OpenGL® ES
Version 3.2 (October 22, 2019)

Editor: Jon Leech

Copyright (©) 2006-2019 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to Khronos. Except as described by these terms, it or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights
Policy, which is Attachment A of the Khronos Group Membership Agreement
available at www.khronos.org/files/member_agreement.pdf. Khronos grants a con-
ditional copyright license to use and reproduce the unmodified specification for
any purpose, without fee or royalty, EXCEPT no licenses to any patent, trade-
mark or other intellectual property rights are granted under these terms. Parties
desiring to implement the specification and make use of Khronos trademarks in
relation to that implementation, and receive reciprocal patent license protection
under the Khronos IP Policy must become Adopters and confirm the implementa-
tion as conformant under the process defined by Khronos for this specification; see
https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, ex-
press or implied, regarding this specification, including, without limitation: mer-
chantability, fitness for a particular purpose, non-infringement of any intellectual
property, correctness, accuracy, completeness, timeliness, and reliability. Under no
circumstances will Khronos, or any of its Promoters, Contributors or Members, or
their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages
for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Vulkan and Khronos are registered trademarks, and WebGL and EGL are trade-
marks of The Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC;
OpenCL is a trademark of Apple Inc.; and OpenGL is a registered trademark, and
the OpenGL ES and OpenGL SC logos are trademarks of Hewlett Packard Enter-
prise, all used under license by Khronos. All other product names, trademarks,
and/or company names are used solely for identification and belong to their respec-
tive owners.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL ES Specification 1
1.1.1 Formatting of Changes 1

1.2 What is the OpenGL ES Graphics System? 2
1.3 Programmer’s View of OpenGLES 2
1.4 Implementor’s View of OpenGLES 2
1.5 OurView e 3
1.6 Related APIs 3
1.6.1 OpenGL ES Shading Language 3

1.62 WebGL 4

1.6.3 Window System Bindings 4

1.64 OpenCL. 4

1.7 FilingBugReports 5
2 OpenGL ES Fundamentals 6
2.1 OpenGL ES Fundamentals 6
2.2 Command Syntax 8
2.2.1 Data Conversion For State-Setting Commands 10

2.2.2 Data Conversions For State Query Commands 12

2.3 Command Execution 13
231 Errors 13

2.3.2 Graphics ResetRecovery 16

233 FlushandFinish 17

2.3.4 Numeric Representation and Computation 18

2.3.5 Fixed-Point Data Conversions 22

24 Rendering Commands 24
25 ContextState 24
2.5.1 Generic Context State Queries 25

2.6 Objects and the Object Model 25

CONTENTS

2.6.1 Object Management
2.6.2 BufferObjects
2.6.3 ShaderObjects
2.64 Program Objects
2.6.5 Program Pipeline Objects
2.6.6 TextureObjects
2.6.7 SamplerObjects,
2.6.8 Renderbuffer Objects
2.6.9 Framebuffer Objects
2.6.10 Vertex Array Objects
2.6.11 Transform Feedback Objects
2.6.12 Query Objects
2.6.13 SyncObjects

3 Dataflow Model

4 Event Model

4.1

4.2

Sync Objectsand Fences
4.1.1 Waiting for Sync Objects
412 Signaling
4.1.3 SyncObject Queries
Query Objects and Asynchronous Queries
42.1 Query Object Queries

5 Shared Objects and Multiple Contexts

5.1

52
53

Object Deletion Behavior
5.1.1 Side Effects of Shared Context Destruction
5.1.2 Automatic Unbinding of Deleted Objects
5.1.3 Deleted Object and Object Name Lifetimes
Sync Objects and Multiple Contexts
Propagating Changes to Objects
5.3.1 Determining Completion of Changes to an object
5.32 Definitions
533 Rules

6 Buffer Objects

6.1

6.2
6.3

Creating and Binding Buffer Objects
6.1.1 Binding Buffer Objects to Indexed Targets
Creating and Modifying Buffer Object Data Stores
Mapping and Unmapping BufferData

OpenGL ES 3.2 (October 22, 2019)

ii

25
26
27
27
27
27
28
28
28
28
29
29
29

30

33
33
35
37
38
39
42

44
44
44
45
45
46
46
47
47
48

CONTENTS iii

6.3.1 UnmappingBuffers. 60

6.3.2 Effects of Mapping Buffers on Other GL Commands . . . 60

6.4 Effects of Accessing Outside Buffer Bounds 61
6.5 Copying Between Buffers. 61
6.6 Buffer ObjectQueries 62
6.6.1 Indexed Buffer Object Limits and Binding Queries 63

6.7 Buffer ObjectState 65
7 Programs and Shaders 66
7.1 ShaderObjects 67
7.2 Shader Binaries 70
7.3 Program Objects 71
7.3.1 ProgramInterfaces 79

7.4 Program Pipeline Objects 94
7.4.1 Shader Interface Matching 97

7.4.2 Program Pipeline Object State 99

7.5 Program Binaries Lo 100
7.6 Uniform Variables 102
7.6.1 Loading Uniform Variables In The Default Uniform Block 109

7.6.2 UniformBlocks. 112

7.6.3 Uniform Buffer Object Bindings 115

7.7 Atomic Counter Buffers. 116
7.7.1 Atomic Counter Buffer Object Storage 117

7.1.2 Atomic Counter Buffer Bindings 117

7.8 Shader Buffer Variables and Shader Storage Blocks 118
7.9 Samplers 120
700 ITmages o 120
7.11 Shader Memory Access oo o 121
7.11.1 Shader Memory Access Ordering 121
7.11.2 Shader Memory Access Synchronization 123

7.12 Shader, Program, and Program Pipeline Queries 128
7.13 Required State 136
8 Textures and Samplers 138
8.1 Texture Objects 139
8.2 SamplerObjects 141
8.3 Sampler Object Queries 144
84 PixelRectangles. oL 145
8.4.1 Pixel Storage Modes and Pixel Buffer Objects 145

8.4.2 Transfer of Pixel Rectangles 147

OpenGL ES 3.2 (October 22, 2019)

CONTENTS

8.5

8.6

8.7
8.8
8.9
8.10
8.11

8.12
8.13

8.14

8.15
8.16
8.17

8.18
8.19
8.20

8.21
8.22
8.23

Texture Image Specification
8.5.1 Required Texture Formats
8.5.2 Encoding of Special Internal Formats
8.5.3 Texture Image Structure
Alternate Texture Image Specification Commands
8.6.1 Texture Copying Feedback Loops
Compressed Texture Images
Multisample Textures oL
Buffer Textures
Texture Parameters
Texture Queries
8.11.1 ActiveTexture
8.11.2 Texture Parameter Queries
8.11.3 Texture Level Parameter Queries
Depth Component Textures
Cube Map Texture Selection
8.13.1 Seamless Cube Map Filtering
Texture Minification
8.14.1 Scale Factor and Level of Detail
8.14.2 Coordinate Wrapping and Texel Selection
8.14.3 Mipmapping
8.14.4 Manual Mipmap Generation
Texture Magnification
Combined Depth/Stencil Textures
Texture Completeness
8.17.1 Effects of Sampler Objects on Texture Completeness . . .
8.17.2 Effects of Completeness on Texture Application.
8.17.3 Effects of Completeness on Texture Image Specification .
Immutable-Format Texture Images
Texture State oL
Texture Comparison Modes
8.20.1 Depth Texture Comparison Mode
SRGB Texture Color Conversion
Shared Exponent Texture Color Conversion
Texture Image Loads and Stores
8.23.1 Image UnitQueries

OpenGL ES 3.2 (October 22, 2019)

v

CONTENTS v

9 Framebuffers and Framebuffer Objects 223
9.1 Framebuffer Overview 223
9.2 Binding and Managing Framebuffer Objects 225

9.2.1 Framebuffer Object Parameters 228
9.2.2 Attaching Images to Framebuffer Objects 230
9.2.3 Framebuffer Object Queries 231
9.2.4 Renderbuffer Objects 235
9.2.5 Required Renderbuffer Formats 238
9.2.6 Renderbuffer Object Queries 239
9.2.7 Attaching Renderbuffer Images to a Framebuffer 239
9.2.8 Attaching Texture Images to a Framebuffer 241
9.3 Feedback Loops Between Textures and the Framebuffer 246
9.3.1 Rendering Feedback Loops. 246
9.3.2 Texture Copying Feedback Loops 248
9.4 Framebuffer Completeness 248
9.4.1 Framebuffer Attachment Completeness 249
9.4.2 Whole Framebuffer Completeness 250
9.4.3 Required Framebuffer Formats 253

9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-
Erations 253

9.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 253
9.5 Mapping between Pixel and Element in Attached Image 254
9.6 Conversion to Framebuffer-Attachable Image Components 255
9.7 Conversionto RGBA Values 255
9.8 Layered Framebuffers 255

10 Vertex Specification and Drawing Commands 257

10.1 Primitive Types 259
10.1.1 Points 259
10.1.2 Line Strips o oo 259
10.1.3 LineLoops 259
10.1.4 Separate Lines 259
10.1.5 Triangle Strips 260
10.1.6 TriangleFans 261
10.1.7 Separate Triangles 261
10.1.8 Lines with Adjacency 261
10.1.9 Line Strips with Adjacency 261
10.1.10 Triangles with Adjacency 263
10.1.11 Triangle Strips with Adjacency 264

OpenGL ES 3.2 (October 22, 2019)

CONTENTS vi

10.1.12 Separate Patches 264
10.1.13 General Considerations For Polygon Primitives 265

10.2 Current Vertex Attribute Values 265
10.2.1 Current Generic Attributes 265
10.2.2 Vertex Attribute Queries 267
10.2.3 Required State 267

10.3 Vertex Arrays v v v v v i e e e e e e 267
10.3.1 Specifying Arrays for Generic Vertex Attributes 267
10.3.2 Vertex Attribute Divisors 272
10.3.3 Transferring Array Elements 273
10.3.4 Primitive Restart 273
10.3.5 Robust Buffer Access. 274
10.3.6 Packed Vertex Data Formats 274
10.3.7 Vertex Arrays in Buffer Objects 275
10.3.8 Array Indices in Buffer Objects 275
10.3.9 Indirect Commands in Buffer Objects 276

10.4 Vertex Array Objects 2717
10.5 Drawing Commands Using Vertex Arrays 278
10.6 Vertex Array and Vertex Array Object Queries 285
10.7 Required State 287
11 Programmable Vertex Processing 288
11.1 Vertex Shaders 288
11.1.1 Vertex Attributes 288
11.1.2 Vertex Shader Variables 293
11.1.3 Shader Execution 297

11.2 Tessellation 308
11.2.1 Tessellation Control Shaders 309
11.2.2 Tessellation Primitive Generation 314
11.2.3 Tessellation Evaluation Shaders 322

11.3 Geometry Shaders 327
11.3.1 Geometry Shader Input Primitives 328
11.3.2 Geometry Shader Output Primitives 329
11.3.3 Geometry Shader Variables. 330
11.3.4 Geometry Shader Execution Environment 330

12 Fixed-Function Vertex Post-Processing 336
12.1 The Last Vertex Processing Stage 336
12.2 Transform Feedback 337
12.2.1 Transform Feedback Objects 337

OpenGL ES 3.2 (October 22, 2019)

CONTENTS vii

12.2.2 Transform Feedback Primitive Capture 340

12.3 Primitive Queries 345
12.4 Flatshading 346
12.5 Primitive Clipping o o 347
12.5.1 Clipping Shader Outputs 347

12.6 Coordinate Transformations 348
12.6.1 Controlling the Viewport 349

13 Fixed-Function Primitive Assembly and Rasterization 351
13.1 Discarding Primitives Before Rasterization 353
13.2 Primitive Bounding Box 353
133 Invariance 354
13.4 Multisampling 355
13.4.1 Sample Shading 357

13.5 Points 357
13.5.1 Basic Point Rasterization 358
13.5.2 Point Multisample Rasterization 358

13.6 Line Segments 358
13.6.1 Basic Line Segment Rasterization 359
13.6.2 Other Line Segment Features 361
13.6.3 Line Rasterization State 363
13.6.4 Line Multisample Rasterization 363

13.7 Polygons 364
13.7.1 Basic Polygon Rasterization 364
13.7.2 DepthOffset 367
13.7.3 Polygon Multisample Rasterization 368
13.7.4 Polygon Rasterization State 368

13.8 Early Per-Fragment Tests 368
13.8.1 Pixel OwnershipTest 369
13.8.2 Scissor Test 369
13.8.3 Multisample Fragment Operations 370
13.8.4 The Early Fragment Test Qualifier 371

14 Programmable Fragment Processing 372
14.1 Fragment Shader Variables 372
14.2 Shader Execution 373
14.2.1 Texture ACCESS . . . « v v v v v v i e 374
1422 ShaderInputs 374
14.2.3 Shader Outputs 377
1424 Early Fragment Tests 379

OpenGL ES 3.2 (October 22, 2019)

CONTENTS

15 Writing Fragments and Samples to the Framebuffer
15.1 Per-Fragment Operations
15.1.1 AlphaToCoverage
15.1.2 Stencil Test
15.1.3 DepthBufferTest.
15.1.4 Occlusion Queries
15.1.5 Blending
15.1.6 sRGB Conversion
15.1.7 Dithering
15.1.8 Additional Multisample Fragment Operations
15.2 Whole Framebuffer Operations
15.2.1 Selecting Buffers for Writing
15.2.2 Fine Control of Buffer Updates
15.2.3 Clearing the Buffers
15.2.4 Invalidating Framebuffer Contents

16 Reading and Copying Pixels
16.1 Reading Pixels
16.1.1 Selecting Buffers for Reading
16.1.2 ReadPixels
16.1.3 Obtaining Pixels from the Framebuffer
16.1.4 Conversion of RGBA values
16.1.5 Final Conversion
16.1.6 Placement in Pixel Pack Buffer or Client Memory
16.2 CopyingPixels
16.2.1 Blitting Pixel Rectangles
16.2.2 Copying Between Images
16.3 Pixel Draw and Read State

17 Compute Shaders
17.1 Compute Shader Variables

18 Debug Output
18.1 Debug Messages
18.2 Debug Message Callback
18.3 Debug MessageLog
18.4 Controlling Debug Messages
18.5 Externally Generated Messages
186 Debug Groups
187 DebugLabels

OpenGL ES 3.2 (October 22, 2019)

viii

380
380
380
382
384
384
385
396
396
397
398
398
400
402
405

407
407
407
408
410
411
411
412
413
413
416
421

422
424

CONTENTS

19

20

21

18.8 Asynchronous and Synchronous Debug Output
18.9 Debug Output Queries

Special Functions
19.1 Hints oo

Context State Queries

20.1 Simple Querieso

20.2 Pointer, String, and Related Context Queries

20.3 Internal Format Queries
20.3.1 Internal Format Query Parameters

State Tables

Invariance

A.1 Repeatability
A.2 Multi-pass Algorithms oL
A3 InvarianceRules.
A.4 Tessellation Invariance
A.5 Atomic Counter Invariance
A.6 What AllThisMeans

Corollaries

Compressed Texture Image Formats
C.1 ASTC Compressed Texture Image Formats
C.2 ETC Compressed Texture Image Formats

Version 3.0 and Before

D.1 NewPFeatures
D.2 Change Logfor3.03
D.3 Change Logfor3.0.2
D.4 Change Logfor3.0.1
D.5 Credits and Acknowledgements

Version 3.1

E.1 NewPFeatures
E.2 Change Log for Released Specifications
E.3 Credits and Acknowledgements

OpenGL ES 3.2 (October 22, 2019)

X

440
440
442
444
445

447

505
505
506
506
508
510
511

512

514
514
516

517
517
519
521
522
524

CONTENTS

F Version 3.2

F.1
F2
F3
F4

New Features
Change Log Descriptions
Change Log for Released Specifications
Credits and Acknowledgements

G Backwards Compatibility
G.1 LegacyFeatures
G.2 Differences in Runtime Behavior

Index

OpenGL ES 3.2 (October 22, 2019)

537
537
539
539
549

551
551
552

553

List of Figures

3.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2
11.3
11.4

13.1
13.2
13.3
13.4

15.1

16.1

Block diagram of the OpenGL ES pipeline.

Transfer of pixel rectangles.
Selecting a subimage fromanimage
UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT_UNSIGNED_INT formats
A texture image and the coordinates used to accessit.
Example of the components returned for textureGather.

Vertex processing and primitive assembly.
Triangle strips, fans, and independent triangles.
Lines with adjacency.
Triangles with adjacency.
Triangle strips with adjacency.
Packed componentlayout

Domain parameterization for tessellation.
Inner triangle tessellation.
Inner quad tessellation.
Isoline tessellation.

Rasterization
Visualization of Bresenham’s algorithm.
Rasterization of wide lines.
The region used in rasterizing a multisampled line segment.

Per-fragment operations.

Operation of ReadPixels.

X1

List of Tables

2.1
2.2
23

4.1
4.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7

GL command suffixes 9
GL datatypes e 11
Summary of GL errors 15
Initial properties of a sync object created with FenceSyne. 34
Asynchronous query targets 39
Buffer object binding targets. 52
Buffer object parameters and their values. 52
Buffer object initial state. oL 55
Buffer object state set by MapBufferRange. 58
Indexed buffer object limits and binding queries 64
CreateShader rype values and the corresponding shader stages. . 68
GetProgramResourceiv properties and supported interfaces . . . 87
OpenGL ES Shading Language type tokens 92
Query targets for default uniform block storage, in components. . 103

Query targets for combined uniform block storage, in components. 104
GetProgramResourceiv properties used by GetActiveUniformsiv. 107
GetProgramResourceiv properties used by GetActiveUniform-

Blockiv. 108
PixelStorei parameters. L. 146
Valid combinations of format, type, and sized internalformat. . . . 149
Valid combinations of format, type, and unsized internalformat. . 150
Pixeldatatypes. 151
Pixel data formats.o 152
Packed pixel formats. Lo 155
Packed pixel field assignments. 157

Xii

LIST OF TABLES xiii

8.8

8.9

8.10
8.11
8.12
8.13

8.14
8.15

8.16

8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25

8.26

8.27

9.1

10.1
10.2

10.3

11.1
11.2

11.3

12.1

Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 160
Effective internal format 0. 161
Sized internal color formats. oL 164
Sized internal depth and stencil formats. 165
ReadPixels format and type used during CopyTex*. 170
Valid CopyTexImage source framebuffer/destination texture base

internal format combinations. Lo 171

Effective internal format corresponding to floating-point framebuffers 172
Effective internal format corresponding to destination internalfor-

mat and linear source buffer component sizes. 173
Effective internal format corresponding to destination internalfor-

mat and sRGB source buffer component sizes. 173
Compressed internal formats. 180
Internal formats for buffer textures 188
Texture parameters and their values. 190
Selection of cube map images. 195
Texel location wrap mode application. 199
Depth texture comparison functions. 214
sRGB texture internal formats., 215
Layer numbers for cube map texture faces. 217
Mapping of image load, store and atomic texel coordinate compo-

nents to texel numbers.o 218
Supported image unit formats, with equivalent format layout qual-

ifiers. 220
Texel sizes, compatibility classes, and pixel format/type combina-

tions for each image format. 222
Framebuffer attachment points. 240
Triangles generated by triangle strips with adjacency. 264
Vertex array sizes (values per vertex) and data types for generic

vertex attributes. L. Lo 268
Indirect commands and corresponding indirect buffer targets. . . . 276
Generic attribute components accessed by attribute variables. . . . 289
Generic attributes and vector types used by column vectors of ma-

trix variables bound to generic attribute index¢. 290
Scalar and vector vertex attribute types L. 290
Transform feedback modes 341

OpenGL ES 3.2 (October 22, 2019)

LIST OF TABLES Xiv

12.2 Output types for OpenGL ES Shading Language variables 343
12.3 Provoking vertex selection. 346

14.1 Correspondence of filtered texture components to texture base

COMPONENLS. . .« v v v v v v v e e e e e e e e e e e e e 375
15.1 RGB and alpha blend equations. 388
15.2 Blending functions. 389
15.3 Advanced Blend Equations 392
15.4 Hue-Saturation-Luminosity Advanced Blend Equations 394
15.5 Buffer selection for a framebuffer object 398
16.1 PixelStorei parameters. 409
16.2 ReadPixels GL data types and reversed component conversion for-

mulas. e e e 412
16.3 Compatible internal formats for copying 418
16.4 Compatible internal formats for CopylmageSubData 420
18.1 Sources of debug output messages 426
18.2 Types of debug output messages 427
18.3 Severity levels of messages 427
18.4 Object namespace identifiers 433
19.1 Hint targets and descriptions 438
20.1 Internal formattargets. 444
21.1 State Variable Types, 448
21.2 Current Values and Associated Data 449
21.3 Vertex Array Object State 450
21.4 Vertex Array Data (not in vertex array objects) 451
21.5 Buffer ObjectState 452
21.6 Transformation State 453
21.7 Rasterization 454
21.8 Multisampling 455
21.9 Textures (selector, state per texture unit) 456
21.10Textures (state per texture object) 457
21.11Textures (state per texture image) 458
21.12Textures (state per sampler object) 459
21.13Pixel Operations 460
21.14Framebuffer Control 461

OpenGL ES 3.2 (October 22, 2019)

LIST OF TABLES XV

21.15Framebuffer (state per framebuffer object) 462
21.16Framebuffer (state per attachment point) 463
21.17Renderbuffer (state per renderbuffer object) 464
21.18Pixels 465
21.19Shader Object State 466
21.20Program Pipeline Object State 467
21.21Program Object State, 468
21.22Program Object State (cont.) 469
21.23Program Object State (cont.) 470
21.24Program Object State (cont.) 471
21.25Program Object State (cont.) 472
21.26Program Object State (cont.) 473
21.27Program Interface State L. 474
21.28Program Object Resource State 475
21.29Program Object Resource State (cont.) 476
21.30Vertex Shader State (not part of program objects) 477
21.31Query Object State 478
21.32 Atomic Counter Buffer Binding State 479
21.33Image State (state per image unit) 480
21.34Shader Storage Buffer Binding State 481
21.35Transform Feedback State 482
21.36Uniform Buffer Binding State 483
21.37Sync (state per syncobject) 484
2138Hints 485
21.39Compute Dispatch State 486
21.40Implementation Dependent Values 487

21.41Implementation Dependent Values (cont.)
T These queries return the maximum no. of samples for all internal

formats required to support multisampled rendering. 488
21.42Implementation Dependent Values (cont.) 489
21.43Implementation Dependent Version and Extension Support 490
21.44Implementation Dependent Vertex Shader Limits 491
21.45Implementation Dependent Tessellation Shader Limits 492
21.46Implementation Dependent Tessellation Shader Limits (cont.) . . 493
21.47Implementation Dependent Geometry Shader Limits 494
21.48Implementation Dependent Fragment Shader Limits 495
21.49Implementation Dependent Compute Shader Limits 496
21.50Implementation Dependent Aggregate Shader Limits 497
21.51Implementation Dependent Aggregate Shader Limits (cont.) . . . 498
21.52Implementation Dependent Aggregate Shader Limits (cont.) . . . 499

OpenGL ES 3.2 (October 22, 2019)

LIST OF TABLES XVi

21.53Debug Output State 500
21.54Implementation Dependent Debug Output State 501
21.55Implementation Dependent Transform Feedback Limits 502
21.56Framebuffer Dependent Values 503
21.57Miscellaneous o oo Lo 504
C.1 Mapping of OpenGL ES ASTC formats to descriptions. 515
C.2 Mapping of OpenGL ES ETC formats to descriptions. 516

OpenGL ES 3.2 (October 22, 2019)

Chapter 1

Introduction

This document, referred to as the “OpenGL ES Specification™ or just “Specifica-
tion” hereafter, describes the OpenGL ES graphics system: what it is, how it acts,
and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the
essentials of compute graphics algorithms and terminology as well as with modern
GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
ES Registry, located at URL

http://www.khronos.org/registry/gles

1.1 Formatting of the OpenGL ES Specification

Starting with version 3.1, the OpenGL ES Specification has undergone major re-
structuring to describe important concepts and objects in the context of the entire
API before describing details of their use in the graphics pipeline, matching similar
restructuring of the OpenGL 4.3 Specification.

1.1.1 Formatting of Changes

This version of the OpenGL ES 3.2 Specification marks changes relative to the first
public release by typesetting them in purple, like this paragraph. Details of these
changes are also described in appendix F.3.

http://www.khronos.org/registry/gles/

1.2. WHAT IS THE OPENGL ES GRAPHICS SYSTEM? 2

1.2 What is the OpenGL ES Graphics System?

OpenGL ES (“Open Graphics Library for Embedded Systems”) is an API (Appli-
cation Programming Interface) to graphics hardware. The API consists of a set
of several hundred procedures and functions that allow a programmer to specify
the shader programs, objects and operations involved in producing high-quality
graphical images, specifically color images of three-dimensional objects.

Most of OpenGL ES requires that the graphics hardware contain a framebuffer.
Many OpenGL ES calls control drawing geometric objects such as points, lines,
and polygons, but the way that some of this drawing occurs (such as when an-
tialiasing or multisampling is in use) relies on the existence of a framebuffer. Some
commands explicitly manage the framebuffer.

1.3 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specifica-
tion of shader programs or shaders, data used by shaders, and state controlling
aspects of OpenGL ES outside the scope of shaders. Typically the data represent
geometry in two or three dimensions and texture images, while the shaders control
the geometric processing, rasterization of geometry and the lighting and shading
of fragments generated by rasterization, resulting in rendering geometry into the
framebuffer.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made to
allocate an OpenGL EScontext and associate it with the window. Once a context
is allocated, OpenGL ES commands to define shaders,geometry, and textures are
made, followed by commands which draw geometry by transferring specified por-
tions of the geometry to the shaders. Drawing commands specify simple geometric
objects such as points, line segments, and polygons, which can be further manipu-
lated by shaders. There are also commands which directly control the framebuffer
by reading and writing pixels.

