QrerGLisC.

OpenGL® SC

Version 2.0.1 (Full Specification)
(July 24, 2019)

Editors (version 2.0): Aidan Fabius, Steve Viggers

Copyright (© 2016-2019 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written permis-
sion of Khronos Group. You may use this specification for implementing the functionality therein,
without altering or removing any trademark, copyright or other notice from the specification, but
the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in
part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member
of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion,
provided that NO CHARGE is made for the specification and the latest available update of the spec-
ification for any version of the API is used whenever possible. Such distributed specification may
be reformatted AS LONG AS the contents of the specification are not changed in any way. The
specification may be incorporated into a product that is sold as long as such product includes signif-
icant independent work developed by the seller. A link to the current version of this specification on
the Khronos Group website should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of mer-
chantability or fitness for a particular purpose or non-infringement of any intellectual property.
Khronos Group makes no, and expressly disclaims any, warranties, express or implied, regarding
the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their
respective partners, officers, directors, employees, agents or representatives be liable for any dam-
ages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or
otherwise, arising from or in connection with these materials.

Khronos, Vulkan, SPIR, SPIR-V, SYCL, WebGL, WebCL, OpenVX, OpenVG, EGL , COLLADA,
glTF, OpenKODE, OpenKCAM, StreamInput , OpenWF, OpenSL ES, OpenMAX, OpenMAX AL,
OpenMAX IL, OpenMAX DL and DevU are trademarks of the Khronos Group Inc. ASTC is a
trademark of ARM Holdings PLC, OpenCL is a trademark of Apple Inc. and OpenGL and OpenML
are registered trademarks and the OpenGL ES and OpenGL SC logos are trademarks of Silicon
Graphics International used under license by Khronos. All other product names, trademarks, and/or
company names are used solely for identification and belong to their respective owners.

Contents

1 Introduction 1
1.1 What is the OpenGL SC Graphics System? 1
1.2 Suitability for Safety Critical applications? 1
1.3 Programmer’s View of OpenGLSC 2
1.4 Implementer’s View of OpenGL SC 2
1.5 OurView e 3
1.6 Companion Documents 3

1.6.1 Window System Bindings 3
2 OpenGL SC Operation 5
2.1 OpenGL SC Fundamentals 5
2.1.1 Numeric Computation 7
2.1.2 DataConversions i 8
22 GLStateo 9
2.2.1 Shared ObjectState 10
23 GLCommandSyntax 10
24 BasicGLOperation 13
25 GLErrors oo 14
2.6 Graphics ResetRecovery 15
2.7 Primitives and Vertices Lo 17
2.77.1 Primitive Types 19
2.8 Current Vertex State 21
2.9 Vertex Arrays e e 21
2.10 BufferObjects 24
2.10.1 Vertex Arrays in Buffer Objects 26
2.10.2 Array Indices in Buffer Objects 27
2.11 Vertex Shaders 27
2.11.1 Program Objects 28
2.11.2 Shader Variables 29

CONTENTS

3

2.11.3 Shader Execution
2.114 RequiredState

2.12 Primitive Assembly and Post-Shader Vertex Processing
2.13 Coordinate Transformations

2.13.1 Controlling the Viewport

2.14 Primitive Clipping o

2.14.1 Clipping Varying Outputs

Rasterization
3.1 Invariancel
32 Multisampling
33 Points
3.3.1 Point Multisample Rasterization
34 LineSegments
3.4.1 Basic Line Segment Rasterization
3.4.2 Other Line Segment Features
34.3 Line Rasterization State
34.4 Line Multisample Rasterization
3.5 Polygons
3.5.1 Basic Polygon Rasterization
352 DepthOffset
3.5.3 Polygon Multisample Rasterization
3.5.4 Polygon Rasterization State
3.6 PixelRectangles. oL
3.6.1 Pixel StorageModes
3.6.2 Transfer of Pixel Rectangles
3.7 Texturing e e
3.7.1 Texture Image Specification
3.7.2 Texture Image Specification Commands
3.7.3 Compressed Texture Images
3.74 Texture Parameters
3775 Texture WrapModes
3.7.6 Texture Minification
3.7.7 Texture Magnification
3.7.8 Texture Framebuffer Attachment
3.7.9 Texture Completeness and Non-Power-Of-Two Textures .
3.7.10 Mipmap Generation
3.7.11 Texture Stateo
3712 Texture Objects
3.8 FragmentShaders

Version 2.0.1 (July 24, 2019)

ii

34
36
37
37
37
39
40

41
42
42
44
44
45
45
47
48
48
49
50
51
52
53
53

70

CONTENTS iii

3.8.1 Shader Variables 73
3.8.2 Shader Execution 73
4 Per-Fragment Operations and the Framebuffer 76
4.1 Per-Fragment Operations 77
4.1.1 Pixel OwnershipTest 77
412 ScissorTest oL 79
4.1.3 Multisample Fragment Operations 79
414 Stencil Test L. 80
415 DepthBufferTest. 82
416 Blending 83
4.1.7 Dithering 86
4.1.8 Additional Multisample Fragment Operations 86
4.2 Whole Framebuffer Operations 87
4.2.1 Selecting a Buffer for Writing 87
4.2.2 Fine Control of Buffer Updates 87
423 Clearing the Buffers 89
43 ReadingPixels 90
43.1 ReadingPixels 90
43.2 Pixel Draw/Read State 93
4.4 Framebuffer Objects 93
4.4.1 Binding and Managing Framebuffer Objects 93
442 Attaching Images to Framebuffer Objects 95
4.43 Renderbuffer Objects 96
444 Feedback Loops Between Textures and the Framebuffer . 99
4.4.5 Framebuffer Completeness 100

4.4.6 Effects of Framebuffer State on Framebuffer Dependent
Values 104
4.477 Mapping between Pixel and Element in Attached Image . 104
448 Errorso 105
5 Special Functions 106
5.1 FlushandFinish. 106
52 Hints. 106
6 State and State Requests 108
6.1 QueryingGL State L. 108
6.1.1 SimpleQueries 108
6.1.2 DataConversionso 108
6.1.3 Enumerated Queries 109

Version 2.0.1 (July 24, 2019)

CONTENTS v

6.1.4 String Queries 111

6.1.5 Program Queries 112

6.2 StateTables 113

A Invariance 138
A.l1 Repeatability 138
A.2 Multi-pass Algorithms 139
A3 InvarianceRules. L oL 139
A4 WhatAllThisMeans 140

B Corollaries 141
C Shared Objects and Multiple Contexts 143
C.1 Sharing Contexts Between Different Versions of OpenGL SC . . 143
C.2 Sharing Objects Between Different Contexts in OpenGL SC . . . 143
C.3 Propagating Changesto Objects 144
C.3.1 Determining Completion of Changes to an object 144

C.3.2 Definitions oo 144

C33 Rules 145

D Version 2.0 147

E Extension Registry, Header Files, and Extension Naming Conventions 148

E.1 ExtensionRegistry 148
E2 HeaderFiles L. 148
E.3 OGLSCEXxtensions 149
E.3.1 Naming Conventions 149

E.4 Vendor and EXT Extensions 149
F GLSL Limitations 151
F1 Overview e 151
F2 Length of Shader Executable 151
F.3 Usage of Temporary Variables 151
F4 ControlFlow 151
F.5 Indexing of Arrays, Vectors and Matrices 152
F.6 Counting of Varyings and Uniforms 154
E7 Shader Parameters 157

Version 2.0.1 (July 24, 2019)

CONTENTS v

G Packaging and Acknowledgements 158
G.1 Header Files and Libraries 158
G.2 Acknowledgements 158
G.3 DocumentHistory o 159

G.3.1 Version 2.0.1,July 24,2019 159
G.3.2 Version 2.0.0, April 19,2016 159

Version 2.0.1 (July 24, 2019)

List of Figures

2.1
2.2
23
24

3.1
32
33
34
3.5

4.1
4.2

Block diagramofthe GL. 13
Vertex processing and primitive assembly. 17
Triangle strips, fans, and independent triangles. 20
Vertex transformation sequence. 37
Rasterization. L L 41
Visualization of Bresenham’s algorithm. 46
Rasterization of non-antialiased wide lines. 47
The region used in rasterizing a multisampled line segment. 49
Transfer of pixel rectanglestothe GL. 54
Per-fragment operations. 77
Operation of ReadnPixels. 90

vi

List of Tables

2.1
2.2
23
24
25
2.6

3.1
32
33
34
35
3.6
3.7
3.8
39

4.1
4.2
43
4.4

4.5

6.1
6.2
6.3
6.4
6.5
6.6

GL command suffixes 11
GL datatypes e 12
Summary of GL errors 17
Vertex array sizes (values per vertex) and data types 22
Buffer object parameters and their values. 24
Buffer object initial state. Lo 26
PixelStore parameters. 54
TexSubImage2D and ReadnPixels types. 55
TexSubImage2D and ReadnPixels formats. 55
Valid pixel format, type, and sized internal format. 56
Packed pixel formats. oL L oL 57
UNSIGNED_SHORT formats 57
Packed pixel field assignments. 58
Texture parameters and their values. 64
Correspondence of filtered texture components. 74
RGB and Alpha blend equations. 84
Blending functions. L Lo 85
PixelStore parameters., 91
ReadnPixels GL data types and reversed component conversion

formulas. 92
Renderbuffer image internal formats. 101
State Variable Types oL 114
Vertex Array Data Lo 115
Buffer Object State, 116
Transformation state 117
Rasterization 118
Multisampling 119

vii

LIST OF TABLES viii

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

Textures (state per texture unit and binding point) 120
Textures (state per texture object) 121
Texture Environment and Generation 122
Pixel Operations 123
Pixel Operations (cont.) 124
Framebuffer Control 125
Pixels 126
Program Object State 127
Vertex Shader State L. 128
Hints. 129
Implementation Dependent Values 130
Implementation Dependent Values (cont.) 131
Implementation Dependent Values (cont.) 132
Implementation Dependent Pixel Depths 133
Miscellaneous e 134
Renderbuffer State L. 135
Framebuffer State 136
Robustness State L 137

Version 2.0.1 (July 24, 2019)

Chapter 1

Introduction

This document describes the OpenGL SC graphics system: what it is, how it acts,
and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the
essentials of computer graphics algorithms as well as familiarity with basic graph-
ics hardware and associated terms.

1.1 What is the OpenGL SC Graphics System?

OpenGL SC is a software interface to graphics hardware. The interface consists of
a set of procedures and functions that allow a programmer to specify the objects
and operations involved in producing high-quality graphical images, specifically
color images of three-dimensional objects.

Most of OpenGL SC requires that the graphics hardware contain a framebuffer.
Many OpenGL SC calls pertain to drawing objects such as points, lines and poly-
gons, but the way that some of this drawing occurs (such as when antialiasing or
texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL SC is specifically concerned with framebuffer manipulation.

1.2 Suitability for Safety Critical applications?

OpenGL SC 2.0 is based on the OpenGL ES 2.0 graphics system and is designed
primarily for safety critical graphics hardware running on embedded devices. It
removes aspects of OpenGL ES 2.0 that are not aligned with deterministic safety
critical software applications. For example, the ability to delete objects (textures,
etc.) has been removed to avoid memory fragmentation and garbage collection. In

1.3. PROGRAMMER’S VIEW OF OPENGL SC 2

addition, portions of the GL_EXT _texture_storage and GL_KHR _robustness exten-
sions have been adopted as part of the core OpenGL SC 2.0 specification.

The OpenGL SC 2.0 API has been designed to be aligned with avionics and
automotive requirements for safety critical software. In order to meet the avionics
market needs, OpenGL SC has been defined to enable implementations and appli-
cations to be certifiable to DO-178 Level A. In order to meet the automotive market
needs, OpenGL SC has been defined to enable implementations and applications
to be certifiable to 1SO26262 ASIL D.

1.3 Programmer’s View of OpenGL SC

To the programmer, OpenGL SC is a set of commands that allow the specification
of geometric objects in two or three dimensions, together with commands that
control how these objects are rendered into the framebuffer. OpenGL SC provides
an immediate-mode interface, meaning that specifying an object causes it to be
drawn.

A typical program that uses OpenGL SC begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made to
allocate an OpenGL SC context and associate it with the window. These steps may
be performed using a companion API such as the Khronos Native Platform Graph-
ics Interface (EGL), and are documented separately. Once a context is allocated,
the programmer is free to issue OpenGL SC commands. Some calls are used to
draw simple geometric objects (i.e. points, line segments, and polygons), while
others affect the rendering of these primitives including how they are lit or colored
and how they are mapped from the user’s two- or three-dimensional model space
to the two-dimensional screen. There are also calls which operate directly on the
framebuffer, such as reading pixels.

1.4 Implementer’s View of OpenGL SC

To the implementer, OpenGL SC is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL SC must be implemented almost entirely on the host CPU. More
typically, the graphics hardware may comprise varying degrees of graphics accel-
eration, from a raster subsystem capable of rendering two-dimensional lines and
polygons to sophisticated floating-point processors capable of transforming and
computing on geometric data. The OpenGL SC implementer’s task is to provide
the CPU software interface while dividing the work for each OpenGL SC com-
mand between the CPU and the graphics hardware. This division must be tailored

Version 2.0.1 (July 24, 2019)

1.5. OUR VIEW 3

to the available graphics hardware to obtain optimum performance in carrying out
OpenGL SC calls.

OpenGL SC maintains a considerable amount of state information. This state
controls how objects are drawn into the framebuffer. Some of this state is directly
available to the user, who can make calls to obtain its value. Some of it, however,
is visible only by the effect it has on what is drawn. One of the main goals of this
specification is to make OpenGL SC state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL SC as a state machine that controls a set of specific drawing
operations. This model should engender a specification that satisfies the needs of
both programmers and implementers. It does not, however, necessarily provide a
model for implementation. An implementation must produce results conforming
to those produced by the specified methods, but there may be ways to carry out a
particular computation that are more efficient than the one specified.

1.6 Companion Documents

This specification should be read together with a companion document titled The
OpenGL ES Shading Language. The latter document (referred to as the OpenGL
ES Shading Language Specification hereafter) defines the syntax and semantics
of the programming language used to write vertex and fragment shaders (see sec-
tions 2.11 and 3.8). These sections may include references to concepts and terms
(such as shading language variable types) defined in the companion document.

OpenGL SC 2.0 implementations are guaranteed to support at least version 1.0
of the shading language; the actual version supported may be queried as described
in section 6.1.4.

1.6.1 Window System Bindings

OpenGL SC requires a companion API to create and manage graphics contexts,
windows to render into, and other resources beyond the scope of this Specification.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices. The
EGL Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

Version 2.0.1 (July 24, 2019)

http://www.khronos.org/registry/egl

1.6. COMPANION DOCUMENTS 4

Khronos strongly encourages OpenGL SC implementations to also support
EGL, but some implementations may provide alternate, platform- or vendor-
specific APIs with similar functionality.

Specifically, OpenGL SC is defined targeting EGL 1.4 with the EGL_EXT _-
create_context_robustness and EGL_KHR surfaceless_context extensions.

It is expected that the behavior of the EGL_EXT create_context_robustness
extension is built in to the OpenGL SC version of EGL. In particular, EGL_-
CONTEXT_OPENGL_ROBUST-ACCESS_EXT is implied to be TRUE, and EGL_-
CONTEXT_OPENGL_RESET_NOTIFICATION _STRATEGY_EXT is implied to be
EGL_LOSE_CONTEXT_ON_RESET_EXT. This ensures that robust behavior is al-
ways enabled.

It is also expected that the behavior of the EGL_KHR _surfaceless_context ex-
tension is built into the OpenGL SC version of EGL. In particular, eglMakeCurrent
is relaxed to allow EGL_NO_SURFACE for draw and read surfaces.

Version 2.0.1 (July 24, 2019)

Chapter 2

OpenGL SC Operation

2.1 OpenGL SC Fundamentals

OpenGL SC (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms, such as the Khronos
OpenKODE API, to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each primi-
tive is a point, line segment, or triangle. Each mode may be changed independently;
the setting of one does not affect the settings of others (although many modes may
interact to determine what eventually ends up in the framebuffer). Modes are set,
primitives specified, and other GL operations described by sending commands in
the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a triangle where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all pre-

2.1. OPENGL SC FUNDAMENTALS 6

viously invoked GL commands. In general, the effects of a GL command on either
GL modes or the framebuffer must be complete before any subsequent command
can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). A server may maintain a number of GL contexts,
each of which is an encapsulation of current GL state. A client may choose to con-
nect to any one of these contexts. Issuing GL commands when the program is not
connected to a context results in the commands being ignored.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs, such as EGL.
Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,

Version 2.0.1 (July 24, 2019)

2.1. OPENGL SC FUNDAMENTALS 7

and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of numeric computations during the course of its
operation.

Implementations will normally perform computations in floating-point, and
must meet the range and precision requirements defined under ’Floating-Point
Computation” below.

These requirements only apply to computations performed in GL operations
outside of vertex and fragment execution (see sections 2.11 and 3.8), such as tex-
ture image specification and per-fragment operations. Range and precision require-
ments during shader execution differ and are as specified by the OpenGL ES Shad-
ing Language Specification.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented or how
operations on them are to be performed. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
10°. The maximum representable magnitude for floating-point values must be at
least 2’2, 2-0=0-2=0. 1o =z-1=2. 24+0=0+z =x 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that

Version 2.0.1 (July 24, 2019)

2.1. OPENGL SC FUNDAMENTALS 8

requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or
a denormalized number to a GL command yields predictable results, while provid-
ing a NaN or an infinity yields unspecified results. The identities specified above
do not hold if the value of z is not a floating-point number.

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values.

In the remainder of this section, when an integer type defined in table 2.2 is
being discussed, b denotes the minimum required bit width of the integer type as
defined in the table. The formulas for conversion to and from unsigned integers
also apply to pixel components packed into unsigned integers (see section 3.6.2),
but b in these cases is defined by the specific packed pixel format and component
being converted.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Integer to Floating-Point

Normalized unsigned integers represent numbers in the range [0, 1]. The conver-
sion from a normalized unsigned integer c¢ to the corresponding floating-point f is

defined as
c

I=3_1
Normalized signed integers represent numbers in the range [—1,1]. The con-
version from a normalized signed integer c to the corresponding floating-point f is

defined as
C
f = max {2171_1, —10}

Version 2.0.1 (July 24, 2019)

2.2. GL STATE 9

Conversion from Floating-Point to Integer

The conversion from a floating-point value f to the corresponding normalized un-
signed integer c is defined by first clamping f to the range [0, 1], then computing

fl=fx@2=1).

f is then cast to an unsigned integer value with exactly b bits of precision.
The conversion from a floating-point value f to the corresponding normalized
signed integer c is defined by first clamping f to the range [—1, 1], then computing

_fx@-1)-1

f 5

/' is then cast to a signed integer value with exactly b bits of precision.

Conversion from Floating-Point to Framebuffer Fixed-Point

When floating-point values are to be written to the fixed-point color or depth
buffers, they must initially lie in [0,1]. Values are converted (by rounding to
nearest) to a fixed-point value with m bits, where m is the number of bits allo-
cated to the corresponding R, G, B, A, or depth buffer component. We assume
that the fixed-point representation used represents each value k/(2™ — 1), where
ke {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). m must be at least as large as the number of bits in the corresponding com-
ponent of the framebuffer. m must be at least 2 for A if the framebuffer does not
contain an A component, or if there is only 1 bit of A in the framebuffer.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

Version 2.0.1 (July 24, 2019)

2.3. GL COMMAND SYNTAX 10

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.6.1. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix C. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name followed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 32-bit integer or
single-precision floating-point. The final character, if present, is v, indicating that
the command takes a pointer to an array (a vector) of values rather than a series of
individual arguments. Two specific examples:

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

and
void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 2.0.1 (July 24, 2019)

2.3. GL COMMAND SYNTAX 11

’ Letter ‘ Corresponding GL Type

1 int
f float

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table 2.2 for definitions of the GL types.

rtype Name{e1234}{c i f}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected. € indicates no character. The
arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.
The N arguments argl through arg N have type T, which corresponds to one of the
type letters or letter pairs as indicated in Table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then IV is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

void Uniform1f(int location, float value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, £loat v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the 13 types (or pointers to one of these) summarized in Table 2.2.

Version 2.0.1 (July 24, 2019)

2.3. GL COMMAND SYNTAX

GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 Signed binary integer
ubyte 8 Unsigned binary integer
char 8 characters making up strings
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value

12

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr and sizeiptr must be sufficiently large as to store any address.

Version 2.0.1 (July 24, 2019)

2.4. BASIC GL OPERATION 13

Per-Vertex
Operations
ot Per-Fragment
Primitive =1 Rasterization =] Operations —»1 Framebuffer
Assembly
A A
Texture
Memory
> Pixel
Operations

Figure 2.1. Block diagram of the GL.

The mapping of GL data types to data types of a specific language binding are
part of the language binding definition and may be platform-dependent. Type con-
version and type promotion behavior when mixing actual and formal arguments of
different data types are specific to the language binding and platform. For example,
the C language includes automatic conversion between integer and floating-point
data types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages.

The first stage operates on geometric primitives described by vertices: points,
line segments, and triangles. In this stage vertices are transformed and lit, and
primitives are clipped to a viewing volume in preparation for the next stage, ras-
terization. The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or triangle. Each
fragment so produced is fed to the next stage that performs operations on individ-

Version 2.0.1 (July 24, 2019)

2.5. GL ERRORS 14

ual fragments before they finally alter the framebuffer. These operations include
conditional updates into the framebuffer based on incoming and previously stored
depth values (to effect depth buffering), blending of incoming fragment colors with
stored colors, and other operations on fragment values, such as masking (see chap-
ter 4).

Values may also be read back from the framebuffer. These transfers may in-
clude some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

From a safety critical point of view there are two types of error condition that
can occur; deterministic or non-deterministic. It is advised for non-deterministic
errors, those that leave the run-time in an unknown state or unstable condition, to
not continue working with the current runtime instance and abort.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, the com-
mand generating the error is ignored so that it has no effect on GL state or frame-
buffer contents. If the generating command returns a value, it returns zero. If

Version 2.0.1 (July 24, 2019)

2.6. GRAPHICS RESET RECOVERY 15

the generating command modifies values through a pointer argument, no change
is made to these values. These error semantics apply only to GL errors, including
OUT_OF_MEMORY, but not to system errors such as memory access errors. Exten-
sions may change behavior that would otherwise generate errors in an unextended
GL implementation.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the er-
ror INVALID_ENUM error is generated. This is the case even if the argument
is a pointer to a symbolic constant, if the value pointed to is not allowable
for the given command.

o If a negative number is provided where an argument of type sizei is spec-
ified, the error INVALID_VALUE is generated.

e If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

o If the GL context has been reset as a result of a previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT_-
LOST error is generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

e NO_ERROR indicates that the GL context has not been in a reset state since
the last call

Version 2.0.1 (July 24, 2019)

2.6. GRAPHICS RESET RECOVERY 16

e GUILTY_CONTEXT_RESET indicates that a reset has been detected that is
attributable to the current GL context

e INNOCENT_CONTEXT_ RESET indicates a reset has been detected that is not
attributable to the current GL context

e UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and
may be queried by calling Getlntegerv with the symbolic constant RESET_—
NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR °.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
a lost context and require creating a new context as described above. In this case
GetGraphicsResetStatus will return an appropriate value from those described
above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context 3.

After a graphics reset has occurred on a context, subsequent GL. commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

e GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and recreate the context

e Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application.

2 In this case it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

3 The values returned by GetGraphicsResetStatus in the different contexts may differ.

Version 2.0.1 (July 24, 2019)

2.7. PRIMITIVES AND VERTICES 17
Error Description Offending com- | Advisory
mand ignored? Action

INVALID_ ENUM enum argument out of | Yes continue
range

INVALID_FRAMEBUFFER_OPERATION || Framebuffer is incom- | Yes continue
plete

INVALID VALUE Numeric argument out | Yes continue
of range

INVALID_OPERATION Operation illegal in | Yes continue
current state

OUT_OF_MEMORY Not enough memory | Unknown abort
left to execute com-
mand

CONTEXT_LOST Context has been lost | Except as noted | continue

and reset by the driver | for
command

specific

Table 2.3: Summary of GL errors

2.7 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a series of generic attribute
sets using vertex arrays (see section 2.9). There are seven geometric objects that are
drawn this way: points, connected line segments (line strips), line segment loops,
separated line segments, triangle strips, triangle fans, and separated triangles.

Each vertex is specified with multiple generic vertex attributes. Each attribute
is specified with one, two, three, or four scalar values. Generic vertex attributes can
be accessed from within vertex shaders (section 2.11) and used to compute values
for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its multiple
generic vertex attribute sets. After vertex shader execution, the state required by a
processed vertex is its screen-space coordinates and any varying outputs written by
the vertex shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or triangle) from a sequence of vertices. After a primitive is formed,

Version 2.0.1 (July 24, 2019)

2.7. PRIMITIVES AND VERTICES

18

Coordinates
> > —-
Vert Li SPomt, t Point culling,
ertex Shaded ine >egment, or Line Segment -
Shadgr Vertices Tt:lar_!gle or Triangle Rasterization
Execution (Primitive) cliopin
Assembly pping
Varying
Outputs
Generic Primitive type
Vertex (from DrawArrays or
Attributes

DrawRangeElements mode)

Figure 2.2. Vertex processing and primitive assembly.

Version 2.0.1 (July 24, 2019)

2.7. PRIMITIVES AND VERTICES 19

it is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates and varying outputs. In the case of line and triangle primitives, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have varying outputs associated with them.

