPONENTINITTYPE Type Definition
	3.1.2.2.1 Parameter Defintions

	3.1.2.3 OMX_ComponentRegistered[]
	3.1.2.4 OMX_VERSIONTYPE
	3.1.2.4.1 Parameter Defintions

	3.1.2.5 OMX_PRIORITYMGMTTYPE
	3.1.2.5.1 Parameter Defintions

	3.1.2.6 OMX_RESOURCECONCEALMENTTYPE
	3.1.2.6.1 Parameter Defintions
	3.1.2.6.2 Component Suspension Policy
	3.1.2.6.3 Suspension Due to Pre-emption of Resources
	3.1.2.6.4 Suspension Due to Unavailable Dynamic Resources

	3.1.2.7 OMX_BUFFERHEADERTYPE
	3.1.2.7.1 Parameter Defintions

	3.1.2.8 OMX_PORT_PARAM_TYPE
	3.1.2.8.1 Parameter Defintions

	3.1.2.9 OMX_CALLBACKTYPE
	3.1.2.9.1 EventHandler
	3.1.2.9.2 EmptyBufferDone
	3.1.2.9.3 FillBufferDone

	3.1.2.10 OMX_PARAM_BUFFERSUPPLIERTYPE
	3.1.2.10.1 Parameter Defintions

	3.1.2.11 OMX_TUNNELSETUPTYPE
	3.1.2.11.1 Parameter Defintions

	3.1.2.12 OMX_PARAM_PORTDEFINITIONTYPE
	3.1.2.12.1 Parameter Defintions

	3.1.3 OMX_PORTDOMAINTYPE
	3.1.4 OMX_HANDLETYPE

	3.2 OpenMAX IL Core Methods/Macros
	3.2.1 Return Codes for the Functions
	3.2.2 Macros
	3.2.2.1 OMX_GetComponentVersion
	3.2.2.1.1 Prerequisites for This Method
	3.2.2.1.2 Sample Code Showing Calling Sequence

	3.2.2.2 OMX_SendCommand
	3.2.2.3 OMX_CommandStateSet
	3.2.2.4 OMX_CommandFlush
	3.2.2.5 OMX_CommandPortDisable
	3.2.2.6 OMX_CommandPortEnable
	3.2.2.7 OMX_CommandMarkBuffer
	3.2.2.7.1 Prerequisites for This Method
	3.2.2.7.2 Sample Code Showing Calling Sequence

	3.2.2.8 OMX_GetParameter
	3.2.2.8.1 Prerequisites for This Method
	3.2.2.8.2 Sample Code Showing Calling Sequence
	3.2.2.8.3 Error Conditions

	3.2.2.9 OMX_SetParameter
	3.2.2.9.1 Prerequisites for This Method
	3.2.2.9.2 Sample Code Showing Calling Sequence
	3.2.2.9.3 Error Conditions

	3.2.2.10 OMX_GetConfig
	3.2.2.10.1 Prerequisites for This Method
	3.2.2.10.2 Sample Code Showing Calling Sequence
	3.2.2.10.3 Error Conditions

	3.2.2.11 OMX_SetConfig
	3.2.2.11.1 Prerequisites for This Method
	3.2.2.11.2 Sample Code Showing Calling Sequence
	3.2.2.11.3 Error Conditions

	3.2.2.12 OMX_GetExtensionIndex
	3.2.2.12.1 Prerequisites for This Method
	3.2.2.12.2 Sample Code Showing Calling Sequence