1.4 Implementor’s View of OpenGL ES

To the implementor, OpenGL ES is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL ES operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU
processors. However, OpenGL ES may be implemented on less capable GPUs, or
even without a GPU, by moving some or all operations into the host CPU.

OpenGL ES 3.2 (October 22, 2019)

1.5. OUR VIEW 3

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL ES API, while dividing the work for each OpenGL ES
command between the CPU and the graphics hardware as appropriate for the capa-
bilities of the GPU.

OpenGL ES contains a considerable amount of information including many
types of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL ES. Most of these objects and state are available to the programmer, who
can set, manipulate, and query their values through OpenGL ES commands. Some
of it, however, is derived state visible only by the effect it has on how OpenGL
ES operates. One of the main goals of this Specification is to describe OpenGL
ES objects and context state explicitly, to elucidate how they change in response to
OpenGL ES commands, and to indicate what their effects are.

1.5 Our View

We view OpenGL ES as a pipeline having some programmable stages and some
state-driven fixed-function stages that are invoked by a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.6 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.6.1 OpenGL ES Shading Language

The OpenGL ES Specification should be read together with a companion docu-
ment titled The OpenGL ES Shading Language. The latter document (referred to
as the OpenGL ES Shading Language Specification hereafter) defines the syntax
and semantics of the programming language used to write shaders (see sections 7).
Descriptions of shaders later in this document may include references to concepts
and terms (such as shading language variable types) defined in the companion doc-
ument.

OpenGL ES 3.2 (October 22, 2019)

1.6. RELATED APIS 4

OpenGL ES 3.2 implementations are guaranteed to support versions 3.20, 3.10,
3.00 and 1.00 of the OpenGL ES Shading Language. All references to sections of
that specification refer to version 3.20. The latest supported version of the shading
language may be queried as described in section 20.2.

The OpenGL ES Shading Language Specification is available in the OpenGL
ES Registry.

1.6.2 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES.Developers familiar with OpenGL ES will recognize
WebGL as a shader-based API using the OpenGL ES Shading Language, with
constructs that are semantically similar to those of the underlying OpenGL ES API.
It stays very close to the OpenGL ES specification, with some concessions made
for what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.6.3 Window System Bindings

OpenGL ES requires a companion API to create and manage graphics contexts,
windows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

The EAGL API supports use of OpenGL ES with i0S. EAGL is documented
on Apple’s developer website.

1.6.4 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL ES buffer and texture objects,
and to coordinate control of and transfer of data between OpenCL and OpenGL ES.
This allows applications to split processing of data between OpenCL and OpenGL

OpenGL ES 3.2 (October 22, 2019)

http://www.khronos.org/registry/egl

1.7. FILING BUG REPORTS 5

ES; for example, by using OpenCL to implement a physics model and then render-
ing and interacting with the resulting dynamic geometry using OpenGL ES.
The OpenCL Specification is available in the Khronos API Registry.

1.7 Filing Bug Reports

Bug reports on the OpenGL ES and OpenGL ES Shading Language Specifications
can be filed in the Khronos Public Bugzilla, located at URL
http://www.khronos.org/bugzilla/

Please file bugs against Product: OpenGL ES, Component: Specification, and
the appropriate version of the specification. It is best to file bugs against the most
recently released versions, since older versions are usually not updated for bug-
fixes.

OpenGL ES 3.2 (October 22, 2019)

http://www.khronos.org/bugzilla/

Chapter 2

OpenGL ES Fundamentals

This chapter introduces fundamental concepts including the OpenGL ES execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 OpenGL ES Fundamentals

OpenGL ES (henceforth, the “GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point, line
segment, or polygon. Context state may be changed independently; the setting of
one piece of state does not affect the settings of others (although state and shaders
all interact to determine what eventually ends up in the framebuffer). State is set,
primitives drawn, and other GL operations described by sending commands in the
form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

2.1. OPENGL ES FUNDAMENTALS 7

depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a
OpenGL ES command are interpreted when that command is received. Even if
the command requires a pointer to data, those data are interpreted when the call is
made, and any subsequent changes to the data have no effect on the GL (unless the
same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. In other
words, OpenGL ES provides mechanisms to describe how complex geometric ob-
jects are to be rendered, rather than mechanisms to describe the complex objects
themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is
network-transparent. A server may maintain a number of GL contexts, each of
which is an encapsulation of current GL state and objects. A client may choose to
make any one of these contexts current.

Issuing GL commands when the program does not have a current context re-
sults in undefined behavior, up to and including program termination.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
Jjects, may be created as desired. A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL ES 3.2 (October 22, 2019)

2.2. COMMAND SYNTAX 8

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.6.3.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL ES is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we spec-
ify ideal behavior instead of actual behavior for certain GL operations. In cases
where deviation from the ideal is allowed, we also specify the rules that an im-
plementation must obey if it is to approximate the ideal behavior usefully. This
allowed variation in GL behavior implies that two distinct GL implementations
may not agree pixel for pixel when presented with the same input even when run
on identical framebuffer configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL ES (by gl, GL_, and GL, respectively), to reduce name clashes
with other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL ES commands as functions or procedures us-
ing ANSI C syntax. Languages such as C++ and Javascript that allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL ES 3.2 (October 22, 2019)

2.2. COMMAND SYNTAX

Type Descriptor | Corresponding GL Type

1 int
i64 int64
f float
ui uint

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

and
void GetFloatv(enum pname, float *data);
In general, a command declaration has the form

rtype Name{e1234}{c ii64 fui }{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. € indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments argl through arg N have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then IV is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);

OpenGL ES 3.2 (October 22, 2019)

2.2. COMMAND SYNTAX 10

indicates the eight declarations

void Uniformli(int location, int value);

void Uniformlf(int location, float value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, f£loat v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, float v0, float vl,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniform4f(int location, £loat v0, £loat vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types'. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using
a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

! Note that OpenGL ES 3.x uses float where OpenGL ES 2.0 used clampf. Clamping is
now explicitly specified to occur only where and when appropriate, retaining proper clamping in
conjunction with fixed-point framebuffers. Because clampf and float are both defined as the
same floating-point type, this change should not introduce compatibility obstacles.

OpenGL ES 3.2 (October 22, 2019)

2.2. COMMAND SYNTAX

11

GL Type Description
Bit Width

boolean 8 Boolean

byte 8 Signed two’s complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed two’s complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed two’s complement binary inte-
ger

uint 32 Unsigned binary integer

int64 64 Signed two’s complement binary inte-
ger

uint64 64 Unsigned binary integer

fixed 32 Signed two’s complement 16.16
scaled integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed two’s complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 4.1)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL ES 3.2 (October 22, 2019)

2.2. COMMAND SYNTAX 12

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

e If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

e If a command returning unsigned integer data is called, such as GetSam-
plerParameterluiv, negative values are clamped to zero.

e If a command returning integer data is called, such as GetIntegerv or Get-
Integer64v, a boolean value of TRUE or FALSE is interpreted as one or zero,
respectively. A floating-point value is rounded to the nearest integer, unless
the value is an RGBA color component, a DepthRangef value, or a depth
buffer clear value. In these cases, the query command converts the floating-
point value to an integer according to the INT entry of table 16.2; a value
not in [—1, 1] converts to an undefined value.

e If a command returning floating-point data is called, such as GetFloatv, a
boolean value of TRUE or FALSE is interpreted as 1.0 or 0.0, respectively.
An integer value is coerced to floating-point.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 13

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-
WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRangef parameters are returned in the order n
followed by f.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE to
determine which server texture state vector is queried. Table 21.9 indicates those
state variables which are qualified by ACTIVE_TEXTURE during state queries.

Vertex array state variables are qualified by the value of VERTEX_ARRAY_ -
BINDING to determine which vertex array object is queried. Table 21.3 defines the
set of state stored in a vertex array object.

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. 1t is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL
contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.6.3.

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 14

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the GL
in the presence of errors is subject to change, and extensions to OpenGL ES may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command:

o If the GL context has been reset as a result of previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT_-
LOST error is generated.

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an
INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

o If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 15
Error Description Offending com-
mand ignored?
CONTEXT_LOST Context has been lost and reset | Except as noted
by the driver for specific
commands
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID - Framebuffer object is not com- | Yes
FRAMEBUFFER_— plete
OPERATION
OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes
underflow

Table 2.3: Summary of GL errors

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST> and OUT_OF_MEMORY®) wherever they
apply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizeil
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in this specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
erTors.

Errors based solely on one or more argument values to a command must be

2 CONTEXT_LOST is not described because it can potentially be generated by almost all GL
commands, and occurs for reasons not directly related to the affected commands.

3 OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-
mand, even those which do not explicitly allocate GPU memory.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 16

detected before any processing based on current state*.

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 18). The message has source DEBUG_SOURCE_ —
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

e GUILTY CONTEXT RESET indicates that a reset has been detected that is
attributable to the current GL context.

e INNOCENT_CONTEXT_ RESET indicates a reset has been detected that is not
attributable to the current GL context.

e UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

* This ensures consistent behavior for commands including language which ignores certain pa-
rameters under some conditions, such as glBlitFramebuffer treatment of mask and filter.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 17

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return N O_ERROR”.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
a lost context and require creating a new context as described above. In this case
GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context®.

After a graphics reset has occurred on a context, subsequent GL. commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

e GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

e Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

— GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

— GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the

>In this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

The values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 18

network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush(void);

which causes all previously issued GL commands to complete in finite time’ (al-
though such commands may still be executing when Flush returns).
The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined in section 2.3.4.1 below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL ES Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

7 Historically, use of Flush has had negative performance implications for some implementa-
tions, and subsequently it does not universally operate as described here. One exception to this is
when the default framebuffer is bound, and it is single-buffered; in this case, flush behaves as ex-
pected. Other references to the flush operation in the specification, such as that in section 4.1.2, will
behave as expected. Waiting on a fence sync object with SYNC_FLUSH_COMMANDS_BTIT is
thus recommended as a way to perform a guaranteed flush.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 19

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the de-
tails of how operations on them are performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in 10°. The maximum representable magnitude for all floating-point val-
ues must be at least 232, z- 0 = 0 - 2 = 0 for any non-infinite and non-NaN z.
lz=2-1=2.2+0=0+2 =z 0°= 1. (Occasionally further require-
ments will be specified.) Most single-precision floating-point formats meet these
requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x AL E=0,M+#0
V=S (-1)9x2F 5 x (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 20

g {N mod 65536J
32768

oo {N mod 32768J
1024

M =N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaV) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results, whereby the value is either
preserved or forced to positive or negative zero.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is
determined by the following:

0.0, E=0M=0
- M
2714 x &, E=0,M+#0
V=q2Fx (1+3), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0
If the floating-point number is interpreted as an unsigned 11-bit integer NV, then
N
E=|—
i

M =N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 21

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

- M

271 % 2, E=0,M+#0
V=392 (1+4]), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

- | N
32
M=N mod 32

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or Na/N) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 22

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 8.5), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 9), b is
the number of bits allocated to that component in the framebuffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary two’s-complement integers and binary unsigned integers, respectively.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C
f:—Qb_l. 2.1

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding

OpenGL ES 3.2 (October 22, 2019)

2.3. COMMAND EXECUTION 23

floating-point value f is performed using

c
f = max {26_1 7 —1.0} . (2.2)

Only the range [—2°~1 4 1,2°~1 — 1] is used to represent signed fixed-point
values in the range [—1, 1]. For example, if b = 8, then the integer value —127 cor-
responds to —1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (—128 in the example) is outside
the representable range, and must be clamped before use.This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values®, as well as for texture sampling or framebuffer values
used for blending.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f' = convert_float_uint(f x (2° —1),b) (2.3)

where convert_float_uint(r,b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing:

f' = convert_float_int(f x (2>~ —1),b) (2.4)

where convert_float_int(r,b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see

8 This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for
signed normalized values was used in which —128 mapped to —1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

OpenGL ES 3.2 (October 22, 2019)

2.4. RENDERING COMMANDS 24

section 20) and returning integers’, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are called rendering com-
mands, and include the drawing commands *Draw* (see section 10.5), as well as
these additional commands:

¢ BlitFramebuffer (see section 16.2.1)
e Clear (see section 15.2.3)
e ClearBuffer* (see section 15.2.3.1)

o DispatchCompute* (see section 17)

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL ES may be hardware dependent, the
Specification is independent of any specific hardware on which it is implemented.
We are concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

° This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for
signed normalized values was used in which —1.0 mapped to —128, 1.0 mapped to 127, and 0.0 was
not exactly representable.

OpenGL ES 3.2 (October 22, 2019)

2.6. OBJECTS AND THE OBJECT MODEL 25

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 20.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

2.6.1 Object Management
2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

OpenGL ES 3.2 (October 22, 2019)

2.6. OBJECTS AND THE OBJECT MODEL 26

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

A few types of objects are created by commands which return the name of the
new object at the same time they create the object. Examples include CreatePro-
gram for program objects and FenceSync for fence sync objects.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names
to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.6.3. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

OpenGL ES 3.2 (October 22, 2019)

2.6. OBJECTS AND THE OBJECT MODEL 27

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory.

Buffer objects may be shared. They are described in detail in chapter 6.

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.
Program objects may be shared. They are described in detail in chapter 7.

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include data store containing a collection of fexture
images built from arrays of image elements referred to as texels. There are many
types of texture objects varying by dimensionality and structure; the different tex-
ture types are described in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

OpenGL ES 3.2 (October 22, 2019)

2.6. OBJECTS AND THE OBJECT MODEL 28

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture
image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.
Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared. They are described in detail in chapter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

OpenGL ES 3.2 (October 22, 2019)

2.6. OBJECTS AND THE OBJECT MODEL 29

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 12.2.1.

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects may be shared. They are described in detail in section 4.1.

OpenGL ES 3.2 (October 22, 2019)

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Commands are effectively sent through a processing pipeline. Different stages of
the pipeline use data contained in different types of buffer objects.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed, fol-
lowed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from single input primitives. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for
the next stage, rasterization. The rasterizer produces a series of framebuffer ad-
dresses and values using a two-dimensional description of a point, line segment,
or polygon. Each fragment so produced is fed to the next stage that performs op-
erations on individual fragments before they finally alter the framebuffer. These
operations include conditional updates into the framebuffer based on incoming and
previously stored depth values (to effect depth buffering), blending of incoming
fragment colors with stored colors, as well as masking.

Pixels may also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some type of decoding
or encoding.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the

30

various operations of the GL.

OpenGL ES 3.2 (October 22, 2019)

31

32

e —

noed |Pxid

A

| esewrame

suonesadQ |oxid

A

._lll

| suoessdouewberyred || Bupu@semna=q |

Japeys andwo)

Aiquiassy [9xid
A

uonedijddy woag

A

yojedsiq

A

uonediddy woag

-

>

A _ abejs a|qewwelbo.d _
Jopeys juswbely _
A _ abe3s uoiouNg paxiy _
_ uonezusisey _ puabay
A
Japeys A1pwoan _
A

-

Japeys *|ea3 uone||assaL _

| 4

*U9D AW UORR|DSSD L _

| 4

>

| 4

.

>
I

Figure 3.1. Block diagram of the OpenGL ES pipeline.

J9]INd XOMIA

> feeesesseseeetcctttetttctttassasseneenecttttttnel

uonedijddy woag

OpenGL ES 3.2 (October 22, 2019)

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

33

4.1. SYNC OBJECTS AND FENCES 34

Property Name Property Value
OBJECT_TYPE SYNC_FENCE
SYNC_CONDITION | condition
SYNC_STATUS UNSIGNALED
SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.

Each sync object contains a number of properties which determine the state of
the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The syNC_STATUS property will be changed to STGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command
void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL ES 3.2 (October 22, 2019)

4.1. SYNC OBJECTS AND FENCES 35

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint 64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL ES 3.2 (October 22, 2019)

4.1. SYNC OBJECTS AND FENCES 36

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSyne(sync sync, bitfield flags,
uint 64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block' until sync is signaled”.

sync has the same meaning as for ClientWaitSync.

timeout must currently be the special value TIMEOUT_IGNORED, and is not
used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with the symbolic constant MAX_SERVER_WAIT_ -
TIMEOUT. There is currently no way to determine whether WaitSync unblocked
because the timeout expired or because the sync object being waited on was sig-
naled.

flags must be zero.

If an error occurs, WaitSyne generates a GL error as specified below, and does
not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT -
IGNORED or flags is not zero“.

“ flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

! The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL ES 3.2 (October 22, 2019)

4.1. SYNC OBJECTS AND FENCES 37

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior’, if ClientWaitSync is called and all of the following are true:

e the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
e sync is unsignaled when ClientWaitSync is called,

e and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

If a sync object is marked for deletion while a client is blocking on that object
in a ClientWaitSync command, or a GL server is blocking on that object as a result
of a prior WaitSync command, deletion is deferred until the sync object is signaled
and all blocked GL clients and servers are unblocked.

Additional constraints on the use of sync objects are discussed in chapter 5.

State must be maintained to indicate which sync object names are currently
in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL ES 3.2 (October 22, 2019)

4.1. SYNC OBJECTS AND FENCES 38

or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei count,
sizei *length, int *values);

The value or values being queried are returned in the parameters /ength and
values.

On success, GetSynciv replaces up to count integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_—
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if count is negative.

The command
boolean IsSync(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted

OpenGL ES 3.2 (October 22, 2019)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 39

‘ Query target

Information Returned

PRIMITIVES_GENERATED

Number of primitives processed by the GL (see
section 12.3)

TRANSFORM_FEEDBACK_-—
PRIMITIVES_WRITTEN

Number of primitives written to one or more
buffer objects. There may be at most one active
query of this type (see section 12.3).

ANY_SAMPLES_PASSED,
ANY_SAMPLES_PASSED_—
CONSERVATIVE

Boolean value set to TRUE when any fragments or
samples pass the depth test. There may be at most

one active query of this type (see section 15.1.4).

Table 4.2: Asynchronous query targets

until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL are
summarized in table 4.2.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries(sizei n, uint *ids);
returns n previously unused query object names in ids. These names are marked as
used, for the purposes of GenQueries only, but no object is associated with them

until the first time they are used by BeginQuery.

Errors

OpenGL ES 3.2 (October 22, 2019)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 40

An INVALID_VALUE error is generated if n is negative.
Query objects are deleted by calling
void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

Each type of query supported by the GL has an active query object name. If an
active query object name is non-zero, the GL is currently tracking the correspond-
ing information, and the query results will be written into that query object. If an
active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed. The valid values of target are
discussed in more detail in subsequent sections.

BeginQuery sets the active query object name for target and index to id.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that occlusion query objects
specified by either of the two fargets ANY_SAMPLES_PASSED or ANY_SAMPLES_—
PASSED_CONSERVATIVE may be reused for either target in future queries.

The state of the query object named id, whether newly created or not, is that
the result is marked unavailable (the value of QUERY_RESULT_AVAILABLE for the
query object is FALSE), and the result value (the value of QUERY_RESULT) is zero.

Errors

An INVALID_ENUM error is generated if target is not one of the valid
targets listed in table 4.2

OpenGL ES 3.2 (October 22, 2019)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 41

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is any of:

® Zero
e the name of an existing query object whose type does not match farget

e an active query object name for any target.

An INVALID_OPERATION error is generated if the active query object
name for target is non-zero (for the targets ANY SAMPLES_PASSED and
ANY_SAMPLES_PASSED_CONSERVATIVE, if the active query for either target
1S NON-Zero).

The command
void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the active query
specified by target. The corresponding active query object is updated to indicate
that query results are not available, and the active query object name for target
is reset to zero. When the commands issued prior to EndQuery have completed
and a final query result is available, the query object active when EndQuery was
called is updated to contain the query result and to indicate that the query result is
available.
target has the same meaning as for BeginQuery.

Errors

An INVALID_ENUM error is generated if target is not one of the valid
targets listed in table 4.2

An INVALID_OPERATION error is generated if the active query object
name for farget is zero.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result depends on the query type as
described in section 4.2.1. In the initial state of a query object, the result is not
available (the flag is FALSE), and the result value is zero.

OpenGL ES 3.2 (October 22, 2019)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 42

If the query result overflows (exceeds the value 2" — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

The necessary state for each possible active query target is an unsigned integer
holding the active query object name (zero if no query object is active), and any
state necessary to keep the current results of an asynchronous query in progress.
Only a single type of occlusion query can be active at one time, so the required
state for occlusion queries is shared.

4.2.1 Query Object Queries

The number of bits required to represent query results cannot be queried, but must
be at least 1 bit for query fargets ANY_SAMPLES_PASSED and ANY_SAMPLES_—
PASSED_CONSERVATIVE, and at least 32 bits for query farget TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN.

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about an active query object can be queried with the command

void GetQueryiv(enum farget, enum pname, int *params);

target specifies the active query, and has the same meaning as for BeginQuery.
If pname is CURRENT_QUERY, the name of the currently active query object for
target, or zero if no query is active, will be placed in params.

Errors

An INVALID_ENUM error is generated if farget is not one of the valid
targets listed in table 4.2
An INVALID_ENUM error is generated if pname is not CURRENT_QUERY.

The state of a query object can be queried with the commands

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

OpenGL ES 3.2 (October 22, 2019)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

id is the name of a query object.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_—
RESULT_AVAILABLE for any given query object is guaranteed to return TRUE
eventually®.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the
requested type is returned. Querying QUERY_RESULT for any given query object
forces that query to complete within a finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject*, the result and availability information returned will always be from
the last query issued. The results from any queries before the last one will be lost
if they are not retrieved before starting a new query on the same farget and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID_ENUM error is generated if pname is not QUERY_RESULT or
QUERY_RESULT_AVAILABLE.

* Note that multiple queries to the same occlusion object may result in a significant performance
loss. For better performance it is recommended to wait /N frames before querying this state. N is
implementation-dependent but is generally between one and three.

OpenGL ES 3.2 (October 22, 2019)

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL ES contexts, including deletion behavior and how changes to shared ob-
jects are propagated between contexts.

Objects that can be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sampler objects, sync objects, and texture
objects (except for the texture objects named zero).

Objects which contain references to other objects include framebuffer, program
pipeline, euery transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing different
OpenGL ES versions. However, implementation-dependent behavior may result
when aspects and/or behaviors of such shared objects do not apply to, and/or are
not described by more than one version or profile.

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

44

5.1. OBJECT DELETION BEHAVIOR 45

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, transform feedback or renderbuffer object is successfully
deleted, it is unbound from any bind points it is bound to in the current context, and
detached from any attachments of container objects that are bound to the current
context, as described for DeleteBuffers, DeleteTextures, DeleteTransformFeed-
backs and DeleteRenderbuffers. If the object binding was established with other
related state (such as a buffer range in BindBufferRange or selected level and layer
information in FramebufferTexture or BindlmageTexture), all such related state
are restored to default values by the automatic unbind. Bind points in other con-
texts are not affected. Attachments to unbound container objects, such as deletion
of a buffer attached to a vertex array object which is not bound to the context, are
not affected and continue to act as references on the deleted object, as described in
the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, query, renderbuffer, sampler, sync, or texture object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, renderbuffer,sampler, or texture object is in use if any of the following
conditions are satisfied:

e the object is attached to any container object (such as a buffer object attached
to a vertex array object, or a renderbuffer or texture attached to a framebuffer
object)

e the object is bound to a context bind point in any context

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL
clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.

When a shader object or program object is deleted, it is flagged for deletion, but
its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object attached to a container object,
or a shared object bound in multiple contexts. Following its deletion, the object’s

OpenGL ES 3.2 (October 22, 2019)

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 46

name may be returned by Gen* commands, even though the underlying object
state and data may still be referred to by container objects, or in use by contexts
other than the one in which the object was deleted. Such a container or other
context may continue using the object, and may still contain state identifying its
name as being currently bound, until such time as the container object is deleted,
the attachment point of the container object is changed to refer to another object,
or another attempt to bind or attach the name is made in that context. Since the
name is marked unused, binding the name will create a new object with the same
name, and attaching the name will generate an error.

The underlying storage backing a deleted object will not be reclaimed by the
GL until all references to the object from container object attachment points or
context binding points are removed.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signalled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.

e The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

OpenGL ES 3.2 (October 22, 2019)

5.3. PROPAGATING CHANGES TO OBJECTS 47

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

e Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

e Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

e Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of T are construed to include the contents of
the data store of 7.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command' may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the
discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

! The GL already specifies that a single context processes commands in the order they are re-
ceived. This means that a change to an object in a context at time ¢ must be completed by the time a
command issued in the same context at time ¢ + 1 uses the result of that change.

OpenGL ES 3.2 (October 22, 2019)

5.3. PROPAGATING CHANGES TO OBJECTS 48

e An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

e Tis indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object 7" which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which 7 is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 If the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 11.1.2.1), results will be undefined.

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

OpenGL ES 3.2 (October 22, 2019)

5.3. PROPAGATING CHANGES TO OBJECTS 49

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 [f the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached to.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL ES 3.2 (October 22, 2019)

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The name space for buffer objects is the unsigned integers, with zero reserved
by the GL.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors
An INVALID_VALUE error is generated if » is negative.
Buffer objects are deleted by calling
void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

50

6.1. CREATING AND BINDING BUFFER OBJECTS 51

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if # is negative.
The command
boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of a buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of a buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding an unused name to a buffer target. The binding
is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named
buffer has not been previously bound, or has been deleted since the last binding,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising all the state and with the same initial values listed in table 6.2.

Buffer objects created by binding an unused name to any of the valid targets

are formally equivalent. -but-the-Gl-may-make-different-choices—about-storage

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in appendix 5.1.

Initially, each buffer object target is bound to zero.