2.7.1 Primitive Types

A sequence of vertices is passed to the GL using the commands DrawArrays or
DrawRangeElements (see section 2.9). There is no limit to the number of vertices
that may be specified, other than the size of the vertex arrays.

The mode parameter of these commands determines the type of primitives to
be drawn using these coordinate sets. The types, and the corresponding mode
parameters, are:

Points. A series of individual points may be specified with mode POINTS.
Each vertex defines a separate point.

Line Strips. A series of one or more connected line segments may be specified
with mode LINE_STRIP. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point while the second vertex specifies
the first segment’s endpoint and the second segment’s start point. In general, the
ith vertex (for ¢ > 1) specifies the beginning of the ith segment and the end of the
¢ — 1st. The last vertex specifies the end of the last segment. If only one vertex is
specified, then no primitive is generated.

The required state consists of the processed vertex produced from the preceding
vertex that was passed (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops may be specified with mode LINE_LOOP. Loops are
the same as line strips except that a final segment is added from the final specified
vertex to the first vertex.

The required state consists of the processed first vertex, in addition to the state
required for line strips.

Separate Lines. Individual line segments, each specified by a pair of vertices,
may be specified with mode L.INES. The first two vertices passed define the first
segment, with subsequent pairs of vertices each defining one more segment. If the
number of specified vertices is odd, then the last one is ignored. The required state
is the same as for line strips but it is used differently: a processed vertex holding
the first endpoint of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges, specified by giving a series of defining vertices with mode TRIANGLE_—
STRIP. In this case, the first three vertices define the first triangle (and their order

Version 2.0.1 (July 24, 2019)

2.7. PRIMITIVES AND VERTICES 20

NN

1 3

(@) (b) ()

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

is significant). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. If fewer than three vertices are speci-
fied, no primitives are produced. See Figure 2.3.

The required state to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. The pointer is initialized to point to vertex A. Each successive
vertex toggles the pointer. Therefore, the first vertex is stored as vertex A, the
second stored as vertex B, the third stored as vertex A, and so on. Any vertex after
the second one sent forms a triangle from vertex A, vertex B, and the current vertex
(in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one excep-
tion: each vertex after the first always replaces vertex B of the two stored vertices.
Triangle fans are specified with mode TRIANGLE_FAN.

Separate Triangles. Separate triangles are specified with mode TRIANGLES.
In this case, The 3¢ + 1st, 37 4+ 2nd, and 37 + 3rd vertices (in that order) determine
a triangle for each ¢ = 0,1, ..., n — 1, where there are 3n + k vertices drawn. k is
either 0, 1, or 2; if k is not zero, the final k vertices are ignored. For each triangle,
vertex A is vertex 3¢ and vertex B is vertex 3¢ + 1. Otherwise, separate triangles
are the same as a triangle strip.

The order of the vertices in a triangle generated from a triangle strip, trian-

Version 2.0.1 (July 24, 2019)

2.8. CURRENT VERTEX STATE 21

gle fan, or separate triangles is significant in polygon rasterization and fragment
shading (see sections 3.5.1 and 3.8.2).

2.8 Current Vertex State

Vertex shaders (see section 2.11) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered 0, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.9. A current
value may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{f}(uint index, T values);
void VertexAttrib{1234}{f}v(uint index, T values);

to load the given value(s) into the current generic attribute for slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to O and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates. The error INVALID_VALUE is
generated if index is greater than or equal to MAX_VERTEX_ATTRIBS.

The VertexAttrib* commands can also be used to load attributes declared as a
2x 2,3 x 3 or 4 x4 matrix in a vertex shader. Each column of a matrix takes up one
generic 4-component attribute slot out of the MAX_VERTEX_ATTRIBS available
slots. Matrices are loaded into these slots in column major order. Matrix columns
need to be loaded in increasing slot numbers.

The state required to support vertex specification consists of MAX_VERTEX_ -
ATTRIBS four-component floating-point vectors to store generic vertex attributes.
The initial values for all generic vertex attributes are (0, 0,0, 1).

2.9 Vertex Arrays

Vertex data is placed into arrays stored in the client’s address space (described
here) or in the server’s address space (described in section 2.10). Blocks of data in
these arrays may then be used to specify multiple geometric primitives through the
execution of a single GL command. The client may specify up to MAX_VERTEX_—
ATTRIBS arrays specifying one or more generic vertex attributes. The command

Version 2.0.1 (July 24, 2019)

2.9. VERTEX ARRAYS 22

Command Sizes \Normalized Types

VertexAttribPointer | 1,2,3,4 | flag byte, ubyte, short,
ushort, float

Table 2.4: Vertex array sizes (values per vertex) and data types. The “normalized”
column indicates whether integer types are accepted directly or normalized to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). For generic vertex attributes,
integer data are normalized if and only if the VertexAttribPointer normalized flag
is set.

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

describes the locations and organizations of these arrays. fype specifies the data
type of the values stored in the array. size indicates the number of values per vertex
that are stored in the array. Table 2.4 indicates the allowable values for size and
type. For type the values BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, and
FLOAT, indicate types byte, ubyte, short, ushort, and f1oat, respectively.
The error INVALID_VALUE is generated if size is specified with a value other than
that indicated in the table.

The index parameter in the VertexAttribPointer command identifies the
generic vertex attribute array being described. The error INVALID_VALUE is gen-
erated if index is greater than or equal to MAX_VERTEX_ATTRIBS. The normalized
parameter in the VertexAttribPointer command identifies whether integer types
should be normalized when converted to floating-point. If normalized is TRUE, in-
teger data are converted as specified in section 2.1.2; otherwise, the integer values
are converted directly.

The one, two, three, or four values in an array that correspond to a single
generic vertex attribute comprise an array element. The values within each array
element are stored sequentially in memory. If stride is specified as zero, then array
elements are stored sequentially as well. The error INVALID_VALUE is generated
if stride is negative. Otherwise pointers to the ith and (i 4 1)st elements of an array
differ by stride basic machine units (typically unsigned bytes), the pointer to the
(7 4 1)st element being greater. For each command, pointer specifies the location
in memory of the first value of the first element of the array being specified.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);

Version 2.0.1 (July 24, 2019)

2.9. VERTEX ARRAYS 23

void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-—
VERTEX_ATTRIBS.

Transferring Array Elements

When an array element ¢ is transferred to the GL by the DrawArrays or
DrawRangeElements commands, each generic attribute is expanded to four com-
ponents. If size is one then the x component of the attribute is specified by the
array; the y, z, and w components are implicitly set to zero, zero, and one, respec-
tively. If size is two then the x and y components of the attribute are specified by
the array; the z, and w components are implicitly set to zero, and one, respectively.
If size is three then z, y, and z are specified, and w is implicitly set to one. If size
is four then all components are specified.

The command

void DrawArrays(enum mode, int first, sizei count);

constructs a sequence of geometric primitives by successively transferring ele-
ments first through first + count — 1 of each enabled array to the GL. mode
specifies what kind of primitives are constructed, as defined in section 2.7.1. If
an array corresponding to a generic attribute required by a vertex shader is not en-
abled, then the corresponding element is taken from the current generic attribute
state (see section 2.8).

Specifying first < 0O results in generating the error INVALID_VALUE.

The command

void DrawRangeElements(enum mode, uint start, uint end,
sizei count, enum type, constvoid *indices);

constructs a sequence of geometric primitives by successively transferring the
count elements whose indices are stored in indices to the GL. The ith element
transferred by DrawRangeElements will be taken from element ¢ndices[¢] of
each enabled array. fype must be UNSIGNED_SHORT, indicating that the values
in indices are indices of GL type ushort. mode specifies what kind of primitives
are constructed; it accepts the same values as the mode parameter of DrawArrays.
If an array corresponding to a generic attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current generic attribute
state (see section 2.8).

Version 2.0.1 (July 24, 2019)

2.10. BUFFER OBJECTS 24

Name Type Initial Value | Legal Values

BUFFER_SIZE | integer 0 any non-negative integer

BUFFER_USAGE | enum STATIC_DRAW | STATIC_DRAW, DYNAMIC_DRAW, STREAM_DRAW

Table 2.5: Buffer object parameters and their values.

If the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the client state required to implement vertex ar-
rays consists of n boolean values, n memory pointers, n integer stride values, n
symbolic constants representing array types, n integers representing values per
element, and n boolean values indicating normalization. In the initial state, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, and the integers representing values per
element are each four.

2.10 Buffer Objects

The vertex data arrays described in section 2.9 are stored in client memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero reserved
for the GL. A buffer object is created by binding a buffer object name obtained by
calling GenBuffers to ARRAY_BUFFER. The binding is effected by calling

void BindBuffer(enum farget, uint buffer);

with target set to ARRAY_BUFFER and buffer set to the object buffer name obtained
from GenBuffers. The resulting buffer object is a new state vector, initialized with
a zero-sized memory buffer, and comprising the state values listed in Table 2.5.
Calling BindBuffer with a buffer object name not obtained by GenBuffers will
result in a INVALID_OPERATION error.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

Version 2.0.1 (July 24, 2019)

2.10. BUFFER OBJECTS 25

In the initial state the reserved name zero is bound to ARRAY_BUFFER. There
is no buffer object corresponding to the name zero, so client attempts to modify
or query buffer object state for the target ARRAY_BUFFER while zero is bound will
generate GL errors.

Buffer objects cannot be deleted.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object.

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with farget set to ARRAY_BUFFER, size set to the size of the data store in basic
machine units, and data pointing to the source data in client memory. If data is
non-null, then the source data is copied to the buffer object’s data store. If data is
null, then the contents of the buffer object’s data store are uninitialized.

usage is specified as one of three enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing commands.

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source of a GL drawing command.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData sets the values of the buffer object’s state variables as shown in
table 2.6. Once established these values are considered immutable and cannot
be changed. Attempting to change these state variables of a buffer object once
established will result in an INVALID_ OPERATION €error.

Version 2.0.1 (July 24, 2019)

2.10. BUFFER OBJECTS 26

Name ‘ Value ‘

BUFFER_SIZE size
BUFFER_USAGE | usage

Table 2.6: Buffer object initial state.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /V basic machine units be a multiple of V.

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to ARRAY_BUFFER. offset and size indicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units. data specifies
a region of client memory size basic machine units in length, containing the data
that replace the specified buffer range. An INVALID_VALUE error is generated
if offset or size is less than zero, or if offset 4+ size is greater than the value of
BUFFER_SIZE.

2.10.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays.

The client state associated with each vertex array type includes a buffer object
binding point. The commands that specify the locations and organizations of vertex
arrays copy the buffer object name that is bound to ARRAY_BUFFER to the binding
point corresponding to the vertex array of the type being specified. For example,
the VertexAttribPointer command copies the value of ARRAY_BUFFER_BINDING
(the queryable name of the buffer binding corresponding to the target ARRAY_ -
BUFFER) to the client state variable VERTEX_ATTRIB_ARRAY_ BUFFER_BINDING
for the specified index.

Rendering commands DrawArrays and DrawRangeElements operate as pre-
viously defined, except that data for enabled generic attribute arrays are sourced
from buffers if the array’s buffer binding is non-zero. When an array is sourced

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 27

from a buffer object, the pointer value of that array is used to compute an offset, in
basic machine units, into the data store of the buffer object. This offset is computed
by subtracting a null pointer from the pointer value, where both pointers are treated
as pointers to basic machine units®.

It is acceptable for generic vertex attribute arrays to be sourced from any com-
bination of client memory and various buffer objects during a single rendering
operation.

2.10.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY_ BUFFER, indicating that DrawRangeElements is to source its
indices from arrays passed as the indices parameters.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.10.

The commands BufferData and BufferSubData may be used with target set
to ELEMENT_ARRAY_BUFFER. In such event, these commands operate in the same
fashion as described in section 2.10, but on the buffer currently bound to the
ELEMENT ARRAY BUFFER target.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawRangeElements sources its indices from that buffer object, using elements
of the indices parameter as offsets into the buffer object in the same fashion as
described in section 2.10.1.

Buffer objects created by binding an unused name to ARRAY_BUFFER and to
ELEMENT_ARRAY_ BUFFER are formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

2.11 Vertex Shaders

Vertices specified with DrawArrays or DrawRangeElements are processed by
the vertex shader. Each vertex attribute consumed by the vertex shader (see sec-

* To resume using client-side vertex arrays after a buffer object has been bound, call Bind-
Buffer(ARRAY_BUFFER,0) and then specify the client vertex array pointer using the appropriate
command from section 2.9.

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 28

tion 2.11.2) is set to the corresponding generic vertex attribute value from the array
element being processed, or from the corresponding current generic attribute if no
vertex array is bound for that attribute.

After shader execution, processed vertices are passed on to primitive assembly
(see section 2.12).

A vertex shader contains source code for the operations that are meant to occur
on each vertex that is processed. The language used for vertex shaders is described
in the OpenGL ES Shading Language Specification.

To use a vertex shader, shader source code is first compiled off-line into
a shader object. Shader objects are linked off-line into a program binary ob-
Jject which generates executable code from the specified compiled shader objects.
When a linked program binary object is used as the current program object, the
executable code for the vertex shaders it contains is used to process vertices

In addition to vertex shaders, fragment shaders are also compiled off-line into
shader objects. Fragment shaders affect the processing of fragments during raster-
ization, and are described in section 3.8.

A single program binary object must contain both a vertex and a fragment
shader.

2.11.1 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, 0 will be
returned. Program objects cannot be deleted and once a program binary object is
loaded into program object, it cannot be replaced.

To load a pre-compiled program binary into a program object, use the com-
mand

void ProgramBinary(uint program, enum binaryformat,
const void *binary, sizei length);

This command will copy the pre-compiled program binary object of size length
from binary into the program object program. Calling ProgramBinary with a

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 29

program that already has a program binary object will generate an INVALID_—
OPERATION error and the existing program binary object is not modified.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL SC defines no specific binary for-
mats, but does provide a mechanism to obtain token values for such formats pro-
vided by extensions. The number of program binary formats supported can be
obtained by querying the value of NUM_PROGRAM_BINARY_FORMATS. The list
of specific binary formats supported can be obtained by querying the value of
PROGRAM_BINARY FORMATS.

When a program object has a program binary object loaded, it can be made part
of the current rendering state with the command

void UseProgram(uint program);

This command will install the executable code as part of current rendering state if
the program object program contains a successfully loaded program binary. If Use-
Program is called with program set to zero, then the current rendering state refers
to an invalid program object, and no vertex or fragment shader executions due to
any DrawArrays or DrawRangeElements commands are performed. However,
this is not an error. If program does not contain a successfully loaded program bi-
nary, the error INVALID_OPERATION is generated and the current rendering state
is not modified.

2.11.2 Shader Variables

A vertex shader can reference a number of variables as it executes. Vertex attributes
are the per-vertex values specified in section 2.8. Uniforms are per-program vari-
ables that are constant during program execution. Samplers are a special form of
uniform used for texturing (section 3.7). Varying variables hold the results of ver-
tex shader execution that are used later in the pipeline. The following sections
describe each of these variable types.

Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This is automatically assigned by
the GL when the program is linked.

When an attribute variable declared as a f1oat, vec2, vec3 or vec4 is bound
to a generic attribute index 4, its value(s) are taken from the z, (z,y), (z,y, z), or
(x,y, z, w) components, respectively, of the generic attribute <. When an attribute

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 30

variable is declared as a mat2, its matrix columns are taken from the (z,y) com-
ponents of generic attributes ¢ and ¢ + 1. When an attribute variable is declared
as a mat 3, its matrix columns are taken from the (x,y, z) components of generic
attributes ¢ through ¢ + 2. When an attribute variable is declared as a mat4, its
matrix columns are taken from the (z,y, z, w) components of generic attributes i
through ¢ + 3.

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed.
Attribute variables that are declared in a vertex shader but never used are not con-
sidered active. In cases where the compiler and linker cannot make a conclusive
determination, an attribute will be considered active. A program object will fail to
link if the number of active vertex attributes exceeds MAX_VERTEX_ATTRIBS.

The bindings of attribute variable names to indices can be queried using the
command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program was not successfully
loaded, the error INVALID_OPERATION is generated. If name is not an active
attribute, or if an error occurs, -1 will be returned.

Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL ES
Shading Language Specification. Values for these uniforms are constant over a
primitive, and typically they are constant across many primitives. Uniforms are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used. A uniform is considered active if it
is determined by the compiler and linker that the uniform will actually be accessed
when the code is executed. In cases where the compiler and linker cannot make a
conclusive determination, the uniform will be considered active.

The amount of storage available for uniform variables accessed by a vertex
shader is specified by the implementation-dependent constant MAX_VERTEX_—
UNIFORM_VECTORS. This value represents the number of four-element floating-
point, integer, or boolean vectors that can be held in uniform variable storage for a
vertex shader. A link error will be generated if an attempt is made to utilize more
than the space available for vertex shader uniform variables.

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 31

When a program is successfully loaded, all active uniforms belonging to the
program object are initialized to zero (FALSE for booleans). A successful link will
generate a location for each active uniform. The values of active uniforms can be
changed using this location and the appropriate Uniform* command (see below).

To find the location of an active uniform variable within a program object, use
the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name. name must be a
null terminated string, without white space. The value -1 will be returned if name
does not correspond to an active uniform variable name in program or if name starts
with the reserved prefix "gl_". If program has not been successfully loaded, the
error INVALID_OPERATION is generated.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0]". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

To load values into the uniform variables of the program object that is currently
in use, use the commands

void Uniform{1234}{if}(int location, T value);

void Uniform{1234}{if}v(int location, sizei count,
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

The given values are loaded into the uniform variable location identified by loca-
tion.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 32

array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. The matrix is
specified in column-major order. transpose must be FALSE.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, both the Uniform*i{v} and
Uniform*f{v} set of commands can be used to load boolean values. Type conver-
sion is done by the GL. The uniform is set to FALSE if the input value is 0 or 0.0f,
and set to TRUE otherwise. The Uniform* command used must match the size of
the uniform, as declared in the shader. For example, to load a uniform declared
as a bvec2, either Uniform2i{v} or Uniform2f{v} can be used. An INVALID -
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example using Uniform1liv would generate an error.

For all other uniform types the Uniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must
be used. To load a 3x3 matrix, UniformMatrix3fv must be used. An INVALID -
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniform4i{v} would generate an
erTor.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If the transpose parameter to any of the UniformMatrix* commands is
not FALSE, an INVALID_VALUE error is generated, and no uniform values are
changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 33

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

o if there is no program object currently in use.

Samplers

Samplers are special uniforms used in the OpenGL ES Shading Language to
identify the texture object used for each texture lookup. The value of a sam-
pler indicates the texture image unit being accessed. Setting a sampler’s value
to ¢ selects texture image unit number ¢. The values of ¢ range from zero to the
implementation-dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform™* entry points is not allowed and
will result in an INVALID_OPERATION eITor.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The off-
line linker determines if a sampler is active or not. The off-line linker will attempt
to determine if the active samplers in the shader(s) contained in the program ob-
ject exceed the maximum allowable limits. If it determines that the count of active
samplers exceeds the allowable limits, then the link fails (these limits can be dif-
ferent for different types of shaders). Each active sampler variable counts against
the limit, even if multiple samplers refer to the same texture image unit. If this
cannot be determined at link time, then it will be determined at the next rendering
command issued, and an INVALID_OPERATION error will then be generated.

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 34

Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL ES
Shading Language specification). These values are expected to be interpolated
across the primitive being rendered. The OpenGL ES Shading Language specifi-
cation defines a set of built-in varying variables for vertex shaders corresponding
to values required for rasterization following vertex processing.

The number of interpolators available for processing varying variables is given
by the implementation-dependent constant MAX_VARYING_VECTORS. This value
represents the number of four-element floating-point vectors that can be interpo-
lated; varying variables declared as matrices or arrays will consume multiple in-
terpolators. When a program is linked, any varying variable written by a vertex
shader, or read by a fragment shader, will count against this limit. The transformed
vertex position (gl_Position) is not a varying variable and does not count
against this limit. A program whose shaders access more than MAX_VARYING_-
VECTORS worth of varying variables may fail to link, unless device-dependent op-
timizations are able to make the program fit within available hardware resources.

2.11.3 Shader Execution

If a successfully loaded program object that contains a vertex shader is made cur-
rent by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values.

There are several special considerations for vertex shader execution described
in the following sections.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map, if supported by
the GL implementation. The maximum number of texture image units available to
a vertex shader is MAX_VERTEX_TEXTURE_IMAGE_UNITS; a maximum number of
zero indicates that the GL implementation does not support texture accesses in ver-
tex shaders. The maximum number of texture image units available to the fragment
stage of the GL is MAX_TEXTURE_IMAGE_UNITS. Both the vertex shader and frag-
ment processing combined cannot use more than MAX_COMBINED_TEXTURE_—
IMAGE_UNITS texture image units. If both the vertex shader and the fragment
processing stage access the same texture image unit, then that counts as using two
texture image units against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.
When a texture lookup is performed in a vertex shader, the filtered texture value
7 is computed in the manner described in sections 3.7.6 and 3.7.7, and converted to

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 35

a texture source color C; according to table 3.9 (section 3.8.2). A four-component
vector (R, G, Bs, Ay) is returned to the vertex shader.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.7.6. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value [,
then the pre-bias level-of-detail value \pqse(x,y) = [(replacing equation 3.11). If
the texture lookup function does not supply an explicit level-of-detail value, then
Mbase(z,y) = 0. The scale factor p(z,y) and its approximation function f(x,y)
(see equation 3.12) are ignored.

Using a sampler in a vertex shader will return (R, G, B, A) = (0,0, 0, 1) under
the same conditions as defined for fragment shaders under “Texture Access” in
section 3.8.2.

Out-of-Bounds Robustness Behavior

GL commands operating on buffer objects will detect attempts to read from or
write to a location in a bound buffer object at an offset less than zero, or greater
than or equal to the buffers size. When such an attempt is detected, a GL error
is generated. Any command unable to generate a GL error, such as buffer object
accesses from the active program, will not read or modify memory outside of the
data store of the buffer object and will not result in GL interruption or termination.

Out-of-bounds accesses will be bounded within the working memory of the
active program, cannot access memory owned by other GL contexts, and will not
result in abnormal program termination. Out-of-bounds access to local and global
variables cannot read values from other program invocations.

Out-of-bounds accesses to arrays of resources, such as an array of textures, can
only access the data of bound resources. Reads from unbound resources return
zero and writes are discarded. It is not possible to access data owned by other GL
contexts unless context sharing is enabled.

Out-of-bounds buffer object reads may return any of the following values:

e Values from anywhere within the buffer object.

e Zero values, or (0,0,0,x) vectors for vector reads where x is a valid value
represented in the type of the vector components and may be any of

0, 1, or the maximum representable positive integer value, for signed or
unsigned integer components

Version 2.0.1 (July 24, 2019)

2.11. VERTEX SHADERS 36

0.0 or 1.0, for floating-point components

However, indices within the element array that reference vertex data that lies
outside the enabled attribute’s vertex buffer object result in reading zero.

Applications that require defined behavior for out-of-bounds accesses should
range check all computed indices before dereferencing the array, vector or matrix.

2.11.4 Required State

The GL maintains state to indicate which program object names are in use. Ini-
tially, no program objects exist, and no names are in use.
The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the status of the last load attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initially FALSE.
e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

e An integer holding the number of active uniforms.

e For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

e An array of words that hold the values of each active uniform.
e An integer holding the number of active attributes.

e For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-

gram object. Initially the current program object is invalid, as if UseProgram had
been called with program set to zero.

Version 2.0.1 (July 24, 2019)

2.12. PRIMITIVE ASSEMBLY AND POS'T-SHADER VERTEX PROCESSING37

2.12 Primitive Assembly and Post-Shader Vertex Process-
ing

Following vertex processing, vertices are assembled into primitives according to
the mode argument of the drawing command (see sections 2.7.1 and 2.9). The
steps of primitive assembly are described in the remaining sections of this chapter
and include

Perspective division on clip coordinates (section 2.13).

Viewport mapping, including depth range scaling (section 2.13.1).

Primitive clipping (section 2.14).

Clipping varying outputs (section 2.14.1).

2.13 Coordinate Transformations

Vertex shader execution yields a vertex coordinate gl_Position which is as-
sumed to be in clip coordinates. Perspective division is carried out on clip coordi-
nates to yield normalized device coordinates, followed by a viewport transforma-
tion to convert these coordinates into window coordinates (see figure 2.4).

Clip coordinates are four-dimensional homogeneous vectors consisting of x, ¥,
z, and w coordinates (in that order). If a vertex’s clip coordinates are

then the vertex’s normalized device coordinates are

Tc

We
_ Y
Ya | = | wo
e
Zd "

2.13.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, p, and p,, respectively, and its center (0., 0,) (also in pixels). The vertex’s

Version 2.0.1 (July 24, 2019)

2.13. COORDINATE TRANSFORMATIONS 38

Normalized Window
Device Coordinates Coordinates

p—

Clip Coordinates

Perspective
Division

Viewport
Transformation

Figure 2.4. Vertex transformation sequence.

L
window coordinates, | vy, | , are given by
Zw
Loy %xd + 0z
Yw | = %yd + 0y

The factor and offset applied to z4 encoded by n and f are set using
void DepthRangef(float n, float f);

Each of n and fare clamped to lie within [0, 1], as are all arguments of type f1loat.
zw 18 taken to be represented in fixed-point with at least as many bits as there are
in the depth buffer of the framebuffer, as described for framebuffer components in
section 2.1.2.