	3.2.2.13 OMX_GetState
	3.2.2.13.1 Prerequisites for This Method
	3.2.2.13.2 Sample Code Showing Calling Sequence

	3.2.2.14 OMX_UseBuffer
	3.2.2.14.1 Prerequisites for This Method
	3.2.2.14.2 Sample Code Showing Calling Sequence

	3.2.2.15 OMX_AllocateBuffer
	3.2.2.15.1 Prerequisites for This Method
	3.2.2.15.2 Sample Code Showing Calling Sequence

	3.2.2.16 OMX_FreeBuffer
	3.2.2.16.1 Prerequisites for This Method
	3.2.2.16.2 Sample Code Showing Calling Sequence

	3.2.2.17 OMX_EmptyThisBuffer
	3.2.2.17.1 Prerequisites for This Method
	3.2.2.17.2 Sample Code Showing Calling Sequence

	3.2.2.18 OMX_FillThisBuffer
	3.2.2.18.1 Prerequisites for This Method
	3.2.2.18.2 Sample Code Showing Calling Sequence

	3.2.2.19 OMX_UseEGLImage
	3.2.2.19.1 Prerequisites for This Method

	3.2.3 Functions
	3.2.3.1 OMX_Init
	3.2.3.1.1 Prerequisites for This Method
	3.2.3.1.2 Results/Outputs for This Method
	3.2.3.1.3 Sample Code Showing Calling Sequence

	3.2.3.2 OMX_Deinit
	3.2.3.2.1 Prerequisites for This Method
	3.2.3.2.2 Results/Outputs for This Method
	3.2.3.2.3 Sample Code Showing Calling Sequence

	3.2.3.3 OMX_ComponentNameEnum
	3.2.3.3.1 Prerequisites for This Method
	3.2.3.3.2 Results/Outputs for This Method
	3.2.3.3.3 Sample Code Showing Calling Sequence

	3.2.3.4 OMX_GetHandle
	3.2.3.4.1 Prerequisites for This Method
	3.2.3.4.2 Results/Outputs for This Method
	3.2.3.4.3 Sample Code Showing Calling Sequence

	3.2.3.5 OMX_FreeHandle
	3.2.3.5.1 Prerequisites for This Method
	3.2.3.5.2 Results/Outputs for This Method
	3.2.3.5.3 Sample Code Showing Calling Sequence

	3.2.3.6 OMX_SetupTunnel
	3.2.3.6.1 Prerequisites for This Method
	3.2.3.6.2 Results/Outputs for This Method
	3.2.3.6.3 Sample Code Showing Calling Sequence

	3.2.3.7 OMX_GetContentPipe
	3.2.3.7.1 Prerequisites for This Method
	3.2.3.7.2 Results/Outputs for This Method

	3.3 OpenMAX IL Component Methods and Structures
	3.3.1 pComponentPrivate
	3.3.2 pApplicationPrivate
	3.3.3 GetComponentVersion
	3.3.4 SendCommand
	3.3.5 GetParameter
	3.3.6 SetParameter
	3.3.7 GetConfig
	3.3.8 SetConfig
	3.3.9 GetExtensionIndex
	3.3.10 GetState
	3.3.11 ComponentTunnelRequest
	3.3.11.1 Prerequisites for This Method
	3.3.11.2 Sample Code Showing Calling Sequence

	3.3.12 UseBuffer
	3.3.13 AllocateBuffer
	3.3.14 FreeBuffer
	3.3.15 EmptyThisBuffer
	3.3.16 FillThisBuffer
	3.3.17 SetCallbacks
	3.3.17.1 Prerequisites for This Method
	3.3.17.2 Sample Code Showing Calling Sequence

	3.3.18 ComponentDeinit
	3.3.18.1 Prerequisites for This Method
	3.3.18.2 Sample Code Showing Calling Sequence

	3.3.19 UseEGLImage

	3.4 Calling Sequences
	3.4.1 Initialization
	3.4.1.1 Non-tunneled Initialization
	3.4.1.2 Tunneled Initialization

	3.4.2 Data Flow
	3.4.2.1 Non-tunneled Data Flow
	3.4.2.2 Tunneled Data Flow
	3.4.2.3 Proprietary Communication

	3.4.3 De-Initialization
	3.4.3.1 Non-tunneled De-initialization
	3.4.3.2 Tunneled De-Initialization

	3.4.4 Port Disablement and Enablement
	3.4.4.1 Tunneled Ports Disablement and Enablement
	3.4.4.2 Non-tunneled Port Disablement and Enablement

	3.4.5 Dynamic Port Reconfiguration
	3.4.6 Autodetect Port Reconfiguration
	3.4.7 Resource Management

	4 OpenMAX IL Data API
	4.1 Audio
	Audio Use Case Examples
	4.1.2 Special Issues
	4.1.2.1 Minimum Buffer Payload Size for Uncompressed Data
	4.1.2.2 Whole-file Buffering for MIDI Formats