OpenGL ES 3.2 (October 22, 2019)

6.1. CREATING AND BINDING BUFFER OBJECTS

52

Target name Purpose Described in section(s) ‘
ARRAY_BUFFER Vertex attributes 10.3.7
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.5
COPY_WRITE_BUFFER Buffer copy destination 6.5
DISPATCH_INDIRECT_BUFFER | Indirect compute dispatch commands | 10.3.9
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.9
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.8
PIXEL_PACK_BUFFER Pixel read target 16.1, 20
PIXEL_UNPACK_BUFFER Texture data source 8.4
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 12.2
UNIFORM_BUFFER Uniform block storage 7.6.2

Table 6.1: Buffer object binding targets.

Name Type Initial Value | Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS_FLAGS | int 0 See section 6.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 6.2: Buffer object parameters and their values.

OpenGL ES 3.2 (October 22, 2019)

6.1. CREATING AND BINDING BUFFER OBJECTS 53

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

There is no buffer object corresponding to the name zero, so client attempts
to modify or query buffer object state for a target bound to zero generate an
INVALID_OPERATION error.

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be ATOMIC_COUNTER_BUFFER, SHADER_-
STORAGE_BUFFER, TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Ad-
ditional language specific to each target is included in sections referred to for each
target in table 6.1.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions, such as BindBuffer or MapBufferRange. Both commands bind
the buffer object named by buffer to both the general binding point, and to the bind-
ing point in the array given by index. If the binds are successful no change is made
to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound, or has been
deleted since the last binding, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offser and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

OpenGL ES 3.2 (October 22, 2019)

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 54

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 12.2.2.

Errors

An INVALID_ENUM error is generated if zarget is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of farget-specific indexed binding points, as described in sec-
tion 6.6.1.

An INVALID VALUE error is generated by BindBufferRange if buffer is
non-zero and offset is negative.

An INVALID_ VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified farget, as described in section 6.6.1.

6.2 Creating and Modifying Buffer Object Data Stores
The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with target set to one of the targets listed in table 6.1, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-NULL, then the source data is copied to the buffer object’s data store.
If data is NULL, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. In the following descriptions, a buffer’s
data store is sourced when it is read from as a result of GL commands which specify
images, or invoke shaders accessing buffer data as a result of drawing commands
or compute shader dispatch.

The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

OpenGL ES 3.2 (October 22, 2019)

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 55

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS_FLAGS | O
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 6.3: Buffer object initial state.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

sTAaTIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_corY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

OpenGL ES 3.2 (October 22, 2019)

6.3. MAPPING AND UNMAPPING BUFFER DATA 56

Clients must align data elements consistently with the requirements of the
client platform, with an additional base-level requirement that an offset within a
buffer to a datum comprising N basic machine units be a multiple of V.

Errors

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_VALUE error is generated if size is negative.

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_ENUM error is generated if usage is not one of the nine us-
ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 6.1. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range.

Errors

An INVALID_OPERATION error is generated if zero is bound to farget.

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer bound
to target.

An INVALID_OPERATION error is generated if any part of the specified
buffer range is mapped with MapBufferRange (see section 6.3).

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL ES 3.2 (October 22, 2019)

6.3. MAPPING AND UNMAPPING BUFFER DATA 57

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with farget set to one of the targets listed in table 6.1. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

OpenGL ES 3.2 (October 22, 2019)

6.3. MAPPING AND UNMAPPING BUFFER DATA 58

Name Value
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

If MAP_UNSYNCHRONIZED_BIT is used in conjunction with either MAP_—
INVALIDATE_BUFFER_BIT or MAP_INVALIDATE_RANGE_BIT, the GL may dis-
card previous contents without attempting to synchronize pending operations on
the buffer.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 6.4.

OpenGL ES 3.2 (October 22, 2019)

6.3. MAPPING AND UNMAPPING BUFFER DATA 59

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if
offset + length is greater than the value of BUFFER_SIZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

e [ength is zero.
e The buffer is already in a mapped state.
e Neither MAP_ READ_BIT nor MAP_WRITE_BIT is set.

e MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT,
MAP_INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is
set.

e MAP FLUSH EXPLICIT_BIT is set and MAP_ WRITE_BIT iS not set.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 6.1. offser and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.
An INVALID_OPERATION error is generated if zero is bound to target.

OpenGL ES 3.2 (October 22, 2019)

6.3. MAPPING AND UNMAPPING BUFFER DATA 60

An INVALID_OPERATION error is generated if the buffer bound to target
is not mapped, or is mapped without the MAP_ FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum target);

with farget set to one of the targets listed in table 6.1. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_—
MAPPED, BUFFER _MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_ -
OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 6.3.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

Errors

An INVALID_OPERATION error is generated if the buffer data store is
already in the unmapped state, and FALSE is returned.

6.3.2 Effects of Mapping Buffers on Other GL. Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped. However, only commands which explicitly describe this

OpenGL ES 3.2 (October 22, 2019)

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 61

error are required to do so. If an error is not generated, using such commands to
perform invalid reads, writes, or state changes will have undefined results and may
result in GL interruption or termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write has undefined results, and may result in GL
interruption or termination.

6.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void CopyBufferSubData(enum readtarget, enum writetarget,
intptr readoffset, intptr writeoffset, sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 6.1.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_-—
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeoffset and size specify the range of data in the buffer object bound to write-
target that is to be replaced, in terms of basic machine units. readoffset and size
specify the range of data in the buffer object bound to readrarget that is to be copied
to the corresponding region of writetarget.

Errors

An INVALID_VALUE error is generated if any of readoffset, writeoffset,
or size are negative, if readoffset + size exceeds the size of the buffer object
bound to readtarget, or if writeoffset + size exceeds the size of the buffer
object bound to writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound
to both readtarget and writetarget, and the ranges [readoffset, readoffset +
size) and [writeoffset, writeoffset + size) overlap.

OpenGL ES 3.2 (October 22, 2019)

6.6. BUFFER OBJECT QUERIES 62

An INVALID_OPERATION error is generated if zero is bound to readtarget
or writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound
to either readtarget or writetarget are mapped

6.6 Buffer Object Queries
The commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int64 *data);

return information about a bound buffer object. target must be one of the targets
listed in table 6.1, and pname must be one of the buffer object parameters in ta-
ble 6.2, other than BUFFER_MAP_POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_ENUM error is generated if pname is not one of the buffer
object parameters other than BUFFER_MAP_POINTER.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store can be queried by calling

void GetBufferPointerv(enum target, enum pname,
void **params);

with farget set to one of the targets listed in table 6.1 and pname set to BUFFER_—
MAP_POINTER. The single buffer map pointer is returned in params. GetBuffer-
Pointerv returns the NULL pointer value if the buffer’s data store is not currently
mapped, or if the requesting client did not map the buffer object’s data store, and
the implementation is unable to support mappings on multiple clients.

OpenGL ES 3.2 (October 22, 2019)

6.6. BUFFER OBJECT QUERIES 63

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_ENUM error is generated if prname is not BUFFER_MAP_-
POINTER.

An INVALID_OPERATION error is generated if zero is bound to target.

6.6.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri_-
v with farget set to the name of the array binding points. index must be in the range
zero to the number of bind points supported minus one. The name of the buffer
object bound to index is returned in values. If no buffer object is bound for index,
zero is returned in values.

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i_v with rarget set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned .

Errors

An INVALID VALUE error is generated by GetIntegeri v and GetInte-
ger6di_v if rarget is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal

'A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL ES 3.2 (October 22, 2019)

6.6. BUFFER OBJECT QUERIES

64

Atomic counter array bindings (see sec. 7.7.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

ATOMIC_COUNTER_BUFFER_BINDING
ATOMIC_COUNTER_BUFFER_START

multiple of 4

ATOMIC_COUNTER_BUFFER_SIZE

none

value of MAX_ATOMIC_COUNTER_BUFFER_-
BINDINGS

Shader storage array bindings (see sec. 7.8)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

SHADER_STORAGE_BUFFER_BINDING
SHADER_STORAGE_BUFFER_START

multiple of wvalue of SHADER_STORAGE_-
BUFFER_OFFSET_ALIGNMENT
SHADER_STORAGE_BUFFER_SIZE

none

value of MAX_SHADER_STORAGE_BUFFER_-—
BINDINGS

Transform feedback array

bindings (see sec. 12.2.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

TRANSFORM_FEEDBACK_BUFFER_BINDING
TRANSFORM_FEEDBACK_BUFFER_START
multiple of 4
TRANSFORM_FEEDBACK_BUFFER_SIZE
multiple of 4

value of MAX_TRANSFORM_FEEDBACK_—
SEPARATE_ATTRIBS

Uniform buffer array bindings (see sec. 7.6.3)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

UNIFORM_BUFFER_BINDING
UNIFORM_BUFFER_START

multiple of value of UNIFORM BUFFER -
OFFSET_ALIGNMENT

UNIFORM_BUFFER_SIZE

none

value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL ES 3.2 (October 22, 2019)

6.7. BUFFER OBJECT STATE 65

to the number of binding points for target as described in the same table.

6.7 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 21.32, 21.34, 21.35 and 21.306, respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the vertex attribute arrays. The initial values for all buffer
object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

OpenGL ES 3.2 (October 22, 2019)

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 14.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL ES processing pipeline,
starting with vertices specified by the application and ending with fragments prior
to being written to the framebuffer. The programming language used for shaders is
described in the OpenGL ES Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code may be directly loaded into a
shader object. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage

66

7.1. SHADER OBJECTS 67

individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tes-
sellation control and evaluation shaders are used to control the operation of the
tessellator (see section 11.2). Geometry shaders affect the processing of primitives
assembled from vertices (see section 11.3). Fragment shaders affect the processing
of fragments during rasterization (see section 14). A single program object can
contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 17), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms are
per-program variables that are constant during program execution (see section 7.6).
Buffer variables (see section 7.8) are similar to uniforms, but are stored in buffer
object memory which may be written to, and is persistent across multiple shader
invocations. Samplers (see section 7.9) are a special form of uniform used for
texturing (see chapter 8). Images (see section 7.10) are a special form of uniform
identifying a level of a texture to be accessed using built-in shader functions as
described in section 8.23. OQutput variables hold the results of shader execution
that are used later in the pipeline. Each of these variable types is described in more
detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating

OpenGL ES 3.2 (October 22, 2019)

7.1. SHADER OBJECTS 68

type Shader Stage

VERTEX_SHADER Vertex shader
TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER | Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader rype values and the corresponding shader stages.

the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if fype is not
one of the values in table 7.1,

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL ES Shading Language Specifica-
tion.

Errors

An INVALID_VALUE error is generated if shader is not the name of either

OpenGL ES 3.2 (October 22, 2019)

7.1. SHADER OBJECTS 69

a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 7.12). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL ES Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 7.12).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

Resources allocated by the shader compiler may be released with the command
void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.12).

Shader objects can be deleted with the command

OpenGL ES 3.2 (October 22, 2019)

7.2. SHADER BINARIES 70

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 7.12). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_ VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID OPERATION error is generated if shader is not zero and is
the name of a program object.

The command
boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.
binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL ES defines no specific binary for-
mats, but does provide a mechanism to obtain token values for such formats pro-
vided by extensions. The number of shader binary formats supported can be ob-
tained by querying the value of NUM_SHADER_BINARY_FORMATS. The list of spe-
cific binary formats supported can be obtained by querying the value of SHADER -
BINARY_ FORMATS.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 71

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.

An INVALID_ENUM error is generated if binaryformat is not a supported
format returned in SHADER_BINARY FORMATS.

An INVALID_VALUE error is generated if the data pointed to by binary
does not match the specified binaryformat.

An INVALID_VALUE error is generated if any of the handles in shaders is
not the name of either a program or shader object.

An INVALID_OPERATION error is generated if any of the handles in
shaders is the name of a program object.

An INVALID_OPERATION error is generated if more than one of the han-
dles in shaders refers to the same type of shader object.

Additional errors corresponding to specific binary formats may be gener-
ated as specified by the extensions defining those formats.

If ShaderBinary succeeds, the COMPILE_STATUS of the shader is set to TRUE.

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.3 Program Objects
A program object is created with the command
uint CreateProgram(void);
Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be

returned.
To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 72

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may not be attached to a single program
object. However, a single shader object may be attached to more than one program
object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program, or if another shader object of the same type as shader is already
attached to program.

To detach a shader object from a program object, use the command
void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 73

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 7.12). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
Language Specification, as well as any of the following reasons:

e No shader objects are attached to program.

e One or more of the shader objects attached to program are not compiled
successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.9, and 11.3.3).

e program contains objects to form either a vertex shader or fragment shader,
and

— program is not separable, and does not contain objects to form both a
vertex shader and fragment shader.

e program contains an object to form a tessellation control shader (see sec-
tion 11.2.1), and

— the program is not separable and contains no object to form a vertex
shader; or

— the program is not separable and contains no object to form a tessella-
tion evaluation shader; or

— the output patch vertex count is not specified in the compiled tessella-
tion control shader object.

e program contains an object to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

— the program is not separable and contains no object to form a vertex
shader; or

— the program is not separable and contains no object to form a tessella-
tion control shader; or

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 74

— the tessellation primitive mode is not specified in the compiled tessel-
lation evaluation shader object.

e program contains objects to form a geometry shader (see section 11.3), and

— program is not separable and contains no objects to form a vertex
shader; or

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in the compiled geometry shader object.

e program contains objects to form a compute shader (see section 17) and
— program also contains objects to form any other type of shader.

e The shaders do not use the same shader language version.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 75

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 7.12).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by UsePro-
gram, that program is considered current for all stages. Otherwise, if there is a
bound program pipeline object (see section 7.4), the program bound to the appro-
priate stage of the pipeline object is considered current. If there is no current pro-
gram object or bound program pipeline object, no program is current for any stage.
The current program for a stage is considered active if it contains executable code
for that stage; otherwise, no program is considered active for that stage. If there
is no active program for the vertex or fragment shader stages, the results of vertex
and fragment shader execution will respectively be undefined. However, this is not
an error. If there is no active program for the tessellation control, tessellation eval-
uation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches'.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

!'It is possible for a single program pipeline object to contain active programs for all shader
stages, even though not all of them will be used while executing drawing commands or compute
dispatch.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 76

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the
program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 77

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM -
SEPARABLE Oor PROGRAM_BINARY_RETRIEVABLE_HINT.

An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command
void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command
boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramyv is equivalent (assuming no er-
rors are generated) to:

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 78

const uint shader = CreateShader (type) ;
if (shader) {
ShaderSource (shader, count, strings, NULL);
CompileShader (shader) ;
const uint program =
if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);
ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;
if (compiled) {
AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;

CreateProgram () ;

}
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return 0;
}

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if fype is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.

Other errors are generated if the supplied shader code fails to compile
and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 79

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active
resources for each interface. Examples of active resources include variables and
interface blocks used by shader code. Resources referenced in shader code are
considered active unless the compiler and linker can conclusively determine that
they have no observable effect on the results produced by the executable code of
the program. For example, variables might be considered inactive if they are de-
clared but not used in executable code, used only in a clause of an if statement
that would never be executed, used only in functions that are never called, or used
only in computations of temporary variables having no effect on any shader out-
put. In cases where the compiler or linker cannot make a conclusive determination,
any resource referenced by shader code will be considered active. The set of ac-
tive resources for any interface is implementation-dependent because it depends on
various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programlnterface token, identify-
ing a specific interface. The supported values for programlinterface are as follows:

e UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

e UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

e ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

e PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 80

input variables from any shader stage other than the first will not be enumer-
ated.

e PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes
multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

e TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 11.1.2.1). The resources enumer-
ated by this query are listed as specified by the most recent call to Trans-
formFeedbackVaryings before the last call to LinkProgram. When the
resource names an output array variable either a single element of the array
or the whole array is captured. If the variable name is specified with an array
index syntax "name [x] ", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

e BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

e SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with aggre-
gate types (such as arrays or structures) may produce multiple entries in the active
resource list for the corresponding interface. Additionally, each active variable or
interface block er-subreutine in the list is assigned an associated name string that
can be used by applications to refer to the resource.

For interfaces enumerating active variables, resource list entries for variables
declared outside interface blocks are generated as follows:

e For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

e For an active variable declared as an array of basic types (e.g. not an array
of structures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
n [O] L .

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 81

e For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the " . " character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

e For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the " [" character, an integer identi-
fying the element number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

For interfaces enumerating active variables, resource list entries for active
members of interface blocks are generated as follows:

e For active members of an interface block with no instance name, resource
list entries will be generated by treating the block member as though it were
declared as a variable outside an interface block. The name strings for these
entries will not include the block name.

e For active members of an interface block with an instance name, resource
list entries will be generated by applying the rules for variables declared
outside an interface block. The name string for each such entry is formed by
concatenating the name of the interface block (not the instance name), the
" . " character, and the name string that would be generated for an equivalent
variable declared outside an interface block.

e For active members of an array of interface blocks, entries will be gener-
ated using the same rules as for members of a single interface block with an
instance name. There will not be separate entries for each instance of the
interface block, and the name strings will not contain any text like " [0] " to
indicate that the member belongs to an array of interface blocks.

e For active shader storage block members that are declared as arrays of an
aggregate type, entries will not be generated for each array element. Such
block members are referred to as fop-level arrays and will generate entries
only for the first array element.

For interfaces enumerating active interface blocks, the entries of active resource
lists are generated as follows:

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 82

e For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

e For an active interface block declared as an array of arrays, a separate en-
try will be generated for each active instance. The name of each instance is
formed by concatenating the block name, the " [" character, an integer iden-
tifying the instance number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active interface block.

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. For TRANSFORM_-
FEEDBACK_VARYING, the active resource list will use the variable order speci-
fied in the most recent call to TransformFeedback Varyings before the last call to
LinkProgram.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

For the UNTFORM, PROGRAM_INPUT, PROGRAM_OQUTPUT, and TRANSFORM_-
FEEDBACK_VARYING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, or PROGRAM_OUTPUT interfaces are assigned one or more
signed integer locations. These locations can be used by commands to assign val-
ues to uniforms, to identify generic vertex attributes associated with vertex shader
inputs, or to identify fragment color output numbers associated with fragment
shader outputs. For such variables declared as arrays, separate locations will be
assigned to each active array element and are not required to be sequential. The
location for "a[1]" may or may not be equal to the location for "a[0]" +1.
Furthermore, since unused elements at the end of uniform arrays may be trimmed,
the location of the 7 4+ 1’th array element may not be valid even if the location
of the ¢’th element is valid. As a direct consequence, the value of the location of
"a[0]" +1 may refer to a different uniform entirely. Applications that wish to set
individual array elements should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 83

e uniforms declared as atomic counters
e members of a uniform block
e built-in inputs, outputs, and uniforms (starting with g1_)

e inputs (except for vertex shader inputs) not declared with a location
layout qualifier

e outputs (except for fragment shader outputs) not declared with a location
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

void GetProgramlInterfaceiv(uint program,
enum programlnterface, enum pname, int *params);

queries a property of the interface programlinterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programinterface. If the list of active re-
sources for programlnterface is empty, zero is returned.

If pname is MAX_NAME_ LENGTH, the value returned is the length of the longest
active name string for an active resource in programinterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramlinterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programlinterface with the most active variables. If the list of active
resources for programlinterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if pname is not ACTIVE_-
RESOURCES, MAX_NAME_LENGTH, or MAX_NUM_ACTIVE_VARIABLES.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 84

An INVALID_OPERATION error is generated if pname is MAX_NAME_-—
LENGTH and programlinterface is ATOMIC_COUNTER_BUFFER, since active
atomic counter resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM_-
ACTIVE_VARIABLES and programlinterface is not ATOMIC_COUNTER_-
BUFFER, SHADER_STORAGE_BLOCK, or UNIFORM_BLOCK.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N — 1, where NV is the number of entries
in the active resource list. The command

uint GetProgramResourcelndex(uint program,
enum programlinterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programlinterface of program object program.

If name exactly matches the name string of one of the active resources for
programlinterface, the index of the matched resource is returned.

e For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings. Otherwise,

e For all other resource types, if name would exactly match the name string
of an active resource if "[0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]1"), a name identifying any array element other than the first
(e.g., "all]l")is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

An INVALID_ENUM error is generated if programinterface is not one of
the interfaces described in the introduction to section 7.3.1.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 85

An INVALID_ENUM error is generated if programlinterface is ATOMIC_—
COUNTER_BUFFER, since active atomic counter resources are not assigned
name strings.

The command

void GetProgramResourceName(uint program,
enum programlnterface, uint index, sizei bufSize,
sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programlinterface of program object program.

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize — 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programlnterface, in-
cluding a null terminator, can be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ ENUM error is generated if programlinterface is ATOMIC_ -
COUNTER_BUFFER, since active atomic counter resources are not assigned
name strings.

An INVALID_VALUE error is generated if index is greater than or equal to
the number of entries in the active resource list for programinterface.

An INVALID_VALUE error is generated if bufSize is negative.

The command

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS

86

void GetProgramResourceiv(uint program,
enum programlinterface, uint index, sizei propCount,

const enum *props, sizei count, sizei *length,

int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programlinterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first count integer values will be written to params;
any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property

Supported Interfaces

ACTIVE_VARIABLES, BUFFER_-
BINDING, NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER, SHADER_ -
STORAGE_BLOCK, UNIFORM_BLOCK

ARRAY_SIZE

BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

ARRAY_ STRIDE, BLOCK_INDEX, IS_-—
ROW_MAJOR, MATRIX_STRIDE

BUFFER_VARIABLE, UNIFORM

ATOMIC_COUNTER_BUFFER_INDEX

UNIFORM

BUFFER_DATA_ SIZE

ATOMIC_COUNTER_BUFFER, SHADER_ -
STORAGE_BLOCK, UNIFORM_BLOCK

IS_PER_PATCH

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION

PROGRAM_INPUT, PROGRAM_OUTPUT,
UNIFORM

NAME_LENGTH

all but ATOMIC_COUNTER_BUFFER

OFFSET

BUFFER_VARIABLE, UNIFORM

REFERENCED_BY_VERTEX_-—

SHADER, REFERENCED_BY_TESS_—
CONTROL_SHADER, REFERENCED_ —
BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_ GEOMETRY_SHADER,
REFERENCED_BY_FRAGMENT_SHADER,
REFERENCED_BY_ COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_-

VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, SHADER_ -
STORAGE_BLOCK, UNIFORM,

UNIFORM_BLOCK

GetProgramResourceiv properties continued on next page

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 87

GetProgramResourceiv properties continued from previous page
Property \ Supported Interfaces
TOP_LEVEL_ARRAY_SIZE, TOP_- | BUFFER_VARIABLE
LEVEL_ARRAY_STRIDE
TYPE BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_—
FEEDBACK_VARYING, UNIFORM

Table 7.2: GetProgramResourceiv properties and supported in-
terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, or shader storage
block is written to params. The number of values written to params for an active
resource is given by the value of the property NUM_ACTIVE_VARIABLES for the
resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the
variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

For the property ARRAY_STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The
index written for a member of an interface block declared as an array of block
instances is the index of the first block of the array. If the variable is not a member
of an interface block, the value -1 is written to params.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 88

For the property BUFFER_BINDING, a single integer identifying the index of
the buffer binding point associated with the active uniform block, atomic counter
buffer, or shader storage block is written to params.

For the property BUFFER_DATA_SIZE, a single integer identifying the
implementation-dependent minimum total buffer object size is written to params.
This value is the size, in basic machine units, required to hold all active variables
associated with an active uniform block, atomic counter buffer, or shader storage
block. If the final member of an active shader storage block is an array with no de-
clared size, the minimum buffer size is computed assuming the array was declared
as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property IS_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, or output variable is written to params. For input,
output, or uniform variables with locations specified by a layout qualifier, the
specified location is used. For vertex shader input, fragment shader output, or uni-
form variables without a 1ayout qualifier, the location assigned when a program
is linked is written to params. For all other input and output variables, the value -1
is written to params. For atomic counter uniforms and uniforms in uniform blocks,
the value -1 is written to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable or interface block is written to
params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, a single integer identifying the
number of active variables associated with an active uniform block, atomic counter
buffer, or shader storage block is written to params.

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS &9

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the off-
set of that variable relative to the base of the buffer range holding its value. For
active variables not backed by a buffer object, an offset of -1 is written to params.