Viewport transformation parameters are specified using

void Viewport(int x, inty, sizeiw, sizeih);

where x and y give the and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport

Version 2.0.1 (July 24, 2019)

2.14. PRIMITIVE CLIPPING 39

parameters shown in the above equations are found from these values as 0, = r+7%
and o, :y—l—%;pz =w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see Chapter 6). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered to. INVALID_VALUE is generated if either w or A is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and & are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If no default framebuffer is associated with the GL context (see chapter 4),
then w and h are initially set to zero. o, and o, are set to % and %, respectively. n
and f are set to 0.0 and 1.0, respectively.

2.14 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the clip volume is
defined by

—we < xe < We

—We < Ye < We

—wWe < Ze < We.

If the primitive under consideration is a point, then clipping discards it if it lies
outside the near or far clip plane; otherwise it is passed unchanged.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely inside the near and far clip planes, and discards it if it lies entirely outside
these planes.

If part of the line segment lies between the near and far clip planes, and part
lies outside, then the line segment is clipped against these planes and new vertex
coordinates are computed for one or both vertices.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and Po, then ¢ is given by

P =tP; + (1 —t)Py.

If the primitive is a triangle, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Clip-
ping may cause triangle edges to be clipped, but because connectivity must be
maintained, these clipped edges are connected by new edges that lie along the clip

Version 2.0.1 (July 24, 2019)

2.14. PRIMITIVE CLIPPING 40

volume’s boundary. Thus, clipping may require the introduction of new vertices
into a triangle, creating a more general polygon.

If it happens that a triangle intersects an edge of the clip volume’s boundary,
then the clipped triangle must include a point on this boundary edge.

A line segment or triangle whose vertices have w, values of differing signs may
generate multiple connected components after clipping. GL implementations are
not required to handle this situation. That is, only the portion of the primitive that
lies in the region of w. > 0 need be produced by clipping.

2.14.1 Clipping Varying Outputs

Next, vertex shader varying variables are clipped. The varying values associated
with a vertex that lies within the clip volume are unaffected by clipping. If a prim-
itive is clipped, however, the varying values assigned to vertices produced by clip-
ping are clipped values.

Let the varying values assigned to the two vertices P; and Py of an unclipped
edge be c; and cy. The value of ¢ (section 2.14) for a clipped point P is used to
obtain the value associated with P as’

c=tc;+ (1 —1t)co.

(Multiplying a varying value by a scalar means multiplying each of z, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Varying value
clipping is done in the same way, so that clipped points always occur at the intersec-
tion of polygon edges (possibly already clipped) with the clip volume’s boundary.

3 Since this computation is performed in clip space before division by w.., clipped varying values
are perspective-correct.

Version 2.0.1 (July 24, 2019)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure 3.1 diagrams the rasterization process. The color values assigned to a frag-
ment are determined by a fragment shader (as defined in section 3.8), which uses
varying values generated by rasterization operations (sections 3.3 through 3.6.2).
The final depth value is determined by the rasterization operations. The results
from rasterizing a point, line, or polygon are routed through a fragment shader.

A grid square along with its parameters of assigned z (depth) and varying data
is called a fragment; the parameters are collectively dubbed the fragment’s asso-
ciated data. A fragment is located by its lower left corner, which lies on integer
grid coordinates. Rasterization operations also refer to a fragment’s center, which
is offset by (1/2,1/2) from its lower left corner (and so lies on half-integer coor-
dinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Points may be given differing diameters and
line segments differing widths. Multisampling must be used to rasterize antialiased
primitives (see section 3.2).

41

3.1. INVARIANCE 42

Point

Rasterization
From

Line

i \ —
Primitive —————————y Rasterization /

Assembly Program Fragments

Triangle
Rasterization

Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (z, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f’ is offset by (z,y)
from the center of f.

3.2 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and tri-
angles. The technique is to sample all primitives multiple times at each pixel. The
color sample values are resolved to a single, displayable color each time a pixel
is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include

Version 2.0.1 (July 24, 2019)

3.2. MULTISAMPLING 43

depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. The color buffer coexists with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering triangles, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
triangles, object silhouettes, and even intersecting triangles.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values, and sets of varying
values, instead of the single depth value and set of varying values that is main-
tained in single-sample rendering mode. An implementation may choose to assign
the same set of varying values to more than one sample. The location for evalu-
ating the varying values can be anywhere within the pixel including the fragment
center or any of the sample locations. The varying values need not be evaluated at
the same location. Each pixel fragment thus consists of integer x and y grid coor-
dinates, SAMPLES sets of varying values, and a coverage value with a maximum of
SAMPLES bits.

Multisample rasterization cannot be enabled or disabled after a GL context
is created. It is enabled if the value of SAMPLE_BUFFERS is one, and disabled
otherwise .

Multisample rasterization of all primitives differs substantially from single-
sample rasterization. It is understood that each pixel in the framebuffer has
SAMPLES locations associated with it. These locations are exact positions, rather
than regions or areas, and each is referred to as a sample point. The sample points
associated with a pixel may be located inside or outside of the unit square that is
considered to bound the pixel. Furthermore, the relative locations of sample points
may be identical for each pixel in the framebuffer, or they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

"When using EGL to create OpenGL SC context and surfaces, for example, multisample rasteri-
zation is enabled when the EGLConfig used to create a context and surface supports a multisample
buffer.

Version 2.0.1 (July 24, 2019)

3.3. POINTS

It is not possible to query the actual sample locations of a pixel.

3.3 Points

Point size is taken from the shader builtin g1_PointSize and clamped to the
implementation-dependent point size range. The range is determined by the
ALIASED_POINT_SIZE_RANGE and may be queried as described in chapter 6.
The maximum point size supported must be at least one.

Point rasterization produces a fragment for each framebuffer pixel whose cen-
ter lies inside a square centered at the point’s (., ¥), with side length equal to
the point size.

All fragments produced in rasterizing a point are assigned the same associated
data, which are those of the vertex corresponding to the point. However, the g1_ -
PointCoord fragment shader input defines a per-fragment coordinate space (s, t)
where s varies from 0 to 1 across the point horizontally left-to-right, and ¢ ranges
from O to 1 across the point vertically top-to-bottom.

The following formulas are used to evaluate (s, t) values:

1 Tr+i—x
S:*‘FM
2 size
RN R e)
2 size

where size is the point’s size, x y and y are the (integral) window coordinates
of the fragment, and z,, and y,, are the exact, unrounded window coordinates of
the vertex for the point.

3.3.1 Point Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then points are rasterized using the fol-
lowing algorithm. Point rasterization produces a fragment for each framebuffer
pixel with one or more sample points that intersect a region centered at the point’s
(Zw, Yw)- This region is a square with side length equal to the point size. Coverage
bits that correspond to sample points that intersect the region are 1, other cover-
age bits are 0. All data associated with each sample for the fragment are the data
associated with the point being rasterized.

The set of point sizes supported is equivalent to those for points without multi-
sample.

Version 2.0.1 (July 24, 2019)

3.4. LINE SEGMENTS 45

3.4 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line width may be set by calling

void LineWidth(£float width);

with an appropriate positive width to control the width of rasterized line seg-
ments. The default width is 1.0. Values less than or equal to 0.0 generate the
error INVALID_VALUE.

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x s and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zpl + |y —ysl <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py, is contained in Ry. See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of R we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (x4, y,) and (z, yp), respectively. Obtain the perturbed endpoints p/,
given by (24,Ya) — (€, €?) and pj, given by (xp, y») — (€, €%). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj intersects R, except if pj is contained in
Ry. € is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < § < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)
is not drawn. This means that when rasterizing a series of connected line segments,

Version 2.0.1 (July 24, 2019)

3.4.

LINE SEGMENTS 46

Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult

to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by

more than one unit in either = or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

. For an xz-major line, no two fragments may be produced that lie in the same

window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce

Version 2.0.1 (July 24, 2019)

3.4. LINE SEGMENTS 47

duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (74,%q) and let p, = (T4, Ya) and py = (7, yp). Set

(pr - pa)) (pb - pa)
1Py — Pall?
(Note that ¢ = 0 at p, and t = 1 at p;.) The value of an associated datum f for
the fragment, whether it be the clip w coordinate or an element of a vertex shader

varying output, is found as

= 3.1)

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq +t/wp
where f, and fj, are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, the depth value, window

z, must be found using linear interpolation:

f=

(3.2)

f=0=t)fattfo (3.3)

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than one. If rounding the specified width results in the value 0, then it is
as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an z-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.3). Let w be the width rounded to the nearest
integer (if w = O, then it is as if w = 1). If the line segment has endpoints

Version 2.0.1 (July 24, 2019)

3.4. LINE SEGMENTS 48

width =2 width =3

Figure 3.3. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

given by (z,yo) and (x1,y1) in window coordinates, the segment with endpoints
(xo,yo — (w—1)/2) and (x1,y; — (w — 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each = (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates.

3.4.3 Line Rasterization State
The state required for line rasterization consists of the floating-point line width.
The initial value of the line width is 1.0.

3.4.4 Line Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then lines are rasterized using the follow-
ing algorithm. line rasterization produces a fragment for each framebuffer pixel
with one or more sample points that intersect a rectangle centered on the line seg-
ment (see figure 3.4). Two of the edges are parallel to the specified line segment;
each is at a distance of one-half the line width from that segment: one above the

Version 2.0.1 (July 24, 2019)

3.5. POLYGONS 49

Figure 3.4. The region used in rasterizing a multisampled line segment (an x-major
line segment is shown).

segment and one below it. The other two edges pass through the line endpoints and
are perpendicular to the direction of the specified line segment.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Vertex shader varying outputs and depth are
interpolated by substituting the corresponding sample location into equation 3.1,
then using the result to evaluate equation 3.2. An implementation may choose to
assign the same varying values to more than one sample.

Not all widths need be supported for multisampled line segments, but width
1.0 segments must be provided. As with the point width, the GL implementation
may be queried for the range and number of gradations of available multisampled
line widths.

3.5 Polygons
A polygon results from a triangle strip, triangle fan, or series of separate trian-

gles. Like points and line segments, polygon rasterization is controlled by several
variables.

Version 2.0.1 (July 24, 2019)

3.5. POLYGONS 50

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back facing
or front facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

=t o
0= Z al gyl PL il (3.4)
=0

where x!, and ! are the z and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and @1 is (i+ 1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enum dir);

Setting dir to cCw (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) indicates that the sign of a should be re-
versed prior to use. Setting dir to CW (corresponding to clockwise orientation)
uses the sign of a is as computed above. Front face determination requires one bit
of state, and is initially set to CCw.

If the sign of the area computed by equation 3.4 (including the possible reversal
of this sign as indicated by the last call to FrontFace) is positive, the polygon is
front facing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. The CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In

Version 2.0.1 (July 24, 2019)

3.5. POLYGONS 51

such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], witha + b+ ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

P = apq + bpy + cpe,

where pg, py, and p, are the vertices of the triangle. a, b, and ¢ can be found as

_ A(ppbpc) h— A(ppapc) c—= A(ppapb)

A(papore)’ Apapope)’ A(papipe)’

where A (Imn) denotes the area in window coordinates of the triangle with vertices
[, m, and n.

Denote a datum at p,, pp, Or pe as fq, fp, or fe, respectively. Then the value f
of a datum at a fragment produced by rasterizing a triangle is given by

afa/wa + bfb/wb + Cfc/wc

a/wg + b/wp + ¢/w,
where w,, w, and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, the depth value, window z, must be
found using linear interpolation:

f=

(3.5)

f=afa+bfp+cfe

3.5.2 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

Version 2.0.1 (July 24, 2019)

3.5. POLYGONS 52

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

0z 2 0z 2
m—\/ (a) *(ay> G0

where (., Yw, 2w) i a point on the triangle. m may be approximated as
0 0
m = max {‘ v v } . (3.7)

Oy OYw
The minimum resolvable difference r is an implementation-dependent con-
stant. It is the smallest difference in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth buffer. All
pairs of fragments generated by the rasterization of two polygons with otherwise
identical vertices, but z,, values that differ by r, will have distinct depth values.
The offset value o for a polygon is

Y

0 = m % factor + r x units. (3.8)

m is computed as described above, as a function of depth values in the range [0,1],
and o is applied to depth values in the same range.

Boolean state value POLYGON_OFFSET_FILL determines whether o is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled using the commands Enable and Disable. If POLYGON_OFFSET_FILL is
enabled, o is added to the depth value of each fragment produced by the rasteriza-
tion of a polygon.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.3 Polygon Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then polygons are rasterized using the
following algorithm. Polygon rasterization produces a fragment for each frame-
buffer pixel with one or more sample points that satisfy the point sampling criteria
described in section 3.5.1, including the special treatment for sample points that lie
on a polygon boundary edge. If a polygon is culled, based on its orientation and
the CullFace mode, then no fragments are produced during rasterization.

Version 2.0.1 (July 24, 2019)

3.6. PIXEL RECTANGLES 53

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Vertex shader varying outputs and depth are
interpolated by substituting the corresponding sample location into the barycentric
equations described in section 3.5.1, using equation 3.5 or its approximation that
omits w components. An implementation may choose to assign the same set of
varying values to more than one sample by barycentric evaluation using any loca-
tion within the pixel including the fragment center or one of the sample locations.

3.5.4 Polygon Rasterization State

The state required for polygon rasterization consists of the factor and bias values
of the polygon offset equation. The initial polygon offset factor and bias values are
both 0; initially polygon offset is disabled.

3.6 Pixel Rectangles

Rectangles of color values may be specified to the GL using TexSubImage2D and
related commands described in section 3.7.1. Some of the parameters and oper-
ations governing the operation of TexSubImage2D are shared by ReadnPixels
(used to obtain pixel values from the framebuffer); the discussion of ReadnPixels,
however, is deferred until section 4.3, after the framebuffer has been discussed in
detail. Nevertheless, we note in this section when parameters and state pertaining
to TexSubImage2D also pertain to ReadnPixels.

This section describes only how these rectangles are defined in client memory,
and the steps involved in transferring pixel rectangles from client memory to the
GL or vice-versa.

Parameters controlling the encoding of pixels in client memory (for reading
and writing) are set with the command PixelStorei.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation of TexSubImage2D and ReadnPixels (as
well as other commands; see section 3.7) when one of these commands is issued.
Pixel storage modes are set with the command

void PixelStorei(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

Version 2.0.1 (July 24, 2019)

3.6. PIXEL RECTANGLES

’ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

| UNPACK_ALIGNMENT | integer |

4 | 12438

Table 3.1: PixelStore parameters pertaining to TexSubImage2D.

54

byte, short, or packed

RGBA pixel data outl

pixel component data stream”]
Unpack
‘ -
Pixel Storage
Convert to Float Operations
Clamp to [0,1] Final
pro™ Conversion

Figure 3.5. Transfer of pixel rectangles to the GL. Output is RGBA pixels.

3.6.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in client memory to the GL is dia-
grammed in figure 3.5. We describe the stages of this process in the order in which

they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):
Sformat is a symbolic constant indicating what the values in memory represent.
width and height are the width and height, respectively, of the pixel rectangle

to be drawn.

data is a pointer to the data to be drawn. These data are represented with one
of several GL data types, specified by type. The correspondence between the fype

Version 2.0.1 (July 24, 2019)

3.6. PIXEL RECTANGLES 55

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes

Table 3.2: TexSubImage2D and ReadnPixels fype parameter values and the cor-
responding GL data types. Refer to table 2.2 for definitions of GL data types.
Special interpretations are described near the end of section 3.6.2. ReadnPixels
accepts only a subset of these types (see section 4.3.1).

Format Name H Element Meaning and Order \ Target Buffer

RED R Color
RG R,G Color
RGB R, G,B Color
RGBA R,G,B, A Color

Table 3.3: TexSubImage2D and ReadnPixels formats. The second column gives
a description of and the number and order of elements in a group. ReadnPixels
accepts only a subset of these formats (see section 4.3.1).

token values and the GL data types they indicate is given in table 3.2.

Unpacking

Data are taken from client memory as a sequence of unsigned bytes or unsigned
shorts (GL data types ubyte and ushort). These elements are grouped into
sets of one, two, three, or four values, depending on the format, to form a group.
Table 3.3 summarizes the format of groups obtained from memory.

The values of each GL data type are interpreted as they would be specified in
the language of the client’s GL binding.

Not all combinations of format and type are valid. The combinations accepted
by the GL are defined in table 3.4. Additional restrictions may be imposed by
specific commands.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by the data pointer passed to TexSubImage2D. The number of

Version 2.0.1 (July 24, 2019)

3.6. PIXEL RECTANGLES 56

Format | Type Bytes per Pixel | Internal Format
RGBA UNSIGNED_BYTE 4 RGBAS
RGB UNSIGNED_BYTE 3 RGBS

RG UNSIGNED_BYTE 2 RG8

RED UNSIGNED_BYTE 1 R8
RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA4
RGBA UNSIGNED_SHORT_5_5_5_1 2 RGB5_Al
RGB UNSIGNED_SHORT_5_6_5 2 RGB565

Table 3.4: Valid pixel format, type, and sized internal format.

groups in a row is width; If p indicates the location in memory of the first element
of the first row, then the first element of the Nth row is indicated by

p+ Nk (3.9)

where [V is the row number (counting from zero) and k is defined as

nl s> a,

k_{ a/s[snl/a] s<a (3-10)

where n is the number of elements in a group, [is the number of groups in

the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL

ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

A type of UNSIGNED_SHORT_5_6_5, UNSIGNED_SHORT_4_4_4_4, or
UNSIGNED_SHORT_5_5_5_1 is a special case in which all the components of
each group are packed into a single unsigned short. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by the format parameter, as listed in table 3.5. The error
INVALID_OPERATION is generated if a mismatch occurs. This constraint also
holds for all other functions that accept or return pixel data using type and format
parameters to define the type and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in table 3.6. Each bitfield is interpreted as an un-
signed integer value. If the base GL type is supported with more than the minimum
precision (e.g. a 9-bit byte) the packed components are right-justified in the pixel.

Components are packed with the first component in the most significant bits
of the bitfield, and successive component occupying progressively less significant

Version 2.0.1 (July 24, 2019)

57

3.6. PIXEL RECTANGLES
type Parameter GL Data | Number of Matching
Token Name Type Components | Pixel Formats
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED_SHORT_4_4_4_4 | ushort 4 RGBA
UNSIGNED_SHORT_5_5_5_1 | ushort 4 RGBA

Table 3.5: Packed pixel formats.

locations. The most significant bit of each component is packed in the most signif-
icant bit location of its location in the bitfield.

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9

1st Component

2nd

3rd

UNSIGNED_SHORT_4_4_4_ 4:

15 14 13 12 11 10 9

1st Component 2nd

3rd

4th

UNSIGNED_SHORT_5_5_5_1:

15 14 13 12 11 10 9

8 7

1st Component

2nd

Table 3.6: UNSIGNED_SHORT formats

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING

Format First Second Third Fourth
Component | Component | Component | Component

RGB red green blue

RGBA red green blue alpha

58

Table 3.7: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.7

The above discussions of row length and image extraction are valid for packed
pixels, if “group” is substituted for “component” and the number of components
per group is understood to be one.

Conversion to floating-point

Each element in a group is converted to a floating-point value according to the
appropriate formula as described in section 2.1.2 for the corresponding integer,
unsigned integer, or unsigned integer bitfield type of that element.

Final Expansion to RGBA

Each group is converted to a group of 4 elements as follows: if a group does not
contain an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

3.7 Texturing

Texture lookups map a portion of one or more specified images onto a fragment
or vertex. This mapping is accomplished in shaders by sampling the color of an
image at the location indicated by specified (s, t,r) texture coordinates. Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

Shaders support texturing using at least MAX_VERTEX_TEXTURE_IMAGE_-
UNITS images for vertex shaders (see section 2.11.3) and at least MAX_TEXTURE_ —
IMAGE_UNITS images for fragment shaders (see section 3.8.2). Multiple sets of
texture coordinates may be specified in generic vertex attributes or computed by
the shader; these coordinates are used to sample separate images.

The following subsections (up to and including section 3.7.6) specify GL op-
eration with a single texture, including specification of the image to be texture

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 59

mapped and the means by which the image is filtered when sampled. The opera-
tions described here are applied separately for each texture sampled by a shader.
The details of sampling a texture within a shader are described in the OpenGL
ES Shading Language Specification.
The command

void ActiveTexture(enum fexture);

specifies the active texture image unit selector, ACTIVE_TEXTURE. Each texture
image unit consists of all the texture state defined in section 3.7.

The active texture unit selector selects the texture image unit accessed by
commands involving texture image processing defined in section 3.7. Such
commands include all variants of TexSubIlmage2D commands, BindTexture,
and queries of all such state. If the texture image unit number correspond-
ing to the current value of ACTIVE_TEXTURE is greater than or equal to the
implementation-dependent constant MAX_COMBINED_TEXTURE_IMAGE_UNITS,
the error INVALID_OPERATION is generated by any such command.

ActiveTexture generates the error INVALID_ENUM if an invalid fexture is spec-
ified. fexture is a symbolic constant of the form TEXTURE4, indicating that texture
image unit ¢ is to be modified. The constants obey TEXTURE: = TEXTUREO + ¢,
where i is in the range 0 to MAX_COMBINED_TEXTURE_IMAGE_UNITS — 1.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

3.7.1 Texture Image Specification
The command

void TexStorage2D(enum target, int level,
int internalformat, sizei width, sizei height);

is provided for specifying the properties of all levels of a two-dimensional texture at
once. Once a texture is specified, the format and dimensions of all levels becomes
immutable. The contents of the images and the parameters can still be modified.
Such a texture is referred to as an immutable-format texture. The immutability
status of a texture can be determined by calling GetTexParameter with pname
TEXTURE_IMMUTABLE_FORMAT. Cube map textures are not supported.

If the command is successful, TEXTURE_ IMMUTABLE_FORMAT becomes TRUE.
If internalformat is a compressed texture format, then references to TexSubIm-
age2D should be replaced by CompressedTexSubImage2D, with format, type and
data replaced by any valid imageSize and data.

TexStorage2D will generate the following errors:

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 60

e An INVALID_OPERATION error is generated if zero is bound to target.

e An INVALID_VALUE error is generated if width, height, or levels are less
than 1.

e An INVALID_ENUM error is generated if internalformat is not one of the
sized internal formats listed in table 3.4.

e An INVALID_OPERATION error is generated if levels is greater than
floor(log2(max(width, height))) + 1.

e An INVALID_OPERATION error is generated if levels is not one and width
or height is not a power of two.

e After a successful call to TexStorage2D, an INVALID_OPERATION error is
generated if TexStorage2D is called with the same texture, even if it does
not affect the dimensions or format.

If an error is generated then the command will have no effect. After a suc-
cessful call to any TexStorage command, no further changes to the dimensions or
format of the texture object may be made. Other commands may only alter the
texel values and texture parameters.

The GL stores the resulting texture with internal component resolutions of its
own choosing. The allocation of internal component resolution may vary based
on any TexStorage2D parameter (except farget), but the allocation must not be a
function of any other state and cannot be changed once established. Allocation
must be invariant; the same allocation must be chosen each time a texture image is
specified with the same parameter values.

The levels argument to TexStorage2D is an integer level-of-detail number.
Levels of detail are discussed below, under Mipmapping. The main texture image
has a level of detail number of 0 and is known as the level zero array (or the image
array of level zero).

The maximum allowable width and height of a two-dimensional texture image
must be at least 2571°? for image arrays of level zero through %, where & is the log
base 2 of MAX_TEXTURE_SIZE. and [od is the level-of-detail of the image array.
It may be zero for image arrays of any level-of-detail greater than k. The error
INVALID_VALUE is generated if the specified image is too large to be stored under
any conditions.

3.7.2 Texture Image Specification Commands

A two-dimensional texture consists of a single two-dimensional texture image. The
groups in memory are treated as being arranged in a rectangle. The rectangle is an

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 61

image, whose size and organization are specified by the width and height parame-
ters to TexStorage2D.

The selected groups are processed as described in section 3.6.2, stopping after
final expansion to RGBA. Each R, G, B, or A value so generated is clamped to
[0,1]. Components are then selected from the resulting R, G, B, or A values to
obtain a texture with the base internal format specified by (or derived from) inter-
nalformat. Table 3.4 summarizes the mapping of R, G, B, and A values to texture
components, as a function of the base internal format of the texture image. Specify-
ing a combination of values for format, type, and internalformat that is not listed as
a valid combination in table 3.4 generates the error INVALID_OPERATION. Rect-
angular subregions of existing texture images may be respecified.

The command

void TexSubIlmage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

can specify an entire region and also respecify a rectangular subregion of an ex-
isting texture array. No change is made to the internalformat, width, or height,
parameters of the specified texture array, nor is any change made to texel values
outside the specified subregion. The target argument of TexSubImage2D must be
TEXTURE_2D.

The level parameter of each command specifies the level of the texture array
that is modified. If level is less than zero or greater than the base 2 logarithm of the
maximum texture width or height, the error INVALID_VALUE is generated.

TexSubImage2D arguments width and height, match the corresponding argu-
ments to TexStorage2D, meaning that they accept the same values, and have the
same meanings.

TexSubImage2D arguments format and type must be a valid combination from
table 3.4 and correspond to the internalformat value used for TexStorage2D.