	4.1.3 General Enumerations
	4.1.4 Parameter and Configuration Indexes
	4.1.5 OMX_AUDIO_PORTDEFINITIONTYPE
	4.1.6 OMX_AUDIO_PARAM_PORTFORMATTYPE
	4.1.7 OMX_AUDIO_PARAM_PCMMODETYPE
	4.1.7.1 Parameter Definitions
	4.1.7.2 Functionality

	4.1.8 OMX_AUDIO_PARAM_MP3TYPE
	4.1.8.1 Parameter Definitions
	4.1.8.2 Functionality

	4.1.9 OMX_AUDIO_PARAM_AACPROFILETYPE
	4.1.9.1 Parameter Definitions
	4.1.9.2 Functionality

	4.1.10 OMX_AUDIO_PARAM_VORBISTYPE
	4.1.10.1 Parameter Definitions
	4.1.10.2 Functionality

	4.1.11 OMX_AUDIO_PARAM_WMATYPE
	4.1.11.1 Parameter Definitions

	4.1.12 OMX_AUDIO_PARAM_RATYPE
	4.1.12.1 Parameter Definitions
	4.1.12.2 Functionality

	4.1.13 OMX_AUDIO_PARAM_SBCTYPE
	4.1.13.1 Parameter Definitions
	4.1.13.2 Functionality

	4.1.14 OMX_AUDIO_PARAM_ADPCMTYPE
	4.1.14.1 Parameter Definitions
	4.1.14.2 Functionality

	4.1.15 OMX_AUDIO_PARAM_G723TYPE
	4.1.15.1 Parameter Definitions
	4.1.15.2 Functionality

	4.1.16 OMX_AUDIO_PARAM_G726TYPE
	4.1.16.1 Parameter Definitions
	4.1.16.2 Functionality

	4.1.17 OMX_AUDIO_PARAM_G729TYPE
	4.1.17.1 Parameter Definitions
	4.1.17.2 Functionality

	4.1.18 OMX_AUDIO_PARAM_AMRTYPE
	4.1.18.1 Parameter Definitions
	4.1.18.2 Functionality

	4.1.19 OMX_AUDIO_PARAM_GSMFRTYPE
	4.1.19.1 Parameter Definitions
	4.1.19.2 Functionality

	4.1.20 OMX_AUDIO_PARAM_GSMEFRTYPE
	4.1.20.1 Parameter Definitions
	4.1.20.2 Functionality

	4.1.21 OMX_AUDIO_PARAM_GSMHRTYPE
	4.1.21.1 Parameter Definitions
	4.1.21.2 Functionality

	4.1.22 OMX_AUDIO_PARAM_TDMAFRTYPE
	4.1.22.1 Parameter Definitions
	4.1.22.2 Functionality

	4.1.23 OMX_AUDIO_PARAM_TDMAEFRTYPE
	4.1.23.1 Parameter Definitions
	4.1.23.2 Functionality

	4.1.24 OMX_AUDIO_PARAM_PDCFRTYPE
	4.1.24.1 Parameter Definitions
	4.1.24.2 Functionality

	4.1.25 OMX_AUDIO_PARAM_PDCEFRTYPE
	4.1.25.1 Parameter Definitions
	4.1.25.2 Functionality

	4.1.26 OMX_AUDIO_PARAM_PDCHRTYPE
	4.1.26.1 Parameter Definitions
	4.1.26.2 Functionality

	4.1.27 OMX_AUDIO_PARAM_QCELP8TYPE
	4.1.27.1 Parameter Definitions
	4.1.27.2 Functionality

	4.1.28 OMX_AUDIO_PARAM_QCELP13TYPE
	4.1.28.1 Parameter Definitions
	4.1.28.2 Functionality

	4.1.29 OMX_AUDIO_PARAM_EVRCTYPE
	4.1.29.1 Parameter Definitions
	4.1.29.2 Functionality

	4.1.30 OMX_AUDIO_PARAM_SMVTYPE
	4.1.30.1 Parameter Definitions
	4.1.30.2 Functionality

	4.1.31 OMX_AUDIO_PARAM_MIDITYPE
	4.1.31.1 Parameter Definitions

	4.1.32 OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE
	4.1.32.1 Parameter Definitions

	4.1.33 OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE
	4.1.33.1 Parameter Definitions
	4.1.33.2 Post-processing Conditions