For the properties REFERENCED_BY VERTEX SHADER, REFERENCED_-
BY_TESS_CONTROL_SHADER, REFERENCED_BY_ TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER, REFERENCED_BY FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining to the active variable is written to params. If the top-level block member is
not declared as an array of an aggregate type, the value one is written to params.
If the top-level block member is an array of an aggregate type whose size is not
declared or determined when the program is linked, the value zero is written to
params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-
clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements
in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token ‘ Keyword ‘ Attrib‘ Xfb ‘ Buffeﬁ

FLOAT float v v v

FLOAT_VEC2 vec?2 v v v

FLOAT_VEC3 vec3 v v v

FLOAT_VEC4 vecd v v v

INT int v v v
(Continued on next page)

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 90
OpenGL ES Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
INT_VEC2 ivec2 v v v
INT_VEC3 ivec3 v v v
INT_VEC4 ivec4d v v v
UNSIGNED_INT uint v v v
UNSIGNED_INT_VEC2 uvec?2 v v v
UNSIGNED_INT_VEC3 uvec3 v v v
UNSIGNED_INT_VEC4 uvecd v v v
BOOL bool v
BOOL_VEC?2 bvec?2 v
BOOL_VEC3 bvec3 v
BOOIL_VEC4 bvec4 v
FLOAT_MAT2 mat?2 v v v
FLOAT_MAT3 mat3 v v v
FLOAT_MAT4 mat 4 v v v
FLOAT_MAT2x3 mat2x3 v v v
FLOAT_MAT2x4 mat2x4 v v v
FLOAT_MAT3x2 mat 3x2 v v v
FLOAT_MAT3x4 mat3x4 v v v
FLOAT_MAT4x2 mat4x2 v v v
FLOAT_MAT4x3 mat4x3 v v v
SAMPLER_2D sampler2D
SAMPLER_ 3D sampler3D
SAMPLER_CUBE samplerCube
SAMPLER_2D_SHADOW sampler2DShadow
SAMPLER_2D_ARRAY sampler2DArray
SAMPLER_CUBE_MAP_ARRAY samplerCubeArray
SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow
SAMPLER_2D_MULTISAMPLE sampler2DMS
SAMPLER_2D_MULTISAMPLE_- | sampler2DMSArray
ARRAY
SAMPLER_CUBE_SHADOW samplerCubeShadow
SAMPLER_CUBE_MAP_ARRAY_- | samplerCube-—
SHADOW ArrayShadow
SAMPLER_BUFFER samplerBuffer
INT_SAMPLER_2D isampler2D

(Continued on next page)

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS

91

OpenGL ES Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeArray

INT_SAMPLER_2D_- isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_- isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D
UNSIGNED_INT_SAMPLER_ - usamplerCube

CUBE

UNSIGNED_INT_SAMPLER_ - usampler2DArray

2D_ARRAY

UNSIGNED_INT_SAMPLER_-
CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_ - usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY
UNSIGNED_INT_SAMPLER_ — usamplerBuffer
BUFFER

IMAGE_2D image2D
IMAGE_3D image3D
IMAGE_CUBE imageCube
IMAGE_BUFFER imageBuffer
IMAGE_2D_ARRAY image2DArray
IMAGE_CUBE_MAP_ARRAY imageCubeArray
INT_IMAGE_2D iimage?2D
INT_IMAGE_3D iimage3D
INT_IMAGE_CUBE iimageCube
INT_IMAGE_BUFFER iimageBuffer
INT_IMAGE_2D_ARRAY iimage2DArray

(Continued on next page)

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 92

OpenGL ES Shading Language Type Tokens (continued)

Type Name Token ‘ Keyword ‘ Attrib‘ Xfb ‘ Buffer
INT_IMAGE_CUBE_MAP_ARRAY iimageCubeArray
UNSIGNED_INT_IMAGE_2D uimage?2D
UNSIGNED_INT_IMAGE_3D uimage3D
UNSIGNED_INT_TIMAGE_CUBE uimageCube
UNSIGNED_ INT_IMAGE_- uimageBuffer
BUFFER

UNSIGNED_INT_IMAGE_2D_-— uimage2DArray
ARRAY

UNSIGNED_INT_IMAGE_ - uimageCubeArray
CUBE_MAP_ARRAY

UNSIGNED_INT_ATOMIC_ - atomic_uint
COUNTER

Table 7.3: OpenGL ES Shading Language type tokens, and cor-
responding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if count is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not

OpenGL ES 3.2 (October 22, 2019)

7.3. PROGRAM OBJECTS 93

allowed for programinterface. The set of allowed programlinterface values for
each property can be found in table 7.2.

The command

int GetProgramResourcelLocation(uint program,
enum programlinterface, const char *name);

returns the location assigned to the variable named name in interface program-
Interface of program object program. programlnterface must be one of UNIFORWY,
PROGRAM_INPUT, or PROGRAM_OUTPUT. The value -1 will be returned if an er-
ror occurs, if name does not identify an active variable on programlnterface, or if
name identifies an active variable that does not have a valid location assigned, as
described above. The locations returned by these commands are the same locations
returned when querying the LOCATION resource properties.

A string provided to GetProgramResourcelocation is considered to match
an active variable if

e the string exactly matches the name of the active variable;

e if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix " [0] " were ap-
pended to the string; or

o if the string identifies an active element of the array, where the string ends
with the concatenation of the " [" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"] " character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourceLocation returns
the location assigned to that element. If it specifies the base name of an array, it
identifies the resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS 94

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors
An INVALID_VALUE error is generated if # is negative.
Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS 95

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FALSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline ob-
ject is a new state vector, comprising all the state and with the same initial values
listed in table 21.20.

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS 96

void UseProgramStages(uint pipeline, bitfield stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program is the program
object from which the executables are taken. The bits set in stages indicate the
program stages for which the program object named by program becomes current.
These stages may include compute, vertex, tessellation control, tessellation evalu-
ation, geometry, or fragment, indicated respectively by COMPUTE_SHADER_BIT,
VERTEX_SHADER_BIT, TESS_CONTROL_SHADER BIT, TESS_EVALUATION -
SHADER_BIT, GEOMETRY_SHADER_BIT, or FRAGMENT_SHADER_BIT. The con-
stant ALL_SHADER_BITS indicates program is to be made current for all shader
stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if stages is not the special value
ALL_SHADER BITS, and has any bits set other than COMPUTE_SHADER_-
BIT, VERTEX_SHADER_BIT, TESS_CONTROL_SHADER_BIT, TESS_-—
EVALUATION_SHADER_BIT, GEOMETRY_SHADER_BIT, and FRAGMENT_-
SHADER_BIT.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
was linked without the PROGRAM _SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS 97

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command
void ActiveShaderProgram(uint pipeline, uint program);

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched
up against outputs from the previous stage:

e An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

— For the purposes of shader interface matching, the gl_PointSize

member of the intrinsically declared g1_PerVertex shader interface
block is ignored.

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS 98

— Output blocks that do not match in name, but have a location and match
in every other way listed above may be considered to match by some
implementations, but not all - so this behaviour should not be relied
upon.

e An output variable is considered to match an input variable in the subsequent
shader if:

— the two variables match in name, type, and qualification, and neither
has a 1ocation qualifier; or

— the two variables are declared with the same location qualifier and
match in type and qualification.

Variables or block members declared as structures are considered to match
in type if and only if structure members match in name, type, qualification, and
declaration order. Variables or block members declared as arrays are considered
to match in type only if both declarations specify the same element type and array
size. The rules for determining if variables or block members match in qualification
are found in the OpenGL ES Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check for
mismatches on interfaces between shader stages in the program being linked and
generate a link error if a mismatch is detected. A link error is generated if any
statically referenced input variable or block does not have a matching output.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because
the programs are linked separately. When each such program is linked, all inputs
or outputs interfacing with another program stage are treated as active. The linker
will generate an executable that assumes the presence of a compatible program
on the other side of the interface. If a mismatch between programs occurs, using
the programs together in a program pipeline will result in a validation failure (see
section 11.1.3.11).

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

OpenGL ES 3.2 (October 22, 2019)

7.4. PROGRAM PIPELINE OBJECTS

e Every declared input block or variable has a matching output, as described
above. However, the intrinsically declared g1_PerVertex shader interface
block must be redeclared, and all members of the redeclared g1_Pervertex
shader interface block, including the g1_PointSize member if present in
the redeclaration, must match exactly in name, type, qualification and decla-
ration order.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

o All matched input and output variables (in a block or otherwise) have iden-
tical precision qualification.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were not
written in the previous shader. However, any mismatch between inputs and outputs
will result in a validation failure.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, the presence or absence of any
built-in output does not affect interface matching.

7.4.2 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

e A boolean holding the status of the last validation attempt, initially false.

e An array of type char containing the information log (see section 7.12),
initially empty.

e An integer holding the length of the information log.

OpenGL ES 3.2 (October 22, 2019)

99

7.5. PROGRAM BINARIES 100

7.5 Program Binaries
The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum num-
ber of bytes that may be written into binary is specified by bufSize. The actual
number of bytes written into binary is returned in length and its format is returned
in binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary can be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if the value of NUM_ -
PROGRAM_BINARY_FORMATS iS zero.

An INVALID_OPERATION error is generated if program has not been
linked successfully. In this case its program binary length is zero.

An INVALID_VALUE error is generated if bufSize is negative.

An INVALID_OPERATION error is generated if bufSize is less than the
number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
ES Shading Language source shaders as a portable initial format. binaryFormat
and binary must be those returned by a previous call to GetProgramBinary, and
length must be the length of the program binary as returned by GetProgramBinary
or GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program
binary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

OpenGL ES 3.2 (October 22, 2019)

7.5. PROGRAM BINARIES 101

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible or
outdated version of the compiler. In this case the application should fall back to
providing the original OpenGL ES Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
Or errors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage
block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, values of the following state that were in effect when the program
was linked before saving are restored when ProgramBinary is called successfully:

e Program parameter PROGRAM_SEPARABLE,
e all vertex shader input and fragment shader output assignments, and

e atomic counter binding, offset and stride assignments.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute bindings as set by BindAttribLocation.

OpenGL ES defines no specific binary formats. Queries of values NUM_-
PROGRAM_BINARY FORMATS and PROGRAM_BINARY FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 102

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with pname set to PROGRAM_BINARY_RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all
non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL ES
Shading Language Specification. A uniform is considered an active uniform if the
compiler and linker determine that the uniform will actually be accessed when the
executable code is executed. In cases where the compiler and linker cannot make
a conclusive determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, and samplers, and
subroutine-uniferms can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL ES Shading Language
Specification, store uniform values in the data store of a buffer object correspond-
ing to the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block are program object-specific state.
They retain their values once loaded, and their values are restored whenever a pro-
gram object is used, as long as the program object has not been re-linked.

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 103

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) | MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS
Fragment (see section 14.1) MAX_FRAGMENT_UNIFORM_COMPONENTS
Compute (see section 17.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and
linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. Note that this means that the uniform block itself is also considered
active, even if no member of the block is referenced.

The implementation-dependent amount of storage available for uniform vari-
ables, except for atomic counters, in the default uniform block accessed by a shader
for a particular shader stage can be queried by calling GetIntegerv with pname as
specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS
and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_ UNIFORM_COMPONENTS and MAX_ FRAGMENT -
UNIFORM_COMPONENTS divided by four.

The total amount of combined storage available for uniform variables in all
uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with prame as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

e A scalar uniform will consume no more than 1 component

e A vector uniform will consume no more than n components, where n is the
vector component count

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 104

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS

Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation | MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_ COMBINED_GEOMETRY_UNIFORM_COMPONENTS
Fragment MAX_ COMBINED_FRAGMENT_UNIFORM_COMPONENTS
Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

e A matrix uniform will consume no more than 4 x min(r,c) components,
where 7 and c are the number of rows and columns in the matrix.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms
with floating-point components.

Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized as
defined by the version of the OpenGL ES Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and
the generated locations must be in the range of O to the value of MAX_UNIFORM_-—
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 105

provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.3, and 6.5. Atomic counters are not assigned a location and may
not be modified using the Uniform* commands. The bindings, offsets, and strides
belonging to atomic counters of a program object are invalidated and new ones
assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-
tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to
GetProgramResourcelLocation (program, UNIFORM, name) ;
The command

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformlndices);

is equivalent to
for (int i = 0; 1 < wuniformCount; i++) {

uniformIndices [1] = GetProgramResourcelndex (program,
UNIFORM, uniformNames[1]) ;

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 106

The command

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

is equivalent to

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName (program, UNIFORM, index,
bufSize, length, name) ;
GetProgramResourceiv (program, UNIFORM, index,
1, &props[0], 1, NULL, size);
GetProgramResourceiv (program, UNIFORM, index,
1, &props([l], 1, NULL, (int =*)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

is equivalent to

GLenum prop;
for (int i = 0; 1 < wuniformCount; i++) {
GetProgramResourceiv (program, UNIFORM, uniformlindices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications
can query the properties and active resources of the UNIFORM_BLOCK interface.
Additionally, several commands are provided to query properties of active uni-
form blocks. The command

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to

GetProgramResourcelndex (program, UNIFORM_BLOCK, uniformBlockName) ;

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 107

pname prop
UNIFORM_TYPE TYPE
UNIFORM_SIZE ARRAY_SIZE
UNIFORM_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_INDEX BLOCK_INDEX
UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE
UNIFORM_MATRIX_ STRIDE | MATRIX_STRIDE
UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName (program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, wuniformBlockName) ;

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv (program, UNIFORM_BLOCK,
uniformBlockIndex, 1, &prop, maxSize, NULL, params);

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES

108

pname

prop

UNIFORM_BLOCK_BINDING

BUFFER_BINDING

UNIFORM_BLOCK_DATA_SIZE

BUFFER_DATA_SIZE

UNIFORM_BLOCK_NAME_LENGTH

NAME_LENGTH

UNIFORM_BLOCK_ACTIVE_UNIFORMS

NUM_ACTIVE_VARIABLES

UNIFORM_BLOCK_ACTIVE_UNIFORM_ -
INDICES

ACTIVE_VARIABLES

UNIFORM_BLOCK_REFERENCED_BY_ -
VERTEX_SHADER

REFERENCED_BY_ VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
TESS_CONTROL_SHADER

REFERENCED_BY_TESS_CONTROL_—
SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
TESS_EVALUATION_SHADER

REFERENCED_BY_TESS_-
EVALUATION_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
GEOMETRY__SHADER

REFERENCED_BY_ GEOMETRY_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
FRAGMENT_SHADER

REFERENCED_BY_ FRAGMENT_SHADER

Table 7.7:
Blockiv.

GetProgramResourceiv properties used by GetActiveUniform-

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 109

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables, except for atomic counters, of the default
uniform block of the active program object, use the commands

void Uniform{1234}{if vi}(int location, T value);

void Uniform{1234}{if wi}v(int location, sizei count,
const T *value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform defined as a sampler, an integer, an integer vector, or an array
of either of these types. Only the Uniform1i{v} commands can be used to load
sampler values (see section 7.9).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } fv commands will load count
2x3,3x2,2x4,4x2,3x4,or4 x 3 matrices (corresponding to the numbers
in the command name) of floating-point values into a uniform defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 110

is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},
and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is O or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec?2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a mat 3, Uniform-
Matrix3fv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.

An INVALID_VALUE error is generated if Uniformli{v} is used to set a
sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED_TEXTURE_TMAGE_UNTTS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

e the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e the component type and count indicated in the name of the Uniform™*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}
commands.

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 111

e count is greater than one, and the uniform declared in the shader is not
an array variable,

e no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

e a sampler uniform is loaded with any of the Uniform* commands other
than Uniform1i{v}.

e an image uniform is loaded with any of the Uniform* commands.

e there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{if}(uint program,
int location, T value);

void ProgramUniform{1234}{if}v(uint program,
int location, sizei count, const T *value);

void ProgramUniform{1234}ui(uint program, int location,
T value);

void ProgramUniform{1234}uiv(uint program,
int location, sizei count, const T *value);

void ProgramUniformMatrix{234}{f}v(uint program,
int location, sizei count, boolean transpose, const
T *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {f}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter.The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 112

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-
mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

If the number of active uniform blocks referenced by the shaders in a pro-
gram exceeds implementation-dependent limits, the program will fail to link. The
limits for vertex, tessellation control, tessellation evaluation, geometry, fragment,
and compute shaders can be obtained by calling GetIntegerv with prname values
of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_UNIFORM_BLOCKS,
MAX_TESS_EVALUATION_UNIFORM_BLOCKS, MAX_ -
GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_-
COMPUTE_UNIFORM_BLOCKS, respectively.

Additionally, a program will fail to link if the sum of the number of active
uniform blocks referenced by each shader stage in a program exceeds the value of
the implementation-dependent limit MAX_COMBINED_UNIFORM_BLOCKS. If a uni-
form block is referenced by multiple shaders, each such reference counts separately
against this combined limit.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNTFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must be
declared with the same names, types, and 1ayout qualifiers, in the same order. If a
program contains multiple shaders with different declarations for the same named
uniform block, the program will fail to link.

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 113

e Members of type bool, int, uint, and float are respectively extracted
from a buffer object by reading a single uint, int, uint, or float value
at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, or
float are extracted as /N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the type
matCxR or simply matC if C' = R) are treated as an array of C' column
vectors, each consisting of R floating-point components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The differ-
ence in offsets between consecutive columns of the matrix will be referred to
as the column stride, and is constant across the matrix. The column stride is
an implementation-dependent function of the matrix type, and may be deter-
mined after a program is linked by querying the MATRIX_STRIDE interface
using GetProgramResourceiv (see section 7.3.1).

e Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C' = R) are treated as an array of R row vectors, each
consisting of C' floating-point components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_STRIDE interface using GetProgramResourceiv
(see section 7.3.1).

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array
stride is an implementation-dependent function of the array type, and may
be determined after a program is linked by querying the ARRAY_STRIDE
interface using GetProgramResourceiv (see section 7.3.1).

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 114

sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The 1layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N.

2. If the member is a two- or four-component vector with components consum-
ing IV basic machine units, the base alignment is 2N or 4NV, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4 V.

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
torules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C' columns and R rows, the
matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of .S column-major matrices with C' columns and
R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

OpenGL ES 3.2 (October 22, 2019)

7.6. UNIFORM VARIABLES 115

7. If the member is a row-major matrix with C' columns and R rows, the matrix
is stored identically to an array of R row vectors with C' components each,
according to rule (4).

8. If the member is an array of .S row-major matrices with C' columns and R
rows, the matrix is stored identically to a row of S x R row vectors with C'
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is /N, where
N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to the
next multiple of the base alignment of the structure. If none of the structure
members are larger than a vec4, the base alignment of the structure is vec4.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout quali-
fier, as well as a std430 layout qualifier not supported for uniform blocks. When
using the std430 storage layout, shader storage blocks will be laid out in buffer
storage identically to uniform and shader storage blocks using the std140 layout,
except that the base alignment and stride of arrays of scalars and vectors in rule 4
and of structures in rule 9 are not rounded up a multiple of the base alignment of a
vecd.

7.6.3 Uniform Buffer Object Bindings

The value of an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points may be queried by calling GetIntegerv with
a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNTFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. The binding is established when a program is linked or re-
linked, and the initial value of the binding is specified by a 1ayout qualifier (if
present), or zero otherwise. The binding point can be assigned by calling:

OpenGL ES 3.2 (October 22, 2019)

7.7. ATOMIC COUNTER BUFFERS 116

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockindex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by

OpenGL ES 3.2 (October 22, 2019)

7.7. ATOMIC COUNTER BUFFERS 117

calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_—
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-
TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_GEOMETRY_ATOMIC_-
COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_—
COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_—
ATOMIC_COUNTER_ BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

e Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

e Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride
(the value of UNIFORM_ARRAY_STRIDE), is always 4, and may be queried
after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points can be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with target set to ATOMIC_-
COUNTER_BUFFER.

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL ES Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the

OpenGL ES 3.2 (October 22, 2019)

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS118

minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter
buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL ES Shad-
ing Language Specification. Sets of buffer variables are grouped into interface
blocks called shader storage blocks. The values of each buffer variable in a shader
storage block are read from or written to the data store of a buffer object bound
to the binding point associated with the block. Buffer variables are considered
active in the same way as uniform variables (see section 7.6). The values of active
buffer variables may be changed by executing shaders that assign values to them
or perform atomic memory operations on them; by modifying the contents of the
bound buffer object’s data store with the commands in sections 6.2, 6.3, and 6.5;
by binding a new buffer object to the binding point associated with the block; or
by changing the binding point associated with the block.

Like buffer variables, shader storage blocks can be active or inactive. Whether
a shader storage block is active or inactive is determined in the same way as for
uniform blocks (see section 7.6). Additionally though, all members of a named
shader storage block declared with a std430 layout qualifier are considered active,
even if they are not referenced in any shader in the program.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an
offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, may be queried by calling

OpenGL ES 3.2 (October 22, 2019)

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS119

GetIntegerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount
of storage required for the fixed size portion of any shader storage block (as re-
ported by BUFFER_DATA_SIZE) exceeds this limit, a program will fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_-
STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER STORAGE_BLOCKS, MAX_ -
TESS_EVALUATION_SHADER_STORAGE_BLOCKS, MAX_GEOMETRY_SHADER_-—
STORAGE_BLOCKS, MAX_FRAGMENT SHADER STORAGE_BLOCKS, and MAX -
COMPUTE_SHADER_STORAGE_BLOCKS, respectively.

Additionally, a program will fail to link if the sum of the number of ac-
tive shader storage blocks referenced by each shader stage in a program exceeds
the value of the implementation-dependent limit MAX_COMBINED_SHADER -
STORAGE_BLOCKS. If a shader storage block in a program is referenced by multiple
shaders, each such reference counts separately against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER_ -
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage
blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. It is not possible to change the binding point
associated with a shader storage block after a program is linked.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

OpenGL ES 3.2 (October 22, 2019)

7.9. SAMPLERS 120

7.9 Samplers

Samplers are special uniforms used in the OpenGL ES Shading Language to iden-
tify the texture object used for each texture lookup. The value of a sampler in-
dicates the texture image unit being accessed. Setting a sampler’s value to
selects texture image unit number ¢. The values of ¢ ranges from zero to the
implementation-dependent maximum supported number of texture image units mi-
nus one.

The type of the sampler identifies the target on the texture image unit, as shown
in table 7.3 for sampler~* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

7.10 Images

Images are special uniforms used in the OpenGL ES Shading Language to identify
a level of a texture to be read or written using built-in image load, store or atomic
functions in the manner described in section 8.23. The value of an image uniform is
an integer specifying the image unit accessed. Image units are numbered beginning

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 121

at zero, and there is an implementation-dependent number of available image units
(the value of MAX_TIMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit, otherwise the result of a load, store or atomic op-
eration is undefined (see section 4.1.7.2 of the OpenGL ES Shading Language
Specification for more details).

The location of an image variable is queried with GetUniformLocation, just
like any uniform variable.

There is a limit on the number of active image variables that may be used by a
program or by any particular shader.

7.11 Shader Memory Access

As described in the OpenGL ES Shading Language Specification, shaders may
perform random-access reads and writes to buffer object memory by reading from,
assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store, or atomic
functions operating on shader image variables, or performing atomic operations
on atomic counter variables. The ability to perform such random-access reads and
writes in systems that may be highly pipelined results in ordering and synchroniza-
tion issues discussed in the sections below.

7.11.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, and in some cases, fragment),
even the number of shader invocations that might perform loads and stores is un-
defined.

In particular, the following rules apply:

e While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application, (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 122

of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

e For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 13.8.1), scissor test (see section 13.8.2), or is dis-
carded by any of the multisample fragment operations (see section 13.8.3),
the fragment shader will not be executed

In addition, if early per-fragment tests are enabled (see section 13.8), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests, and a fragment may not be executed if the fragment
will never contribute to the framebuffer.

For example, if a fragment A written to a pixel or sample from primitive A
will be replaced by a fragment B written to a pixel or sample from primitive
B, then fragment A may not be executed even if primitive A is specified prior
to primitive B.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N] where N is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly IV times.

o If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, stores have no effect.

o The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs are
written to the framebuffer in primitive order, stores executed by fragment
shader invocations are not.

o The relative order of invocations of different shader types is undefined.
The above limitations on shader invocation order also make some forms of

synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 123

invocation assumes that the other invocation has been launched and can complete
its writes.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guarantees
that any memory transactions issued by the shader invocation prior to the call com-
plete prior to the memory transactions issued after the call. Memory barriers may
be needed for algorithms that require multiple invocations to access the same mem-
ory and require the operations need to be performed in a partially-defined relative
order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, and another invocation sees the
result of the final write and calls memoryBarrier, then the second invocation will
also see the previous writes. Without either memory barrier, the final write may be
visible before the previous writes.

The built-in atomic memory transaction functions may be used to read and
write a given memory address atomically. While built-in atomic functions issued
by multiple shader invocations are executed in undefined order relative to each
other, these functions perform both a read and a write of a memory address and
guarantee that no other memory transaction will write to the underlying memory
between the read and write. Atomics allow shaders to use shared global addresses
for mutual exclusion or as counters, among other uses.

7.11.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic
synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.
Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 124

the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bit field barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

e VERTEX_ATTRIB_ARRAY BARRIER_BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The set of buffer objects affected by this bit is derived from the
buffer object bindings used for arrays of generic vertex attributes (VERTEX_ -
ATTRIB_ARRAY_BUFFER bindings).

e ELEMENT_ARRAY_ BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

e UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

e TEXTURE_FETCH_ BARRIER BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

e SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load and store functions issued after the barrier will reflect
data written by shaders prior to the barrier. Additionally, image stores is-
sued after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

e COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputelndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 125

e PIXEI,_BUFFER_BARRIER_BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

e TEXTURE_UPDATE_BARRIER BIT: Writes to
a texture via Tex(Sub)Image*, CopyTex*, or CompressedTex* after the
barrier will reflect data written by shaders prior to the barrier. Additionally,
texture writes from these commands issued after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

e BUFFER_UPDATE_BARRIER_BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.3, and 6.5 will
reflect data written by shaders prior to the barrier. Additionally, writes via
these commands issued after the barrier will wait on the completion of any
shader writes to the same memory initiated prior to the barrier.

e FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

e TRANSFORM_FEEDBACK_BARRIER_BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

e ATOMIC_COUNTER_BARRIER_BIT: Accesses to atomic counters after the
barrier will reflect writes prior to the barrier.

e SHADER_STORAGE_BARRIER BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 126

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER BITS, and has any bits set other than those described above.

Implementations may cache buffer object or texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may
remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL ES Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

e Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

e Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

e Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling

OpenGL ES 3.2 (October 22, 2019)

7.11. SHADER MEMORY ACCESS 127

MemoryBarrier with the SHADER_TIMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

e Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-
herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command
void MemoryBarrierByRegion(bit field barriers);

behave as described above for MemoryBarrier, with two differences:

First, it narrows the region under consideration so that only reads/writes of
prior fragment shaders that are invoked for a smaller region of the framebuffer
will be completed/reflected prior to subsequent reads/write of following fragment
shaders. The size of the region is implementation dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

e ATOMIC_COUNTER_BARRIER_BIT

e FRAMEBUFFER_BARRIER_BIT

e SHADER_TIMAGE_ACCESS_BARRIER_BIT
e SHADER_STORAGE_BARRIER_BIT

e TEXTURE_FETCH_BARRIER_ BIT

e UNIFORM_BARRIER_BIT

are supported.