Arguments xoffset and yoffset of TexSubImage2D specify the lower left texel
coordinates of a width-wide by height-high rectangular subregion of the texture
array address. Taking w; and h; to be the specified width and height of the texture
array, and taking x, y, w, and h to be the xoffset, yoffset, width, and height argument
values, any of the following relationships generates the error INVALID_VALUE:

z <0
T+ w > wy

y <0

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 62

y+h>ht

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =2+ (n mod w)

j=y+ (L) mod h)

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL defines no specific compressed
formats, but compressed formats may be defined by GL extensions. Online tex-
ture compression is not supported. Instead applications must use an offline com-
pressor and provide a pre-compressed texture in binary format. There is a mech-
anism to obtain token values for compressed formats; the number of specific
compressed internal formats supported can be obtained by querying the value
of NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed in-
ternal formats supported by the renderer can be obtained by querying the value
of COMPRESSED_TEXTURE_FORMATS. The only values returned by this query are
those corresponding to internalformat parameters accepted by TexStorage2D and
suitable for general-purpose usage. The renderer will not enumerate formats with
restrictions that need to be specifically understood prior to use.
The command

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enumn format, sizei imageSize, void *data);

can specify an entire region and also respecify a rectangular subregion of an ex-
isting texture array, with incoming data stored in a known compressed image for-
mat. The target, level, xoffset, yoffset, width, height, and format parameters have
the same meaning as in TexSubImage2D. data points to compressed image data
stored in the compressed image format corresponding to format.

Compressed texture images are treated as an array of imageSize ubytes be-
ginning at address data. All pixel storage and pixel transfer modes are ignored
when decoding a compressed texture image. If the imageSize parameter is not
consistent with the format, dimensions, and contents of the compressed image, an
INVALID_VALUE error results.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 63

This command does not provide for image format conversion, so an
INVALID_OPERATION error results if format does not match the internal format
of the texture image being modified. If the imageSize parameter is not consistent
with the format, dimensions, and contents of the compressed image (too little or
too much data), an INVALID_VALUE error results.

Compressed internal formats may have additional restrictions on the use of the
compressed image specification calls or parameters. Any such restrictions will be
documented in the specification defining the compressed internal format; violating
these restrictions will result in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores a
texture image in compressed form, Compressed TexSubImage2D will accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Calling Compressed TexSubImage2D will result in an INVALID_OPERATION
error if xoffset or yoffset is not equal to zero, or if width and height do not match
the width and height of the texture, respectively. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

3.7.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname,
T params);

target is the target, which must be TEXTURE_2D. pname is a symbolic constant
indicating the parameter to be set; the possible constants and corresponding pa-
rameters are summarized in table 3.8. In the first form of the command, param
is a value to which to set a single-valued parameter; in the second form of the
command, params is an array of parameters whose type depends on the parameter
being set.

3.7.5 Texture Wrap Modes

Wrap modes defined by the values of TEXTURE_WRAP_S or TEXTURE_WRAP_T
respectively affect the interpretation of s and ¢ texture coordinates. The effect of
each mode is described below.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 64

Name Type | Legal Values

TEXTURE_WRAP_S integer | CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT

TEXTURE_WRAP_T integer CLAMP_TO_EDGE, REPEAT,

MIRRORED_REPEAT
TEXTURE_MIN_FILTER | integer | NEAREST,

LINEAR,
NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,
TEXTURE_MAG_FILTER | integer | NEAREST,

LINEAR

Table 3.8: Texture parameters and their values.

Wrap Mode REPEAT

Wrap mode REPEAT ignores the integer part of texture coordinates, using only the
fractional part. (For a number f, the fractional part is f — | f], regardless of the
sign of f; recall that the | | function truncates towards —o0.)

REPEAT is the default behavior for all texture coordinates.

Wrap Mode CL.AMP_TO_EDGE

Wrap mode CLAMP_TO_EDGE clamps texture coordinates at all mipmap levels such
that the texture filter never samples outside the texture image. The color returned
when clamping is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min, maz|. The minimum value
is defined as

. 1
min = ——

2N

where N is the size of the texture image in the direction of clamping. The maxi-
mum value is defined as

maxr =1 — min

so that clamping is always symmetric about the [0, 1] mapped range of a texture
coordinate.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 65

Wrap Mode MIRRORED_REPEAT

Wrap mode MIRRORED_REPEAT first mirrors the texture coordinate, where mirror-
ing a value f computes

' =1 |] is even
mirror(f) = { 1= (f=f]), Lf]isodd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMP_TO_EDGE.

3.7.6 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor p(x,y) and the level of detail parameter
A(z,y), defined as

)\(m,y) = logQ[p(xvy)] (3.11)

If \(z,y) is less than or equal to the constant ¢ (described below in sec-
tion 3.7.7) the texture is said to be magnified; if it is greater, the texture is minified.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (z, y) that lie within a primitive; define ¢(x, y) analogously.
Letu(x,y) = wy x s(x,y) and v(z,y) = hy X t(z,y), where w; and h; are equal to
the width and height of the level zero array. For a polygon, p is given at a fragment
with window coordinates (z, y) by

ou\? v\ ? ou\? o\ >
— == -~ — — 3.12
e () ()G < (B) e
where Ju/Ox indicates the derivative of u with respect to window z, and similarly
for the other derivatives.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 66

For a line, the formula is

ou ou 2 ov ov 2
= —A —A —A —A l 3.13
’ /¢<3w oy y> +(3$ Ty y)//7 G139
where Az = x9 — x1 and Ay = yo — y1 with (z1,y1) and (x2,y2) being the

segment’s window coordinate endpoints and [= \/Axz? 4+ Ay?2. For a point, p =
1.

While it is generally agreed that equations 3.12 and 3.13 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal p with a function f(x,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each of |Ju/0x|,
|0u/By|, [9v/dz|, |Ov /By,

2. Let

" e ou| |0u
= X —_— —_—
“ ox |’ |0y
m, = ma v\ |ov

v T WA 9z oy

Then max{m,, my,} < f(z,y) < my + my.

When) indicates minification, the value assigned to TEXTURE_MIN_FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTURE_MIN_FILTER is NEAREST, the texel in the level zero array that is near-
est (in Manhattan distance) to that specified by (s, ¢) is obtained. This means the
texel at location (¢, j) becomes the texture value, with i given by

i:{LM’ s<1 (3.14)

’U}t—l, s=1

(Recall that if TEXTURE_WRAP_S is REPEAT, then 0 < s < 1.) Similarly, j is
found as

. (v, t<1
j—{m_Ltzl (3.15)

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 67

When TEXTURE_MIN_FILTER iS LINEAR, a 2 X 2 square of texels in the level
zero array is selected. This square is obtained by first wrapping texture coordinates
as described in section 3.7.5, then computing

. { |u —1/2] mod wy, TEXTURE_WRAP_S iS REPEAT
00 =

lu—1/2], otherwise
and
.| |v—1/2] mod hy, TEXTURE_WRAP_T is REPEAT
=N o -1/2], otherwise
Then
. (ip + 1) mod wy, TEXTURE_WRAP_S iS REPEAT
11 = . .
19 + 1, otherwise
and
. (jo+1)mod hy, TEXTURE_WRAP_T iS REPEAT
1= Jo+1, otherwise
Let

a = frac(u — 1/2)
B = frac(v —1/2)

where frac(z) denotes the fractional part of x.
The texture value 7 is found as

T=(1-a)(1- B)Tiojo +a(l - /B)Tiu'o + (1 - a)/BTioﬁ +afr; (3.16)

where 7;; is the texel at location (z, j) in the texture image.

Rendering Feedback Loops

A rendering feedback loop can occur when a texture is attached to an attachment
point of the currently bound framebuffer object. In this case rendering results are
implementation specific. The exact conditions are detailed in section 4.4.4.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 68

Mipmapping

TEXTURE_MIN_FILTER values NEAREST MIPMAP_NEAREST, NEAREST_-
MIPMAP_ LINEAR, LINEAR MIPMAP_NEAREST, and LINEAR MIPMAP_ LINEAR
each require the use of a mipmap. A mipmap is an ordered set of arrays represent-
ing the same image; each array has a resolution lower than the previous one. If the
level zero array has dimensions wy, X hy, then there are |log, (max(wy, hy)) | + 1
image arrays in the mipmap. Each array subsequent to the level zero array has
dimensions

max(1, | %2) x max(1, | 22)))

until the last array is reached with dimension 1 x 1.

Each array in a mipmap is defined using TexSubImage2D or Compressed Tex-
SubImage2D; the array being set is indicated with the level-of-detail argument
level. Level-of-detail numbers proceed from zero for the original texture array
through ¢ = |log,(max(wy, hy))] with each unit increase indicating an array of
half the dimensions of the previous one (rounded down to the next integer if frac-
tional) as already described. All arrays from zero through ¢ must be defined, as
discussed in section 3.7.9.

If any dimension of any array in a mipmap is not a power of two (e.g. if
rounding down as described above is performed), then the mipmap is described as
a non-power-of-two texture. Non-power-of-two textures have restrictions on the
allowed texture wrap modes and filters, as described in section 3.8.2.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let ¢ be the value
of A at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of A where
A> o).

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_—
NEAREST, the dth mipmap array is selected, where

0, Ag%
d=<{ A+31-1, A>1 A <qg+1 (3.17)
q,)\>q+%

The rules for NEAREST or LINEAR filtering are then applied to the selected
array.
For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR MIPMAP_ -

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 69

LINEAR, the level d; and do mipmap arrays are selected, where

_ q, A >q
o= { [A], otherwise (3.18)
_J 4 A>q
b= { di +1, otherwise (3.19)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 7; and 72. The final
texture value is then found as

7 = [1 — frac(\)]m + frac(\) 7.

3.7.7 Texture Magnification

When) indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER (equations 3.14 and 3.15 are used); LINEAR
behaves exactly as LINEAR for TEXTURE_MIN_FILTER (equation 3.16 is used).
The level zero array is always used for magnification.

Finally, there is the choice of ¢, the minification vs. magnification switch-over
point. If the magnification filter is given by LINEAR and the minification filter is
given by NEAREST_MIPMAP_NEAREST or NEAREST_MIPMAP_LINEAR, then ¢ =
0.5. This is done to ensure that a minified texture does not appear “sharper” than a
magnified texture. Otherwise ¢ = 0.

3.7.8 Texture Framebuffer Attachment

The texture values are considered implementation specific if all of the following
conditions are true:

e The current FRAMEBUFFER_BINDING names an application-created frame-
buffer object F'.

e The texture is attached to one of the attachment points, A, of framebuffer
object F'.

e TEXTURE_MIN_FILTER 1S NEAREST or LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
1S zero; or, TEXTURE_MIN_FILTER 1S NEAREST MIPMAP_NEAREST,

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 70

NEAREST_MIPMAP_LINEAR, LINEAR MIPMAP_NEAREST, Oor LINEAR_ -
MIPMAP_LINEAR, and the value of FRAMEBUFFER ATTACHMENT_-
TEXTURE_LEVEL for attachment point A is within the inclusive range from
zero to last mip-level.

3.7.9 Texture Completeness and Non-Power-Of-Two Textures

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined.
A two-dimensional texture is complete if the following conditions all hold true:

e The set of mipmap arrays zero through ¢ (where ¢ is defined in the Mipmap-
ping discussion of section 3.7.6) were each specified with the same format,
internal format, and type.

e The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.7.6.

e Each dimension of the level zero array is positive.

Effects of Completeness on Texture Application

Texture lookups performed in vertex and fragment shaders are affected by com-
pleteness of the texture being sampled as described in sections 2.11.3 and 3.8.2.
Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level one or greater to be
created only if a complete set of image arrays consistent with the requested array
can be supported.

3.7.10 Mipmap Generation

Mipmaps can be generated with the command
void GenerateMipmap(enum target);

target is the target, which must be TEXTURE_2D.

GenerateMipmap computes a complete set of mipmap arrays (as defined in
section 3.7.9) derived from the level zero array. Array levels one through ¢ are
replaced with the derived arrays, regardless of their previous contents. The level
zero array is left unchanged by this computation.

Version 2.0.1 (July 24, 2019)

3.7. TEXTURING 71

The internal formats of the derived mipmap arrays all match those of the level
zero array, and the dimensions of the derived arrays follow the requirements de-
scribed in section 3.7.9.

The contents of the derived arrays are computed by repeated, filtered reduction
of the level zero array. No particular filter algorithm is required, though a box filter
is recommended as the default filter.

If either the width or height of the level zero array are not a power or two, the
error INVALID_OPERATION is generated.

If the level zero array is stored in a compressed internal format, the error
INVALID_OPERATION is generated.

3.7.11 Texture State

The state necessary for texture can be divided into two categories. First, there is
the mipmap array. Each array has associated with it a width and height, an integer
describing the internal format of the image, an integer value describing the type of
each of the components, a boolean describing whether the image is compressed or
not, and an integer size of a compressed image. Each initial texture array is null
(zero width and height). Next, there is a set of texture properties; it consists of
the selected minification and magnification filters, and the wrap modes for s and
t. In the initial state, the value assigned to TEXTURE_MIN_FILTER is NEAREST_—
MIPMAP_LINEAR, and the value for TEXTURE_MAG_FILTER is LINEAR. s and ¢
wrap modes are both set to REPEAT.

3.7.12 Texture Objects

The name space for texture objects is the unsigned integers, with zero reserved by
the GL.

A texture object is created by binding a texture object name obtained by calling
GenTextures to TEXTURE_2D. Texture objects cannot be deleted.

The binding is effected by calling

void BindTexture(enum farget, uint texture);

with farget set to TEXTURE_2D and texture set to the texture object name obtained
from GenTextures. The resulting texture object is a new state vector, comprising
all the state values listed in section 3.7.11, set to the same initial values. Calling
BindTexture with a texture object name not obtained by GenTextures will result
ina INVALID_OPERATION error.

Version 2.0.1 (July 24, 2019)

3.8. FRAGMENT SHADERS 72

BindTexture may also be used to bind an existing texture object. If the bind
is successful no change is made to the state of the bound texture object, and any
previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object.

In the initial state, TEXTURE_2D has a two-dimensional texture state vector as-
sociated with it. In order that access to the initial texture not be lost, it is treated as
texture object whose name is 0. The initial two-dimensional texture is therefore op-
erated upon, queried, and applied as TEXTURE_2D 0 is bound to the corresponding
targets.

The command

void GenTextures(sizei n, uint *fextures);

returns n previously unused texture object names in fextures. These names are
marked as used, for the purposes of GenTextures only, but they acquire texture
state only when they are first bound, just as if they were unused.

The texture object name space, including the initial texture object, is shared
among all texture units. A texture object may be bound to more than one texture
unit simultaneously. After a texture object is bound, any GL operations on that tar-
get object affect any other texture units to which the same texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE.

3.8 Fragment Shaders

The sequence of operations that are applied to fragments that result from rasterizing
a point, line segment, or polygon are described by using a fragment shader.

A fragment shader is defined by an array of strings containing source code for
the operations that are meant to occur on each fragment that results from rasteriz-
ing a point, line segment, or polygon. The language used for fragment shaders is
described in the OpenGL ES Shading Language Specification.

Fragment shaders are defined by pre-compiled shader binary code, in the same
way as described for vertex shaders in section 2.11.

The fragment shader attached to the program object in use by the GL is con-
sidered active, and is used to process fragments. If no program object is currently
in use, fragment shader execution does not happen.

Version 2.0.1 (July 24, 2019)

3.8. FRAGMENT SHADERS 73

3.8.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables is specified
by the implementation-dependent constant MAX_FRAGMENT_UNIFORM_VECTORS.
This value represents the number of four-element floating-point, integer, or boolean
vectors that can be held in uniform variable storage for a fragment shader. A link
error will be generated if an attempt is made to utilize more than the space available
for fragment shader uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL ES Shading Language
Specification defines a set of built-in varying variables that can be accessed by a
fragment shader. These built-in varying variables include the fragment’s position,
eye z coordinate, and front-facing flag.

A vertex shader may define one or more varying variables (see section 2.11.2
and the OpenGL ES Shading Language Specification). These values are interpo-
lated across the primitive being rendered. The results of these interpolations are
available when varying variables of the same name are defined in the fragment
shader.

3.8.2 Shader Execution

If a fragment shader is active, the executable version of the fragment shader is used
to process incoming fragment values that are the result of point, line segment, or
polygon rasterization.

Texture Access

When a texture lookup is performed in a fragment shader, the GL computes the
filtered texture value 7 in the manner described in sections 3.7.6 and 3.7.7, and
converts it to a texture source color Cs according to table 3.9. The GL returns a
four-component vector (R, G5, Bs, As) to the fragment shader. For the purposes
of level-of-detail calculations, the derivatives %, %’ g—;, %’ % and % may be
approximated by a differencing algorithm as detailed in section 8.8 of the OpenGL
ES Shading Language specification.

Calling a sampler from a fragment shader will return (R,G,B,A) =
(0,0,0,1) if any of the following conditions are true:

e A two-dimensional sampler is called, the minification filter is one that re-

quires a mipmap (neither NEAREST nor LINEAR), and the sampler’s associ-
ated texture object is not complete, as defined in sections 3.7.1 and 3.7.9,

Version 2.0.1 (July 24, 2019)

3.8. FRAGMENT SHADERS 74

Texture Base Texture source color | Texture source alpha
Internal Format (Rs, Gs, Bs) As

RED (Rt,0,0) 1

RG (Rt, Gt, 0) 1

RGB (Rt, Gt, Bt) 1

RGBA (Rt, Gt, Bt) At

Table 3.9: Correspondence of filtered texture components to texture source color
components. The values R, G, By, and A; are respectively the red, green, blue,
and alpha components of the filtered texture value 7.

e A two-dimensional sampler is called, the minification filter is not one that
requires a mipmap (neither NEAREST nor LINEAR), and either dimension of
the level zero array of the associated texture object is not positive.

e A two-dimensional sampler is called, the corresponding texture image is a
non-power-of-two image (as described in the Mipmapping discussion of
section 3.7.6), and either the texture wrap mode is not CLAMP_ TO_EDGE, or
the minification filter is neither NEAREST nor LINEAR.

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation-dependent constant MAX_TEXTURE_IMAGE_UNITS.

Shader Inputs

The OpenGL ES Shading Language specification describes the values that are
available as inputs to the fragment shader.

The built-in variable g1_FragCoord holds the window coordinates z, y, z,
and i for the fragment. The z component of g1_FragCoord undergoes an im-
plied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that this z component already has a polygon offset added in, if
enabled (see section 3.5.2. The % value is computed from the w,. coordinate (see
section 2.13).

The built-in variable g1_FrontFacing is set to t rue if the fragment is gener-
ated from a front facing primitive, and false otherwise. For fragments generated
from polygon primitives the determination is made by examining the sign of the
area computed by equation 3.4 of section 3.5.1 (including the possible reversal of
this sign controlled by FrontFace). If the sign is positive, fragments generated by

Version 2.0.1 (July 24, 2019)

3.8. FRAGMENT SHADERS 75

the primitive are front facing; otherwise, they are back facing. All other fragments
are considered front facing.

Shader Outputs

The OpenGL ES Shading Language specification describes the values that may be
output by a fragment shader. These are g1_FragColor and gl_FragData[0]
2. The final fragment color values or the final fragment data values written by a
fragment shader are clamped to the range [0, 1] and then converted to fixed-point
as described in section 2.1.2 for framebuffer color components.

Writing to g1_FragColor or gl_FragData[0] specifies the fragment color
(color number zero) that will be used by subsequent stages of the pipeline. Any
colors, or color components, associated with a fragment that are not written by
the fragment shader are undefined. A fragment shader may not statically assign
values to both g1_FragColor and g1_FragData[0]. In this case, a compile or
link error will result. A shader statically assigns a value to a variable if, after pre-
processing, it contains a statement that would write to the variable, whether or not
run-time flow of control will cause that statement to be executed.

2gl_FragData is supported for compatibility with the desktop OpenGL Shading Language,
but only a single fragment color output is allowed in the OpenGL ES Shading Language.

Version 2.0.1 (July 24, 2019)

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Further there are two classes of framebuffers: the default framebuffer sup-
plied by the window-system and application-created framebuffer objects. Every
OpenGL SC context has at most one default window-system-provided framebuffer.
Applications can optionally create additional non-displayable framebuffer objects.
For more information on application-created framebuffer objects, see section 4.4.

Corresponding bits from each pixel in the framebuffer are grouped together into
a bitplane; each bitplane contains a single bit from each pixel. These bitplanes are
grouped into several logical buffers. These are the color, depth, and stencil buffers.
The color buffer actually consists of a number of buffers, and these color buffers
serve related but slightly different purposes depending on whether they are bound
to the default window-system-provided framebuffer or to an application-created
framebuffer object.

For the default window-system provided framebuffer, the color buffers consist
of either or both of a front (single) buffer and a back buffer. Typically the contents
of the front buffer are displayed on a color monitor while the contents of the back
buffer are invisible. The color buffers must have the same number of bitplanes,
although a context may not provide both types of buffers. Further, an implementa-

76

4.1. PER-FRAGMENT OPERATIONS 77

tion or context may not provide depth or stencil buffers . If no default framebuffer
is associated with the GL context, the framebuffer is incomplete except when a
framebuffer object is bound. (see sections 4.4.1 and 4.4.5)

For application-created framebuffer objects, the color buffers are not visible,
and consequently the names of the color buffers are not related to a display de-
vice. The name of the color buffer of an application-created framebuffer ob-
ject is COLOR_ATTACHMENTO. The names of the depth and stencil buffers are
DEPTH_ATTACHMENT and STENCIL_ATTACHMENT. For more information about
the buffers of an application-created framebuffer object, see section 4.4.2. To be
considered framebuffer complete (see section 4.4.5), all color buffers attached to
an application-created framebuffer object must have the same number of bitplanes.
Depth and stencil buffers may optionally be attached to application-created frame-
buffers as well.

Color buffers consist of R, G, B, and, optionally, A unsigned integer values.
The number of bitplanes in each of the color buffers, the depth buffer, and the
stencil buffer is dependent on the currently bound framebuffer. For the default
framebuffer, the number of bitplanes is fixed. For application-created framebuffer
objects, however, the number of bitplanes in a given logical buffer may change if
the state of the corresponding framebuffer attachment or attached image changes.

The initial state of all provided bitplanes is uninitialized.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, y,,) mod-
ifies the pixel in the framebuffer at that location based on a number of parameters
and conditions. We describe these modifications and tests, diagrammed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (z,y,,) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

"However, an OpenGL SC implementation must support at least one config with a depth bit depth
of 16 or higher and a stencil bit depth of 8 or higher

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS

78

Frag:-nent Pixel Scissor Multisample

Associated— P> Ownership P Test P-| Fragment
D Test Operations

ata
Depth Buffer] Stencil
Test [| Test
Framebuﬁ‘er<A Framebuffer<A
. . . To

Blending = Dithering = Framebuffer

Framebuffer J

Figure 4.1. Per-fragment operations.

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 79

While an application-created framebuffer object is bound to FRAMEBUFFER,
the pixel ownership test always passes. The pixels of application-created frame-
buffer objects are always owned by OpenGL SC , not the window system.
Only while the window-system-provided framebuffer named zero is bound to
FRAMEBUFFER does the window system control pixel ownership.

4.1.2 Scissor Test

The scissor test determines if (z,, ¥,,) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left < x,, < left + width and bottom < y,, < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded. The test
is enabled or disabled using Enable or Disable using the constant SCISSOR_TEST.
When disabled, it is as if the scissor test always passes. If either width or height
is less than zero, then the error INVALID_VALUE is generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial state le ft = bottom = 0; width and height are determined
by the size of the GL window. Initially, the scissor test is disabled. If the default
framebuffer is bound but no default framebuffer is associated with the GL context
(see chapter 4), then width and height are initially set to zero.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_COVERAGE, SAMPLE_COVERAGE_ —
VALUE, and SAMPLE_COVERAGE_INVERT. No changes to the fragment alpha or
coverage values are made at this step if the value of SAMPLE_BUFFERS is not one.

SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_COVERAGE are enabled and dis-
abled by calling Enable and Disable with cap specified as one of the two token
values. Both values are queried by calling IsEnabled with cap set to the desired
token value. If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage
value is generated where each bit is determined by the alpha value at the corre-
sponding sample location. The temporary coverage value is then ANDed with the
fragment coverage value. Otherwise the fragment coverage value is unchanged at
this point.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 80

coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Finally, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated in the
same manner as the one described above, but as a function of the value of
SAMPLE_COVERAGE_VALUE. The function need not be identical, but it must have
the same properties of proportionality and invariance. If SAMPLE_COVERAGE_—
INVERT is TRUE, the temporary coverage is inverted (all bit values are inverted)
before it is ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT
are specified by calling

void SampleCoverage(float value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE_COVERAGE_VALUE.
SAMPLE_COVERAGE_VALUE is queried by calling GetFloatv with pname set to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE_INVERT is queried by calling
GetBooleanv with pname set to SAMPLE_COVERAGE_INVERT.

4.1.4 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (., ¥,,) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);

void StencilFuncSeparate(enum face, enum func, int ref,
uint mask);

void StencilOp(enum sfail, enum dpfail, enum dppass);

void StencilOpSeparate(enum face, enum sfail, enum dpfail,
enum dppass);

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 81

There are two sets of stencil-related state, the front stencil state set and the back
stencil state set. Stencil tests and writes use the front set of stencil state when pro-
cessing fragments rasterized from non-polygon primitives (points, lines, bitmaps,
image rectangles) and front-facing polygon primitives while the back set of stencil
state is used when processing fragments rasterized from back-facing polygon prim-
itives. For the purposes of stencil testing, a primitive is still considered a polygon
even if the polygon is to be rasterized as points or lines due to the current poly-
gon mode. Whether a polygon is front- or back-facing is determined in the same
manner used for face culling (see section 3.5.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. refis an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0,2° — 1], where s is the number of bits in the
stencil buffer attached to the framebuffer. The s least significant bits of mask are
bitwise ANDed with both the reference and the stored stencil value, and the result-
ing masked values are those that participate in the comparison controlled by func.
func is a symbolic constant that determines the stencil comparison function; the
eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and
if the masked reference value is less than, less than or equal to, equal to, greater
than or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing O results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 4.1.5) fails (dpfail), or if it passes (dppass).