	4.1.34 OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE
	4.1.34.1 Parameter Definitions
	4.1.34.2 Post-processing Conditions

	4.1.35 OMX_AUDIO_CONFIG_MIDICONTROLTYPE
	4.1.35.1 Parameter Definitions
	4.1.35.2 Post-processing Conditions

	4.1.36 OMX_AUDIO_CONFIG_MIDISTATUSTYPE
	4.1.36.1 Parameter Definitions

	4.1.37 OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE
	4.1.37.1 Parameter Definitions

	4.1.38 OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE
	4.1.38.1 Parameter Definitions

	4.1.39 OMX_AUDIO_CONFIG_VOLUMETYPE
	4.1.39.1 Parameter Definitions

	4.1.40 OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE
	4.1.40.1 Parameter Definitions

	4.1.41 OMX_AUDIO_CONFIG_BALANCETYPE
	4.1.41.1 Parameter Definitions

	4.1.42 OMX_AUDIO_CONFIG_MUTETYPE
	4.1.42.1 Parameter Definitions

	4.1.43 OMX_AUDIO_CONFIG_CHANNELMUTETYPE
	4.1.43.1 Parameter Definitions

	4.1.44 OMX_AUDIO_CONFIG_LOUDNESSTYPE
	4.1.44.1 Parameter Definitions

	4.1.45 OMX_AUDIO_CONFIG_BASSTYPE
	4.1.45.1 Parameter Definitions

	4.1.46 OMX_AUDIO_CONFIG_TREBLETYPE
	4.1.46.1 Parameter Definitions

	4.1.47 OMX_AUDIO_CONFIG_EQUALIZERTYPE
	4.1.47.1 Parameter Definitions

	4.1.48 OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE
	4.1.48.1 Parameter Definitions

	4.1.49 OMX_AUDIO_CONFIG_CHORUSTYPE
	4.1.49.1 Parameter Definitions

	4.1.50 OMX_AUDIO_CONFIG_REVERBERATIONTYPE
	4.1.50.1 Parameter Definitions

	4.1.51 OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE
	4.1.51.1 Parameter Definitions

	4.1.52 OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE
	4.1.52.1 Parameter Definitions

	4.2 Image and Video Common
	4.2.1 Uncompressed Data Formats
	4.2.2 Minimum Buffer Payload Size for Uncompressed Data
	4.2.3 Buffer Payload Requirements for Uncompressed Data
	4.2.4 Parameter and Configuration Indexes
	4.2.5 OMX_PARAM_DEBLOCKINGTYPE
	4.2.5.1 Parameters