When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-
chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier.

This implies that reads/writes for scatter/gather-like algorithms may or may not
be completed/reflected after a MemoryBarrierByRegion command. However, for
uses such as deferred shading, where a linked list of visible surfaces with the head
at a framebuffer address may be constructed, and the entirety of the list is only
dependent on previous executions at that framebuffer address, MemoryBarrier-
ByRegion may be significantly more efficient than MemoryBarrier.

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 128

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER BITS, and has any bits set other than those described above.

7.12 Shader, Program, and Program Pipeline Queries
The command
void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not SHADER_TYPE,
DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH, or SHADER —
SOURCE_LENGTH.

The command

void GetProgramiv(uint program, enum pname,
int *params);

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 129

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

Most properties set within program objects are specified not to take effect until
the next call to LinkProgram or ProgramBinary. Some properties further require
a successful call to either of these commands before taking effect. GetProgramiv
returns the properties currently in effect for program, which may differ from the
properties set within program since the most recent call to LinkProgram or Pro-
gramBinary, which have not yet taken effect. If there has been no such call putting
changes to pname into effect, initial values are returned.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.11) with program was successful, and FALSE
is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is ATTACHED_SHADERS, the number of objects attached is returned.

If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-
tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.

If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-
tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 130

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, oOr
FRACTIONAL_ODD is returned, depending on the spacing declaration in the
tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the workgroup size of the compute program (see chapter 17), as specified by
its input layout qualifier(s), is returned

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 131

shader object.

An INVALID_ ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-
OUT, GEOMETRY_INPUT_TYPE, GEOMETRY OUTPUT_ TYPE, or GEOMETRY -
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

An INVALID_OPERATION error is generated if TESS_CONTROL_-
OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ORDER, or TESS_GEN_POINT -
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader,

An INVALID_OPERATION error is generated if COMPUTE_WORK_ -
GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage type arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.11) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is no info log, zero is returned.

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 132

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAN,

INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the fype arguments in
table 7.1.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizel *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-

tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfol.og(uint shader, sizei bufSize,
sizei *length, char *infolLog);

void GetProgramInfolog(uint program, sizei bufSize,
sizei *length, char *infolLog);

void GetProgramPipelinelnfol.og(uint pipeline,
sizei bufSize, sizei *length, char *infolLog);

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 133

These commands return an info log string for the corresponding type of object in
infoLog. This string will be null-terminated even if the INFO_LOG_LENGTH query
returns zero. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log for a shader object, program object, or program pipeline object can be queried
respectively with GetShaderiv, GetProgramiv, or GetProgramPipelineiv with
pname INFO_LOG_LENGTH.

If shader is a shader object, GetShaderInfolLog will return either an empty
string or information about the last compilation attempt for that object.

If program is a program object, GetProgramInfoLog will return either an
empty string or information about the last link attempt or last validation attempt
(see section 11.1.3.11) for that object.

If pipeline is a program pipeline object, GetProgramPipelineInfoLog will
return either an empty string or information about the last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if pipeline is not the name of an
existing program pipeline object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 134

The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM FLOAT, HIGH FLOAT, LOW_-
INT,MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = [loga(|min])|
range[l] = |loga(|maxl)]

precision points to an integer in which the log, value of the number of bits of
precision of the format is returned. If the smallest representable value greater than
1is 1 + ¢, then *precision will contain | —logs(€) |, and every value in the range

[_2range[0] 7 2range[1]]

can be represented to at least one part in 2*P"¢“s°" For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[l] = 127,
and xprecision = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[l] = 30, and xprecision = 0.

OpenGL ES 3.2 (October 22, 2019)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 135

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.5 (‘“Precision and Pre-
cision Qualifiers”) of the OpenGL ES Shading Language Specification.

Errors

An INVALID_ENUM error is generated if shadertype is not VERTEX -
SHADER or FRAGMENT__ SHADER.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

void GetnUniformfv(uint program, int location,
sizei bufSize, £loat *params);

void GetnUniformiv(uint program, int location,
sizei bufSize, int *params);

void GetnUniformuiv(uint program, int location,
sizei bufSize, uint *params);

return the value or values of the uniform at location location of the default uniform
block for program object program in the array params. The type of the uniform at
location determines the number of values returned.

In order to query the values of an array of uniforms, a GetUniform* command
needs to be issued for each array element. If the uniform queried is a matrix, the
values of the matrix are returned in column major order.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully, or if location is not a valid location for program.

OpenGL ES 3.2 (October 22, 2019)

7.13. REQUIRED STATE 136

An INVALID_OPERATION error is generated by GetnUniform™* if the
buffer size required to store the requested data is greater than bufSize.

7.13 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.
The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initially FALSE.
e An integer holding the number of attached shader objects.

e A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

OpenGL ES 3.2 (October 22, 2019)

7.13.

REQUIRED STATE 137

An integer holding the number of active uniforms.

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array holding the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support transform feedback consists of:

An integer holding the transform feedback mode, initially INTERLEAVED_—
ATTRIBS.

An integer holding the number of outputs to be captured, initially zero.

An integer holding the length of the longest output name being captured,
initially zero.

For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 21.21-21.29 describe
additional program object state specific to program binaries, geometry shaders,
tessellation control and evaluation shaders, and uniform blocks.

Table 21.30 describes state related to vertex and geometry shaders that is not
program object state.

OpenGL ES 3.2 (October 22, 2019)

Chapter 8

Textures and Samplers

Texturing maps a portion of one or more specified images onto a fragment or ver-
tex. This mapping is accomplished in shaders by sampling the color of an image
at the location indicated by specified (s, t,r) texture coordinates. Texture lookups
are typically used to modify a fragment’s RGBA color but may be used for any
purpose in a shader.

This chapter first describes how pixel rectangles, texture images, and texture
and sampler object parameters are specified and queried, in sections 8.1-8.11. The
remainder of the chapter in sections 8.12-8.23 describe how texture sampling is
performed in shaders.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 8.10-8.11. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
The fragment shader is responsible for interpreting the result of a texture lookup as
the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of texture images built
from two-or three-dimensional arrays of texels (see section 2.6.6). Two- and three-
dimensional textures consist respectively of two-or three-dimensional texture im-
ages. Two-dimensional array textures are arrays of two-dimensional images. Each
image consists of one or more layers. Two-dimensional multisample textures are
special two-dimensional textures containing multiple samples in each texel. Cube
maps are special two-dimensional array textures with six layers that represent the
faces of a cube. When accessing a cube map, the texture coordinates are projected
onto one of the six faces of the cube. A cube map array is a collection of cube map
layers stored as a two-dimensional array texture. When accessing a cube map ar-

138

8.1. TEXTURE OBJECTS 139

ray, the texture coordinates s, ¢, and r are applied similarly as cube maps while the
last texture coordinate ¢ is used as the index of one of the cube map slices. Buffer
textures are special one-dimensional textures whose texture images are stored in
separate buffer objects.

Implementations must support texturing using multiple images.

The following subsections (up to and including section 8.14) specify the GL
operation with a single texture. Multiple texture images may be sampled and com-
bined by shaders as described in section 11.1.3.5.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL ES Shading Language Specification.

The command

void ActiveTexture(enum fexture);

specifies the active texture unit selector. The selector may be queried by calling
Getlntegerv with pname set to ACTIVE_TEXTURE.
Each texture image unit consists of all the texture state defined in chapter 8.
The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing. Such commands include TexParame-
ter, TexImage, BindTexture, and queries of all such state.

Errors

An INVALID_ENUM error is generated if an invalid texture is specified.
texture is a symbolic constant of the form TEXTUREs, indicating that texture
unit ¢ is to be modified. Each TEXTURE: adheres to TEXTURE{ = TEXTUREOQ +
1, where ¢ is in the range zero to k — 1, and £ is the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS)“.

“ The OpenGL ES header file only defines symbolic constants TEXTUREQ through
TEXTURE31. Applications accessing more than 32 texture image units must use the
TEXTUREO + ¢ approach rather than an explicit symbolic constant.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

8.1 Texture Objects

Textures in GL are represented by named objects. The name space for texture ob-
jects is the unsigned integers, with zero reserved by the GL to represent the default
texture object. The default texture object is bound to each of the TEXTURE_2D,

OpenGL ES 3.2 (October 22, 2019)

8.1. TEXTURE OBJECTS 140

TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-
2D_MULTISAMPLE_ARRAY targets during context initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *fextures);;

returns n previously unused texture names in fextures. These names are marked as
used, for the purposes of GenTextures only, but they acquire texture state and a
dimensionality only when they are first bound, just as if they were unused.

Errors
An INVALID_VALUE error is generated if » is negative.
The binding is effected by calling
void BindTexture(enum farget, uint texture);

with farget set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 8.19 The new texture object bound to target is,
and remains a texture of the dimensionality and type specified by target until it is
deleted.

BindTexture may also be used to bind an existing texture object to any of these
targets. If the bind is successful no change is made to the state of the bound texture
object, and any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Errors

An INVALID_ENUM error is generated if farget is not one of the texture
targets described in the introduction to section 8.1.

An INVALID_OPERATION error is generated if an attempt is made to bind
a texture object of different dimensionality than the specified rarget.

Texture objects are deleted by calling

OpenGL ES 3.2 (October 22, 2019)

8.2. SAMPLER OBJECTS 141

void DeleteTextures(sizei n, const uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 9.2.8
for details.

Unused names in textures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in fextures are silently
ignored, as is the name zero.

Errors
An INVALID_VALUE error is generated if 7 is negative.
The command
boolean IsTexture(uint texture);

returns TRUE if fexture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

The texture object name space, including the initial two- and three- dimen-
sional, two-dimensional array, buffer, cube map, cube map array, two-dimensional
multisample, and two-dimensional multisample array texture objects, is shared
among all texture units. A texture object may be bound to more than one tex-
ture unit simultaneously. After a texture object is bound, any GL operations on
that target object affect any other texture units to which the same texture object is
bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 8.19. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category

OpenGL ES 3.2 (October 22, 2019)

8.2. SAMPLER OBJECTS 142

represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state — of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter®, GetSamplerParameter®, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 21.12".

Errors
An INVALID_VALUE error is generated if count is negative.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

! Note that unlike texture objects, the initial sampler object state for TEXTURE_MIN_—
FILTER and TEXTURE_WRAP_ * are fixed, rather than dependent on the type of texture image.

OpenGL ES 3.2 (October 22, 2019)

8.2. SAMPLER OBJECTS 143

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if sampler is not zero or a
name returned from a previous call to GenSamplers, or if such a name has
since been deleted with DeleteSamplers.

The parameters represented by a sampler object are a subset of those described
in section 8.10. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *params);

void SamplerParameterI{i vi}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to GenSam-
plers. pname is the name of a parameter to modify, and must be one of the sampler
state names in table 21.12. In the scalar forms of the command, param is a value
to which to set a single-valued parameter; in the vector forms, params is an array
of parameters whose type depends on the parameter being set.

Texture state listed in table 21.11 but not listed here and in the sampler state in
table 21.12 is not part of the sampler state, and remains in the texture object.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

o If the values for TEXTURE_BORDER_COLOR are specified with SamplerPa-
rameterliv or SamplerParameterluiv, they are unmodified and stored with
an internal data type of integer. If specified with SamplerParameteriv, they
are converted to floating-point using equation 2.2. Otherwise, the values are
unmodified and stored as floating-point.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

OpenGL ES 3.2 (October 22, 2019)

8.3. SAMPLER OBJECT QUERIES 144

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 21.12.

An INVALID_ENUM error is generated if SamplerParameter{if} is called
for a non-scalar parameter (prname TEXTURE_BORDER_COLOR).

If the value of param is not an acceptable value for the parameter specified
in pname, an error is generated as specified in the description of TexParame-
ter®.

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called
once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

Errors
An INVALID_VALUE error is generated if count is negative.
The command
boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

8.3 Sampler Object Queries

The current values of the parameters of a sampler object may be queried by calling

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 145

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried, and must be one of the sam-
pler state names in table 21.12. params is the address of an array into which the
current value of the parameter will be placed.

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterliv or Get-
SamplerParameterluiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 21.12.

8.4 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 8.5). Some of the parameters and operations gov-
erning the operation of these commands are shared by ReadPixels (used to ob-
tain pixel values from the framebuffer); the discussion of ReadPixels, however, is
deferred until chapter 9 after the framebuffer has been discussed in detail. Nev-
ertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStorei.

8.4.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, and
ReadPixels when one of these commands is issued. Pixel storage modes are set

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 146

Parameter Name Type | Initial Value ‘ Valid Range ‘
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS | integer 0 [0, c0)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT | integer 0 [0, 00)
UNPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 8.1: PixelStorei parameters pertaining to one or more of TexImage2D, Tex-
Image3D, TexSubImage2D, and TexSubImage3D.

with
void PixelStorei(enum pname, int param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 8.1 and 16.1 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges.

Errors

An INVALID_ENUM error is generated if pname is not one of the paramater
names in table 8.1 or 16.1.

An INVALID_VALUE error is generated if param is outside the given range
for the corresponding pname in table 8.1 or 16.1.

Data conversions are performed as specified in section 2.2.1.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 6). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 147

byte, short, or packed
pixel component data stream I
¥

Unpack

c o Pixel Storage

onvert to Float Opel‘al'IOI‘IS
Convert L to RGB

! Final
ina
Clamp to [0,1] .
P Conversion

RGBA pixel data outl

Figure 8.1. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

8.4.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 8.1. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

Jformat is a symbolic constant indicating what the values in memory represent.

internalformat is a symbolic constant indicating with what format and mini-
mum precision the values should be stored by the GL.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 8.4.

Not all combinations of format, type, and internalformat are valid. The com-
binations accepted by the GL are defined in tables 8.2 and 8.3. Some additional
constraints on the combinations of format and type values that are accepted are

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES

148

discussed below. Additional restrictions may be imposed by specific commands.

External
Bytes Internal
Format Type per Pixel | Format
RGBA UNSIGNED_BYTE 4 RGBAS, RGB5_Al,
RGBA4,
SRGBS8_ALPHAS
RGBA BYTE 4 RGBA8_SNORM
RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA4
RGBA UNSIGNED_SHORT_5_5_5_1 2 RGB5_A1l
RGBA UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2, RGB5_Al
RGBA HALF_FLOAT 8 RGBALGF
RGBA FLOAT 16 RGBA32F, RGBALGF
RGBA_INTEGER UNSIGNED_BYTE 4 RGBASUI
RGBA_INTEGER BYTE 4 RGBASI
RGBA_INTEGER UNSIGNED_SHORT 8 RGBA16UI
RGBA_INTEGER SHORT 8 RGBA161I
RGBA_INTEGER UNSIGNED_INT 16 RGBA32UI
RGBA_INTEGER INT 16 RGBA32I
RGBA_INTEGER UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2UI
RGB UNSIGNED_BYTE 3 RGBS, RGB565,
SRGB8
RGB BYTE 3 RGB8_SNORM
RGB UNSIGNED_SHORT_5_6_5 2 RGB565
RGB UNSIGNED_INT_10F_11F_11F REV 4 R11F_G11F_B10OF
RGB UNSIGNED_INT_5_9_9_9_REV 4 RGB9_ES5
RGB HALF_FLOAT 6 RGB16F,
R11F_G11F_B10F,
RGB9_ES5
RGB FLOAT 12 RGB32F, RGB16F,
R11F_G11F_B10F,
RGB9_ES5
RGB_INTEGER UNSIGNED_BYTE 3 RGBSUI
RGB_INTEGER BYTE 3 RGBSI
RGB_INTEGER UNSIGNED_SHORT 6 RGB16UT
RGB_INTEGER SHORT 6 RGB161

Valid combinations of format, type, and sized internalformat continued on next page

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES

149

Valid combinations of format, type, and sized internalformat continued from previous page

External

Bytes Internal
Format Type per Pixel | Format
RGB_INTEGER UNSIGNED_INT 12 RGB32UI
RGB_INTEGER INT 12 RGB321
RG UNSIGNED_BYTE 2 RGS8
RG BYTE 2 RG8_SNORM
RG HALF_FLOAT 4 RG16F
RG FLOAT 8 RG32F, RG16F
RG_INTEGER UNSIGNED_BYTE 2 RG8UI
RG_INTEGER BYTE 2 RG8I
RG_INTEGER UNSIGNED_SHORT 4 RG16UI
RG_INTEGER SHORT 4 RG16T
RG_INTEGER UNSIGNED_INT 8 RG32U1I
RG_INTEGER INT 8 RG321I
RED UNSIGNED_BYTE 1 R8
RED BYTE 1 R8_SNORM
RED HALF_FLOAT 2 R16F
RED FLOAT 4 R32F, R16F
RED_INTEGER UNSIGNED_BYTE 1 R8UI
RED_INTEGER BYTE 1 R8I
RED_INTEGER UNSIGNED_SHORT 2 R16UI
RED_INTEGER SHORT 2 R161
RED_INTEGER UNSIGNED_INT 4 R32UI
RED_INTEGER INT 4 R321
DEPTH_COMPONENT | UNSIGNED_SHORT 2 DEPTH_COMPONENT16
DEPTH_COMPONENT | UNSIGNED_INT 4 DEPTH_COMPONENT24,

DEPTH_COMPONENT16

DEPTH_COMPONENT | FLOAT 4 DEPTH_COMPONENT32F
DEPTH_STENCIL UNSIGNED_INT_24_38 4 DEPTH24_STENCILS
DEPTH_STENCIL FLOAT_32_UNSIGNED_INT_24_8_REV 8 DEPTH32F_STENCILS
STENCIL_INDEX UNSIGNED_BYTE 1 STENCIL_INDEXS8

Table 8.2: Valid combinations of format, type, and sized internal-
format.

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 150
External
Bytes Internal

Format Type per Pixel | Format
RGBA UNSIGNED_BYTE 4 RGBA
RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA
RGBA UNSIGNED_SHORT_5_5_5_1 2 RGBA
RGB UNSIGNED_BYTE 3 RGB
RGB UNSIGNED_SHORT_5_6_5 2 RGB
LUMINANCE_ALPHA | UNSIGNED_BYTE 2 LUMINANCE_ALPHA
LUMINANCE UNSIGNED_BYTE 1 LUMINANCE
ALPHA UNSIGNED_BYTE 1 ALPHA

Table 8.3: Valid combinations of format, type, and unsized inter-
nalformat.

8.4.2.1 Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 8.5 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative

to the pointer.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and unpacking the pixel data according to the process described
below would access memory beyond the size of the pixel unpack buffer’s

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 151

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_38 uint Yes
UNSIGNED_INT_10F_11F_11F_REV uint Yes
UNSIGNED_INT_5_9_9_9_REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 8.4: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described in section 8.4.2.2.

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES

152

Format Name H Element Meaning and Order Target Buffer
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Depth and Stencil
STENCIL_INDEX Stencil Index Stencil
RED R Color

RG R,G Color
RGB R,G,B Color
RGBA R,G,B, A Color
LUMINANCE Luminance Color
ALPHA A Color
LUMINANCE_ALPHA Luminance, A Color
RED_INTEGER iR Color
RG_INTEGER iR, i1G Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, i1G, 1B, iA Color

Table 8.5: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Except for stencil, formats yield com-

ponents. Components are floating-point unless prefixed with the letter i,
indicates they are integer.

OpenGL ES 3.2 (October 22, 2019)

which

8.4. PIXEL RECTANGLES 153

memory size.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data is not evenly divisible by the number of basic machine
units needed to store in memory the corresponding GL data type from table 8.4
for the fype parameter (or not evenly divisible by 4 for type FLOAT_32_-
UNSIGNED_INT_24_8_ REV, which does not have a corresponding GL data

type).

The values of each GL data type are interpreted as they would be specified in
the language of the client’s GL binding.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is the value of
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the Nth row is indicated by

p+ Nk 8.1)

where IV is the row number (counting from zero) and k is defined as

z >
k—{ff[s,ﬂ o (8.2)

where n is the number of elements in a group, [is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 8.2.

8.4.2.2 Special Interpretations

A type matching one of the types in table 8.6 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 154

ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 8.2. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK__ TexImage* and by PACK__ for ReadPixels.

or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_-—
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit component. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by the format parameter, as listed in table 8.6.

An INVALID_OPERATION error is generated by any command processing
pixel rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in figures 8.3- 8.5. Each bitfield is interpreted as
an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 155
type Parameter GL Data | Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_SHORT_5_6_5 ushort 3 RGB
UNSIGNED SHORT 4_4 4 4 ushort 4 RGBA
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA
UNSIGNED_INT 2 10_10_10_REV uint 4 RGBA, RGBA_INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB
UNSIGNED_INT_5_9_9_9_ REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL
Table 8.6: Packed pixel formats.
15 14 13 12 11 10 8 6 5 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5
15 14 13 12 11 10 8 6 5 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4
15 14 13 12 11 10 8 6 5 3 2 1 0
1st Component 2nd 3rd 4th

UNSIGNED_SHORT_5_5_5_1

Figure 8.3: UNSIGNED_SHORT formats

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 156

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_2_10_10_10_REV

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED_INT_24_38

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_INT_10F_11F_ 11F_ REV

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_5_9_ 9 9 REV

Figure 8.4: UNSIGNED_INT formats

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component

2nd

FLOAT_32_UNSIGNED_INT_24_8_REV

Figure 8.5: FLOAT_UNSIGNED_INT formats

OpenGL ES 3.2 (October 22, 2019)

8.4. PIXEL RECTANGLES 157
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
DEPTH_STENCIL depth stencil

Table 8.7: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 8.7.

The above discussions of row length and image extraction are valid for packed
pixels, if “group” is substituted for “component” and the number of components
per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_ REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies
3 packed components as shown in figure 8.4. The 1st, 2nd, and 3rd components
are called f,cq (11 bits), fgreen (11 bits), and fy;,,e (10 bits) respectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.3.4.3. fpe is treated as an unsigned 10-bit floating-point value and con-
verted to a floating-point blue component as described in section 2.3.4.4.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in figure 8.4. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polues and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point” section below in this case) as follows:

red = predzp&w—B_N
green = pgreenQPEZp_B_N
blue = pblueQPEZp_B_N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

8.4.2.3 Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 158

indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
or signed normalized fixed-point elements, equations 2.1 or 2.2, respectively, are
used.

8.4.2.4 Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

8.4.2.5 Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to one for integer components or 1.0 for floating-point com-
ponents. If any of R, G, or B is missing from the group, each missing element is
added and assigned a value of O for integer components or 0.0 for floating-point
components.

8.5 Texture Image Specification
The command

void TexImage3D(enum rarget, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enumn format, enum type, const void *data);

is used to specify a three-dimensional texture image. farget must be one of
TEXTURE_ 3D for a three-dimensional texture, TEXTURE_2D_ARRAY for a two-
dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture. format, type, and data specify the format of the image data, the type of
those data, and a reference to the image data in the currently bound pixel unpack
buffer or client memory, as described in section 8.4.2.

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 159

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 8.4.2. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_—
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 8.4.2.

The selected groups are transferred to the GL as described in section 8.4.2 and
then clamped to the representable range of the internal format as follows:

e If the internalformat of the texture is signed or unsigned integer, components
are clamped to [—2"~1 27=1 — 1] or [0, 2" — 1], respectively, where n is the
number of bits per component.

e For color component groups, if the internalformat of the texture is signed or
unsigned normalized fixed-point:

— If the type of the data is a floating-point type (as defined in table 8.4),
it is clamped to [—1, 1] or [0, 1], respectively.

— Otherwise, it is clamped to to [-2"~1, 2"~ — 1] or [0, 2" — 1], respec-
tively, where n is the number of bits in the normalized representation.

e For depth component groups, the depth value is clamped to [0, 1].
e Otherwise, values are not modified.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 8.8 summarizes the mapping of R, G, B, A, depth, or
stencil values to texture components, as a function of the base internal format of
the texture image.

Textures with a base internal format of DEPTH_COMPONENT, DEPTH_-—
STENCIL or STENCIL_INDEX are supported by texture image specifica-
tion commands only if farget is TEXTURE_2D, TEXTURE_2D_MULTISAMPLE,

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 160

Base Internal Format | RGBA, Depth, and Stencil Values \ Internal Components

DEPTH_COMPONENT | Depth D
DEPTH_STENCIL Depth,Stencil D,S
LUMINANCE R L

ALPHA A A
LUMINANCE_ALPHA | R,A LA

RED R R

RG R,G R.G

RGB R,G,B R,G,B
RGBA R,G,BA R,G,B,A
STENCIL_INDEX Stencil S

Table 8.8: Conversion from RGBA, depth, and stencil pixel components to internal
texture components. Texture components L, R, G, B, and A are converted back to
RGBA colors during filtering as shown in table 14.1.

TEXTURE_2D_ARRAY, TEXTURE_2D_MULTISAMPLE_ARRAY, TEXTURE_CUBE_-—
MAP or TEXTURE_CUBE_MAP_ARRAY. Using these formats in conjunction with any
other target will result in an INVALID_OPERATION error.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing.

If internalformat is a sized internal format, the effective internal format is the
specified sized internal format. Otherwise, if internalformat is a base internal for-
mat, the effective internal format is a sized internal format that is derived from the
format and type for internal use by the GL. Table 8.9 specifies the mapping of for-
mat and type to effective internal formats. The effective internal format is used by
the GL for purposes such as texture completeness or type checks for CopyTex*
and TexSubImage* commands. In these cases, the GL is required to operate as
if the effective internal format was used as the internalformat when specifying the
texture data. Note that unless specified elsewhere, the effective internal format val-
ues described in table 8.9 are not legal for an application to pass directly to the
GL.