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 82

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both all ones.
Initially, all three front and back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.5 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using the symbolic constant DEPTH_TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (2, Y1)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (z,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xy,, yu)
location is set to the fragment’s z,, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 83

4.1.6 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(2w, Yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A val-
ues, as described below. Each of these floating-point values is clamped to [0, 1]
and converted back to a fixed-point value in the manner described in section 2.1.2
for framebuffer color components. The resulting four values are sent to the next
operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending is enabled or disabled using Enable
or Disable with the symbolic constant BLEND. If it is disabled, proceed to the next
operation.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,
enum modeAlpha);

BlendEquationSeparate argument modeRGB determines the RGB blend function
while modeAlpha determines the alpha blend equation. BlendEquation argument
mode determines both the RGB and alpha blend equations. modeRGB and mod-
eAlpha must each be one of FUNC_ADD, FUNC_SUBTRACT, or FUNC_REVERSE_ -
SUBTRACT.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme described in section 2.1.2 for framebuffer color
components, as are source (fragment) components. Constant color components are
taken to be floating-point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating-point. This conversion must leave the values 0 and 1 invariant.
Blending components are treated as if carried out in floating-point.

Table 4.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 84

Mode RGB Components Alpha Component

FUNC_ADD R=RsxS,+RyxD, | A=A,% S, + Ag* D,
G=Gs*Sy+Gqx*D,
B =Bs*xS,+ By x Dy

FUNC_SUBTRACT R=RsxS, —RgxD, | A=A,% S, — Ag* D,
G=GsxSy—Ggx*x D,y
B =DBs;*xS,— Bgx Dy

FUNC_REVERSE_SUBTRACT | R=Rg*x D, — Ry S, | A=Agx D, — Ag % S,
G=GgxDyg—Gs*S,
B:Bd*Db—Bs*Sb

Table 4.1: RGB and alpha blend equations.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the ¢ subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, S, Sy, Sp, and S, are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and D,, Dy, Dy, and D, are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);
void BlendFunc(enum src, enumdst);

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src
determines both RGB and alpha source functions, while dst determines both RGB
and alpha destination functions.

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 85

Function RGB Blend Factors Alpha Blend Factor
(Sr,Sg,Sp) or (D, Dy, Dy) | Sq or D,
ZERO (0,0,0) 0
ONE (1,1,1) 1
SRC_COLOR (Rs,Gs, Bs) Ay
ONE_MINUS_SRC_COLOR (1,1,1) — (Rs, Gs, Bs) 1— A
DST_COLOR (Rd, Gd, Bd) Ay
ONE_MINUS_DST_COLOR (1,1,1) = (Rgq, G4, By) 1—- A4y
SRC_ALPHA (As, As, Ay) A,
ONE_MINUS_SRC_ALPHA (1,1,1) — (A, Ag, Ag) 1— A,
DST_ALPHA (Ag, Ag, Ag) Ay
ONE_MINUS_DST_ALPHA (1,1,1) — (Ag, Ag, Ag) 1—- Ay
CONSTANT_COLOR (R¢, G, Be) A,
ONE_MINUS_CONSTANT_COLOR | (1,1,1) — (R., G¢, Be) 1- A
CONSTANT_ALPHA (Ae, A, Al) A,
ONE_MINUS_CONSTANT_ALPHA | (1,1,1) — (A, Ac, Ac) 1-— A,
SRC_ALPHA_SATURATE! (f, £, f)? 1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.

! SRC_ALPHA_SATURATE is valid only for source RGB and alpha blending func-
tions.

2 f = min(4,,1 — Ay).

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

Blend Color
The constant color C, to be used in blending is specified with the command

void BlendColor(float red, float green, float blue,
float alpha);

The four parameters are clamped to the range [0, 1] before being stored. The
constant color can be used in both the source and destination blending functions

Version 2.0.1 (July 24, 2019)

4.1. PER-FRAGMENT OPERATIONS 86

Blending State

The state required for blending is two integers for the RGB and alpha blend equa-
tions, four integers indicating the source and destination RGB and alpha blending
functions, four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blend equations
for RGB and alpha are both FuNc_aADD. The initial blending functions are ONE for
the source RGB and alpha functions and zERO for the destination RGB and alpha
functions. The initial constant blend color is (R, G,B,A) = (0,0,0,0). Initially,
blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color for Cy. If a color buffer has no A value, then
A, is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values. Consider the value of any of the color
components as a fixed-point value with m bits to the left of the binary point, where
m is the number of bits allocated to that component in the framebuffer; call each
such value c. For each ¢, dithering selects a value ¢; such that ¢; € {max{0, [¢]| —
1}, [el]} (after this selection, treat c¢; as a fixed point value in [0,1] with m bits).
This selection may depend on the x,, and y,, coordinates of the pixel. ¢ must not
be larger than the maximum value representable in the framebuffer for either the
component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragment’s x and y window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.8 Additional Multisample Fragment Operations

If the value of SAMPLE_BUFFERS is one, the stencil test, depth test, blending, and
dithering operations are performed for each pixel sample, rather than just once for
each fragment. Failure of the stencil or depth test results in termination of the
processing of that sample, rather than discarding of the fragment. All operations
are performed on the color, depth, and stencil values stored in the multisample

Version 2.0.1 (July 24, 2019)

4.2. WHOLE FRAMEBUFFER OPERATIONS 87

buffer (to be described in a following section). The contents of the color buffer are
not modified at this point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If the value of SAMPLE_BUFFERS is one, the fragment may be treated exactly
as described above, with optimization possible because the fragment coverage must
be set to full coverage. Further optimization is allowed, however. An implementa-
tion may choose to identify a centermost sample, and to perform stencil and depth
tests on only that sample. Regardless of the outcome of the stencil test, all multi-
sample buffer stencil sample values are set to the appropriate new stencil value. If
the depth test passes, all multisample buffer depth sample values are set to the depth
of the fragment’s centermost sample’s depth value, and all multisample buffer color
sample values are set to the color value of the incoming fragment. Otherwise, no
change is made to any multisample buffer color or depth value.

After all operations have been completed on the multisample buffer, the color
sample values are combined to produce a single color value, and that value is writ-
ten into the color buffer selected for writing (see section 4.2.1). An implementa-
tion may defer the writing of the color buffer until a later time, but the state of the
framebuffer must behave as if the color buffer was updated as each fragment was
processed. The method of combination is not specified, though a simple average
computed independently for each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

Color values are written into the front buffer for single buffered contexts, or into
the back buffer for back buffered contexts. The type of context is determined when
creating a GL context.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The command

Version 2.0.1 (July 24, 2019)

4.2. WHOLE FRAMEBUFFER OPERATIONS 88

void ColorMask(boolean r, boolean g, booleanb,
booleana);

controls the writing of R, G, B and A values to the color buffer. r, g, b, and a
indicate whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all color
values are enabled for writing.

The depth buffer can be enabled or disabled for writing z,, values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.
The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.

The least significant s bits of mask , where s is the number of bits in the stencil
buffer, specify a mask. Where a 1 appears in this mask, the corresponding bit in
the stencil buffer is written; where a 0 appears, the bit is not written.

The face parameter of StencilMaskSeparate can be FRONT, BACK, or
FRONT_AND_BACK and indicates whether the front or back stencil mask state is
affected. StencilMask sets both front and back stencil mask state to identical val-
ues.

Fragments generated by front facing primitives use the front mask and frag-
ments generated by back facing primitives use the back mask (see section 4.1.4).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is three integers and a
bit: an integer for color indices, an integer for the front and back stencil values,
and a bit for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the integer
masks are all ones, as are the bits controlling depth value and RGBA component
writing.

Fine Control of Multisample Buffer Update s

When the value of SAMPLE_BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask control the modification of values in the multisample buffer. The color

Version 2.0.1 (July 24, 2019)

4.2. WHOLE FRAMEBUFFER OPERATIONS &9

mask has no effect on modifications to the color buffer. If the color mask is entirely
disabled, the color sample values must still be combined (as described above) and
the result used to replace values of the color buffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers are to be cleared.
The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and STENCIL_-
BUFFER_BIT, indicating the color buffer, the depth buffer, and the stencil buffer,
respectively. The value to which each buffer is cleared depends on the setting of the
clear value for that buffer. If the mask is not a bitwise OR of the specified values,
then the error INVALID_VALUE is generated.

void ClearColor(float r, float g, float b, float a);

sets the clear value for the color buffer. Each of the specified components is
clamped to [0, 1] and converted to fixed-point as described in section 2.1.2 for
framebuffer color components.

void ClearDepthf(float d);

takes a value that is clamped to the range [0, 1] and converted to fixed-point accord-
ing to the rules for a window z value given in section 2.13.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then a Clear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the depth buffer clear value is 1.0.

Version 2.0.1 (July 24, 2019)

4.3. READING PIXELS

RGBA pixel data in _—l

Convert to float

1
v .
Pixel Storage
Clamp to [0,1] Operations

v

Pack

byte, short, or packed
pixel component data stream -

Figure 4.2. Operation of ReadnPixels. Operations in dashed boxes may be enabled
or disabled.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when the color buffer is
cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory using the ReadnPixels
commands, as described below. Pixels may also be copied from client memory to
texture images in the GL using the TexSubImage2D command, as described in
section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure 4.2. We describe the stages of the pixel reading
process in the order in which they occur.

Version 2.0.1 (July 24, 2019)

90

4.3. READING PIXELS 91

’ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

| PACK_ALIGNMENT | integer | 4 | 1248 |

Table 4.3: PixelStore parameters pertaining to ReadnPixels.

Pixels are read using

void ReadnPixels(int x, int y, sizei width,
sizei height, enum format, enum type, sizei bufSize,
void *data);

The arguments after x and y to ReadnPixels are those described in section 3.6.2
defining pixel rectangles. Only two combinations of format and type are ac-
cepted. The first is format RGBA and type UNSIGNED_BYTE. The second is
an implementation-chosen format from among those defined in table 3.4. The
values of format and type for this format may be determined by calling Get-
Integerv with the symbolic constants TMPLEMENTATION_COLOR_READ_FORMAT
and IMPLEMENTATION_COLOR_READ_TYPE, respectively. The implementation-
chosen format may vary depending on the format of the currently bound rendering
surface. The maximum number of bytes that may be written into data is speci-
fied by bufSize. Unsupported combinations of format and type will generate an
INVALID_OPERATION error. The pixel storage modes that apply to ReadnPixels
are summarized in Table 4.3.

Obtaining Pixels from the Framebuffer

The buffer from which values are obtained is the color buffer used for writing (see
section 4.2.1). If FRAMEBUFFER_BINDING is non-zero, pixel values are read from
the buffer attached as the COLOR_ATTACHMENTO attachment to the currently bound
framebuffer object.

ReadnPixels obtains values from the color buffer (with lower left hand corner
at (0,0)) for each pixel (z + i,y + j) for 0 < i < width and 0 < j < height;
this pixel is said to be the ¢th pixel in the jth row. If any of these pixels lies outside
of the window allocated to the current GL context, the values obtained for those
pixels are undefined. Results are also undefined for individual pixels that are not
owned by the current context. Otherwise, ReadnPixels obtains values from the
color buffer, regardless of how those values were placed there.

Red, green, blue, and alpha values are obtained from the selected buffer at each
pixel location. If the framebuffer does not support alpha values then the A that is
obtained is 1.0.

Version 2.0.1 (July 24, 2019)

4.3. READING PIXELS 92

type Parameter GL Data Type | Component
Conversion Formula
INT int c=[22-1)f -1]/2
UNSIGNED_BYTE ubyte c=(28-1)f
UNSIGNED_SHORT_5_6_5 ushort c=02VN -1)f
UNSIGNED_SHORT_4_4_4_4 ushort c=02N -1)f
UNSIGNED_SHORT_5_5_5_1 ushort c=02VN-1)f

Table 4.4: Reversed component conversions, used when component data are be-
ing returned to client memory. Color components are converted from the internal
floating-point representation (f) to a datum of the specified GL data type (c) using
the specified equation. All arithmetic is done in the internal floating point format.
These conversions apply to component data returned by GL query commands and
to components of pixel data returned to client memory. The equations remain the
same even if the implemented ranges of the GL data types are greater than the
minimum required ranges. (See Table 2.2.) Equations with N as the exponent are
performed for each bitfield of the packed data type, with IV set to the number of
bits in the bitfield.

Conversion of RGBA values

The R, G, B, and A values form a group of elements. Each element is taken to be a
fixed-point value in [0, 1] with m bits, as described in section 2.1.2 for framebuffer
color components.

Final Conversion

Each component is first clamped to [0, 1]. Then the appropriate conversion formula
from table 4.4 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
TexSubImage2D. That is, the ¢th group of the jth row (corresponding to the ith
pixel in the jth row) is placed in memory just where the ith group of the jth row
would be taken from for TexSubImage2D. See Unpacking under section 3.6.2.
The only difference is that the storage mode parameters whose names begin with
PACK_ are used instead of those whose names begin with UNPACK_. If format is
RED, only the corresponding single element is written. Otherwise all the elements
of each group are written.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 93

4.3.2 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore. This state has been summarized in tables 3.1. State set with PixelStore
is GL client state.

4.4 Framebuffer Objects

As described in chapters 1 and 2, OpenGL SC renders into (and reads values from)
a framebuffer. OpenGL SC defines two classes of framebuffers: window-system-
provided framebuffers and application-created framebuffers.

By default, OpenGL SC uses the window-system-provided framebuffer. The
storage, dimensions, allocation, and format of the images attached to this frame-
buffer are managed entirely by the window-system. Consequently, the state of the
window-system-provided framebuffer, including its images, cannot be changed by
OpenGL SC , nor can the window-system-provided framebuffer itself, or its im-
ages, be deleted by OpenGL SC .

The routines described in the following sections, however, can be used to cre-
ate, destroy, and modify the state and attachments of application-created frame-
buffer objects.

Application-created framebuffer objects encapsulate the state of a framebuffer
in a similar manner to the way texture objects encapsulate the state of a texture. In
particular, a framebuffer object encapsulates state necessary to describe a collection
of color, depth, and stencil logical buffers. For each logical buffer, a framebuffer-
attachable image can be attached to the framebuffer to store the rendered output
for that logical buffer. Examples of framebuffer-attachable images include texture
images and renderbuffer images.

By allowing the images of a renderbuffer to be attached to a framebuffer,
OpenGL SC provides a mechanism to support off-screen rendering. Further, by
allowing the images of a texture to be attached to a framebuffer, OpenGL SC pro-
vides a mechanism to support render to texture.

4.4.1 Binding and Managing Framebuffer Objects

The operations described in chapter 4 affect the images attached to the framebuffer
object bound to the target FRAMEBUFFER. By default, the framebuffer bound to
the target FRAMEBUFFER is zero, specifying the default implementation-dependent
framebuffer provided by the windowing system. When the framebuffer bound to
target FRAMEBUFFER is not zero, but instead names an application-created frame-

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 94

buffer object, then the operations described in chapter 4 affect the application-
created framebuffer object rather than the default framebuffer.

The namespace for framebuffer objects is the unsigned integers, with zero re-
served by OpenGL SC to refer to the default framebuffer. A framebuffer object
is created by binding a framebuffer object name obtained by calling GenFrame-
buffers to the target FRAMEBUFFER. The binding is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to FRAMEBUFFER and framebuffer set to the framebuffer object
name obtained from GenFramebuffers. The resulting framebuffer object is a new
state vector. There is one color attachment point, plus one each for the depth and
stencil attachment points. Calling BindFramebuffer with a framebuffer object
name not obtained by GenFramebuffers will result in a INVALID_OPERATION
error. Framebuffer objects cannot be deleted.

BindFramebuffer may also be used to bind an existing framebuffer ob-
ject to target. If the bind is successful no change is made to the state of the
bound framebuffer object and any previous binding to target is broken. The cur-
rent FRAMEBUFFER binding can be queried using Getlntegerv(FRAMEBUFFER_ -
BINDING).

While a framebuffer object is bound to the target FRAMEBUFFER, OpenGL SC
operations on the target to which it is bound affect the images attached to the bound
framebuffer object, and queries of the target to which it is bound return state from
the bound object. In particular, queries of the values specified in table 6.20 (Imple-
mentation Dependent Pixel Depths) are derived from the currently bound frame-
buffer object. The framebuffer object bound to the target FRAMEBUFFER is used
as the destination of fragment operations and as the source of pixel reads such as
ReadnPixels.

In the initial state, the reserved name zero is bound to the target FRAMEBUFFER.
There is no application created framebuffer object corresponding to the name zero.
Instead, the name zero refers to the window-system-provided framebuffer, if there
is one. All queries and operations on the framebuffer while the name zero is bound
to the target FRAMEBUFFER operate on this default framebuffer. On some imple-
mentations, the properties of the default window system provided framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Application created framebuffer objects (i.e., those with a non-zero name) dif-
fer from the default window-system-provided framebuffer in a few important ways.
First and foremost, unlike the window-system-provided framebuffer, application
created framebuffers have modifiable attachment points for each logical buffer in

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 95

the framebuffer. Framebuffer attachable images can be attached to and detached
from these attachment points. Also, the size and format of the images attached
to application created framebuffers are controlled entirely within the OpenGL SC
interface, and are not affected by window-system events, such as pixel format se-
lection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created frame-
buffer object,

e The pixel ownership test always succeeds. In other words, application-
created framebuffer objects own all of their pixels.

e There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, or front color bitplanes.

e The only color buffer bitplanes are the ones defined by the framebuffer at-
tachment point named COLOR_ATTACHMENTO.

e The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

e The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

e There is no multisample buffer, so the value of the implementation-
dependent state variables SAMPLES and SAMPLE_BUFFERS are both 0.

The command
void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These
names are marked as used, for the purposes of GenFramebuffers only, but they
acquire state and type only when they are first bound, just as if they were unused.

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from,
application-created framebuffer objects. In contrast, the image attachments of the
window-system-provided framebuffer may not be changed by OpenGL SC .

A single framebuffer-attachable image may be attached to multiple application-
created framebuffer objects, potentially avoiding some data copies, and possibly
decreasing memory consumption.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 96

For each logical buffer, the framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 6.23.

There are two types of framebuffer-attachable images: the image of a render-
buffer object, and an image of a texture object.

4.4.3 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable
internal format. OpenGL SC provides the methods described below to allocate a
renderbuffer’s image, and to attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero re-
served for OpenGL SC . A renderbuffer object is created by binding a renderbuffer
object name obtained by calling GenRenderbuffers to RENDERBUFFER. The bind-
ing is effected by calling

void BindRenderbuffer(enum rarget, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name obtained from GenRenderBuffers. If renderbuffer is not zero, then the
resulting renderbuffer object is a new state vector, initialized with a zero-sized
memory buffer, and comprising the state values listed in table 6.22. Any previous
binding to target is broken. Calling BindRenderbuffer with a renderbuffer object
name not obtained by GenRenderbuffers will result in a INVALID_OPERATION
error. Renderbuffer objects cannot be deleted.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, OpenGL SC operations on the target to
which it is bound affect the bound renderbuffer object, and queries of the target to
which a renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to farget is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate errors.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 97

Using GetlIntegerv, the current RENDERBUFFER binding can be queried as
RENDERBUFFER_BINDING.
The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound, just as if they were un-
used.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

establishes the data storage, format, and dimensions of a renderbuffer object’s im-
age. target must be RENDERBUFFER. internalformat must be one of the color-
renderable, depth-renderable, or stencil-renderable formats described in table 4.5.
width and height are the dimensions in pixels of the renderbuffer. If either
width or height is greater than the value of MAX_RENDERBUFFER_SIZE, the er-
ror INVALID_VALUE is generated. If OpenGL SC is unable to create a data store
of the requested size, the error OUT_OF_MEMORY is generated and the renderbuffer
storage is not allocated.

An OpenGL SC implementation may vary its allocation of internal component
resolution based on any RenderbufferStorage parameter (except target), but the
allocation and chosen internal format must not be a function of any other state. The
width, height, and internal format cannot be changed once they are established. At-
tempting to change the width, height, or internal format once established will result
in an INVALID_OPERATION error. The actual resolution in bits of each component
of the allocated image can be queried with GetRenderbufferParameteriv.

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enumn attachment, enum renderbuffertarget,
uint renderbuffer);

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 98

target must be FRAMEBUFFER. An INVALID_OPERATION error is generated if
the current value of FRAMEBUFFER_BINDING is zero when FramebufferRender-
buffer is called. attachment should be set to one of the attachment points COLOR_ -
ATTACHMENTO, DEPTH_ATTACHMENT or STENCIL_ATTACHMENT. renderbuffer-
target must be RENDERBUFFER and renderbuffer should be set to the name of the
renderbuffer object to be attached to the framebuffer. renderbuffer must be either
zero or the name of an existing renderbuffer object of type renderbuffertarget, oth-
erwise INVALID_OPERATION is generated. If renderbuffer is zero, then the value
of renderbuffertarget is ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful,
then the renderbuffer named renderbuffer will be used as the logical buffer iden-
tified by attachment of the framebuffer currently bound to farget. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_ -
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 6.23. No change is made
to the state of the renderbuffer object and any previous attachment to the attach-
ment logical buffer of the framebuffer object bound to framebuffer rarget is broken.
If, on the other hand, the attachment is not successful, then no change is made to
the state of either the renderbuffer object or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer currently bound
to target. All state values of the attachment point specified by attachment in the
object bound to target are set to their default values listed in table 6.23.

Attaching Texture Images to a Framebuffer

OpenGL SC supports using the rendered contents of the framebuffer as the images
of a texture object through directly rendering into the images of a texture object.

To render directly into a texture image, a specified image from a texture object
can be attached as one of the logical buffers of the currently bound framebuffer
object by calling the command

void FramebufferTexture2D(enum target, enum attachment,
enum fextarget, uint texture, int level);

The farget must be FRAMEBUFFER. An INVALID_OPERATION is generated if
the current value of FRAMEBUFFER_BINDING is zero when FramebufferTexture2D
is called. attachment must be one of the attachment points of the framebuffer.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 99

If texture is zero, then textarget and level are ignored. If texture is not zero, then
texture must name an existing texture object with a target of textarget. Otherwise,
INVALID_OPERATION is generated.

level specifies the mipmap level of the texture image to be attached to the
framebuffer and must be 0. Otherwise, INVALID_VALUE is generated.

If texture is not zero, then fextarget must be TEXTURE_2D.

If texture is not zero, and if FramebufferTexture2D is successful, then the
specified texture image will be used as the logical buffer identified by attach-
ment of the framebuffer currently bound to rarget. The value of FRAMEBUFFER_—
ATTACHMENT_OBJECT_TYPE for the specified attachment point is set to TEXTURE
and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to fexture.
Additionally, the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for the
named attachment point is set to level. All other state values of the attachment
point specified by atfachment are set to their default values listed in table 6.23. No
change is made to the state of the texture object, and any previous attachment to
the attachment logical buffer of the framebuffer object bound to framebuffer target
is broken. If, on the other hand, the attachment is not successful, then no change is
made to the state of either the texture object or the framebuffer object.

Calling FramebufferTexture2D with texture name zero will detach the image
identified by attachment, if any, in the framebuffer currently bound to target. All
state values of the attachment point specified by attachment are set to their default
values listed in table 6.23.

4.4.4 Feedback Loops Between Textures and the Framebuffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, resulting behavior
is implementation specific. This section describes rendering feedback loops (see
section 3.7.6) in more detail.

Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
two-dimensional texture level from being attached to the draw framebuffer while
the same texture is bound to a texture unit. While this conditions holds, texturing
operations accessing that image will produce implementation specific results, as
described at the end of section 3.7.6. Conditions resulting in such implementation
specific behavior are defined in more detail below.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound framebuffer while the texture object is currently bound and en-

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 100

abled for texturing. Doing so could lead to the creation of a rendering feedback
loop between the writing of pixels by OpenGL SC rendering operations and the si-
multaneous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete,
but the values of fragments rendered while in this state will be implementation
specific. The values of texture samples may be implementation specific as well, as
described under “Rendering Feedback Loops” in section 3.7.6.

Specifically, the values of rendered fragments are implementation specific if all
of the following conditions are true:

e an image from texture object T is attached to the currently bound framebuffer
at attachment point A

o the texture object T is currently bound to a texture unit U, and

e the current programmable vertex and/or fragment processing state makes it
possible (see below) to sample from the texture object 7 bound to texture
unit U

while either of the following conditions are true:

e the value of TEXTURE_MIN_FILTER for texture object 7 is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_ TEXTURE_LEVEL
for attachment point A is O (the level zero array for the texture object 7).

e the value of TEXTURE_MIN_FILTER for texture object 7 is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR_—
MIPMAP_NEAREST, or LINEAR MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the range of mipmap levels specified for the texture object 7.

For the purposes of this discussion, it is possible to sample from the texture
object T bound to texture unit U if the active fragment or vertex shader contains
any instructions that might sample from the texture object 7 bound to U, even if
those instructions might only be executed conditionally.