	4.2.6 OMX_PARAM_INTERLEAVETYPE
	4.2.6.1 Parameters

	4.2.7 OMX_PARAM_SENSORMODETYPE
	4.2.7.1 Parameters

	4.2.8 OMX_CONFIG_COLORCONVERSIONTYPE
	4.2.8.1 Parameters

	4.2.9 OMX_CONFIG_SCALEFACTORTYPE
	4.2.9.1 Parameters

	4.2.10 OMX_CONFIG_IMAGEFILTERTYPE
	4.2.10.1 Parameters

	4.2.11 OMX_CONFIG_COLORENHANCEMENTTYPE
	4.2.11.1 Parameters

	4.2.12 OMX_CONFIG_COLORKEYTYPE
	4.2.12.1 Parameters

	4.2.13 OMX_CONFIG_COLORBLENDTYPE
	4.2.13.1 Parameters

	4.2.14 OMX_FRAMESIZETYPE
	4.2.14.1 Parameters

	4.2.15 OMX_CONFIG_ROTATIONTYPE
	4.2.15.1 Parameters

	4.2.16 OMX_CONFIG_MIRRORTYPE
	4.2.16.1 Parameters

	4.2.17 OMX_CONFIG_POINTTYPE
	4.2.17.1 Parameters

	4.2.18 OMX_CONFIG_RECTTYPE
	4.2.18.1 Parameters

	4.2.19 OMX_CONFIG_FRAMESTABTYPE
	4.2.19.1 Parameters

	4.2.20 OMX_CONFIG_WHITEBALCONTROLTYPE
	4.2.20.1 Parameters

	4.2.21 OMX_CONFIG_EXPOSURECONTROLTYPE
	4.2.21.1 Parameters

	4.2.22 OMX_CONFIG_CONTRASTTYPE
	4.2.22.1 Parameters

	4.2.23 OMX_CONFIG_BRIGHTNESSTYPE
	4.2.23.1 Parameters

	4.2.24 OMX_CONFIG_BACKLIGHTTYPE
	4.2.24.1 Parameters

	4.2.25 OMX_CONFIG_GAMMATYPE
	4.2.25.1 Parameters

	4.2.26 OMX_CONFIG_SATURATIONTYPE
	4.2.26.1 Parameters

	4.2.27 OMX_CONFIG_LIGHTNESSTYPE
	4.2.27.1 Parameters

	4.2.28 OMX_CONFIG_PLANEBLENDTYPE
	4.2.28.1 Parameters

	4.2.29 OMX_CONFIG_DITHERTYPE
	4.2.29.1 Parameters

	4.2.30 OMX_CONFIG_EXPOSUREVALUETYPE
	4.2.30.1 Parameters

	4.2.31 OMX_CONFIG_CAPTUREMODETYPE
	4.2.31.1 Parameters

	4.2.32 OMX_CONFIG_BOOLEANTYPE
	4.2.32.1 Parameters

	4.2.33 OMX_OTHER_EXTRADATATYPE
	4.2.33.1 Parameters
	4.2.33.2 Sample code

	4.2.34 OMX_CONFIG_FOCUSREGIONTYPE
	4.2.34.1 Parameters

	4.2.35 OMX_PARAM_FOCUSSTATUSTYPE
	4.2.35.1 Parameters

	4.2.36 OMX_CONFIG_TRANSITIONEFFECTTYPE
	4.2.36.1 Parameters

	4.3 Video
	4.3.1 General Enumerations
	4.3.2 Parameter and Configuration Indices
	4.3.3 Video Use Case Examples
	4.3.4 OMX_VIDEO_PORTDEFINITIONTYPE
	4.3.4.1 Parameters