If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 8.8; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 161

Format Type Effective
Internal
Format
RGBA UNSIGNED_BYTE RGBAS
RGBA UNSIGNED_SHORT_4_4_4_4 | RGBA4
RGBA UNSIGNED_SHORT_5_5_5_1 | RGB5_A1l
RGB UNSIGNED_BYTE RGBS
RGB UNSIGNED_SHORT_5_6_5 RGB565
LUMINANCE_ALPHA | UNSIGNED_BYTE Luminance8Alpha8
LUMINANCE UNSIGNED_BYTE Luminance8
ALPHA UNSIGNED_BYTE Alpha8

Table 8.9: Effective internal format corresponding to external format and type.
Formats in italics do not correspond to GL constants.

and the memory allocation per texture component is assigned by the GL to match
or exceed the allocations listed in tables 8.10- 8.11.

8.5.1 Required Texture Formats

Implementations are required to support the following sized internal formats. Re-
questing one of these sized internal formats for any texture type will allocate at
least the internal component sizes, and exactly the component types shown for that
format in tables 8.10- 8.11:

e Color formats which are checked in the “Req. tex.” column of table 8.10.
o All of the specific compressed texture formats in table 8.17.
e Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.11.
8.5.2 Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.3.4.3 and 2.3.4.4.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 162

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

red. = max (0, min(sharedexpmag, red))
green, = max(0, min(sharedexpmaz, green))

blue. = max (0, min(sharedexpmag, blue))

where
2N -1

max .
2N

sharedexpmaz =

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and F,,4; is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

maz. = max(red., green., blue.)

A preliminary shared exponent exp,, is computed:

exp, = max(—B — 1, [logy(maz.)]) + 1+ B
A refined shared exponent exp; is computed:

max,

gexpp—B—N + 05J

maxgs = [

expp, 0 < max, < 2N
erps = _oN

expp +1, mazs

Finally, three integer values in the range 0 to 2" — 1 are computed:

red,

T@ds = W + 0.5
green

greeng = _72€xps—BiN + 0.5J
blue,

blues = W + 0.5

The resulting reds, greens, blueg, and exp, are stored in the red, green, blue,
and shared bits respectively of the texture image.

REV with format RGB is allowed to store the components “as is”.

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 163
Sized Base Bits/component CR | TF | Req. | Req.

Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

RS RED 8 v |/ v v
R8_SNORM RED s8 v v
RGS8 RG 8 8 v/ v v
RG8_SNORM RG s8 s8 v v
RGBS RGB 8 8 8 v v v v
RGB8_SNORM RGB s8 s8 s8 v v
RGB565 RGB 5 6 5 v |/ v v
RGBA4 RGBA 4 4 4 4 v |/ v v
RGB5_A1l RGBA 5 5 5 1 v |/ v v
RGBAS RGBA 8 8 8 8 v |/ v v
RGBAS_SNORM RGBA s8 s8 s8 s8 v v
RGB10_A2 RGBA 10 10 10 2 v v v v
RGB10_A2UI RGBA uilO | wil0 | wil0 | wi2 v v v
SRGBS RGB 8 8 8 v v
SRGBS_ALPHAS RGBA 8 8 8 8 v |/ v v
R16F RED f16 v |/ v v
RG16F RG f16 | f16 v |/ v v
RGB16F RGB fl6 | fl6 | fl6 v v
RGBAL6F RGBA fi6 | fl6 | fl6 | fl16 v |/ v v
R32F RED 32 v v v
RG32F RG 32 | 32 v v v
RGB32F RGB 32 | 32 | 132 v
RGBA32F RGBA 32 | 32 | 32 | 32 v v v
R11F_G11F_B10F | RGB f11 | f11 | f10 v |/ v v
RGB9_ES RGB 9 9 9 v v
R8I RED 8 v v v
R8UI RED ui8 v v v
R161I RED 16 v v v
R16UI RED uilé v v v
R321 RED 132 v v v
R32UI RED ui32 v v v
RG8I RG i8 i8 v v v
RG8UI RG ui8 | ui8 v v v
RG161 RG il6 | il16 v v v

Sized internal color formats continued on next page

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 164
Sized internal color formats continued from previous page

Sized Base Bits/component CR | TF | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

RG16UI RG uil6 | uil6 v v v
RG321 RG 132 | 132 v v v
RG32U1 RG ui32 | ui32 v v v
RGBSI RGB i8 i8 i8 v
RGBSUI RGB ui8 | ui8 | ui8 v
RGB161I RGB il6 | i16 | il6 v
RGB16UI RGB uil6 | uil6 | uil6 v
RGB321 RGB 32 | 132 | i32 v
RGB32UI RGB ui32 | uwi32 | ui32 v
RGBASI RGBA 8 18 8 8 v v v
RGBASUI RGBA ui8 | ui8 ui8 ui8 v v v
RGBA161I RGBA i16 | 116 | il6 | il6 v v v
RGBA16UI RGBA uil6 | uil6 | uil6 | uil6 v v v
RGBA321I RGBA 132 | 132 | i32 | i32 v v v
RGBA32UI RGBA ui32 | wi32 | ui32 | uwi32 v v v

Table 8.10: Correspondence of sized internal color formats to base
internal formats, internal data type, minimum component resolu-
tions, and use cases for each sized internal format. The component
resolution prefix indicates the internal data type: fis floating point,
i is signed integer, ui is unsigned integer, s is signed normalized
fixed-point, and no prefix is unsigned normalized fixed-point. The
“CR” (color-renderable), “TF” (texture-filterable), “Req. rend.”
and “Req. tex.” columns are described in sections 9.4, 8.17, 9.2.5,
and 8.5.1, respectively.

A GL implementation may vary its allocation of internal component resolution
based on any TexImage3D or TexImage2D (see below) parameter (except farget),
but the allocation must not be a function of any other state and cannot be changed
once they are established. Allocations must be invariant; the same allocation must
be chosen each time a texture image is specified with the same parameter values.

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 165

Sized Base D S Req.
Internal Format Internal Format bits | bits | format

DEPTH_COMPONENT16 DEPTH_COMPONENT | 16 v
DEPTH_COMPONENT?2 4 DEPTH_COMPONENT | 24 v
DEPTH_COMPONENT32F | DEPTH_COMPONENT | {32 v
DEPTH24_STENCILS DEPTH_STENCIL 24 | ui8 v
DEPTH32F_STENCILS DEPTH_STENCIL 32 | ui8 v
STENCIL_INDEXS STENCIL_INDEX ui8 v

Table 8.11: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and minimum component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: fis floating point, ui is unsigned integer, and no prefix is fixed-point.

The “Req. format” column is described in section 8.5.1.

8.5.3 Texture Image Structure

The image itself (referred to by data) is a sequence of groups of values. The first
group is the lower left back corner of the texture image. Subsequent groups fill out
rows of width width from left to right; height rows are stacked from bottom to top
forming a single two-dimensional image slice; and depth slices are stacked from
back to front. When the final R, G, B, and A components have been computed for a
group, they are assigned to components of a fexel as described by table 8.8. Count-
ing from zero, each resulting Nth texel is assigned internal integer coordinates
(1,7, k), where

i = (N mod width)

j= (LwidthJ mod height)

N
k= d depth
(Luz‘dth X heightJ mod depth)

Thus the last two-dimensional image slice of the three-dimensional image is in-
dexed with the highest value of k.

When target is TEXTURE_CUBE_MAP_ARRAY. specifying a cube map array tex-
ture, k refers to a layer-face. The layer is given by

layer = ﬁ
y - 6)

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 166

and the face is given by

face = k mod 6.

The face number corresponds to the cube map faces as shown in table 8.24.

If the internal data type of the texture image is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed in section 8.14.3. The main texture image has a level of
detail number of zero.

The maximum allowable size, in any relevant dimension, of a texture image
is an implementation-dependent function of the texture target, the level-of-detail,
and the internal format of the image. For most texture types, it must satisfy the
relationship

mazsize > 2Flevel (8.3)

for images of level-of-detail (level) O through k, where £k is a texture target-
dependent maximum level of detail. The maximum size may be zero for any im-
ages where level > k.

The maximum allowable width, height, or depth of a texure image for a three-
dimensional texture is determined by equation 8.3, where k is logo of the value of
MAX_3D_TEXTURE_SIZE.

In a similar fashion, the maximum allowable width or height of a texture image
for a two-dimensional, two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture is determined by equation 8.3, where
k is logo of the value of MAX_TEXTURE_SIZE.

The maximum allowable width or height of a cube map or cube map array
texture image must be the same, and is determined by equation 8.3, where £ is
logs of the value of MAX_CUBE_MAP_TEXTURE_SIZE.

The maximum number of layers (depth) for two-dimensional array textures,
or or the maximum number of layer-faces for cube map array textures (depth),
must each be at least the value of the implementation-dependent constant MAX_ -
RECTANGLE_TEXTURE_SIZE.

As described in section 8.17, these implementation-dependent limits may be
configured to reject textures at level one or greater unless a mipmap complete set
of texture images consistent with the specified sizes can be supported.

OpenGL ES 3.2 (October 22, 2019)

8.5. TEXTURE IMAGE SPECIFICATION 167

Regardless of the values of these implementation-dependent constants, an im-
plementation may not succeed in creating a texture of the maximum sizes due to
resource limits, resulting in memory exhaustion.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed for each TexImage*D command.

An INVALID_VALUE error is generated if level is negative.

An INVALID_VALUE error is generated if width, height, or depth (if each
argument is present) exceed the corresponding farget-dependent maximum
size, as described above.

An INVALID_VALUE error is generated if width, height, or depth are neg-
ative.

An INVALID_VALUE error is generated by TexImage3D if rarget is
TEXTURE_CUBE_MAP_ARRAY and width and height are not equal, or if depth
is not a multiple of six, indicating 6V layer-faces in the cube map array.

An INVALID_VALUE error is generated if target is one of the cube map
face targets from table 8.20, and width and height are not equal.

An INVALID_VALUE error is generated is border is not zero.

An INVALID_OPERATION error is generated if a combination of values
for format, type, and internalformat is specified that is not listed as a valid
combination in tables 8.2 or 8.3.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and storing texture data would access memory beyond the end of
the pixel unpack buffer.

The command

void TexImage2D(enum farget, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, or one of the cube map face targets
from table 8.20 for a cube map texture. The other parameters match the corre-
sponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture face targets from table 8.20 form a single cube map texture. These
targets each update the corresponding cube map face two-dimensional texture im-
age. Note that the cube map face targets are used when specifying, updating, or
querying one of a cube map’s six two-dimensional images, but when binding to
a cube map texture object (that is, when the cube map is accessed as a whole as
opposed to a particular two-dimensional image), the TEXTURE_CUBE_MAP target
is specified.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texture image. A three-dimensional
texture image has width, height, and depth w;, h;, and d;. A two-dimensional
texture image has depth d; = 1, with height h; and width w; as above.

Anelement (3, j, k) of the texture image is called a rexel (for a two-dimensional
texture, k is irrelevant). The texture value used in texturing a fragment is deter-
mined by sampling the texture in a shader, but may not correspond to any actual
texel. See figure 8.6.

If target is TEXTURE_CUBE_MAP_ARRAY, the texture value is determined
by (s,t,r,q) coordinates where s, ¢, and r are defined to be the same as for
TEXTURE_CUBE_MAP and ¢ is defined as the index of a specific cube map in the
cube map array.

If the data argument of TexImage2D or TexImage3D is NULL, and the pixel
unpack buffer object is zero, a two-or three-dimensional texture image is created
with the specified target, level, internalformat, border, width, height, and depth, but
with unspecified image contents. In this case no pixel values are accessed in client
memory, and no pixel processing is performed. Errors are generated, however,
exactly as though the dara pointer were valid. Otherwise if the pixel unpack buffer
object is non-zero, the data argument is treatedly normally to refer to the beginning
of the pixel unpack buffer object’s data.

8.6 Alternate Texture Image Specification Commands

Two-dimensional texture images may also be specified using image data taken di-
rectly from the framebuffer, and rectangular subregions of existing texture images
may be respecified.

The command

void CopyTexImage2D(enum farget, int level,

OpenGL ES 3.2 (October 22, 2019)

168

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 169

10 40
3
2 '_C! -2
t v ' ;
] _|B
o
00 00
0 1 2 3 ;4 5 6 7
0.0 u 8.0
0.0 s 1.0
Figure 8.6. A texture image and the coordinates used to access it. This is a two-
dimensional texture with width 8 and height 4. « and 3, values used in blending
adjacent texels to obtain a texture value are also shown.

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 170

Read Buffer Format \ format \ type

Normalized Fixed-point RGBA UNSIGNED_BYTE

10-bit Normalized Fixed-point | RGBA UNSIGNED_INT_2_10_10_10_REV
Signed Integer RGBA_INTEGER | INT

Unsigned Integer RGBA_INTEGER | UNSIGNED_INT

Table 8.12: ReadPixels format and type used during CopyTex*.

enum infernalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texture image in exactly the manner of TexImage2D,
except that the image data are taken from the framebuffer rather than from client
memory. farget must be one of TEXTURE_2D or one of the cube map face targets
from table 8.20. x, y, width, and height correspond precisely to the corresponding
arguments to ReadPixels (refer to section 16.1); they specify the image’s width and
height, and the lower left (z, y) coordinates of the framebuffer region to be copied.
The image is taken from the current color buffer exactly as if these arguments were
passed to ReadPixels with arguments format and type set according to table 8.12,
though the final copy into memory (see section 16.1.6) is skipped.

stopping after conversion of RGBA values.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, and A values from the resulting pixel groups.
Parameters level, internalformat, and border are specified using the same values,
with the same meanings, as the equivalent arguments of TexImage2D. internalfor-
mat is further constrained such that color buffer components can be dropped during
the conversion to internalformat, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to create LUMINANCE or RGB textures, but not
ALPHA, LUMINANCE_ALPHA, or RGBA textures. Table 8.13 summarizes the valid
framebuffer and texture base internal format combinations.

The constraints on width, height, and border are exactly those for the corre-
sponding arguments of TexImage2D.

If internalformat is sized, the internal format of the new texture image is infer-
nalformat, and this is also the new image’s effective internal format.

If internalformat is unsized, the internal format of the new image is determined
by the following rules, applied in order. If an effective internal format exists that
has

1. the same component sizes as,

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 171

Texture Format
Framebuffer [A| L |[LA [R | RG [RGB | RGBA | D [DS | §
R v %
RG v V|V
RGB v VIV
RGBA VIivVIiviiviv] v/ %
D
DS
S

Table 8.13: Valid CopyTexImage source framebuffer/destination texture base in-
ternal format combinations.

2. component sizes greater than or equal to, or

3. component sizes smaller than or equal to

those of the source buffer’s effective internal format (for all matching components
in internalformat), that format is chosen for the new texture image, and this is also
the new image’s effective internal format. When matching formats that involve a
luminance component, a luminance component is considered to match with a red
component. If multiple possible matches exist in the same rule, the one with the
closest component sizes is chosen. Note that the above rules disallow matches
where some components sizes are smaller and others are larger (such as RGB10_—
A2).

The effective internal format of the source buffer is determined with the fol-
lowing rules applied in order:

e If the source buffer is a texture or renderbuffer that was created with a sized
internal format then the effective internal format is the source buffer’s sized
internal format.

o If the source buffer is a texture that was created with an unsized base internal
format, then the effective internal format is the source image’s effective in-
ternal format, as specified by table 8.9, which is determined from the format
and rype that were used when the source image was specified by TexImage*.

o If the source buffer contains any floating point components, then the ef-
fective internal format is taken from the first (highest) row in table 8.14
for which the source buffer’s red, green, blue, and alpha component

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 172

Destination Source Source Source Source Effective
Internal Format Red Size Green Size | Blue Size Alpha Size | Internal Format
any sized 1<R<16 | G=0 B=0 A=0 R16F

any sized 1<R<16 |1<G<L16| B=0 A=0 RG16F

any sized 16 <R G=0 B=0 A=0 R32F

any sized 16 <R 16 <G B=0 A=0 RG32F

any sized 1<R<16|1<G<LK16|1<B<16|A=0 RGB16F

any sized 1<R<16|1<G<K16|]1<B<16|1<A<16 | RGBALGF

any sized 16< R 16 < G 16 < B A=0 RGB32F

any sized 16< R 16 < G 16 < B 16< A RGBA32F

Table 8.14: Effective internal format corresponding to floating-point framebuffers.

sizes (the values of FRAMEBUFFER_RED_SIZE, FRAMEBUFFER_GREEN_—
SIZE, FRAMEBUFFER_BLUE_SIZE, and FRAMEBUFFER_ALPHA_SIZE re-
spectively) are consistent with the rules in that row for R, GG, B, and A
respectively.

Otherwise the effective internal format is determined by the first (highest)
row in table 8.15 or table 8.16 for which the Destination Internal Format
column matches internalformat, and for which the source buffer’s red, green,
blue, and alpha component sizes are consistent with the rules in that row for
R, G, B, and A respectively.

Table 8.15 is used if the framebuffer encoding (the value of
FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING) iS LINEAR and ta-
ble 8.16 is used if the framebuffer encoding is SRGB.

In tables 8.14, 8.15, and 8.16, “any sized” matches any specified sized internal

format. ”N/A” means the source buffer’s component size is ignored.

If the effective internal format of the source buffer does not match the effective
internal format of the new image, and if there are no components which exist in the
destination format which don’t exist in the source, this function may still complete
successfully using the conversion functions defined in this specification. However,
this behaviour is not guaranteed, and if a given conversion is not supported, an
INVALID_OPERATION error will be generated as described below.

Errors

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 173

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size | Internal Format
any sized R=0 G=0 B=0 1< A<L8 | Alpha8

any sized 1<R<8 |G=0 B=0 A=0 R8

any sized 1<R<S8 1<G<L8 | B=0 A=0 RGS8

any sized 1<R<5 1<G<6 1<B<5 A=0 RGB565
any sized 5<R<8 |6<G<LS8 5<B<8 | A=0 RGBS

any sized 1<R<4 1<G<4 1< B<H4 1< A<4 | rRGBA4

any sized 4<R<H5 |4<G<LKH |[4<B<5 |A=1 RGB5_A1l
any sized 4<R<8 |4<G<K8 |4<B<LS 1< A<8 | RGBAS

any sized S8<R<I1I0|8<G<K10|8<B<10|1<A<2 | RGBAL0_A2
ALPHA N/A N/A N/A 1< A<8 | Alpha8
LUMINANCE 1<R<L8 | NA N/A N/A Luminance8
LUMINANCE - 1<R<8 |NA N/A 1 < A <8 | Luminance8Alpha8
ALPHA

RGB 1<R<5H 1<G<6 1<B<5 |NA RGB565
RGB 5<R<8 |6<GLS 5<B<8 | NA RGBS
RGBA 1<R<4 1<G<4 1< B<H4 1< A<4 | RrRcGBA4
RGBA 4<R<H5 |4<GLKH |[4<B<j5 |A=1 RGB5_A1l
RGBA 4<R<8 |4<G<8 |4<B<8 |1<A<L8 | RGBAS

Table 8.15: Effective internal format corresponding to destination internalformat
and linear source buffer component sizes. Effective internal formats in italics do
not correspond to GL constants.

Effective
Internal Format

Destination
Internal Format

Source
Blue Size

Source
Green Size

Source Source
Red Size Alpha Size

|1<R<8[1<G<8[1<B<8[1<A<8| SRGB_ALPHAS

any sized

Table 8.16: Effective internal format corresponding to destination internalformat
and sRGB source buffer component sizes.

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 174

An INVALID_ENUM error is generated if farget is not TEXTURE_ 2D or one
of the cube map face targets from table 8.20.

An INVALID_ENUM error is generated if an invalid value is specified for
internalformat.

An INVALID_VALUE error is generated if zarget is one of the six cube map
two-dimensional image targets, and width and height are not equal.

An INVALID_OPERATION error is generated under any of the following
conditions:

e if the effective internal format of the source buffer does not match the
effective internal format of the new image.

e if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer (see sec-
tion 16.1.1) is LINEAR (see section 9.2.3) and internalformat is one of
the SRGB formats in table 8.23

e if the value of FRAMEBUFFER ATTACHMENT_ COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer is SRGB
and internalformat is not one of the SRGB formats in table 8.23.

An INVALID_VALUE error is generated if width or height is negative.

An INVALID_VALUE error is generated if border is non-zero.

An INVALID_OPERATION error is generated if the framebuffer and tex-
ture base internal format are not compatible, as defined in table 8.13.

An INVALID_OPERATION error is generated if internalformat is unsized
and no effective internal format exists which matches the rules described
above.

An INVALID_OPERATION error is generated if the component sizes of
internalformat do not exactly match the corresponding component sizes of the
source buffer’s effective internal format.

An INVALID_OPERATION error is generated if there are no rows in ta-
bles 8.14, 8.15 or 8.16 which match internalformat and the source buffer
component types and sizes. In this case, the source buffer does not have an
effective internal format.

To respecify only a rectangular subregion of the texture image of a texture
object, use the commands

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 175

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSublmage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void CopyTexSublmage3D(enum farget, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

No change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture image, nor is any change made to texel values
outside the specified subregion.

The target arguments of TexSubIlmage2D and CopyTexSubImage2D must
be one of TEXTURE_2D or one of the cube map face targets from table 8.20,
and the target arguments of TexSubImage3D and CopyTexSubImage3D must
be TEXTURE_3D, TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.

The level parameter of each command specifies the level of the texture image
that is modified.

Errors

An INVALID_VALUE error is generated if level is negative or greater than
the logo of the maximum texture width, height, or depth.

TexSubImage3D arguments width, height, depth, format, and type match the
corresponding arguments to TexImage3D, meaning that they accept the same val-
ues, and have the same meanings. Likewise, TexSubImage2D arguments width,
height, format, and type match the corresponding arguments to TexImage2D. The
data argument of TexSubImage3D and TexSubImage2D matches the correspond-
ing argument of TexImage3D and TexImage2D, respectively, except that a NULL
pointer does not represent unspecified image contents.

CopyTexSubImage3D and CopyTexSubIlmage2D arguments x, y, width, and
height match the corresponding arguments to CopyTexImage2D’. Each of the

% Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 176

TexSubImage commands interprets and processes pixel groups in exactly the man-
ner of its TexImage counterpart, except that the assignment of R, G, B, A, depth,
and stencil index pixel group values to the texture components is controlled by the
internalformat of the texture image, not by an argument to the command. The same
constraints and errors apply to the TexSubImage commands’ argument format and
the internalformat of the texture image being respecified as apply to the format
and internalformat arguments of its TexImage counterparts. It is implementation-
dependent whether the internal format used for error checking is the internalformat
given when the texture was created, or the effective internal format of the texture.
If it is the former, then texels will be converted to the effective internal format on
upload.

Arguments xoffset, yoffset, and zoffset of TexSublmage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texture image. For cube map array
textures, zoffset is the first layer-face to update, and depth is the number of layer-
faces to update. The depth argument associated with CopyTexSubImage3D is
always 1, because framebuffer memory is two-dimensional - only a portion of a
single (s, t) slice of a three-dimensional texture is replaced by CopyTexSubIm-
age3D.

Taking wy, hy, and d; to be the specified width, height, and depth of the texture
image, and taking x, y, z, w, h, and d to be the xoffset, yoffset, zoffset, width,
height, and depth argument values, any of the following relationships generates an
INVALID_VALUE error:

<0
T+ w > we
y <0
y+h>h
z<0
z+d>d;
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where
i =+ (n mod w)

j=y+ () mod)

OpenGL ES 3.2 (October 22, 2019)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 177

.
width * height

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangu-
lar subregion of the texture image. Taking w; and h; to be the specified width
and height of the image, and taking x, y, w, and h to be the xoffset, yoffset,
width, and height argument values, any of the following relationships generates
an INVALID_VALUE error:

k=z+(] | mod d

z <0
T4+ w > w
y <0
y+h>h
Counting from zero, the nth pixel group is assigned to the texel with internal integer

coordinates [i, j], where

i =x + (n mod w)

j=y+ (=] mod h)

w

Errors

An INVALID_ FRAMEBUFFER_OPERATION error is generated by Copy-
TexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D if the object
bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete (see
section 9.4.2)

An INVALID_OPERATION error is generated by CopyTexSubImage3D,
CopyTexImage2D, or CopyTexSubImage2D if

o the read buffer is NONE, or

o the internalformat of the texture image being (re)specified is RGB9_E5,
or

e the value of READ_FRAMEBUFFER_BINDING is non-zero, and

— the read buffer selects an attachment that has no image attached,
or

OpenGL ES 3.2 (October 22, 2019)

8.7. COMPRESSED TEXTURE IMAGES 178

— the effective value of SAMPLE_BUFFERS for the read framebuffer
(see section 9.2.3.1) is one.

8.6.1 Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D
will result in undefined behavior if the destination texture image level is also bound
to to the selected read buffer (see section 16.1.1) of the read framebuffer. This situa-
tion is discussed in more detail in the description of feedback loops in section 9.3.2.

8.7 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, including the formats defined in appendix C
as well as any additional formats defined by extensions.

The GL provides a mechanism to obtain token values for all compressed for-
mats supported by the implementation. The number of specific compressed in-
ternal formats supported by the renderer can be obtained by querying the value
of NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value of
COMPRESSED_TEXTURE_FORMATS. All implementations support at least the for-
mats listed in table 8.17.

The commands

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enumn internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define two-and three-dimensional texture images, respectively, with incoming data
stored in a compressed image format. The target, level, internalformat, width,
height, depth, and border parameters have the same meaning as in TexImage2D
and TexImage3D. data refers to compressed image data stored in the specific com-
pressed image format corresponding to internalformat. 1If a pixel unpack buffer is
bound (as indicated by a non-zero value of PIXEL_UNPACK_BUFFER_BINDING),
data is an offset into the pixel unpack buffer and the compressed data is read from

OpenGL ES 3.2 (October 22, 2019)

8.7. COMPRESSED TEXTURE IMAGES 179

the buffer relative to this offset; otherwise, data is a pointer to client memory and
the compressed data is read from client memory relative to the pointer.