4.4.5 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL. The default framebuffer is always complete if it exists;
however, if no default framebuffer exists (no window system-provided drawable is
associated with the GL context), it is deemed to be incomplete.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 101

Sized Renderable R G B A D S
Internal Format Type bits | bits | bits | bits | bits | bits
DEPTH_COMPONENT16 | depth-renderable 16

RGBA4 color-renderable 4 4 4 4

RGB5_Al color-renderable 5 5 5 1

RGB565 color-renderable 5 6 5

STENCIL_INDEXS8 stencil-renderable 8

Table 4.5: Renderbuffer image formats, showing their renderable type (color-,
depth-, or stencil-renderable) and the number of bits each format contains for color
(R, G, B, A), depth (D), and stencil (S) components.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined be-
low. The rules of framebuffer completeness are dependent on the properties of the
attached images, and on certain implementation-dependent restrictions. A frame-
buffer must be complete to effectively be used as the destination for OpenGL SC
framebuffer rendering operations and the source for OpenGL SC framebuffer read
operations.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached. Image
internal formats are summarized in table 4.5. Color-renderable formats contain
red, green, blue, and possibly alpha components; depth-renderable formats contain
depth components; and stencil-renderable formats contain stencil components.

Formats not listed in table 4.5, including compressed internal formats. are not
color-, depth-, or stencil-renderable, no matter which components they contain.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point atfachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in atfachment as described in section 4.4.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 102

e image is a component of an existing object with the name specified by
FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type specified by
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

e The width and height of image must be non-zero.

e If attachment is COLOR_ATTACHMENTO, then image must have a color-
renderable internal format.

o If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

e If attachment is STENCII_ATTACHMENT, then image must have a stencil-
renderable internal format.

Framebuffer Completeness

In this subsection, each rule is followed by an error enum in bold.
The framebuffer object target is said to be framebuffer complete if all the fol-
lowing conditions are true:

o If target is the default framebuffer, the default frame buffer exists.

FRAMEBUFFER_UNDEFINED

o All framebuffer attachment points are framebuffer attachment complete.

FRAMEBUFFER_INCOMPLETE_ATTACHMENT

e There is at least one image attached to the framebuffer.

FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT

o All attached images have the same width and height.
FRAMEBUFFER_INCOMPLETE_DIMENSIONS

e The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

FRAMEBUFFER_UNSUPPORTED

The enum in bold after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus that is generated when
that clause is violated. If more than one clause is violated, it is implementation-
dependent as to exactly which enum will be returned by CheckFramebufferSta-
tus.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 103

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete.

e Binding to a different framebuffer with BindFramebuffer.

e Attaching an image to the framebuffer with FramebufferTexture2D or
FramebufferRenderbuffer.

e Detaching an image from the framebuffer with FramebufferTexture2D or
FramebufferRenderbuffer.

e Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
EGL.

Although OpenGL SC defines a wide variety of internal formats for
framebuffer-attachable images, such as texture images and renderbuffer images,
some implementations may not support rendering to particular combinations of
internal formats. If the combination of formats of the images attached to a frame-
buffer object are not supported by the implementation, then the framebuffer is not
complete under the clause labeled FRAMEBUFFER_UNSUPPORTED. There must ex-
ist, however, at least one combination of internal formats for which the framebuffer
cannot be FRAMEBUFFER_UNSUPPORTED.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though is not required,
that an application check to see if the framebuffer is complete prior to rendering.
The status of the framebuffer object currently bound to target can be queried by
calling

enum CheckFramebufferStatus(enum rarget);

If target is not FRAMEBUFFER, INVALID_ENUM is generated. If CheckFrame-
bufferStatus generates an error, 0 is returned.

Otherwise, an enum is returned that identifies whether or not the framebuffer
bound to farget is complete, and if not complete the enum identifies one of the rules
of framebuffer completeness that is violated. If the framebuffer is complete, then
FRAMEBUFFER_COMPLETE is returned.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 104

Effects of Framebuffer Completeness on Framebuffer Operations

If the currently bound framebuffer is not framebuffer complete, then it is an error
to attempt to use the framebuffer for writing or reading. This means that ren-
dering commands such as DrawArrays and DrawRangeElements, as well as
commands that read the framebuffer such as ReadnPixels, will generate the er-
ror INVALID_FRAMEBUFFER_OPERATION if called while the framebuffer is not
framebuffer complete.

4.4.6 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.20 (Implementation Dependant
Pixel Depths) may change when a change is made to FRAMEBUFFER_BINDING, to
the state of the currently bound framebuffer object, or to an image attached to the
currently bound framebuffer object.

When FRAMEBUFFER_BINDING is zero, the values of the state variables listed
in table 6.20 are implementation defined.

When FRAMEBUFFER_BINDING is non-zero, if the currently bound frame-
buffer object is not framebuffer complete, then the values of the state variables
listed in table 6.20 are implementation specific.

When FRAMEBUFFER_BINDING is non-zero and the currently bound frame-
buffer object is framebuffer complete, then the values of the state variables listed
in table 6.20 are completely determined by FRAMEBUFFER_BINDING, the state of
the currently bound framebuffer object, and the state of the images attached to the
currently bound framebuffer object.

4.4.7 Mapping between Pixel and Element in Attached Image

When FRAMEBUFFER_BINDING is non-zero, an operation that writes to the frame-
buffer modifies the image attached to the selected logical buffer, and an operation
that reads from the framebuffer reads from the image attached to the selected logi-
cal buffer.

If the attached image is a renderbuffer image, then the window coordinates
(Zw, Yuw) correspond to the value in the renderbuffer image at the same coordinates.

If the attached image is a texture image, then the window coordinates (., Y)
correspond to the value in the level zero array of that texture at the same coordi-
nates.

Version 2.0.1 (July 24, 2019)

4.4. FRAMEBUFFER OBJECTS 105

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while FRAMEBUFFER_ —
BINDING is non-zero, for each draw buffer the R, G, B, and A values are converted
to internal components corresponding to the internal format of the framebuffer-
attachable image attached to the selected logical buffer, and the resulting internal
components are written to the image attached to logical buffer. The masking opera-
tions described by ColorMask, DepthMask, StencilMask, and StencilMaskSep-
arate are also effective.

4.4.8 Errors

The error INVALID_FRAMEBUFFER_OPERATION is generated if the value returned
by CheckFramebufferStatus is not FRAMEBUFFER_COMPLETE, and any attempts
to render to or read from the framebuffer are made.

The error INVALID_OPERATION is generated if GetFramebufferAttach-
mentParameteriv is called while the value of FRAMEBUFFER_BINDING is Zero.

The error INVALID_OPERATION is generated if FramebufferRenderbuffer
or FramebufferTexture2D is called while the value of FRAMEBUFFER_BINDING
is zero.

The error INVALID_OPERATION is generated if RenderbufferStorage is
called while the value of RENDERBUFFER_BINDING iS zero.

The error INVALID_VALUE is generated if RenderbufferStorage is called
with a width or height that is greater than MAX_RENDERBUFFER_SIZE.

The error INVALID_ENUM is generated if RenderbufferStorage is called with
an internalformat that is not among the list of supported color, depth or stencil
formats.

The error INVALID_ OPERATION is generated if FramebufferRenderbuffer
is called and renderbuffer is not the name of a renderbuffer object.

The error INVALID_OPERATION is generated if FramebufferTexture2D is
called and texture is not the name of a texture object.

The error INVALID_VALUE is generated if FramebufferTexture2D is called
with a level that is less than zero.

The error INVALID_VALUE is generated if FramebufferTexture2D is called
with a level that is greater than 0.

The error INVALID_ENUM is generated if CheckFramebufferStatus is called
and rarget is not FRAMEBUFFER.

The error OUT_OF_MEMORY is generated if OpenGL SC is unable to create a
data store of the required size when calling RenderbufferStorage.

Version 2.0.1 (July 24, 2019)

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters: flushing and finishing (used to synchronize the GL com-
mand stream), and hints.

5.1 Flush and Finish
The command
void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.2 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

106

5.2. HINTS 107

target is a symbolic constant indicating the behavior to be controlled, and hint
is a symbolic constant indicating what type of behavior is desired. target must
be GENERATE_MIPMAP_HINT, indicating the desired quality and performance of
mipmap level generation with GenerateMipmap. hint must be one of FASTEST,
indicating that the most efficient option should be chosen; NICEST, indicating that
the highest quality option should be chosen; and DONT_CARE, indicating no pref-
erence in the matter.

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

Version 2.0.1 (July 24, 2019)

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);

The commands obtain boolean, integer, or floating-point state variables. value is
a symbolic constant indicating the state variable to return. data is a pointer to a
scalar or array of the indicated type in which to place the returned data. In addition

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or disabled.

6.1.2 Data Conversions

State variables for which any command other than IsEnabled is listed as the query
command can be obtained only by using that command. This ensures that no data

108

6.1. QUERYING GL STATE 109

conversions occur for queries. State variables for which IsEnabled is listed may
also be queried by GetBooleanv.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRangef parameters are returned in the order n
followed by f.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE to
determine which server texture state vector is queried. Tables 6.2, 6.7, 6.9, and 6.18
indicate those state variables which are qualified by ACTIVE_TEXTURE during
state queries. Texture state queries will result in an INVALID_OPERATION error
if the value of ACTIVE_TEXTURE is greater than or equal to MAX_COMBINED_-—
TEXTURE_IMAGE_UNITS.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(texture ID, buffer object name, etc.) as well as a symbolic constant. These are
The command

void GetTexParameter{if}v(enum target, enum value,
T data);

returns information about target, which must be TEXTURE_ 2D, indicating the
currently bound two-dimensional texture object. value is a symbolic value indicat-
ing which texture parameter is to be obtained. value must be one of the symbolic
values in table 3.8.

The command

void GetBufferParameteriv(enum farget, enum value,
T data);

returns information about target, which may be one of ARRAY BUFFER or
ELEMENT_ARRAY_BUFFER, indicating the currently bound vertex array or element
array buffer object. value is a symbolic value indicating which buffer object pa-
rameter is to be obtained, and must be one of the symbolic values in table 2.6.
The command

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

Version 2.0.1 (July 24, 2019)

6.1. QUERYING GL STATE 110

returns information about framebuffer objects. farget must be FRAMEBUFFER.
attachment must be one of the attachment points COLOR_ATTACHMENTO, DEPTH_—
ATTACHMENT, or STENCIIL_ATTACHMENT.

pname must be one of the following: FRAMEBRUFFER_-—
ATTACHMENT_OBJECT_TYPE, FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, Or
FRAMEBUFFER_ATTACHMENT TEXTURE_LEVEL.

If the framebuffer currently bound to target is zero, then INVALID_-
OPERATION is generated.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then param will contain
one of NONE, TEXTURE, or RENDERBUFFER, identifying the type of object which
contains the attached image.

If the value of FRAMEBUFFER ATTACHMENT_ OBJECT_TYPE is
RENDERBUFFER, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

e Otherwise, INVALID_ENUM is generated.
If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

o If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

e Otherwise, INVALID_ENUM is generated.

If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE is NONE, then
querying any other pname will generate INVALID_ENUM.
The command

void GetRenderbufferParameteriv(enum target, enum pname,
int* params);

returns information
about renderbuffer objects. farget must be RENDERBUFFER. pname must be one
of the symbolic values in table 6.22 other than RENDERBUFFER_BINDING.

Version 2.0.1 (July 24, 2019)

6.1. QUERYING GL STATE 111

If the renderbuffer currently bound to target is zero, then INVALID_-
OPERATION is generated.

Upon successful return from GetRenderbufferParameteriv, if pname
iS RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT, or RENDERBUFFER_-
INTERNAL_FORMAT, then params will contain the width in pixels, height in pixels,
or internal format, respectively, of the image of the renderbuffer currently bound
to target.

Upon successful return from GetRenderbufferParameteriv, if pname is
RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_SIZE, RENDERBUFFER_-
BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE, RENDERBUFFER_DEPTH_SIZE, Or
RENDERBUFFER_STENCII_SIZE, then params will contain the actual resolutions,
(not the resolutions specified when the image array was defined), for the red, green,
blue, alpha depth, or stencil components, respectively, of the image of the render-
buffer currently bound to rarget.

Otherwise, INVALID_ENUM is generated.

6.1.4 String Queries
The command
ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current GL con-
nection '. The possible values for name are VENDOR, RENDERER, VERSION,
SHADING_LANGUAGE_VERSION, and EXTENSIONS. The format of the RENDERER
and VENDOR strings is implementation-dependent. The EXTENSIONS string con-
tains a space separated list of extension names (the extension names themselves do
not contain any spaces).

The VERSION string is laid out as follows:

"OpenGL SC N.M vendor-specific information"
The SHADING_LANGUAGE_VERSION string is laid out as follows:
"OpenGL SC GLSL ES N.M vendor-specific information"

The version number is either of the form major_number.minor_ number or
major_number.minor_number.release_number, where the numbers all have one or

! Applications making copies of these static strings should never use a fixed-length buffer, because
the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

Version 2.0.1 (July 24, 2019)

6.1. QUERYING GL STATE 112

more digits. The release_number and vendor specific information are optional.
However, if present, then they pertain to the server and their format and contents
are implementation-dependent.

GetString returns the version number (returned in the VERSION string) and
the extension names (returned in the EXTENSIONS string) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.5 Program Queries

State stored program objects can be queried by commands that accept program
object names. These commands will generate the error INVALID_VALUE if the
provided name is not the name of a program object. If an error is generated, vari-
ables used to hold return values are not modified.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is LINK_STATUS, TRUE is returned if the shader was last loaded
successfully, and FALSE is returned otherwise.

The commands

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must be
one of VERTEX_ATTRIB_ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE,
VERTEX_ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_-
ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
or CURRENT_VERTEX_ATTRIB. Note that all the queries except CURRENT_-
VERTEX_ATTRIB return client state. The error INVALID_VALUE is generated if
index is greater than or equal to MAX_VERTEX_ATTRIBS.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.

Version 2.0.1 (July 24, 2019)

6.2. STATE TABLES 113

The size, stride, type and normalized flag are set by the command VertexAttrib-
Pointer. The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index.

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_—
POINTER. The INVALID_VALUE error is generated if index is greater than or equal
to MAX_VERTEX_ATTRIBS.

The commands

void GetnUniformfv(uint program, int location, sizei
bufSize, float *params);

void GetnUniformiv(uint program, int location, sizei
bufSize, int *params);

return the value or values of the uniform at location location for program object
program in the array params. The maximum number of bytes that may be written
into params is specified by bufSize. The type of the uniform at location determines
the number of values returned. The error INVALID_OPERATION is generated if
program has not been loaded successfully, or if location is not a valid location for
program. In order to query the values of an array of uniforms, a GetnUniform*
command needs to be issued for each array element. If the uniform queried is a
matrix, the values of the matrix are returned in column major order. If an error
occurred, the return parameter params will be unmodified.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using GetBooleanv, Get-
Integerv, or GetFloatv are listed with just one of these commands — the one that
is most appropriate given the type of the data to be returned. These state variables
cannot be obtained using IsEnabled. However, state variables for which ISEn-
abled is listed as the query command can also be obtained using GetBooleanv.
State variables for which any command other than IsEnabled is listed as the query
command can be obtained only by using that command.

Version 2.0.1 (July 24, 2019)

6.2. STATE TABLES 114

’ Type code ‘ Explanation ‘

B Boolean
c Character in a counted string
C Color (floating-point R, G, B, and A values)
Z Integer

Zt Non-negative integer

YAAM k-valued integer (k* indicates k is minimum)

R Floating-point number

Rt Non-negative floating-point number

Rla-?) Floating-point number in the range [a, b]

RF k-tuple of floating-point numbers

Ry k-valued floating-point number
S NULL-terminated string

Y Pointer (data type unspecified)

n X type | n copies of type type (n* indicates n is minimum)

Table 6.1: State Variable Types

A type is also indicated for each variable. Table 6.1 explains these types. The
type actually identifies all state associated with the indicated description; in certain
cases only a portion of this state is returned. This is the case with textures, where
only the selected texture or texture parameter is returned.

Version 2.0.1 (July 24, 2019)

115

6.2. STATE TABLES

Surpuiq
opgnq Aeme NqUPy AIqLI))VXI)IIA J9)
O ~ N O +N Xk w DONIANIF IHAING” AVIIV dIYLLY XJLIgA
Surpuiq
opnq Aele JUOWMR AJISAULIID)
NO ~ N O x__vN ONIANIF J944Ng" AVII YV LNINATA
Surpuiq Jojynqg JUALIND ATISANUIIID)
01 ¢ 0 +N ONIANIF H1INd" AVIIY
Iyurod RuIJqLNy
Aeire quIe XOMOA -X9)I9A 195
6'C TTNN \w X % Q YALNIOd™ AVIIV dI4.LLV XALddA
pozifew
-Jou Aelle qQUIIE XOMOA ()} VX3)IIA)95
QN N%NB...N m X % w AAZI'TVINION AV IV dIY.LLY XHLIdA
od£y Aeire qumie xo110A (LI)JYX3)IIAIID)
@N IVYOTA vN Xk w HdAL AVIIV LIV XALIdA
opIns ABLIE qLIJE XA (1)) VXI)IIA IR
6'C 0 + N X %k % HATILS"AVIIV dIYLLV XALd9dA
9ZIS ABLI® qLI)JE XOLIOA (II))VXI)IIA)95
QN ._N NX * w HZISTAVIEV dIY.LLY XdLIdA
9[qeud Aeire qujje XOlIA (1)} VXI)IIAJI0)
@N N%NBHN mX * w AITIVNT AVIIV a4 LIV XALIdA
LN uonduoseqg onfeA puur) adA], onpea 100
[enruyg 1D

Table 6.2. Vertex Array Data

Version 2.0.1 (July 24, 2019)

116

6.2. STATE TABLES

uwroned a3esn 1opynq

0I'C MYId DILVIS | ALRPWRIRLRINGINY | €7 X U || @ovsnudddnd
971s eyep 19pnq
0I'¢ 0 ALRPUWRIRJIRINGID | 7 X U AZIS 1IN
GEIN uonduosag onfeA puw) odA1, an[eA 100
[enrug 1D

Table 6.3. Buffer Object State

Version 2.0.1 (July 24, 2019)

117

6.2. STATE TABLES

Iej 29 Jeau o3uel yido(g

HONVY HLJHd

['ere 10 AJeOlgPY) | LY X¢
JU9)X 29 UISLIO 110dMATA TOdMATA
I'el'e ['€1'799s | ARSNUIPRY | 7 X T
kN uonduosog anfeA puw) odA7, angea 199
[eniu] 1D

Table 6.4. Transformation state

Version 2.0.1 (July 24, 2019)

118

6.2. STATE TABLES

9[qeua 19sJJ0 uo3A[04

S¢ ENIZ2 o Pa1qeuys] q T 13S440"NODATOd
sjrun 39sJo uo3A[od

[4%3 0 AJRO[]199) Y SLINMLASHH0 NODATOd
10}9®J 195JJ0 u03K[04

cS'¢e 0 ARO[1199 y MOLOVAI"LASHIO"NODXTOd
10}
-BOIPUL AADD/AD 20BJIUO0IJ UOSA[0]

1'¢'¢ MDD | AIR3NUIPD | 7 HOVA LNO¥A
suo3Ajod Furoej yoeqauoly [[nD)

1°¢'¢ MOVd | ATSIULIN) A HAOW HOVATIND
parqeua Sur[nod uo3A[od

['6'¢ s palqeuysI g OV TIND
PpIm Sury

¥'e 01 AJRO[]199) Y HLAIM ANIT

"09G uonduoseg onfeA puw) adA], anJeA 100
entuy 1D

Table 6.5. Rasterization

Version 2.0.1 (July 24, 2019)

119

6.2. STATE TABLES

anjJeA ysewr 9FeI0A00 L2AUT

¢y aS|p | AUBI[00Y)IN) qg LIIANIHOVYHAOD A IdNVS
anyeA ysew 93eI9A0D)

Iy I A)BO[195 +M* HOTVA HOVIHAOD dTdAVS
a8eI10A00 AJIpowt 03 YSeIN

1y IS|D] ﬁ@—ﬂﬂﬁmmﬂ g HOVIFAOD HTdNVS
eyd[e woij 93810400 AJIPOIA

¢y EN 2 Pa1qeuysy g HOVIIAOD OL VHA TV ' 1dNY'S

29§ uonduosaq anfeA puw) adAg, anyeaA 100
[enmy 1D

Table 6.6. Multisampling

Version 2.0.1 (July 24, 2019)

120

6.2. STATE TABLES

az TENIXEL
0) punoq 199 .Eo AINIXJ, AT ONIANIE FINLXAL
TILE 0 ARZNUIPD | |7 X %8
LN uonduoseg anJeA puw) adA], onpea 100
[entug 1D

Table 6.7. Textures (state per texture unit and binding point)

Version 2.0.1 (July 24, 2019)

121

6.2. STATE TABLES

J[qeInw
|Em HNEHOW Uﬁ&. DNMW LVINIOT HTAVLAWNT HINLXAL
I'L'e HASTIVA | J3JWRIBIXdLID) | g X U
opowr deim 7 pI00dX9J, LdVIM TANLXEL
SLe IVEdEY | JOJPWRIBIXALINY) | %7 X U
opowr deim s pI1009X9J, SV HANLXEL
SLE IYAdHY | JRPWRIBIXITID) | &7 X U
uonouny
uoneoyugew AINIXJJ, MALTLDVIN HNNLXEL
LL€ L'€99S | JIPWRIBJIXALIND) | C7 X U
uonouny
uonedyIuru 2 ivel MELTLT NIAHENLXAL
9L¢ L'€995 | IdPWRIBIXILRY | %7 X U
k1N uonduosaq anfeA puw) adA], anfea o0
[entug 1D

Table 6.8. Textures (state per texture object)

Version 2.0.1 (July 24, 2019)

122

6.2. STATE TABLES

J0)O9[9S 1TUN 9INJXA) JATIOY

8¢ 0FINIXAL | ATSNHUPPD | *S7 || FWNIXALHALLOY
09§ uonduoseg anJeA puw) adA], anJeA 190
[entuy 1D

Table 6.9. Texture Environment and Generation

Version 2.0.1 (July 24, 2019)

123

6.2. STATE TABLES

uomnouny 1593 1opnq ydo(q

Iy SSHT ATIZNUTIN) 87 ONNA™HLAAA
pa[qeus 1yynq ydoq

S asIv] Pa1qeuys] qg LSELHLAEA
uonoe ssed 1oyynq yidap [1ou9)s yoeg

iy daay AJIZIANUIIN) 87 SSVd HLAAASSVdMOVE " TIONELS
uonoe [rey 101ynq ydop [1oudls Yoeyg

iy dday AJIZIUIID) 87 TV HLdAA SV SIOVE TIONELS
uonoe [IeJ [10uds yoeqg

viy dddy AJRZNULID 87 TV SOVE TIONALS
9N[BA SOUSISJAI [IOUIS Yorgg

Vv 0 AJIZNULIN) Z AEAMOVE TIONALS
JSsew [10ud)s yoeqg

vViy S 1 >.~ow8=~aow +7Z NSV HNTVA™OVE TIONELS
uonouny [10Ud)s yoeyg

71y SAYMTIY | AJISUIId9) 87 ONNAMOVE TIONALS
uon
-oe ssed xopynq ydop 10U JUOL]

1% JaEy AJIZANUIIN) 87 SSVd"HLdA SSVd TIONALS
uonoe [reJ 1ajynq yidop [10UIS JUOL]

iy daay AJIZIUIIN) 87 TV HLAAA SSVd " TIONELS
UuoMoe [IBJ [1OU)S JUOL]

Y1y ddEM AJIZIUIID) 87 TIVA TIONALS
N[BA OUIIIJAI [IOU)S JUOL]

iy 0 AJIZNUIIN) 7 JTATIONELS
YSeW [10US)S JUOL]

iy ST AJIZIAUIIN) A SSVINHN VA TIONALS
uonouny [10U)S JUOI]

Y1y SAVMTIVY | AJI39U[)I9) 87 ONNATIONALS
pa[qeuo JuI[rousls

iy S0 pPalqeuyst q LSELTIONALS
X0q I0SSIOS

1y T 1Y 998 ARSNUIPY | 7 X § XOF 40SSIDS
po[qeud SuLIOSSIOS

1y as|vg P31qeuds qg LSHAL MOSSIDS

LN uonduoseg onfeA puw) adAg, onfea 10
[enmg 1D

Table 6.10. Pixel Operations

Version 2.0.1 (July 24, 2019)

124

6.2. STATE TABLES

parqeus SuLayig

LTy andf pPalqeuyst q MAHLIA
JO[09 PUI[q JULISUOD)

91V 0°0°0°0 AJeO[1195 o) MOTOO aNg1d
uonienbe Surpuorq eydyy

9'l'v aavy dONNJA AJIZANUIIIN) Sz VHA'TV NOLLVNOA ANATd
uonenba Surpua(q gy

9l'y dav¥y ONQd | AJISIIUIID) Sz (NOLLYNOH ANATE :1'14) §D¥ NOLLYNOH ANA 18
uonouny y ‘3sap Surpusg

Ol'y oddZ ATIZNUTIN) 14374 VHJTV LS aNd1d
uonouny goy ‘1sep urpudrg

9IY 0494z ARZNUIPY | Ty (LSa-ANETE:1°14) 0¥ LSAANA1d
uonoduny Y 20In0s uipuag

91y ANO ARRZNUIPY | Sy VHATV-O¥S ANATd
uonouny gy 201nos urpuag

91y ANO ATIZNUTIN) Sy (O¥SANTTE:1'TA) DU OUS ANTTd
pa[qeus urpud[g

9Iv s[0] Palqeuyst q ana'd

GelIN uonduosaq anfeA puw) adA], anfea 120
[enmy 1D

Table 6.11. Pixel Operations (cont.)