	4.3.5 OMX_VIDEO_PARAM_PORTFORMATTYPE
	4.3.5.1 Parameters

	4.3.6 OMX_VIDEO_PARAM_QUANTIZATIONTYPE
	4.3.6.1 Parameters
	4.3.6.2 Dependencies

	4.3.7 OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE
	4.3.7.1 Parameters
	4.3.7.2 Dependencies

	4.3.8 OMX_VIDEO_PARAM_BITRATETYPE
	4.3.8.1 Parameters
	4.3.8.2 Dependencies

	4.3.9 OMX_VIDEO_PARAM_MOTIONVECTORTYPE
	4.3.9.1 Parameters
	4.3.9.2 Dependencies

	4.3.10 OMX_VIDEO_PARAM_INTRAREFRESHTYPE
	4.3.10.1 Parameters
	4.3.10.2 Dependencies

	4.3.11 OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE
	4.3.11.1 Parameters
	4.3.11.2 Dependencies

	4.3.12 OMX_VIDEO_PARAM_VBSMCTYPE
	4.3.12.1 Parameters
	4.3.12.2 Dependencies

	4.3.13 OMX_VIDEO_PARAM_H263TYPE
	4.3.13.1 Parameters
	4.3.13.2 Dependencies

	4.3.14 OMX_VIDEO_PARAM_MPEG2TYPE
	4.3.14.1 Parameters
	4.3.14.2 Dependencies

	4.3.15 OMX_VIDEO_PARAM_MPEG4TYPE
	4.3.15.1 Parameters
	4.3.15.2 Dependencies

	4.3.16 OMX_VIDEO_PARAM_WMVTYPE
	4.3.16.1 Parameters
	4.3.16.2 Dependencies

	4.3.17 OMX_VIDEO_PARAM_RVTYPE
	4.3.17.1 Parameters
	4.3.17.2 Dependencies

	4.3.18 OMX_VIDEO_PARAM_AVCTYPE
	4.3.18.1 Parameters
	4.3.18.2 Dependencies

	4.3.19 OMX_VIDEO_CONFIG_BITRATETYPE
	4.3.19.1 Parameters

	4.3.20 OMX_CONFIG_FRAMERATETYPE
	4.3.20.1 Parameters

	4.3.21 OMX_CONFIG_INTRAREFRESHVOPTYPE
	4.3.21.1 Parameters

	4.3.22 OMX_CONFIG_MACROBLOCKERRORMAPTYPE
	4.3.22.1 Parameters
	4.3.22.2 Dependencies
	4.3.22.3 Error Conditions

	4.3.23 OMX_PARAM_MACROBLOCKSTYPE
	4.3.23.1 Parameters
	4.3.23.2 Dependencies

	4.3.24 OMX_CONFIG_MBERRORREPORTINGTYPE
	4.3.24.1 Parameters

	4.3.25 OMX_VIDEO_PARAM_PROFILELEVELTYPE
	4.3.25.1 Parameters
	4.3.25.2 Dependencies

	4.3.26 OMX_VIDEO_PARAM_AVCSLICEFMO
	4.3.26.1 Parameters

	4.3.27 OMX_VIDEO_CONFIG_AVCINTRAPERIOD
	4.3.27.1 Parameters

	4.3.28 OMX_VIDEO_CONFIG_NALSIZE
	4.3.28.1 Parameters

	4.4 Image
	4.4.1 Parameter and Configuration Indices
	4.4.2 Image Use Case Example
	4.4.3 OMX_IMAGE_PORTDEFINITIONTYPE
	4.4.3.1 Parameters
	4.4.4.1 Parameters
	4.4.5.1 Parameters
	4.4.6.1 Parameters

	4.4.7 OMX_IMAGE_PARAM_QFACTORTYPE
	4.4.7.1 Parameters

	4.4.8 OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE
	4.4.8.1 Parameters
	4.4.8.2 Error Conditions

	4.4.9 OMX_IMAGE_PARAM_HUFFMANTTABLETYPE
	4.4.9.1 Parameters
	4.4.9.2 Error Conditions

	4.5 “Other” Domain
	4.5.1 Parameters and Config Indexes
	4.5.2 OMX_TIME_CONFIG_SEEKMODETYPE
	4.5.2.1 Parameters

	4.5.3 OMX_TIME_CONFIG_TIMESTAMPTYPE
	4.5.3.1 Parameters

	4.5.4 OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE
	4.5.4.1 Parameters

	4.5.5 OMX_TIME_CONFIG_MEDIATIMETYPE
	4.5.5.1 Parameters

	4.5.6 OMX_TIME_CONFIG_SCALETYPE
	4.5.6.1 Parameters

	4.5.7 OMX_TIME_CONFIG_CLOCKSTATETYPE
	4.5.7.1 Parameters

	4.5.8 OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE
	4.5.8.1 Parameters

	5 OpenMAX IL Component Extension APIs
	5.1 Description of the Extension Process
	5.1.1 GetExtensionIndex
	5.1.1.1 Prerequisites for This Method
	5.1.1.2 Method Implementation

	5.1.2 Custom Data Structures
	5.1.3 Enumerations
	5.1.4 Promoting extensions to specification

	5.2 Examples of Using Extension Querying API
	5.2.1 Sample Code Showing Calling Sequence

	6 Synchronization
	6.1 Seeking Component
	6.1.1 Seeking Configurations
	6.1.2 Seeking Buffer Flags
	6.1.3 Seek Event Sequence

	6.2 Clock Component
	6.2.1 Timestamps
	6.2.2 Media Clock
	6.2.2.1 Media Clock Scale
	6.2.2.2 Client Start Time
	6.2.2.3 Media Clock State

	6.2.3 Wall Clock
	6.2.4 Reference Clocks
	6.2.4.1 Media Time Updates
	6.2.4.2 Media Time Request
	6.2.4.3 Media Time Request Fulfillment
	6.2.4.4 Scale Change Notifications
	6.2.4.5 Clock State Change Notifications

	6.2.5 Clock Component Implementation
	6.2.5.1 Deriving Media Time
	6.2.5.2 Scale Changes
	6.2.5.3 Fulfilling Media Time Requests