The compressed image will be decoded according to the specification defining
the internalformat token. Compressed texture images are treated as an array of
imageSize ubytes relative to data.

If the compressed image is not encoded according to the defined image format,
the results of the call are undefined.

All pixel storage modes are ignored when decoding a compressed texture im-
age.

Compressed Internal Format Base Block Border | 3D Cube Map
Internal | Width x | Type Tex. | Array
Format | Height Tex.
COMPRESSED_R11_EAC RED 4 x4 unorm v
COMPRESSED_SIGNED_R11_EAC RED 4 x4 snorm v
COMPRESSED_RG11_EAC RG 4 x4 unorm v
COMPRESSED_SIGNED_RG11_EAC RG 4x4 snorm v
COMPRESSED_RGBS_ETC2 RGB 4 x4 unorm v
COMPRESSED_SRGB8_ETC2 RGB 4 x4 unorm v
COMPRESSED_RGB8_ - RGBA 4 x4 unorm v
PUNCHTHROUGH_ALPHA1_ETC2
COMPRESSED_SRGB8_ - RGBA 4 x4 unorm v
PUNCHTHROUGH_ALPHAl_ETC2
COMPRESSED_RGBAS_ETC2_EAC RGBA 4 x4 unorm v
COMPRESSED_SRGB8_ALPHAS_ - RGBA 4 x4 unorm v
ETC2_EAC
COMPRESSED_RGBA_ASTC_4x4 RGBA 4x4 unorm v
COMPRESSED_RGBA_ASTC_5x4 RGBA 5x4 unorm v
COMPRESSED_RGBA_ASTC_5x5 RGBA 9 XD unorm v
COMPRESSED_RGBA_ASTC_6x5 RGBA 6 x5 unorm v
COMPRESSED_RGBA_ASTC_6x6 RGBA 6x6 unorm v
COMPRESSED_RGBA_ASTC_8x5 RGBA 8 X H unorm v
COMPRESSED_RGBA_ASTC_8x6 RGBA 8 X6 unorm v
COMPRESSED_RGBA_ASTC_8x8 RGBA 8 X8 unorm v
COMPRESSED_RGBA_ASTC_10x5 RGBA 10 x 5 unorm v
COMPRESSED_RGBA_ASTC_10x6 RGBA 10 x 6 unorm v
COMPRESSED_RGBA_ASTC_10x8 RGBA 10 x 8 unorm v

(Continued on next page)

OpenGL ES 3.2 (October 22, 2019)

8.7. COMPRESSED TEXTURE IMAGES 180
Commpressed internal formats (continued)
Compressed Internal Format Base Block Border | 3D | Cube Map
Internal | Width x | Type Tex. | Array
Format | Height Tex.
COMPRESSED_RGBA_ASTC_10x10 RGBA 10 x 10 | unorm v
COMPRESSED_RGBA_ASTC_12x10 RGBA 12 x 10 | unorm v
COMPRESSED_RGBA_ASTC_12x12 RGBA 12 x 12 | unorm v
COMPRESSED_SRGBS_ALPHAS_— RGBA 4 x4 unorm v
ASTC_4x4
COMPRESSED_SRGB8_ALPHAS_ - RGBA 5x4 unorm v
ASTC_5x4
COMPRESSED_SRGBS8_ALPHAS_ - RGBA 5XH unorm v
ASTC_5x5
COMPRESSED_SRGBS8_ALPHAS_— RGBA 6 x5 unorm v
ASTC_6x%5
COMPRESSED_SRGB8_ALPHAS_ - RGBA 6x6 unorm v
ASTC_b6x6
COMPRESSED_SRGBS_ALPHAS_— RGBA 8 X5 unorm v
ASTC_8x5
COMPRESSED_SRGB8_ALPHAS_ - RGBA 8 X6 unorm v
ASTC_8x6
COMPRESSED_SRGBS8_ALPHAS_— RGBA 8 X8 unorm v
ASTC_8x8
COMPRESSED_SRGB8_ALPHAS_ - RGBA 10 x 5 unorm v
ASTC_10x5
COMPRESSED_SRGBS8_ALPHAS_ - RGBA 10 X 6 | unorm v
ASTC_10x6
COMPRESSED_SRGBS8_ALPHAS_ - RGBA 10 x 8 unorm v
ASTC_10x8
COMPRESSED_SRGB8_ALPHAS_ - RGBA 10 x 10 | unorm v
ASTC_10x10
COMPRESSED_SRGBS8_ALPHAS_— RGBA 12 x 10 | unorm v
ASTC_12x10
COMPRESSED_SRGBS8_ALPHAS_ - RGBA 12 x 12 | unorm v
ASTC_12x12

Table 8.17: Compressed internal formats. The formats are de-
scribed in appendix C. The “Block Size” column specifies the
compressed block size of the format. Modifying compressed im-
ages along aligned block boundaries is possible, as described in
this section. The “Border Type” column determines how border
colors are cla s described in secti 14.2. The “3D Tex.”
and “Culgg:pﬁ}fnagg)f%rgagffl‘é@ctocglruir%ﬁsﬁill:%rmine if 3D images
composed of compressed 2D slices and cube map array textures,
respectively, can be specified using CompressedTexImage3D.

8.7. COMPRESSED TEXTURE IMAGES 181

Compressed internal formats may impose format-specific restrictions on the
use of the compressed image specification calls or parameters. For example, the
compressed image format might be supported only for 2D textures. Any such
restrictions will be documented in the extension specification defining the com-
pressed internal format, and will be invariant with respect to image contents. This
means that if the GL accepts and stores a texture image in compressed form, Com-
pressedTexImage2D or CompressedTexImage3D will accept any properly en-
coded compressed texture image of the same width, height, depth, compressed
image size, and compressed internal format for storage at the same texture level.

If internalformat is one of the specific compressed formats described in ta-
ble 8.17, the compressed image data is stored using the corresponding texture
image encoding (see appendix C). The corresponding texture compression algo-
rithms supports only two-dimensional images. However, if the “3D Tex” column
of table 8.17 is checked, Compressed TexImage3D will accept a three-dimensional
image specified as an array of compressed data consisting of multiple rows of com-
pressed blocks laid out as described in section 8.5. The width and height of each
sub-image must be a multiple of the block size for the format, shown in the same
table.

Errors

An INVALID_ENUM error is generated by CompressedTexImage2D if
target is not TEXTURE_ 2D or one of the cube map face targets from table 8.20.
An INVALID_VALUE error is generated by

o CompressedTexImage2D if farget is one of the cube map face targets
from table 8.20, and

o CompressedTexImage3D if target is TEXTURE_CUBE_MAP_ARRAY,

and width and height are not equal.

An INVALID_OPERATION error is generated by CompressedTexIm-
age3D if internalformat is one of the the formats in table 8.17 and target is
not TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY or TEXTURE_3D.

An INVALID OPERATION error is generated by CompressedTexIm-
age3D if rarget is TEXTURE_CUBE_MAP_ARRAY and the “Cube Map Array”
column of table 8.17 is not checked, or if rarget is TEXTURE_ 3D and the “3D
Tex.” column of table 8.17 is not checked.

An INVALID_VALUE error is generated if border is non-zero.

OpenGL ES 3.2 (October 22, 2019)

8.7. COMPRESSED TEXTURE IMAGES 182

An INVALID_ENUM error is generated if internalformat is not a supported
specific compressed internal format from table 8.17 or one of the additional
formats defined by OpenGL ES extensions.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data+imageSize is greater than the size of the pixel buffer.

An INVALID_VALUE error is generated if the imageSize parameter is not
consistent with the format, dimensions, and contents of the compressed image.

An INVALID_OPERATION error is generated if any format-specific re-
strictions imposed by specific compressed internal formats are violated by the
compressed image specification calls or parameters.

If the data argument of CompressedTexImage2D or Compressed TexIm-
age3D is NULL, and the pixel unpack buffer object is zero, a texture image with
unspecified image contents is created, just as when a NULL pointer is passed to
TexImage2D or TexImage3D.

To respecify only a rectangular subregion of the texture image of a texture
object, with incoming data stored in a specific compressed image format, use the
commands

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);
void CompressedTexSublmage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

The target, level, xoffset, yoffset, zoffset, width, height, and depth parameters
have the same meaning as in TexSubImage2D, and TexSubImage3D. data points
to compressed image data stored in the compressed image format corresponding to
format.

The image pointed to by data and the imageSize parameter are interpreted as
though they were provided to Compressed TexImage2D and Compressed TexIm-
age3D.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form, CompressedTexSubImage2D or Com-
pressedTexSubImage3D will accept any properly encoded compressed texture

OpenGL ES 3.2 (October 22, 2019)

8.7. COMPRESSED TEXTURE IMAGES 183

image of the same width, height, compressed image size, and compressed inter-
nal format for storage at the same texture level.

If the internal format of the image being modified is one of the specific com-
pressed formats described in table 8.17, the texture is stored using the correspond-
ing texture image encoding (see appendix C).

Since these specific compressed formats are easily edited along texel block
boundaries, the limitations on subimage location and size are relaxed for Com-
pressedTexSubIlmage2D and Compressed TexSubImage3D.

The block width and height varies for different formats, as described in ta-
ble 8.17. The contents of any block of texels of a compressed texture image in
these specific compressed formats that does not intersect the area being modified
are preserved during CompressedTexSubImage* calls.

Errors

An INVALID_ENUM error is generated by Compressed TexSubImage2D
if target is not TEXTURE_2D or one of the cube map face targets from ta-
ble 8.20.

An INVALID_OPERATION error is generated by Compressed TexSubIm-
age3D if format is one of the formats in table 8.17 and farget is not
TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY or TEXTURE_ 3D.

An INVALID_OPERATION error is generated by Compressed TexSublm-
age3D if format is TEXTURE_CUBE_MAP_ARRAY and the “Cube Map Array”
column of table 8.17 is not checked, or if format is TEXTURE_3D and the “3D
Tex.” column of table 8.17 is not checked.

An INVALID_OPERATION error is generated if format does not match the
internal format of the texture image being modified, since these commands do
not provide for image format conversion.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_VALUE error is generated if imageSize is not consistent with
the format, dimensions, and contents of the compressed image (too little or
too much data),

An INVALID_OPERATION error is generated if any format-specific restric-
tions are violated, as with CompressedTexImage calls. Any such restrictions
will be documented in the specification defining the compressed internal for-
mat.

An INVALID_OPERATION error is generated if xoffset, yoffset, or zoffset
are not equal to zero, or if width, height, and depth do not match the corre-

OpenGL ES 3.2 (October 22, 2019)

8.8. MULTISAMPLE TEXTURES 184

sponding dimensions of the texture level. The contents of any texel outside the
region modified by the call are undefined. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

An INVALID_OPERATION error is generated if format is one of the for-
mats in table 8.17 and any of the following conditions occurs. The block width
and height refer to the values in the corresponding column of the table.

e width is not a multiple of the format’s block width, and width + zoffset
is not equal to the value of TEXTURE_WIDTH.

e height is not a multiple of the format’s block height, and height+ yoffset
is not equal to the value of TEXTURE_HEIGHT.

e xoffset or yoffset is not a multiple of the block width or height, respec-
tively.

8.8 Multisample Textures

In addition to the texture types described in previous sections, two additional types
of texture are supported. Multisample textures are similar to two-dimensional or
two-dimensional array textures, except that they contain multiple samples per texel.
Multisample textures do not have multiple image levels, and are immutable.

The commands

void TexStorage2DMultisample(enum target, sizei samples,
enumn internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TexStorage3DMultisample(enum target, sizei samples,
enum internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

establishes the data storage, format, dimensions, and number of samples of a
multisample texture’s image. For TexStorage2DMultisample target must be
TEXTURE_2D_MULTISAMPLE, and for TexStorage3DMultisample targer must be
TEXTURE_2D_MULTISAMPLE_ARRAY. width and height are the dimensions in tex-
els of the texture, and depth is the number of array layers.

samples represents a request for a desired minimum number of samples.
Since different implementations may support different sample counts for multi-
sampled textures, the actual number of samples allocated for the texture image is
implementation-dependent. However, the resulting value for TEXTURE_SAMPLES

OpenGL ES 3.2 (October 22, 2019)

8.8. MULTISAMPLE TEXTURES 185

is guaranteed to be greater than or equal to samples and no more than the next
larger sample count supported by the implementation.

If fixedsamplelocations is TRUE, the image will use identical sample locations
and the same number of samples for all texels in the image, and the sample loca-
tions will not depend on the internalformat or size of the image.

Upon success, TexStorage*DMultisample delete any existing image for
target and the contents of texels are undefined. The values of TEXTURE_-
WIDTH, TEXTURE_HEIGHT, TEXTURE_SAMPLES, TEXTURE_INTERNAL_FORMAT
and TEXTURE_FIXED_SAMPLE_LOCATIONS are set to width, height, the actual
number of samples allocated, internalformat, and fixedsamplelocations respec-
tively.

When a multisample texture is accessed in a shader, the access takes one vector
of integers describing which texel to fetch and an integer corresponding to the
sample numbers described in section 13.4 describing which sample within the texel
to fetch. No standard sampling instructions are allowed on the multisample texture
targets, and no filtering is performed by the fetch. Fetching a sample number less
than zero, or greater than or equal to the number of samples in the texture, produces
undefined results.

Errors

An INVALID_ENUM error is generated if farget is not an accepted multi-
sample target as described above.

An INVALID_OPERATION error is generated if zero is bound to farget.

An INVALID_VALUE error is generated if width, height or depth is less
than 1.

An INVALID_VALUE error is generated if samples is zero.

An INVALID_VALUE error is generated if width or height is greater than
the value of MAX_TEXTURE_SIZE.

An INVALID_VALUE error is generated by TexStorage3DMultisample if
depth is greater than the value of MAX_ARRAY TEXTURE_LAYERS.

An INVALID_ENUM error is generated if internalformat, is not color-
renderable, depth-renderable, or stencil-renderable (as defined in section 9.4).

An INVALID_ENUM error is generated if internalformat is one of the un-
sized base internal formats listed in table 8.8.

An INVALID_OPERATION error is generated if samples is greater than the
maximum number of samples supported for this target and internalformat.
The maximum number of samples supported can be determined by calling
GetlInternalformativ with a pname of SAMPLES (see section 20.3).

OpenGL ES 3.2 (October 22, 2019)

8.9. BUFFER TEXTURES 186

An INVALID_OPERATION error is generated if the value of TEXTURE_-—
IMMUTABLE_FORMAT for the texture currently bound to farget on the active
texture unit is TRUE.

8.9 Buffer Textures

In addition to the types of textures described in previous sections, one additional
type of texture is supported. A buffer texture is similar to a one-dimensional tex-
ture. However, unlike other texture types, the texture image is not stored as part of
the texture. Instead, a buffer object is attached to a buffer texture and the texture
image is taken from that buffer object’s data store. When the contents of a buffer
object’s data store are modified, those changes are reflected in the contents of any
buffer texture to which the buffer object is attached. Buffer textures do not have
multiple image levels; only a single data store is available.
The command

void TexBufferRange(enum target, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

attaches the range of the storage for the buffer object named buffer for size basic
machine units, starting at offset (also in basic machine units) to the buffer texture
currently bound to target. target must be TEXTURE_BUFFER.

If buffer is zero, then any buffer object attached to the buffer texture is detached,
the values offset and size are ignored and the state for offset and size for the buffer
texture are reset to zero. internalformat specifies the storage format for the texture
image found in the range of the attached buffer object, and must be one of the sized
internal formats found in table 8.18.

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_BUFFER.

An INVALID_ENUM error is generated if internalformat is not one of the
sized internal formats in table 8.18.

An INVALID_OPERATION error is generated if buffer is non-zero and is
not the name of a buffer object.

An INVALID_VALUE error is generated if offset is negative, if size is less
than or equal to zero, or if offset + size is greater than the value of BUFFER -
S1ZE for the buffer bound to target.

An INVALID_VALUE error is generated if offset is not an integer multiple
of the value of TEXTURE_BUFFER_OFFSET_ALIGNMENT.

OpenGL ES 3.2 (October 22, 2019)

8.9. BUFFER TEXTURES 187

The command

void TexBuffer(enum target, enum internalformat,
uint buffer);

is equivalent to
TexBufferRange (target, internalformat, buffer, 0, size);

where size is the value of BUFFER_SIZE for buffer.

When a range of the storage of a buffer object is attached to a buffer texture, the
range of the buffer’s data store is taken as the texture’s texture image. The number
of texels in the buffer texture’s texture image is given by

size
components x sizeof (base_type) |

where components and base_type are the element count and base type for ele-
ments, as specified in table 8.18.

The number of texels in the texture image is then clamped to an
implementation-dependent limit, the value of MAX_TEXTURE_BUFFER_SIZE.
When a buffer texture is accessed in a shader, the results of a texel fetch are un-
defined if the specified texel coordinate is negative, or greater than or equal to the
clamped number of texels in the texture image.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are
mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n X components + m of the attached buffer object’s data
store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.2 or 2.1, respectively. The
components of the texture are then converted to a (R, G, B, A) vector according
to table 8.18, and returned to the shader as a four-component result vector with
components of the appropriate data type for the texture’s internal format. The base
data type, component count, normalized component information, and mapping of
data store elements to texture components is specified in table 8.18.

OpenGL ES 3.2 (October 22, 2019)

8.9. BUFFER TEXTURES 188
Sized Internal Format | Base Type | Components | Norm Component
0[1]2]3
R8 ubyte 1 Yes R0 |0 |1
R16F half 1 No R|O0 [0 |1
R32F float 1 No R|0 |0 |1
R8T byte 1 No R|O0 |0 |1
R161I short 1 No R0 |0 |1
R321 int 1 No R|O0O |0 |1
R8UT ubyte 1 No R|O0O |0 |1
R16UI ushort 1 No R0 |0 |1
R32UT uint 1 No R0 |0 |1
RGS8 ubyte 2 Yes R|G|O0 |1
RG16F half 2 No R|G|O0 |1
RG32F float 2 No R|G|O0 |1
RG8I byte 2 No R|G|O0 |1
RG161 short 2 No R|G|O0 |1
RG321 int 2 No R|G|O0 |1
RG8UI ubyte 2 No R|G|O0 |1
RG16UI ushort 2 No R G|O0 |1
RG32U1I uint 2 No R|G|O0 |1
RGB32F float 3 No R|G|B |1
RGB321 int 3 No R|G|B |1
RGB32UI uint 3 No R|G|B |1
RGBAS ubyte 4 Yes R|G|B|A
RGBA1G6F half 4 No R|G|B|A
RGBA32F float 4 No R|G|B|A
RGBASI byte 4 No R|G|B|A
RGBA161 short 4 No R|G|B|A
RGBA321 int 4 No R|G|B|A
RGBASUI ubyte 4 No R|G|B|A
RGBA16UT ushort 4 No R|G|B|A
RGBA32UI uint 4 No R|G|B|A

Table 8.18: Internal formats for buffer textures. For each format,
the data type of each element is indicated in the “Base Type” col-
umn and the element count is in the “Components” column. The
“Norm” column indicates whether components should be treated
as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to tex-

ture components.

OpenGL ES 3.2 (October 22, 2019)

8.10. TEXTURE PARAMETERS 189

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER
has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by
calling BindBuffer with target set to TEXTURE_BUFFER, as described in section 6.

8.10 Texture Parameters

Texture parameters control how the texture image of a texture object is treated
when specified or changed, and when applied to a fragment. Each parameter is set
with the commands

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const
T *params);
void TexParameterI{i ui}v(uint fexture, enum pname,
const T *params);

target is the target, and must be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_ -
2D_ARRAY, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_-—
2D_MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY.

pname is a symbolic constant indicating the parameter to be set; the possible
constants and corresponding parameters are summarized in table 8.19. In the scalar
forms of the command, param is a value to which to set a single-valued parameter;
in the vector forms, params is an array of parameters whose type depends on the
parameter being set.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

o If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terliv or TexParameterluiv, they are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise, the values are unmodified and
stored as floating-point.

OpenGL ES 3.2 (October 22, 2019)

8.10. TEXTURE PARAMETERS 190
] Name Type Legal Values
DEPTH_STENCIL_TEXTURE_MODE enum DEPTH_COMPONENT, STENCIL_-—
INDEX
TEXTURE_BASE_LEVEL int any non-negative integer
TEXTURE_BORDER_COLOR 4 floats, any 4 values

ints, oruints

TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-
TEXTURE

TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER

TEXTURE_MAG_FILTER enum NEAREST, LINEAR

TEXTURE_MAX_LEVEL int any non-negative integer

TEXTURE_MAX_LOD float any value

TEXTURE_MIN_FILTER enum NEAREST, LINEAR,
NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_TINEAR,

TEXTURE_MIN_LOD float any value

TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_WRAP_S enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT, CLAMP_-
TO_BORDER

TEXTURE_WRAP_T enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT, CLAMP_-
TO_BORDER

TEXTURE_WRAP_R enum CLAMP_TO_EDGE, REPEAT,

MIRRORED_REPEAT,
TO_BORDER

CLAMP_ -

Table 8.19: Texture parameters and their values.

OpenGL ES 3.2 (October 22, 2019)

8.10. TEXTURE PARAMETERS 191

. /
In the remainder of chapter 8, denote by lodyin, lodpmaz, levely, . . and
! lSE
level,,,. the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-

MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively. Let

U

. / ~ . ~
level min(level, ., levelymmae — 1), for immutable-format textures
evelpgse = :

levely, . otherwise
(8.4)
and
. / .
level { min(max(levelpgse, level,, ..), levelimmyr — 1), for immutable-format textures
evelmar = o ’)
level,, s otherwise
(8.5)

levelimmue 18 the levels parameter passed to TexStorage* for the texture object
(the value of TEXTURE_IMMUTABLE_LEVELS; see section 8.18).

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed above.

An INVALID_ENUM error is generated if pname is not one of the parameter
names in table 8.19.

An INVALID_ENUM error is generated if the type of the parameter speci-
fied by pname is enum, and the value(s) specified by param or params are not
among the legal values shown in table 8.19.

An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-
LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.

An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-
LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.

An INVALID_ENUM error is generated if Tex*Parameter{if} is called for
a non-scalar parameter (pname TEXTURE_BORDER_COLOR).

An INVALID_ENUM error is generated if farget is TEXTURE_2D_-
MULTISAMPLE or TEXTURE 2D MULTISAMPLE ARRAY, and pname is any
sampler state from table 21.12.

An INVALID_OPERATION error is generated if target is TEXTURE_-

OpenGL ES 3.2 (October 22, 2019)

8.11. TEXTURE QUERIES 192

2D_MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY, and pname
TEXTURE_BASE_LEVEL is set to a value other than zero.

8.11 Texture Queries

8.11.1 Active Texture

As discussed in section 2.2.2, queries of most texture state variables are qualified
by the value of ACTIVE_TEXTURE to determine which server texture state vector
is queried.

8.11.2 Texture Parameter Queries

Parameters of a texture object may be queried with the commands

void GetTexParameter{if}v(enum target, enum pname,
T *params);

void GetTexParameterI{i ui}v(enum target, enum pname,
T *params);

The texture object is that which is bound to farget.

The value of texture parameter pname for the texture is returned in params.

target must be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_-—
ARRAY, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_-
MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY, indicating the currently
bound two-dimensional, three-dimensional, two-dimensional array, cube map,
cube map array, two-dimensional multisample, or two-dimensional multisample
array texture object, respectively.

pname must be one of IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_-
IMMUTABLE_FORMAT, TEXTURE_IMMUTABLE_LEVELS, or one of the symbolic
values in table 8.19.

Querying pname TEXTURE_BORDER_COLOR with GetTexParameterliv or
GetTexParameterluiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_ENUM error is generated if farget is not one of the texture

OpenGL ES 3.2 (October 22, 2019)

8.11. TEXTURE QUERIES 193

targets described above.
An INVALID ENUM error is generated if pname is not one of the texture
parameters described above.

8.11.3 Texture Level Parameter Queries

The commands

void GetTexLevelParameter{if}v(enum target, int level,
enum pname, T *params);

place information about texture image parameter pname for level-of-detail level of
the specified target into params. pname must be one of the symbolic values in
table 21.11.

target may be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY,
one of the cube map face targets from table 8.20, TEXTURE_CUBE_MAP_-—
ARRAY, TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_-
MULTISAMPLE_ARRAY, indicating the two-or three-dimensional texture, two-
dimensional array texture, one of the six distinct 2D images making up the cube
map texture object, cube map array texture, buffer texture, two-dimensional multi-
sample texture, or two-dimensional multisample array texture.

level determines which level-of-detail’s state is returned. The maximum value
of level depends on the texture farget:

e For cube map face targets, the maximum value is log, of the value of MAX_-
CUBE_MAP_TEXTURE_SIZE.

e For target TEXTURE_ 3D, the maximum value is log, of the value of MAX_-
3D_TEXTURE_SIZE.

e For targets TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE,
and TEXTURE_2D_MULTISAMPLE_ARRAY, which do not support mipmaps,
the maximum value is zero.

e For all other texture rargets supported by GetTexLevelParameter®, the
maximum value is log, of the value of MAX_TEXTURE_SIZE.

Note that TEXTURE_CUBE_MAP is not a valid farget parameter for Get-
TexLevelParameter, because it does not specify a particular cube map face.

For texture images with uncompressed internal formats, queries of
pname TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_TYPE,
TEXTURE_ALPHA_TYPE, and TEXTURE_DEPTH_TYPE return the data type used

OpenGL ES 3.2 (October 22, 2019)

8.12. DEPTH COMPONENT TEXTURES 194

to store the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_-
NORMALIZED, FLOAT, INT, and UNSIGNED_INT respectively indicate missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-point,
signed unnormalized integer, and unsigned unnormalized integer components.
Queries of pname TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_-
BLUE_SIZE, TEXTURE_ALPHA_ SIZE, TEXTURE_DEPTH_SIZE, TEXTURE_-
STENCIL_SIZE, and TEXTURE_SHARED_SIZE return the actual resolutions of the
stored image components, not the resolutions specified when the image was de-
fined.