Version 2.0.1 (July 24, 2019)

125

6.2. STATE TABLES

an[eA Ied[d [IOUS

€Ty 0 ATISNUIID) Z ANTVA VAT TIONELS
anfea Ies[d Rpnq yPdog

ey 1 AJeO[119D Ly ANTVA-IVETO HLdEA
(opowr
vVgOY) onfea Ied[D Idynq IO[0))

€Ty 0°0°0°0 AJeO[1199 o) ANTVAMVATO HO0T0D
YSeWIM Jofng [10ud)s Joeqg

Ty S 1 >.~ow3==®mu +7Z SISVINHLIM MOVE TIONHLS
YSEWaIIM QNG [IOU)S JUOL]

Ty S.1 AJIZNUIIRD +Z MSYWALIIM TIONELS
Sunum J0J pI[qeud Jopnq yideoq

Ty ani] | AUBI[00YIIT) q SSVIWHLINM HLdEA
V 10 ‘g ‘D Y ‘S9[qrUS ALIM JO[0D)

7Ty ani] | AURIOOYIRY) | g X ¥ SSVINELIIM HO'T0D

099G uonduosog onpeA puw) adAg, onpea 100
[enry 1°D

Table 6.12. Framebuffer Control

Version 2.0.1 (July 24, 2019)

126

6.2. STATE TABLES

INTANDITY MOV¥d JO anjeA

|4 ¥ ARINUPYH | 7 INAANOITY SOV
INAANDITY MIOVANN JO anfep
19¢ 1% ATSNUIIRD | |7 || INGANOITVIOVIND
LN uonduosoq anfeA puw) odA], anfea 120
[eniug 1D

Table 6.13. Pixels

Version 2.0.1 (July 24, 2019)

127

6.2. STATE TABLES

9INqINE JLISUAS 9ATIOR JO UOTIBIO]

[¢ - uonedIOIqLIN VI ZX % ()
on[eA wWIojIuN)
ClI1e 0 wIojluu3dsy X *C1¢
SULIOJIUN 9AT}OR JO UOTJBIO|
19 - UONBIOTULIONUNIAL) | 7 X *()
papa3dons jdwape peoy Ise|
S'19 sy ATWRIS0IJIID) g SOIVLSSINIT
109[qo wrea3oad juarmd Jo oweN
['T1°C 0 ATIZNULIN) A WVADOUd" LNEIND
pEIN uonduosaq anfeA puw) adA], anyeaA 100
[entug 1D

Table 6.14. Program Object State

Version 2.0.1 (July 24, 2019)

128

6.2. STATE TABLES

9INQINIE X9JI0A OLISUAL)

87 1°0°0°0 | qMIIVXMIBAIY | 7 X * 9T || HRLY XALNIALNDRIND
09§ uonduoseg onfeA puw) adA], onpea 10
[enrug 1D

Table 6.15. Vertex Shader State

Version 2.0.1 (July 24, 2019)

129

6.2. STATE TABLES

jury uoneraual dewdiy

¢S TIVD ™ INOQ | AI3U[IID) 974 LNIH dVINATIA ELLY JEANED
eL=IN uonduoseg onfeA puw) adA], onpea 100
[entuy 1D

Table 6.16. Hints

Version 2.0.1 (July 24, 2019)

130

6.2. STATE TABLES

sjewr
-J0J 2IMx?d) passardwoo

pajeIownuUd JO JoquInN AJIZNUIIIN) SLYWHOA HANLXAL AASSTIINOD NN
eLe 0 A
S1RULIO} 2IN)X9)
possardwos pojerownuyg AJIZANUIIIN) SIVINNOL INLXAL QISSTAINOD
cLe - *07 % % ()
9ZIS YSeW 9FBIAA0D) ATIZNULIN) STTANVS
(43 0 +Z
s1opnq
oidwesnmuw jo roqunN ATIZIUTID) SYLLING ATINYS
(%3 0 +Z
SYIpIM Ul
paserfe Jo (14 03 o) 93uey AJBO[119D HONVI HLAIM ENIT asvITyY
e 'l +d X ¢
saz1s jurod
paserfe Jo (14 03 o) a3uey AJeOLIIND HONVHZIS INIOd QdSVI TV
€e 'l +d X G
SuoIsuaw
-Ip 10dMITA WNWIXBIA AJIZULID) SINIQ" LMOdMATA XVIN
| ["E1°C 998 +Z X ¢
UuoISuUaWIp
J3ewI 2INJXd) WNWIXBIA ATIZIULIN) 4ZIS HENLXEAL XVIN
I'L'¢ 9 +Z
™ff pue "x
u2210s ut uorstoaxd [axid
-qns Jo $)Iq JO IaquinN ATIZNULIN) SLIE THXIENS
¢ 14 A
REIN uonduosaq anfeA puw) adA], anfea o0
WNWIUIA 190

Table 6.17. Implementation Dependent Values

Version 2.0.1 (July 24, 2019)

131

6.2. STATE TABLES

payod
-dns uworsroa Huadp Sun$en NOISYHA
7’19 - S
3uIns J0pusp 3urngen AOANAA
¥'19 - S
pauoddns uors
-I9A 93en3ue| Suipeys SurLngo NOIS¥IA DVNONYTONIAVHS
7’19 - S
Suins 1e10puay SuLng1n FANAANTY
7’19 - S
suorsua)xa poyroddng Suin§en SNOISNELXH
19 - S
sjewI0j Areu
-1q weidoid jo roqunyN ATISNUIIID) SLYINOI AYYNIE NV ¥DOUd WAN
I'11'¢ 0 Z
sjewIoj Areu
-1q weidoid pajerownuyg AJIZIUIID) SLVINYOA AIYNIE WY ¥DO¥d
11 - Z x Ju
LN uonduoseq anfeA puw) adA], anyeA 100
WINWTUTIA 190

Table 6.18. Implementation Dependent Values (cont.)

Version 2.0.1 (July 24, 2019)

132

6.2. STATE TABLES

9718
IOPNQIOpUal WNWIXBA AJIZUIID) AZIS HHLANGAIANTT XYIN
vy ! +Z
S9[qeLIeA
wIojiun Iopeys Sexy
I0J SIOJOQA JO IdquINN ATISANUTIID SYOLOTA WHOLINLNANOV U XVIN
['8°¢ 91 +Z
Surssaooad juowr
-3e1y Aq 9[qIssedoE sjun
93ewI 2IN)XA) JO JoqUUNN] AJIZIUIID) SLINNHDVIN TANLXIL XVIN
[1 4 8 +Z
Iopeys X9)
-IoA B AQ 9[qISSeO0E S)Iun
93ewWI 2IN)XA} JO JoqUUNN] AJIZIUIID) SLINNHDVINT NN LXEL XALITA XVIN
[1 4 0 +Z
10
oy AQ 9[qISsedoe sjun
IN)X9) JO Ioquinu [ejof, AJRZNUIIID) SLINITHDVINI F4N.LXEL QANISINOD XVIN
[4 8 +Z
so[qeLIeA JulkIeA
I0J SIOJO9A JO IoquuInN AJIZUIID) SYOLOHA ONIAIVAXVIN
CIIe 8 +Z
S9[qeLIBA
WIOJIUN IOPBYS XOJIOA
JOJ SIOJO9A JO JoquINN AJIZNUIID) SYOLOHA WHOAINN XHLIHA XVIN
¢l 8¢1 +Z
soInqre
XO1I0A QAIOR JO JoqUInN ARRSNUIIID SHNLLY XALITA XVIN
8¢ 8 +Z
LN uonduoseg anJeA puw) adA], onpea 100
WNWITUTA 190

Table 6.19. Implementation Dependent Values (cont.)

Version 2.0.1 (July 24, 2019)

133

6.2. STATE TABLES

o
-10f 1ox1d poxreyord woneuoworduy

| S % - AJISIULID) A LVINIOZ AVEY 40100 NOLLYLNEWA TdAI
ad(; 1ox1d pairojerd uonejuowaduwy

'€ - AJISIIULIID) +7 AdAL VAN 40TOD NOLLVINANA TdINI
soue[d [1OUA)S JO IoqUUINN

¥ - ARINUPH | 7 SLIS TIONALS
soued 1opnq yidop jo roquinN

¥ - ARINUPY | 7 SLIE HIdEa
YHATY 10 ‘ENTd ‘NIHED
‘agd Jo ouo st x uauodwod
opng IO[0d T Ul S} JO IQUNN

¥ - ATIBNUIPD | 7 sug @

GekIN uonduosaq anfeA puw) ad4], angea 120
fentug 1D

Table 6.20. Implementation Dependent Pixel Depths

Version 2.0.1 (July 24, 2019)

134

6.2. STATE TABLES

10119 3urpuodsa11od e SI a1y} JI oniJ,

¢ asIv, - gxu -
($)9p09 10113 JUALIN))
54 MOYIH ON | JOXIRD) | 97 X U -
GEIN uonduosaq anfeA puw) odA], oneAa 10D
[eniug 1D

Table 6.21. Miscellaneous

Version 2.0.1 (July 24, 2019)

135

6.2. STATE TABLES

9ZIS [10UQ)S JoNqIopuay

EYvy 0 ALIDJPWRBICJIRJNQIDPUIYIRD) | 7 HZIS TIONHLS ¥ dANTAANAY
az1s yydop 1opynqropuay

o 4 0 ALIDJIUWRIRJIJJN(IIPUIYJID) +N HZIS"HLdIA YddANIaaNTd
9z1s eyde JopynqIopuay

vy 0 ALIRPWRICJIRJJNQIIPUIYD) | 7 HZIS"VHA TV 444N g HANEY
971s an[q IoJJnqISpuUY

EYvy 0 ALIDJPWRBICJRJNQIDPUIYPD | 7 AZIS AN T8 ¥EAANTAANAY
9ZIS UQQI3 I9Jjnqlopuay

o 4 0 ALIDJIWRIRJIJJN(IIPUIYJID) +N HZISNHFID YHAINGIIANT Y
QZIS PAI IJJNGIdPUY

vy 0 ALIDJPWRICJIRJNQIIPUIYRD) | 7 HZ1S" Q9 AN GHHANTS
JRULIOJ [BUISIUT IOJJNQISPUIY

Evy PYIOYd | ALRPUWRIEJRINQIDPUNYIY | 7 LVINMO™ TVNMALLNI JHAAN S HHANAY
Y319y IojJnqIopuay

o 4 0 ALIDJWRIRJIJJN(IIPUIYJID) +N LHOIAH Ya4dNgYdaNTd
YIPIA JofJnqlopusy

cvy 0 ALRPWERIRLRJNQIPPUIYID | 7 HLAIN 484N gIIANTY
Surpuiq JonqIopudy

Evy 0 AJIZNULIIN) A ONIANIE YN FHAANY

298 uonduoseq anfeA puw) adAy, angea 120
[entuy 19D

Table 6.22. Renderbuffer State

Version 2.0.1 (July 24, 2019)

136

6.2. STATE TABLES

vy

[9AS] 2IN)X3} IOJJNQOUILL]

ALId)OWIRIR]
-JUAWYIENY
-IJJNqIURI II0)

LZXu

TIAFIT HINLXIL INHANHOVLLV 444N gdNV d4

vy

Qwreu 199(qo Joyyngauwres,y

ALId)OWIRIE]
JuduIPERNY
-IJJNIURIIID)

L7 XU

HAVN LOAIO" LNHNHOVLLY dd4dNddNV dd

vy

ad A3 109[qo Jopngawresy

ANON

ALId)OWIRIE]
JuauIIRNY
-IJJNqIURIIID)

€7 XU

HdAL LOAMdO" INHANHOVLLV ¥d4dNgdNV dd

ry

Surpuiq 1oyynqoures,y

0

AJ3U[IID)

ONIANIF YHAINFHNVIA

09§

uonduosaq

onfeA
[enu]

puwy)
D

adA],

anfeaA 190

Table 6.23. Framebuffer State

Version 2.0.1 (July 24, 2019)

137

6.2. STATE TABLES

o1
-ABYQQ UOTJEOYIIOU JoSY ATISNUIIID
9'C I1dSHEY NO IXHIINOD HSOT ty ADHIVILS NOLLYOIALLON LASHI 1D
PI[qRUR $SO008 ISNQOY AUBI[00g}99)
97 aNgI q SSADOV-LSNFOd LXALNOD
GEIN uonduoseg anfeA puw) odA1, anfea 199
[eniu] 1°D

Table 6.24. Robustness State

Version 2.0.1 (July 24, 2019)

Appendix A

Invariance

The OpenGL SC specification is not pixel exact. It therefore does not guarantee an
exact match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

138

A.2. MULTI-PASS ALGORITHMS 139

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it in a different
color.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL SC .

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

o Framebuffer contents (all bitplanes)
e Scissor parameters (other than enable)

o Writemasks (color, depth, stencil)

Version 2.0.1 (July 24, 2019)

A.4. WHAT ALL THIS MEANS 140

o Clear values (color, depth, stencil)

Strongly suggested:

Stencil parameters (other than enable)

Depth test parameters (other than enable)

Blend parameters (other than enable)

Pixel storage

Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with e in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the depth
test, for instance, are the depth test enable and the depth comparison function).

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL SC implementations cannot apply
hysteresis to this swap, but must instead guarantee that a given mode vector im-
plies that a subsequent command always is executed in either the hardware or the
software machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in
different renderers (hardware and software), many OpenGL SC state values may
change subtly when renderers are swapped. This is the type of state value change
that Rule 1 seeks to avoid.

Version 2.0.1 (July 24, 2019)

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The error semantics of upward compatible OpenGL SC revisions may
change. Otherwise, only additions can be made to upward compatible re-
visions.

. GL query commands are not required to satisfy the semantics of the Flush

or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

Application specified point size and line width must be returned as specified
when queried. Implementation-dependent clamping affects the values only
while they are in use.

. The mask specified as the third argument to StencilFunc affects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

. There is no atomicity requirement for OpenGL SC rendering commands,

even at the fragment level.

. Because rasterization of non-antialiased polygons is point sampled, poly-

gons that have no area generate no fragments when they are rasterized, and
the fragments generated by the rasterization of “narrow” polygons may not
form a continuous array.

141

142

7. As aconsequence of the chosen model, left- or right-handedness of any of the
coordinate systems is not an implementation consideration, and applications
using OpenGL-SC may choose to operate in either way,

8. (No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the
coordinate transformations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

9. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

Version 2.0.1 (July 24, 2019)

Appendix C

Shared Objects and Multiple
Contexts

This appendix describes special considerations for objects shared between multiple
OpenGL SC contexts, including how changes to shared objects are propagated
between contexts. '

The share list of a context is the group of all contexts which share objects with
that context.

C.1 Sharing Contexts Between Different Versions of
OpenGL SC

Implementations may or may not allow sharing between contexts implementing
different OpenGL SC versions. However, implementation-dependent behavior
may result when aspects and/or behaviors of such shared objects do not apply to,
and/or are not described by more than one version.

C.2 Sharing Objects Between Different Contexts in
OpenGL SC

Implementations may choose to support sharing of any object such as vertex buffer
objects, program objects, renderbuffer objects, and texture objects (except for the
texture objects named zero).

!This appendix was entirely rewritten in version 2.0.25 of the OpenGL ES Specification, to match
the same appendix in the OpenGL 4.1 Specification and add caveats regarding different treatment of
framebuffer objects in OpenGL SC .

143

C.3. PROPAGATING CHANGES TO OBJECTS 144

C.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.
e The contents of textures and renderbuffers.

o The contents of buffer objects.

State determines the configuration of the rendering pipeline and the driver does
have to inspect it.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to attached renderbuffers.

C.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section C.3 has completed. Completion of a command may
be determined by calling Finish.

C.3.2 Definitions
In the remainder of this section, the following terminology is used:

e An object T'is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures and current programs.

Version 2.0.1 (July 24, 2019)

C.3. PROPAGATING CHANGES TO OBJECTS 145

o Tis indirectly attached to the current context if it is attached to another object
C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers and shaders attached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which 7 is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

C.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering are treated consistently with updates via GL
commands.

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee
seeing changes made in another context to objects attached to C, such changes
must be completed in that other context (see section C.3.1) prior to C being bound.
Changes made in another context but not determined to have completed as de-
scribed in section C.3.1, or after C is bound in the current context, are not guaran-
teed to be seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 [f the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the

Version 2.0.1 (July 24, 2019)

C.3. PROPAGATING CHANGES TO OBJECTS 146

current context in order to guarantee that the new contents of T are visible in the
current context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

Version 2.0.1 (July 24, 2019)

Appendix D

Version 2.0

OpenGL SC 2.0 is not compatible with the prior version (OpenGL SC 1.0). It intro-
duces programmable vertex and fragment shaders, but removes the fixed-function
pipeline.

147

Appendix E

Extension Registry, Header Files,
and Extension Naming
Conventions

E.1 Extension Registry

Many extensions to the OpenGL SC API have been defined by vendors, groups of
vendors, and the Khronos OpenGL SC Working Group. In order not to compromise
the readability of the OpenGL SC Specification, such extensions are not integrated
into the core language; instead, they are made available online in the OpenGL SC
Extension Registry.

Extensions are documented as changes to a particular version of the Specifica-
tion. The Registry is available on the World Wide Web at URL

http://www.khronos.org/registry/glsc/

E.2 Header Files

OpenGL SC 2.0 provides two header files.
<GLSC2/glsc?2.h> defines APIs for core OpenGL SC 2.0.
<GLSC2/glsc2ext .h> defines APIs for all registered OGLSC, EXT, and
vendor extensions compatible with OpenGL SC 2.0 (some extensions are only
compatible with OpenGL SC 1.x).

148

http://www.khronos.org/registry/glsc/

E.3. OGLSC EXTENSIONS 149

E.3 OGLSC Extensions

OpenGL SC extensions that have been approved by the Khronos OpenGL SC
Working Group are summarized in this section. These extensions are not required
to be supported by a conformant OpenGL SC implementation, but are expected to
be widely available; they define functionality that is likely to move into the required
feature set in a future version of the Specification.

E.3.1 Naming Conventions

To distinguish OGLSC extensions from core OpenGL SC features and from
vendor-specific extensions, the following naming conventions are used:

e A unique name string of the form "GL_OGLSC_name" is associated with
each extension. If the extension is supported by an implementation, this
string will be present in the EXTENSIONS string.

o All functions defined by the extension will have names of the form Func-
tionOGLSC

e All enumerants defined by the extension will have names of the form
NAME_OGLSC.

E.4 Vendor and EXT Extensions

Vendor extensions (not approved by Khronos) use the same naming conventions
as OGLSC extensions, but with a different tag replacing OGLSC. The following
policies should always be followed when defining and shipping vendor extensions:

e A vendor tag will be assigned to a vendor on request to the Khronos Regis-
trar, if one is not already defined.

e This vendor tag must be used consistently in the extension name strings
and the corresponding function and enumerant names for extensions defined
solely by that vendor.

e Numeric values assigned to enumerants must follow the guidelines described
in the OpenGL SC Extension Registry. Reserved blocks of enumerant values
will be assigned to vendors on request, following the process defined in the
Registry.

Version 2.0.1 (July 24, 2019)

E.4. VENDOR AND EXT EXTENSIONS 150

e The reserved tag EXT may be used instead of a company-specific tag if
multiple vendors agree to ship the same vendor extension.

e If a vendor decides to ship another vendor’s extension at a later date, the
original extension name and vendor tag should still be used, unless both
vendors agree to promote that extension to an EXT.

An implementation exporting extension strings, or supporting function or enu-
merant names not following these naming guidelines, is not conformant.

Khronos strongly encourages vendors to submit full extension specifications
to the OpenGL SC Extension Registry for publication, once they have finished
defining the functionality in an extension. Extension writing guidelines, templates,
and other process documents are also found in the Registry.

Version 2.0.1 (July 24, 2019)

Appendix F

GLSL Limitations

F.1 Overview

OpenGL SC 2.0 implementations are not required to support the full GLSL ES
1.00 specification. This section lists the features which are not fully supported
in OpenGL SC 2.0. Features not listed in this section must be supported in their
entirety. Within the GLSL ES specification, implementations are permitted to im-
plement features beyond the minimal described in this section, without the use of
an extension.

F.2 Length of Shader Executable

The maximum length of the shader executable is implementation specific.

F.3 Usage of Temporary Variables

The maximum number of variables is implementation specific.

F.4 Control Flow

In general, control flow is limited to forward branching and to loops where the
maximum number of iterations can easily be determined at compile time. For-
ward branching is allowed, both for constant and non-constant conditions. There-
fore if-then, if-then-else, break and continue statements are permitted.
Backward branching is only permitted for constant iteration loops as defined below.
In the following section, loop indices are defined as all the non-constant variables

151

FE5. INDEXING OF ARRAYS, VECTORS AND MATRICES 152

appearing in the branch condition expression in a loop. for loops are supported
but with the following restrictions:

e There is one loop index.
e The loop index has type int or float.
e The for statement has the form:
for (init-declaration ; condition ; expression) statement

e init-declaration has the form:

type-specifier identifier = constant-expression
Consequently the loop variable cannot be a global variable.

e condition has the form
loop_index relational_operator constant_expression

where relational_operator is one of: >, >=, <, <=, ==, 0or! =
e for_header has one of the following forms:

loop_index++
loop_index—-
loop_index += constant_expression
loop_index —-= constant_expression

e Within the body of the loop, the loop index is not statically assigned to nor
is it used as the argument to a function out or inout parameter.

Support for while and do-while is not mandated.

F.5 Indexing of Arrays, Vectors and Matrices

Definition:

constant—-index-expressions are a superset of constant—-expressions.
Constant-index-expressions can include loop indices as defined in section F.4.

The following are constant-index-expressions

o Constant expressions
e Loop indices as defined in section F.4

e Expressions composed of both of the above

When used as an index, a constant-index—expression must have integral
type.

Version 2.0.1 (July 24, 2019)

FE5. INDEXING OF ARRAYS, VECTORS AND MATRICES 153

Uniforms (excluding samplers)

In the vertex shader, support for all forms of array indexing is man-
dated. In the fragment shader, support for indexing is only mandated for
constant-index—-expressions.

Samplers

GLSL ES 1.00 supports both arrays of samplers and arrays of structures which
contain samplers. In both these cases, for OpenGL SC 2.0, support for indexing
with a constant-index-expression is mandated but support for indexing with
other values is not mandated.

Attributes

Support for indexing of matrices and vectors with
constant-index-expressions is mandated. Support for indexing of matri-
ces and vectors with other values is not mandated. Attribute arrays are disallowed
by the specification.

Varyings

Support for indexing with a constant-index—expression is mandated. Sup-
port for indexing with other values is not mandated.

Variables

Support for indexing with a constant-index—expression is mandated. Sup-
port for indexing with other values is not mandated.

Constants

Support for indexing of matrices
and vectors with constant-index-expression is mandated. Support for in-
dexing of matrices and vectors with other values is not mandated. Constant arrays

Version 2.0.1 (July 24, 2019)

F.6. COUNTING OF VARYINGS AND UNIFORMS

are disallowed by the specification.

Summary

The following array indexing functionality must be supported:

154

Vertex Shaders

Fragment Shaders

Uniforms Any integer constant-index-expression
Attribute (vectors and matrices) | constant-index-expression | Notapplicable

Varyings constant-index-expression | constant-index—-expression
Samplers constant-index-expression | constant-index—-expression
Variables constant-index-expression | constant—-index—expression
Constants (vectors and matrices) | constant-index-expression | constant-index—-expression

F.6 Counting of Varyings and Uniforms

GLSL ES 1.0 specifies the storage available for varying variables in terms of an ar-
ray of 4-vectors. Similarly for uniform variables. The assumption is that variables
will be packed into these arrays without wasting space. This places significant
burden on implementations since optimal packing is computationally intensive.
Implementations may have more internal resources than exposed to the application
and so avoid the need to perform packing but this is also considered an expensive

solution.

OpenGL SC 2.0 therefore relaxes the requirements for packing by specifying a
simpler algorithm that may be used. This algorithm specifies a minimum require-
ment for when a set of variables must be supported by an implementation. The
implementation is allowed to support more than the minimum and so may use a
more efficient algorithm and/or may support more registers than the virtual target

machine.

In all cases, failing resource allocation for variables must result in an error.
The resource allocation of variables must succeed for all cases where the fol-

lowing packing algorithm succeeds:

e The target architecture consists of a grid of registers, 8 rows by 4 columns
for varying variables and 128 rows by 4 columns for uniform variables. Each
register can contain a float value.

e Variables are packed into the registers one at a time so that they each occupy
a contiguous subrectangle. No splitting of variables is permitted.

Version 2.0.1 (July 24, 2019)

F.6. COUNTING OF VARYINGS AND UNIFORMS 155

e The orientation of variables is fixed. Vectors always occupy registers in a
single row. Elements of an array must be in different rows. E.g. vec4 will
always occupy one row; float[8] will occupy one column. Since it is not
permitted to split a variable, large arrays e.g. for varyings, float[16] will
always fail with this algorithm.

e Variables consume only the minimum space required with the exception that
mat2 occupies 2 complete rows. This is to allow implementations more flex-
ibility in how variables are stored.

e Arrays of size N are assumed to take N times the size of the base type.

e Variables are packed in the following order:
1. Arrays of mat4 and mat4
. Arrays of mat2 and mat2 (since they occupy full rows)
. Arrays of vec4 and vec4
. Arrays of mat3 and mat3
. Arrays of vec3 and vec3

. Arrays of vec2 and vec2

~N N N B W

. Arrays of float and float

e For each of the above types, the arrays are processed in order of size, largest
first. Arrays of size 1 and the base type are considered equivalent. In the case
of varyings, the first type to be packed (successfully) is mat4[2] followed by
mat4, mat2[2], mat2, vec4[8], ve4[7],...vec4[1], vec4, mat3[2], mat3 and so
on. The last variables to be packed will be float (and float[1]).

e For 2,3 and 4 component variables packing is started using the 1st column
of the 1st row. Variables are then allocated to successive rows, aligning them
to the 1st column.

e For 2 component variables, when there are no spare rows, the strategy is
switched to using the highest numbered row and the lowest numbered col-
umn where the variable will fit. (In practice, this means they will be aligned
to the x or z component.) Packing of any further 3 or 4 component variables
will fail at this point.

e 1 component variables (i.e. floats and arrays of floats) have their own pack-
ing rule. They are packed in order of size, largest first. Each variable is
placed in the column that leaves the least amount of space in the column and

Version 2.0.1 (July 24, 2019)

F.6. COUNTING OF VARYINGS AND UNIFORMS 156

aligned to the lowest available rows within that column. During this phase of
packing, space will be available in up to 4 columns. The space within each
column is always contiguous.

e If at any time the packing of a variable fails, the compiler or linker must
report an error.