	6.2.6 Audio-Video File Playback Example Use Case

	7 Container Parsing
	7.1 Parameter and Configuration Indexes
	7.2 Format Detection
	7.3 Port Streams
	7.4 Metadata Extraction
	7.4.1.1 Key/Value Query
	7.4.1.2 Node Traversal
	7.4.1.3 Key Filtering
	7.4.1.4 Specifying Language/Country
	7.4.1.4.1 Language Codes
	7.4.1.4.2 Country Codes

	7.5 Types and Structures
	7.5.1 OMX_PARAM_U32TYPE
	7.5.2 OMX_METADATACHARSETTYPE
	7.5.3 OMX_METADATASCOPETYPE
	7.5.4 OMX_CONFIG_METADATAITEMCOUNTTYPE
	7.5.4.1 Parameter Definitions
	7.5.4.2 Dependencies
	7.5.4.3 Functionality
	7.5.4.4 OMX_METADATASEARCHMODETYPE

	7.5.5 OMX_CONFIG_METADATAITEMTYPE
	7.5.5.1 Parameter Definitions
	7.5.5.2 Dependencies
	7.5.5.3 Functionality

	7.5.6 OMX_PARAM_METADATAFILTERTYPE
	7.5.6.1 Parameter Definitions
	7.5.6.2 Dependencies
	7.5.6.3 Functionality
	7.5.6.4 Post-processing Conditions
	7.5.7.1 Parameter Definitions
	7.5.7.2 Dependencies
	7.5.7.3 Functionality

	7.5.8 OMX_CONFIG_CONTAINERNODEIDTYPE
	7.5.8.1 Parameter Definitions
	7.5.8.2 Dependencies
	7.5.8.3 Functionality

	8 Standard Components
	8.1 Hierarchy of Standard Component Definition
	8.1.1 Standard Component Class Definition
	8.1.2 Standard Components Definition

	8.2 Component Role
	8.2.1 ComponentRoleEnum
	8.2.2 OMX_PARAM_COMPONENTROLETYPE
	8.2.3 OMX_GetRolesOfComponent
	8.2.4 OMX_GetComponentsOfRole

	8.3 Mandatory Port Parameters
	8.4 Notation Used
	8.5 Video and Image Order of Operations
	8.6 Standard Audio Components
	8.6.1 Audio Decoder Class
	8.6.1.1 AAC Decoder Component
	8.6.1.2 AMR-NB Decoder Component
	8.6.1.3 AMR-WB Decoder Component
	8.6.1.4 MP3 Decoder Component
	8.6.1.5 Real Audio Decoder Component
	8.6.1.6 WMA Decoder Component

	8.6.2 Audio Encoder Class
	8.6.2.1 AAC Encoder Component
	8.6.2.2 AMR-NB Encoder Component
	8.6.2.3 AMR-WB Encoder Component
	8.6.2.4 MP3 Encoder Component

	8.6.3 Audio Mixer Class
	8.6.3.1 PCM Mixer Component

	8.6.4 Audio Reader Class
	8.6.4.1 Binary Audio Reader Class

	8.6.5 Audio Renderer Class
	8.6.5.1 PCM Renderer Component

	8.6.6 Audio Writer Class
	8.6.6.1 Binary Audio Writer Class

	8.6.7 Audio Capturer Class
	8.6.7.1 PCM Audio Capturer
	8.6.7.2 Audio Capture Use Case

	8.6.8 Audio processor class
	8.6.8.1 Properties that apply to all audio processing components
	8.6.8.2 Stereo widening loudspeakers
	8.6.8.3 Stereo widening headphones
	8.6.8.4 Reverberation
	8.6.8.5 Chorus
	8.6.8.6 Equalizer

	8.7 Standard Image Components
	8.7.1 Image Decoder Class
	8.7.1.1 JPEG Decoder

	8.7.2 Image Encoder Class
	8.7.2.1 JPEG Encoder

	8.7.3 Image Reader Class
	8.7.3.1 Binary Image Reader Class

	8.7.4 Image Writer Class
	8.7.4.1 Binary Image Writer Class

	8.8 Standard Video Components
	8.8.1 Video Decoder Class
	8.8.1.1 H.263 Decoder Component
	8.8.1.2 AVC Decoder Component
	8.8.1.3 MPEG4 Video Decoder Component
	8.8.1.4 Real Video Decoder Component
	8.8.1.5 WMV Decoder Component