Example: pack the following types:

varying vec4d a; // top left
varying mat3 b; // align to left, lowest numbered rows
varying vec?2 c[3]; // align to left, lowest numbered rows
varying vec2 d[2]; // Cannot align to left so align to z column,
// highest numbered rows
varying vec2 e; // Align to left, lowest numbered rows.
varying float £[3]; // Column with minimum space
varying float g[2]; // Column with minimum space (choice of 2,
// either one can be used)
varying float h; // Column with minimum space

In this example, the varyings happen to be listed in the order in which they are
packed. Packing is independent of the order of declaration.

L Ix[y[z]w]
Olala|a]|a
1|b|b|b| f
2|/b|b|b| f
3/b|b|b]| f
4|c|lclglh
S|lclc|g

6|clc|d]|d
7|le|le|d| d

Some varyings e.g. mat4[8] will be too large to fit. These always fail with this
algorithm.

If referenced in the fragment shader (after pre-processing), the built-in special
variables (gl_FragCoord, gl FrontFacing and gl PointCoord) are included when
calculating the storage requirements of varyings.

Only varyings statically used in both shaders are counted.

When calculating the number of uniform variables used, any literal constants
present in the shader source after pre-processing are included when calculating

Version 2.0.1 (July 24, 2019)

F7. SHADER PARAMETERS 157

the storage requirements. Multiple instances of identical constants should count
multiple times.

Part of the storage may be reserved by an implementation for its own use e.g.
for computation of transcendental functions. This reduces the number of uniforms
available to the shader. The size of this reduction is hardware specific.

F.7 Shader Parameters

The following are the minimum values that must be supported by an OpenGL SC
2.0 implementation:

const mediump int gl_MaxVertexAttribs = 8;

const mediump int gl_MaxVertexUniformVectors = 128;
const mediump int gl_MaxVaryingVectors = 8;

const mediump int gl_MaxVertexTextureImageUnits = 0;
const mediump int gl_MaxCombinedTexturelImageUnits = 8;
const mediump int gl_MaxTexturelImageUnits = 8§;

const mediump int gl_MaxFragmentUniformVectors = 16;
const mediump int gl_MaxDrawBuffers = 1;

Version 2.0.1 (July 24, 2019)

Appendix G

Packaging and
Acknowledgements

G.1 Header Files and Libraries

The Khronos Implementer’s Guidelines, a separate document linked from the
Khronos Extension Registry at

https://www.khronos.org/registry/

describes recommended and required practice for implementing OpenGL SC
, including links to the header file defining interfaces for the OpenGL SC
API (glsc2.h) as well as a separate headers (glsc2platform.h and
khrplatform.h) referenced by OpenGL SC .

Preprocessor tokens GL_SC_VERSION_n_m, where n and m are the major and
minor version numbers as described in section 6.1.4, are included in glsc2.h.
These tokens indicate the OpenGL SC versions supported at compile-time.

G.2 Acknowledgements

The OpenGL SC 2.0 specification is the result of the contributions of many people,
representing a cross section of the embedded computer industry. It builds upon
the existing OpenGL ES 2.0 specification which contains a list of OpenGL ES 2.0
acknowledgements. The acknowledgements here represent the contributions made
to transform OpenGL ES 2.0 into OpenGL SC 2.0. Following is a partial list of
the contributors, including the company that they represented at the time of their
contribution:

158

https://www.khronos.org/registry/

G.3. DOCUMENT HISTORY 159

Bob Schulman, AMD

Alastair Murray, Codeplay

Illya Rudkin, Codeplay

Aidan Fabius, Core Avionic & Industrial Inc.
John Lawless, Core Avionics & Industrial Inc.
Tom Malnar, Core Avionics & Industrial Inc.
John McCormick, Core Avionics & Industrial Inc.
Greg Szober, Core Avionics & Industrial Inc.
Steve Viggers, Core Avionics & Industrial Inc.
Ken Wenger, Core Avionics & Industrial Inc.
Steve Ramm, Imagination Technologies

Andy Southwell, Imagination Technologies
Erik Noreke, Independent (working group chair)
Nakhoon Baek, Kyungpook National University
Hwanyong Lee, Kyungpook National University
Mark Rivers, Mentor Graphics

Paul Jennings, Presagis

Cary Ashby, Rockwell Collins

Doug Singkoffer, Rockwell Collins

Levi Van Ort, Rockwell Collins

Anand Balagopalakrishnan, Texas Instruments

Ajay Jayaraj, Texas Instruments

G.3 Document History

G.3.1 Version 2.0.1, July 24, 2019

e Change the default value of BLEND_COLOR in table 6.11 to (0, 0,0, 0) (inter-
nal gitlab #1).

G.3.2 Version 2.0.0, April 19, 2016
Initial revision of the full specification, based on OpenGL ES 2.0.25.

Version 2.0.1 (July 24, 2019)

Index

ACTIVE_TEXTURE, 59, 72, 109
ActiveTexture, 33, 59, 59
ALIASED_POINT_SIZE_RANGE, 44
ALPHA, 85, 133

ALWAYS, 81, 82, 123

ARRAY _BUFFER, 24-27, 109
ARRAY _BUFFER _BINDING, 26

BACK, 50, 81, 88, 118
BindBuffer, 24, 24, 27
BindFramebuffer, 94, 94, 103
BindRenderbuffer, 96, 96
BindTexture, 33, 59, 71, 71, 72
BLEND, 83
BLEND_COLOR, 159
BlendColor, 85
BlendEquation, 83, 83
BlendEquationSeparate, 83, 83
BlendFunc, 84, 84
BlendFuncSeparate, 84, 84
BLUE, 133

break, 151

BUFFER_SIZE, 24, 26
BUFFER_USAGE, 24, 26
BufferData, 25, 25, 27
BufferSubData, 26, 27, 144
bvec2, 32

BYTE, 22

CCW, 50, 118
CheckFramebufferStatus,
103, 105

102, 103,

CLAMP_TO_EDGE, 64, 65, 74

Clear, 89, 89, 90

ClearColor, 89

ClearDepthf, 89

ClearStencil, 89

COLOR_ATTACHMENTO, 77, 91, 95,
98,102, 110

COLOR_BUFFER BIT, 89, 90

ColorMask, 88, 88, 105

COMPRESSED_TEXTURE_FOR-
MATS, 62

CompressedTexSublmage2D, 59, 62,
63, 68

condition, 152

constant-expressions, 152

constant-index-expression, 152—154

constant-index-expressions, 152, 153

CONSTANT_ALPHA, 85

CONSTANT_COLOR, 85

CONTEXT_LOST, 15-17

continue, 151

CreateProgram, 28

CULL_FACE, 50

CullFace, 50, 50, 52

CURRENT_VERTEX_ATTRIB,
113

112,

DECR, 81

DECR_WRAP, 81

DEPTH_ATTACHMENT, 77, 95, 98,
102, 110

DEPTH_BUFFER _BIT, 89, 90

160

INDEX

DEPTH_COMPONENT16, 101

DEPTH_TEST, 82

DepthFunc, 82

DepthMask, 88, 88, 105

DepthRangef, 38, 109

Disable, 50, 52, 79, 80, 82, 83, 86

DisableVertex AttribArray, 23, 112

DITHER, 86

do-while, 152

DONT_CARE, 107, 129

DrawArrays, 19, 23, 23, 26, 27, 29, 104

DrawRangeElements, 19, 23, 23, 26,
27,29, 104

DST_ALPHA, 85

DST_COLOR, 85

DYNAMIC_DRAW, 24, 25

ELEMENT_ARRAY _BUFFER, 27, 109
Enable, 50, 52, 79, 80, 82, 83, 86, 108
EnableVertexAttribArray, 22, 112
EQUAL, 81, 82

EXTENSIONS, 111, 112, 149

FALSE, 32, 36, 80, 121

false, 74

FASTEST, 107

Finish, 106, 106, 141, 144

FLOAT, 22, 24, 115

float, 29, 152

Flush, 106, 141

for, 152

for_header, 152

FRAMEBUFFER, 79, 93, 94, 98, 103,
105, 110

FRAMEBUFFER_ATTACHMENT _-
OBJECT_NAME, 98, 99, 102,
110

FRAMEBUFFER_ATTACHMENT _-
OBJECT_TYPE, 98, 99, 101,
102, 110

161

FRAMEBUFFER_ATTACHMENT _-
TEXTURE_LEVEL, 69, 70,

99, 100, 110
FRAMEBUFFER_BINDING, 69, 91,
94, 98, 104, 105
FRAMEBUFFER_COMPLETE, 103,
105

FRAMEBUFFER_INCOMPLETE_AT-
TACHMENT, 102
FRAMEBUFFER_INCOMPLETE_DI-
MENSIONS, 102
FRAMEBUFFER _INCOMPLETE _-
MISSING_ATTACHMENT,
102
FRAMEBUFFER_UNDEFINED, 102
FRAMEBUFFER _UNSUPPORTED,

102, 103
FramebufferRenderbuffer, 97, 98, 103,
105
FramebufferTexture2D, 98, 99, 103,
105

FRONT, 50, 81, 88
FRONT_AND_BACK, 50, 81, 88
FrontFace, 50, 50, 74

FUNC_ADD, 83, 84, 86, 124
FUNC_REVERSE_SUBTRACT, 83, 84
FUNC_SUBTRACT, 83, 84

GenBuffers, 24, 25, 25
GENERATE_MIPMAP_HINT, 107
GenerateMipmap, 70, 70, 107
GenFramebuffers, 94, 95, 95
GenRenderBuffers, 96
GenRenderbuffers, 96, 97, 97
GenTextures, 71, 72, 72
GEQUAL, 81, 82

Get, 39, 108
GetAttribLocation, 30, 30
GetBooleanv, 80, 108, 113
GetBufferParameteriv, 109

Version 2.0.1 (July 24, 2019)

INDEX

GetError, 14, 14, 16

GetFloatv, 10, 80, 108, 113

GetFramebufferAttachmentParameteriv,
105, 109, 110

GetGraphicsResetStatus, 15, 16

Getlntegerv, 43, 91, 97, 108, 113

GetnUniform*, 113

GetnUniformfv, 113

GetnUniformiv, 113

GetProgramiv, 112

GetRenderbufferParameteriv, 97, 110,
111

GetString, 111, 112

GetTexParameter, 59, 109

GetUniformLocation, 31, 33

GetVertex Attribfv, 112

GetVertex Attribiv, 112

GetVertex AttribPointerv, 113

gl _FragColor, 75

gl_FragCoord, 74

gl _FragData, 75

gl_FragData[0], 75

gl_FrontFacing, 74

gl_PointCoord, 44

gl_PointSize, 44

gl _Position, 34, 37

GL_SC_VERSION_n_m, 158

GREATER, 81, 82

GREEN, 133

GUILTY_CONTEXT_RESET, 16

Hint, 106

if-then, 151

if-then-else, 151

IMPLEMENTATION_COLOR _-
READ_FORMAT, 91

IMPLEMENTATION_COLOR _-
READ_TYPE, 91

INCR, 81

162

INCR_WRAP, 81

INNOCENT_CONTEXT_RESET, 16

inout, 152

INT, 92

int, 152

INVALID_ENUM, 15, 17, 59, 60, 103,
105, 110, 111

INVALID_FRAMEBUFFER_OPERA-
TION, 17, 104, 105

INVALID_OPERATION, 17, 24, 25,
29-33, 56, 59-61, 63, 71, 91,
94, 96-99, 105, 109-111, 113

INVALID_VALUE, 15, 17, 21-23, 26,
32, 39, 45, 53, 60-63, 79, 89,
97,99, 105, 112, 113

INVERT, 81

IsEnabled, 79, 108, 113

KEEP, 81, 82, 123

LEQUAL, 81, 82

LESS, 81, 82, 123

level zero array, 60

LINE_LOQP, 19

LINE_STRIP, 19

LINEAR, 64, 67-69, 71, 73, 74, 100

LINEAR_MIPMAP_LINEAR, 64, 68—
70, 100

LINEAR_MIPMAP_NEAREST, 64, 68,
70, 100

LINES, 19

LineWidth, 45

LOSE_CONTEXT_ON_RESET,
137

16,

m, 158

mat2, 30

mat3, 30

mat4, 30

MAX_COMBINED_TEXTURE_IM-
AGE_UNITS, 34, 59, 109

Version 2.0.1 (July 24, 2019)

INDEX

MAX_FRAGMENT_UNIFORM_VEC-

TORS, 73
MAX_RENDERBUFFER _SIZE, 97,
105
MAX_TEXTURE_IMAGE_UNITS, 34,
58,74

MAX_TEXTURE_SIZE, 60
MAX_VARYING_VECTORS, 34
MAX_VERTEX_ATTRIBS, 21-24, 30,
112,113
MAX_VERTEX_TEXTURE_IMAGE _-
UNITS, 34, 58
MAX_VERTEX_UNIFORM_VEC-
TORS, 30
MIRRORED_REPEAT, 64, 65

n, 158

NEAREST, 64, 66, 68, 69, 73, 74, 100

NEAREST_MIPMAP_LINEAR, 64,
68-71, 100

NEAREST_MIPMAP_NEAREST, 64,
68, 69, 100

NEVER, 81, 82

NICEST, 107

NO_ERROR, 14-16, 134

NO_RESET_NOTIFICATION, 16

NONE, 101, 110, 136

NOTEQUAL, 81, 82

NULL, 24, 114, 115

NUM_COMPRESSED_TEXTURE -
FORMATS, 62

NUM_PROGRAM_BINARY _FOR-
MATS, 29

ONE, 85, 86, 124
ONE_MINUS_CONSTANT_ALPHA,
85
ONE_MINUS_CONSTANT_COLOR,
85
ONE_MINUS_DST_ALPHA, 85

163

ONE_MINUS_DST_COLOR, 85

ONE_MINUS_SRC_ALPHA, 85

ONE_MINUS_SRC_COLOR, 85

out, 152

OUT_OF_MEMORY, 15,
105

17, 26, 97,

PACK_ALIGNMENT, 91, 126
PixelStore, 54, 91, 93

PixelStorei, 53, 53

POINTS, 19
POLYGON_OFFSET_FILL, 52
PolygonOffset, 51
PROGRAM_BINARY_FORMATS, 29
ProgramBinary, 28, 28

ReadnPixels, 53, 55, 90, 91, 91, 94, 104
RED, 55, 56, 74, 92, 133
RENDERBUFFER, 96-98, 110
RENDERBUFFER_ALPHA SIZE, 111
RENDERBUFFER _BINDING, 97,
105, 110
RENDERBUFFER _BLUE _SIZE, 111
RENDERBUFFER _DEPTH SIZE, 111
RENDERBUFFER_GREEN_SIZE, 111
RENDERBUFFER _HEIGHT, 111
RENDERBUFFER _INTERNAL_FOR-
MAT, 111
RENDERBUFFER _RED SIZE, 111
RENDERBUFFER_STENCIL_SIZE,
111
RENDERBUFFER _WIDTH, 111
RenderbufferStorage, 97, 97, 105
RENDERER, 111
REPEAT, 64, 66, 67,71, 121
REPLACE, 81
RESET_NOTIFICATION_STRATEGY,
16
RG, 55, 56, 74
RGB, 55-58, 74, 85

Version 2.0.1 (July 24, 2019)

INDEX

RGB565, 101
RGB5_A1, 101
RGBA, 55-58, 74, 91
RGBA4, 101, 135

SAMPLE_ALPHA _TO_COVERAGE,
79

SAMPLE _BUFFERS, 43, 44, 48, 52,
79, 86-88, 95

SAMPLE_COVERAGE, 79, 80

SAMPLE_COVERAGE_INVERT, 79,
80

SAMPLE_COVERAGE_VALUE,
80

SampleCoverage, 80

sampler2D, 33

SAMPLES, 43, 95

Scissor, 79

SCISSOR_TEST, 79

SHADING_LANGUAGE_VERSION,
111

SHORT, 22

SRC_ALPHA, 85

SRC_ALPHA_SATURATE, 85

SRC_COLOR, 85

STATIC_DRAW, 24, 25,116

STENCIL_ATTACHMENT, 77, 95, 98,
102, 110

STENCIL_BUFFER _BIT, 89, 90

STENCIL_INDEXS, 101

STENCIL_TEST, 80

StencilFunc, 80, 81, 82, 141

StencilFuncSeparate, 80, 81, 82

StencilMask, 88, 88, 105, 141

StencilMaskSeparate, 88, 88, 105

StencilOp, 80, 81, 82

StencilOpSeparate, 80, 81, 82

STREAM_DRAW, 24, 25

79,

TexParameter, 63, 144

164

TexStorage2D, 59, 59-62

TexSubImage*, 144

TexSublmage2D, 53-55, 59, 61, 61, 62,
68, 90, 92

TEXTURE, 99, 110

TEXTURE;, 59

TEXTUREDQO, 59, 122

TEXTURE_2D, 33, 61, 63, 70-72, 99,
109, 120

TEXTURE_IMMUTABLE _FORMAT,
59

TEXTURE_MAG_FILTER, 64, 69, 71

TEXTURE_MIN_FILTER, 64, 66-69,
71,100

TEXTURE_WRAP_S, 63, 64, 66, 67

TEXTURE_WRAP_T, 63, 64, 67

TRIANGLE_FAN, 20

TRIANGLE_STRIP, 19

TRIANGLES, 20

TRUE, 22, 32, 59, 80, 88, 137

true, 74

Uniform, 11, 31
Uniform*, 31-33
Uniform*f{v}, 31, 32
Uniform*i{v}, 31, 32
Uniform1f, 11
Uniformli, 11
Uniformli{v}, 32, 33
Uniformliv, 32
Uniform2f, 11
Uniform2f{v}, 32
Uniform2i, 11
Uniform2i{v}, 32
Uniform3f, 11
Uniform3i, 11
Uniform4f, 10, 11
Uniform4f{v}, 32
Uniform4i, 11
Uniform4i{v}, 32

Version 2.0.1 (July 24, 2019)

INDEX 165

UniformMatrix*, 32 while, 152
UniformMatrix3fv, 32
UniformMatrix{234}fv, 31, 32 ZERO, 81, 85, 86, 124

UNKNOWN_CONTEXT_RESET, 16
UNPACK_ALIGNMENT, 54, 56, 126
UNSIGNED_BYTE, 22, 55, 56, 91, 92
UNSIGNED_SHORT, 22, 23, 57
UNSIGNED_SHORT 4. 4. 4. 4, 55-57,
92
UNSIGNED_SHORT_5.5.5_1, 55-57,
92
UNSIGNED_SHORT_5_.6_5, 55-57, 92
UseProgram, 29, 29, 34, 36

vec2, 29

vec3, 29

vecd, 29, 32

VENDOR, 111

VERSION, 111, 112

VERTEX_ATTRIB_ARRAY _-
BUFFER_BINDING, 26, 112

VERTEX_ATTRIB_ARRAY _EN-
ABLED, 112

VERTEX_ATTRIB_ARRAY NOR-
MALIZED, 112

VERTEX_ATTRIB_ARRAY _-
POINTER, 113

VERTEX_ATTRIB_ARRAY SIZE, 112

VERTEX_ATTRIB_ARRAY _STRIDE,
112

VERTEX_ATTRIB_ARRAY _TYPE,
112

Vertex Attrib, 21

Vertex Attrib*, 21, 29

VertexAttrib1*, 21

Vertex Attrib2*, 21

VertexAttrib3*, 21

Vertex Attrib4*, 21

Vertex AttribPointer, 22, 22, 26, 113

Viewport, 38

Version 2.0.1 (July 24, 2019)

	1 Introduction
	1.1 What is the OpenGL SC Graphics System?
	1.2 Suitability for Safety Critical applications?
	1.3 Programmer's View of OpenGL SC
	1.4 Implementer's View of OpenGL SC
	1.5 Our View
	1.6 Companion Documents
	1.6.1 Window System Bindings

	2 OpenGL SC Operation
	2.1 OpenGL SC Fundamentals
	2.1.1 Numeric Computation
	2.1.2 Data Conversions

	2.2 GL State
	2.2.1 Shared Object State

	2.3 GL Command Syntax
	2.4 Basic GL Operation
	2.5 GL Errors
	2.6 Graphics Reset Recovery
	2.7 Primitives and Vertices
	2.7.1 Primitive Types

	2.8 Current Vertex State
	2.9 Vertex Arrays
	2.10 Buffer Objects
	2.10.1 Vertex Arrays in Buffer Objects
	2.10.2 Array Indices in Buffer Objects

	2.11 Vertex Shaders
	2.11.1 Program Objects
	2.11.2 Shader Variables
	2.11.3 Shader Execution
	2.11.4 Required State

	2.12 Primitive Assembly and Post-Shader Vertex Processing
	2.13 Coordinate Transformations
	2.13.1 Controlling the Viewport

	2.14 Primitive Clipping
	2.14.1 Clipping Varying Outputs

	3 Rasterization
	3.1 Invariance
	3.2 Multisampling
	3.3 Points
	3.3.1 Point Multisample Rasterization

	3.4 Line Segments
	3.4.1 Basic Line Segment Rasterization
	3.4.2 Other Line Segment Features
	3.4.3 Line Rasterization State
	3.4.4 Line Multisample Rasterization

	3.5 Polygons
	3.5.1 Basic Polygon Rasterization
	3.5.2 Depth Offset
	3.5.3 Polygon Multisample Rasterization
	3.5.4 Polygon Rasterization State

	3.6 Pixel Rectangles
	3.6.1 Pixel Storage Modes
	3.6.2 Transfer of Pixel Rectangles

	3.7 Texturing
	3.7.1 Texture Image Specification
	3.7.2 Texture Image Specification Commands
	3.7.3 Compressed Texture Images
	3.7.4 Texture Parameters
	3.7.5 Texture Wrap Modes
	3.7.6 Texture Minification
	3.7.7 Texture Magnification
	3.7.8 Texture Framebuffer Attachment
	3.7.9 Texture Completeness and Non-Power-Of-Two Textures
	3.7.10 Mipmap Generation
	3.7.11 Texture State
	3.7.12 Texture Objects

	3.8 Fragment Shaders
	3.8.1 Shader Variables
	3.8.2 Shader Execution

	4 Per-Fragment Operations and the Framebuffer
	4.1 Per-Fragment Operations
	4.1.1 Pixel Ownership Test
	4.1.2 Scissor Test
	4.1.3 Multisample Fragment Operations
	4.1.4 Stencil Test
	4.1.5 Depth Buffer Test
	4.1.6 Blending
	4.1.7 Dithering
	4.1.8 Additional Multisample Fragment Operations

	4.2 Whole Framebuffer Operations
	4.2.1 Selecting a Buffer for Writing
	4.2.2 Fine Control of Buffer Updates
	4.2.3 Clearing the Buffers

	4.3 Reading Pixels
	4.3.1 Reading Pixels
	4.3.2 Pixel Draw/Read State

	4.4 Framebuffer Objects
	4.4.1 Binding and Managing Framebuffer Objects
	4.4.2 Attaching Images to Framebuffer Objects
	4.4.3 Renderbuffer Objects
	4.4.4 Feedback Loops Between Textures and the Framebuffer
	4.4.5 Framebuffer Completeness
	4.4.6 Effects of Framebuffer State on Framebuffer Dependent Values
	4.4.7 Mapping between Pixel and Element in Attached Image
	4.4.8 Errors

	5 Special Functions
	5.1 Flush and Finish
	5.2 Hints

	6 State and State Requests
	6.1 Querying GL State
	6.1.1 Simple Queries
	6.1.2 Data Conversions
	6.1.3 Enumerated Queries
	6.1.4 String Queries
	6.1.5 Program Queries

	6.2 State Tables

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 What All This Means

	B Corollaries
	C Shared Objects and Multiple Contexts
	C.1 Sharing Contexts Between Different Versions of OpenGL SC
	C.2 Sharing Objects Between Different Contexts in OpenGL SC
	C.3 Propagating Changes to Objects
	C.3.1 Determining Completion of Changes to an object
	C.3.2 Definitions
	C.3.3 Rules

	D Version 2.0
	E Extension Registry, Header Files, and Extension Naming Conventions
	E.1 Extension Registry
	E.2 Header Files
	E.3 OGLSC Extensions
	E.3.1 Naming Conventions

	E.4 Vendor and EXT Extensions

	F GLSL Limitations
	F.1 Overview
	F.2 Length of Shader Executable
	F.3 Usage of Temporary Variables
	F.4 Control Flow
	F.5 Indexing of Arrays, Vectors and Matrices
	F.6 Counting of Varyings and Uniforms
	F.7 Shader Parameters

	G Packaging and Acknowledgements
	G.1 Header Files and Libraries
	G.2 Acknowledgements
	G.3 Document History
	G.3.1 Version 2.0.1, July 24, 2019
	G.3.2 Version 2.0.0, April 19, 2016