	8.8.2 Video Encoder Class
	8.8.2.1 H.263 Encoder Component
	8.8.2.2 AVC Encoder Component
	8.8.2.3 MPEG4 Video Encoder Component

	8.8.3 Video Reader Class
	8.8.3.1 Binary Video Reader Component

	8.8.4 Video Scheduler Class
	8.8.4.1 Video Scheduler Component

	8.8.5 Video Writer Class
	8.8.5.1 Binary Video Writer Class

	8.9 Other Standard Components
	8.9.1 Camera Class
	8.9.1.1 YUV Camera Component
	8.9.1.2 Video Capture Use Case
	8.9.1.3 Still Image Capture

	8.9.2 Clock Class
	8.9.2.1 Clock Component

	8.9.3 Container Demuxer Class
	8.9.3.1 Playback Use Case
	8.9.3.2 3GP Demuxer Component
	8.9.3.3 ASF Demuxer Component
	8.9.3.4 Real Demuxer Component

	8.9.4 Container Muxer Class
	8.9.4.1 3GP Muxer Component

	8.9.5 Image/Video Processor Class
	8.9.5.1 YUV Image/Video Processor

	8.9.6 Image/Video Renderer Class
	8.9.6.1 YUV Overlay Image/Video Renderer
	8.9.6.2 YUV BLTter Image/Video Renderer
	8.9.6.3 RGB Overlay Image/Video Renderer
	8.9.6.4 RGB BLTter Image/Video Renderer

	9 Content Pipes
	9.1 Rationale
	9.2 Concept
	9.3 Implementation
	9.4 Definition
	9.4.1 Content Access and Manipulation
	9.4.2 Streaming Support
	9.4.3 Enumerations
	9.4.3.2 CP_ACCESSTYPE
	9.4.3.3 CP_CHECKBYTESRESULTTYPE

	9.4.4 CP_PIPETYPE Methods
	9.4.4.1 Open
	9.4.4.2 Close
	9.4.4.3 Create
	9.4.4.4 CheckAvailableBytes
	9.4.4.5 SetPosition
	9.4.4.6 GetPosition
	9.4.4.7 Read
	9.4.4.8 ReadBuffer
	9.4.4.9 ReleaseReadBuffer
	9.4.4.10 Write
	9.4.4.11 GetWriteBuffer
	9.4.4.12 WriteBuffer
	9.4.4.13 RegisterCallback

	9.5 Acquiring a Content Pipe
	9.5.1 Indexes
	9.5.2 OMX_PARAM_CONTENTURITYPE
	9.5.2.1 Parameters

	9.5.3 OMX_PARAM_CONTENTPIPETYPE
	9.5.3.1 Parameters

	9.5.4 Acquiring a Content Pipe from the IL Core
	9.5.5 Content Pipe Related Errors

	9.6 Example Use Cases
	9.6.1 Playback/Parser Use Case:
	9.6.2 Recording/Combiner Use Case:

	10 Implementing Buffer Sharing
	10.1.1.1 Component Transition from Loaded to Idle State with Sharing
	10.1.1.2 Protocol for Using a Shared Buffer

	11 Appendix A – References
	11.1 SPEECH
	11.1.1 3GPP
	11.1.2 3GPP2
	11.1.3 ARIB
	11.1.4 ITU
	11.1.5 IETF
	11.1.6 TIA

	11.2 AUDIO
	11.2.1 ISO
	11.2.2 MISC

	11.3 SYNTHETIC AUDIO
	11.3.1 MIDI

	11.4 IMAGE
	11.4.1 IETF
	11.4.2 ISO
	11.4.3 ITU
	11.4.4 JEITA
	11.4.5 MIPI
	11.4.6 Miscellaneous
	11.4.7 SMIA
	11.4.8 W3C

	11.5 VIDEO
	11.5.1 3GPP
	11.5.2 AVS
	11.5.3 DLNA
	11.5.4 ETSI
	11.5.5 IETF
	11.5.6 ISO
	11.5.7 ITU
	11.5.8 MISC

	11.6 JAVA
	11.6.1 Multimedia
	11.6.2 Broadcast

	12 Appendix B – OpenKODE Error Codes