For texture images with compressed internal formats, the types returned spec-
ify how components are interpreted after decompression, while the resolutions re-
turned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Queries of pname TEXTURE_INTERNAL_FORMAT,
TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_DEPTH return the internal
format, width, height, and depth, respectively, as specified when the texture image
was created.

Queries of pname TEXTURE_SAMPLES, and TEXTURE_FIXED_SAMPLE_-
LOCATIONS on multisample textures return the number of samples and whether
texture sample fixed locations are enabled, respectively. For non-multisample tex-
tures, the default values in table 21.11 are returned.

Errors

An INVALID_ENUM error is generated if farget is not one of the texture
targets described above.

An INVALID_ENUM error is generated if pname is not one of the symbolic
values in tables 21.11.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level-of-detail for farget as described above.

8.12 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED textures during texture filtering and application (see section 8.20).

OpenGL ES 3.2 (October 22, 2019)

8.13. CUBE MAP TEXTURE SELECTION 195

Major Axis Direction | Target \ Se \ te \ o \
+7ry TEXTURE_CUBE_MAP_POSITIVE_X | —T, | —Ty | 7%
—Ty TEXTURE_CUBE_MAP_NEGATIVE_X | 1, —Ty | Tz
+7y TEXTURE_CUBE_MAP_POSITIVE_Y | 7y T, Ty
—Ty TEXTURE_CUBE_MAP_NEGATIVE_Y | 7y —T, | Ty
+r, TEXTURE_CUBE_MAP_POSITIVE_ Z | 7y —Ty | T2
—r, TEXTURE_CUBE_MAP_NEGATIVE_Z | =Ty | —Ty | T

Table 8.20: Selection of cube map images based on major axis direction of texture
coordinates.

8.13 Cube Map Texture Selection

When cube map texturing is enabled, the (s t 7") texture coordinates are treated
as a direction vector (rm Ty rz) emanating from the center of a cube. At tex-
ture application time, the interpolated per-fragment direction vector selects one of
the cube map face’s two-dimensional images based on the largest magnitude co-
ordinate direction (the major axis direction). If two or more coordinates have the
identical magnitude, the implementation may define the rule to disambiguate this
situation. The rule must be deterministic and depend only on (rw Ty rz). The
target column in table 8.20 explains how the major axis direction maps to the two-
dimensional image of a particular cube map target.

Using the s, t., and m, determined by the major axis direction as specified in
table 8.20, an updated (s ¢) is calculated as follows:

1 Se

s = — +1
Z(Ima| >
1 te

t=— +1
2<|ma)

8.13.1 Seamless Cube Map Filtering

The rules for texel selection in sections 8.14 through 8.15 are modified for cube
maps so that texture wrap modes are ignored’. Instead,

e If NEAREST filtering is done within a miplevel, always apply apply wrap
mode CLAMP_TO_EDGE.

3 This is a behavior change in OpenGL ES 3.0. In previous versions, texture wrap modes were
respected and neighboring cube map faces were not used for border texels.

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 196

e If LINEAR filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_BORDER. Then,

— If a texture sample location would lie in the texture border in either u
or v, instead select the corresponding texel from the appropriate neigh-
boring face.

— If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

8.14 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

8.14.1 Scale Factor and Level of Detail

The choice is governed by a scale factor p(z,y) and the level-of-detail parameter
Az, y), defined as

Abase (%, y) = logy[p(, y)] (8.6)
N (@,y) = Nvase(7,y) + clamp(biasshader) (8.7)
lodmaz, N > lodmae

undefined, lodpyin > lodmaes

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 197

biasspader 1 the value of the optional bias parameter in the texture lookup func-
tions available to fragment shaders. If the texture access is performed in a fragment
shader without a provided bias, or outside a fragment shader, then biasspqder 18
zero. The sum of these values is clamped to the range [—biasqq, biaSmas] Where
biasmqe 1s the value of the implementation defined constant MAX_TEXTURE_—
LOD_BIAS.

If A\(z,y) is less than or equal to zero the texture is said to be magnified; if
it is greater, the texture is minified. Sampling of minified textures is described in
the remainder of this section, while sampling of magnified textures is described in
section 8.15.

The initial values of lod,,;, and lod,,, are chosen so as to never clamp the
normal range of .

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define ¢(z, y) and (z, y)
analogously. Let

U(l’,y) =wg X 5(:an) + 5u
v(z,y) = hy X t(z,y) + 0y (8.9
w(:c,y) = dt X T(Ivy) + 5w

where wy, hy, and d; are the width, height, and depth of the texture image whose
level is levelpyse. For a two-dimensional, two-dimensional array, cube map, or
cube map array texture, define w(z,y) = 0.

(O, 0y, O) are the texel offsets specified in the OpenGL ES Shading Language
texture lookup functions that support offsets. If the texture function used does not
support offsets, all three shader offsets are taken to be zero.

If the value of any non-ignored component of the offset vector operand is
outside implementation-dependent limits, the results of the texture lookup are
undefined. For all instructions except textureGather, the limits are the val-
ues of MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET. For
the textureGather instruction, the limits are the values of MIN_PROGRAM_-
TEXTURE_GATHER_OFFSET and MAX_PROGRAM_TEXTURE_GATHER_OFFSET.
The value of MIN_PROGRAM_TEXTURE_GATHER_OFFSET must be less than or
equal to the value of MIN_PROGRAM_TEXEL_OFFSET. The value of MAX_ -
PROGRAM_TEXTURE_GATHER_OFFSET must be greater than or equal to the value
of MAX_PROGRAM_TEXEL_OFFSET.

A point sampled in screen space has an elliptical footprint in texture space. The
ideal scale factor p should be the major axis of this ellipse.

The derivatives 3—:, g—Z 3—;, S—Z, ‘(’)—Zﬁ, and ‘3—; are used to calculate the value of
p for a fragment with window coordinates (z, y).

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 198

Computing the ellipse major axis using the derivatives in x and y can be im-
practical to implement. Therefore, an implementation may approximate the ideal
p with a function f(z,y) subject to these conditions:

1. f(x,y) is continuous and monotonically increasing in each of ’% , g—‘; ,
v v ow ow
52> |55 > |52 |- and | 55

2. max(f);c” dy |’ dL‘ oy |’ (h‘ oy) = f(Tl/) = QIHE‘LX(()x’ +
v ow du ov ow
ol ozl oy | |5 | |5y)

8.14.2 Coordinate Wrapping and Texel Selection

After generating u(z, y), v(x,y), and w(z, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let v/ (z,y) = u(z,y), v'(z,y) = v(z,y), and w'(z,y) = w(z,y).

The value assigned to TEXTURE_MIN_FILTER is used to determine how the
texture value for a fragment is selected.

When the value of TEXTURE_MIN_FILTER iS NEAREST, the texel in the texture
image of level levelp,s. that is nearest (in Manhattan distance) to (u/, v, w’) is
obtained. Let (4, j, k) be integers such that

i = wrap(|u'(z,y)])
J =wrap([v'(z,y)])
k= wrap(|w'(z,y)])

and the value returned by wrap() is defined in table 8.21. For a three-dimensional
texture, the texel at location (4,7, k) becomes the texture value. For two-
dimensional, two-dimensional array, or cube map textures, k is irrelevant, and the
texel at location (i, j) becomes the texture value.

For two-dimensional array textures, the texel is obtained from image layer [,
where

| = clamp(RN E(r),0,d; — 1)*

and RN E() is the round-to-nearest-even operation defined by IEEE arithmetic.

* Implementations may instead round the texture layer using the nearly equivalent computation
1
|_7" + §J .

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 199

Wrap mode ‘ Result of wrap(coord)

CLAMP_TO_EDGE clamp(coord, 0, size — 1)

CLAMP_TO_BORDER | clamp(coord, —1, size)

REPEAT fmod(coord, size)

MIRRORED_REPEAT | (size — 1) — mirror(fmod(coord,2 x size) — size)

Table 8.21: Texel location wrap mode application. fmod(a, b) returns a —b x | ¢].
mirror(a) returns a if a > 0, and —(1 + a) otherwise. The values of mode and
size are TEXTURE_WRAP_S and w;, TEXTURE_WRAP_T and h;, and TEXTURE_—
WRAP_R and d; when wrapping 4, j, or k coordinates, respectively.

If the selected (i, j, k), (4, j), or i location refers to a border texel that satisfies
any of the conditions

1 <0 1> Wy
J<0 J=h
k<0 k> d;

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 8.8. The internal data type of the
border values must be consistent with the type returned by the texture as described
in chapter 8, or the result is undefined. Border values are clamped before they are
used, according to the format in which texture components are stored. For signed
and unsigned normalized fixed-point formats, border values are clamped to [—1, 1]
and [0, 1], respectively. For floating-point and integer formats, border values are
clamped to the representable range of the format. For compressed formats, border
values are clamped as signed normalized (“snorm”), unsigned normalized (“‘un-
orm”), or floating-point as described in table 8.17 for each format. If the texture
contains depth components, the first component of TEXTURE_BORDER_COLOR 1is
interpreted as a depth value.

When the value of TEXTURE_MIN_FILTER iS LINEAR, a 2 X 2 X 2 cube of
texels in the texture image of level levely,se is selected. Let

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 200

iop = wrap(|u’ — 0.5])
jo = wrap(|v' — 0.5])
ko = wrap(|w’ — 0.5])
iy = wrap(|u’ —0.5] + 1)
j1 = wrap(|v' —0.5] +1)
k1 = wrap(|w' —0.5] + 1)

a = frac(u’ —0.5)
B = frac(v' —0.5)
v = frac(w' — 0.5)

where frac(z) denotes the fractional part of x.
For a three-dimensional texture, the texture value 7 is found as

T=(1—=a) = B)1 = Tigjoko + (L = B)L = ¥)Tirjoko
+ (1= @) B(1 =) Tigjuko + @B = ¥)Tiyjrko (8.10)
+(1—a)(l— 5)771'()]'0’?1 +a(l— 6)77i1j0k1
+ (1 — @) BYTigjiky + BV Tirjik

where 7;, is the texel at location (4, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, or cube map texture,

7 =(1—a)(1 = B)Tigjo + (1 = B)Tij
+ (1 — Oz)ﬁﬂ'ojl + 0457'1‘11'1

where 7;; is the texel at location (3, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer [, where

I = clamp(|r +0.5],0,d; — 1).

The textureGather and textureGatherOffset built-in shader functions
return a vector derived from sampling a 2 x 2 block of texels in the texture im-
age of level levelp,se. The rules for the LINEAR minification filter are applied to
identify the four selected texels. Each texel is then converted to a texture source
color (Rs, G, Bs, As) according to table 14.1 and then swizzled as described in
section 14.2.1. A four-component vector is then assembled by taking a single com-
ponent from the swizzled texture source colors of the four texels, in the order 7,

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 201

0

t=00"%""1 2 3 4 5 6 7
s=0.0 s=1.0

Figure 8.7. An example of an 8 X 8 texture image and the components returned for
textureGather. The vector (X,Y, Z, W) is returned, where each component
is taken from the post-swizzle component selected by comp of the corresponding
texel.

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 202

Tivji» Tivjo» and T;yj, (see figure 8.7). The selected component is identified by the
by the optional comp argument, where the values zero, one, two, and three identify
the R, G, Bs, or A; component, respectively. If comp is omitted, it is treated as
identifying the R, component. Incomplete textures (see section 8.17) are consid-
ered to return a texture source color of (0.0,0.0,0.0,1.0) in floating-point format
for all four source texels.

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

The textureGatherOffsets functions operate identically to
textureGather, except that the array of two-component integer vectors offsets is
used to determine the location of the four texels to sample. Each of the four texels is
obtained by applying the corresponding offset in the four-element array offsets as a
(u, v) coordinate offset to the coordinates coord, identifying the four-texel LINEAR
footprint, and then selecting the texel 7;;, of that footprint. The specified values
in offsets must be constant. A limited range of offset values are supported; the
minimum and maximum offset values are implementation-dependent and given by
the values of MIN_PROGRAM_TEXTURE_GATHER_OFFSET and MAX_PROGRAM_-
TEXTURE_GATHER_ OFFSET, respectively. Note that offser does not apply to the
layer coordinate for array textures.

8.14.2.1 Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected 71, or
7;; in the above equations is undefined instead of referring to the value of the texel
at location (4, j, k) or (i, j), respectively. This situation is discussed in more detail
in the description of feedback loops in section 9.3.1.

e The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

e The texture is attached to one of the attachment points, A, of framebuffer
object F.

e The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to levelpqge

Or

The value of TEXTURE_MIN FILTER 1S NEAREST MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_-

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 203

MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-—
TEXTURE_LEVEL for attachment point A is within the inclusive range from
levelpgse tO q.

8.14.3 Mipmapping

TEXTURE_MIN_FILTER values NEAREST MIPMAP_NEAREST, NEAREST_-
MIPMAP_LINEAR, LINEAR MIPMAP_NEAREST, and LINEAR MIPMAP_LINEAR
each require the use of a mipmap. A mipmap is an ordered set of arrays represent-
ing the same image; each array has a resolution lower than the previous one. If
the texture image of level levelp,s. has dimensions w; X hy X d¢, then there are
|logy(mazsize) | + 1 levels in the mipmap. where

, {max(wt, ht), for 2D, 2D array, cube map, and cube map array textures
marsize =

max(wy, hy,dy), for 3D textures

Numbering the levels such that level levely,s. is the Oth level, the ith array has
dimensions

where

2¢ for 3D textures
da = .
1, otherwise

until the last array is reached with dimension 1 x 1 x 1.

Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-
TexImage2D, or by functions that are defined in terms of these functions. The
array being set is indicated with the level-of-detail argument level. Level-of-
detail numbers proceed from levelp,s. for the original texture image through
the maximum level p, with each unit increase indicating an array of half the
dimensions of the previous one (rounded down to the next integer if frac-
tional) as already described. For immutable-format textures, ’ is

’ ~-vttmax

p is one less than level;pmyt. —Where

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 204

 evelimmmmaris [& Dars 4SS E 3
tthe—value-of FExFUREIMMUTABEELEVELES —seeseetion818)— Otherwise,
p = |logy(mazsize)| + levelpyse, and all arrays from levely,s. through ¢ =
min{p, level,,q, } must be defined, as discussed in section 8.17.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Since this discussion
pertains to minification, we are concerned only with values of A where A > 0.

For mipmap filters NEAREST MIPMAP_NEAREST and LINEAR MIPMAP_ -
NEAREST, the dth mipmap array is selected, where

levelpgse, A<Z0
d = { nearest(\), A > 0,levelpgse + A < q+ % (8.11)
q, A >0, levelpgse + N > g+ %

where

(levelb,mc + A+ ﬂ — 1, preferred
Uevelbasc + A+ %J , alternative

nearest(\) = {
The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u,v,w) is computed as in equation 8.9, with
ws, hg, and dg equal to the width, height, and depth of the texture image whose
level is d.
For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-
LINEAR, the level d and dy mipmap arrays are selected, where

dy = q, levelpgse + A > g 8.12)
|levelpgse + A], otherwise .
level A >
d2 _ q, eve bajse +A2q (813)
d1 + 1, otherwise

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values 71 and 72. Specifically,
for level d;, the coordinate (u, v, w) is computed as in equation 8.9, with wy, hs,
and d equal to the width, height, and depth of the texture image whose level is d;.
For level dy the coordinate (v, v', w’) is computed as in equation 8.9, with wy, hs,
and d equal to the width, height, and depth of the texture image whose level is d5.

The final texture value is then found as

OpenGL ES 3.2 (October 22, 2019)

8.14. TEXTURE MINIFICATION 205

T = [1 — frac(\)]m + frac(A) 7.

8.14.4 Manual Mipmap Generation

Mipmaps can be generated manually with the command
void GenerateMipmap(enum farget);

where farget is one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY.

Mipmap generation affects the texture image attached to farget.

If target 1S TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, the texture
bound to farget must be cube complete or cube array complete, respectively, as
defined in section 8.17. Otherwise, if levely,se 1 not defined, or if any dimension
is zero, all mipmap levels are left unchanged. This is not an error.

Mipmap generation replaces texture image levels levely,se + 1 through ¢ with
images derived from the levely,s. image, regardless of their previous contents. All
other mipmap levels, including levelp,s., are left unchanged by this computation.

If levelp,se 1s not defined, all mipmap levels are left unchanged. This is not an
error.

The internal formats and effective internal formats of the derived mipmap im-
ages all match those of the levelp,s. image, and the dimensions of the derived
images follow the requirements described in section 8.17.

The contents of the derived images are computed by repeated, filtered reduc-
tion of the levelp,s. image. For two-dimensional array and cube map array tex-
tures, each layer is filtered independently. No particular filter algorithm is required,
though a box filter is recommended.

Any synchronization required before performing this reduction will be done
within the Generate*Mipmap commands themselves>.

Errors

An INVALID_ENUM error is generated if farget is not TEXTURE_2D,
TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE CUBE MAP or TEXTURE -
CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if target is TEXTURE_-

5 For example, if mipmaps were generated by texture fetches, a fetch barrier would be issued
prior to reduction; or if mipmaps were generated on the CPU, a texture update barrier would be
issued prior to reduction.

OpenGL ES 3.2 (October 22, 2019)

8.15. TEXTURE MAGNIFICATION 206

CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the texture bound to target
is not cube complete or cube array complete, respectively.

An INVALID_OPERATION error is generated if the levelp, . array was not
specified with an unsized internal format from table 8.3 or a sized internal for-
mat that is both color-renderable and texture-filterable according to table 8.10.

8.15 Texture Magnification

When A indicates magnification, the value assigned to TEXTURE_MAG_FILTER
determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE_MIN_FILTER as described in section 8.14, including the texture coordi-
nate wrap modes specified in table 8.21. The level-of-detail levelp, . texture image
is always used for magnification.

8.16 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCTIL, then the stencil
index texture component is ignored by default. The texture value T does not include
a stencil index component, but includes only the depth component.

In order to access the stencil index texture component, the DEPTH_STENCIL_-
TEXTURE_MODE texture parameter should be set to STENCIL_INDEX. When this
mode is set the depth component is ignored and the texture value includes only the
stencil index component. The stencil index value is treated as an unsigned inte-
ger texture and returns an unsigned integer value when sampled. When sampling
the stencil index only NEAREST filtering is supported. The DEPTH_STENCIL_-
TEXTURE_MODE is ignored for non depth/stencil textures.

8.17 Texture Completeness

A texture is said to be complete if all the texture images and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.

For two-, and three-dimensional and two-dimensional array textures, a texture
is mipmap complete if all of the following conditions hold true:

e The set of mipmap arrays levelp,s. through g (where ¢ is defined in sec-
tion 8.14.3) were each specified with the same effective internal format.

OpenGL ES 3.2 (October 22, 2019)

8.17. TEXTURE COMPLETENESS 207

e The dimensions of the arrays follow the sequence described in section 8.14.3.
o levelpyse < levelpman

Array levels k where k < levelp,se Or k > g are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

e The levely,s arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

e The levely,s. arrays were each specified with the same effective internal
format.

A cube map array texture is cube array complete if it is complete when treated
as a two-dimensional array and cube complete for every cube map slice within the
array texture.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

e Any dimension of the levelyqse array is not positive. For a multisample
texture, levelpqse 1S always zero.

e The texture is a cube map texture, and is not cube complete.
e The texture is a cube map array texture, and is not cube array complete.

e The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
the texture is not multisample, and the texture is not mipmap complete.

e The texture is not multisample; either the magnification filter is not
NEAREST, or the minification filter is neither NEAREST nor NEAREST -
MIPMAP_NEAREST; and any of

— The effective internal format specified for the texture arrays is a sized
internal color format that is not texture-filterable (see table 8.10).

— The effective internal format specified for the texture arrays is a sized
internal depth or depth and stencil format (see table 8.11), and the value
of TEXTURE_COMPARE_MODE is NONE.

— The internal format of the texture is DEPTH_STENCIL, and the value
of DEPTH_STENCIL_TEXTURE_MODE for the texture is STENCIL_-
INDEX.

— The internal format is STENCIL_INDEX.

OpenGL ES 3.2 (October 22, 2019)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 208

8.17.1 Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 8.2). This can have an effect on the effective completeness of the texture. In
particular, if the texture is not mipmap complete and the sampler object specifies a
TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered incom-
plete for the purposes of that texture unit. However, if the sampler object does not
require mipmaps, the texture object will be considered complete. This means that
a texture can be considered both complete and incomplete simultaneously if it is
bound to two or more texture units along with sampler objects with different states.

8.17.2 Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in shaders are affected
by completeness of the texture being sampled as described in sections 11.1.3.5
and 14.2.1.

8.17.3 Effects of Completeness on Texture Image Specification

The implementation-dependent maximum sizes for texture images depend on the
texture level. In particular, an implementation may allow a texture texture image
of level one or greater to be created only if a mipmap complete set of images con-
sistent with the requested array can be supported where the values of TEXTURE_ -
BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respectively. As a re-
sult, implementations may permit a texture image at level zero that will never be
mipmap complete and can only be used with non-mipmapped minification filters.

8.18 Immutable-Format Texture Images

An alternative set of commands is provided for specifying the properties of all
levels of a texture at once. Once a texture is specified with such a command,
the format and dimensions of all levels becomes immutable. The contents of the
images and the parameters can still be modified. Such a texture is referred to as an
immutable-format texture. The immutability status of a texture can be determined
by calling GetTexParameter with pname TEXTURE_IMMUTABLE_FORMAT.

Each of the commands below is described by pseudocode which indicates the
effect on the dimensions and format of the texture. For each command the follow-
ing apply in addition to the pseudocode:

OpenGL ES 3.2 (October 22, 2019)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 209

e If executing the pseudocode would result in any other error, the error is gen-
erated and the command will have no effect.

e Any existing levels that are not replaced are reset to their initial state.

e The pixel unpack buffer should be considered to be zero; i.e., the image
contents are unspecified.

e Since no pixel data are provided, the format and type values used in the
pseudocode are irrelevant; they can be considered to be any values that are
legal to use with internalformat.

e If the command is successful, TEXTURE_IMMUTABLE_FORMAT becomes
TRUE and TEXTURE_IMMUTABLE_LEVELS becomes levels.

o If internalformat is a compressed texture format, then references to TexIm-
age™* should be replaced by CompressedTexImage*, with format, type and
data replaced by any valid imageSize and data.

For each command, the following errors are generated in addition to the errors
described specific to that command:

Errors

An INVALID_OPERATION error is generated if zero is bound to target.

If executing the pseudo-code would result in a OUT_OF_MEMORY error, the
error is generated and the results of executing the command are undefined.

An INVALID_VALUE error is generated if width, height, depth or levels
are less than 1, for commands with the corresponding parameters.

An INVALID_OPERATION error is generated if internalformat is a com-
pressed texture format and there is no imageSize for which the corresponding
CompressedTexImage* command would have been valid.

An INVALID_ENUM error is generated if internalformat is one of the un-
sized base internal formats listed in table 8.8.

The command

void TexStorage2D(enum target, sizei levels,
enumn internalformat, sizei width, sizei height);

specifies all the levels of a two-dimensional or cube map, texture at the same time.
The pseudocode depends on farget:

target TEXTURE_2D:

OpenGL ES 3.2 (October 22, 2019)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 210

for (i = 0; 1 < levels; i++) {
TexImage?2D (target, i, internalformat, width, height, O,
format, type, NULL);
. idth
width = max(1, [25"]);

height = max(1, Lhegghtj);

}

target TEXTURE_CUBE_MAP:

for (1 = 0; i < levels; i++) {
for face in (+X, -X, +Y, -Y, +Z, -2) {
TexImage2D (face, i, internalformat, width, height, 0,
format, type, NULL);
} |
width = max(1, L%dthj),
heightJ).

height = max(1, { 5 ;

Errors

An INVALID_ ENUM error is generated if farget is not TEXTURE_2D or
TEXTURE_CUBE_MAP.

An INVALID_OPERATION error is generated if levels is greater than
|logy (max(width, height))] + 1

The command

void TexStorage3D(enum target, sizei levels,
enumn internalformat, sizei width, sizei height,
sizei depth);

specifies all the levels of a three-dimensional, two-dimensional array or cube map
array texture. The pseudocode depends on target:

target TEXTURE_3D:
for (i = 0; i < levels; i++) {

TexImage3D (target, i, internalformat, width, height, depth,
format, type, NULL);

OpenGL ES 3.2 (October 22, 2019)

0,

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 211

width = max(1, | 244);
height = max(1, L%J)'
depth = max(1, LdegthJ);

}

target TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY:

for (i = 0; 1 < levels; i++) {
TexImage3D (target, i, internalformat, width, height, depth,
format, type, NULL);
width = max(1, L%dthj),

height = max(1, Lhegghtj);

Errors

An INVALID_ENUM error is generated if farget is not TEXTURE_ 3D,
TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if any of the following con-
ditions hold:

e farget is TEXTURE_3D and levels is greater than
|logs (max(width, height, depth)))| + 1

e farget is TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY and
levels is greater than |logy (max(width, height))] + 1

e farget is TEXTURE_CUBE_MAP_ARRAY and depth is not a multiple of 6.

After a successful call to any TexStorage* command, no further changes to
the dimensions or format of the texture object may be made. Other commands
may only alter the texel values and texture parameters.

Errors

An INVALID_OPERATION error is generated by any of the following com-
mands with the same texture, even if it does not affect the dimensions or for-
mat:

OpenGL ES 3.2 (October 22, 2019)

8.19. TEXTURE STATE 212

TexImage™*

CompressedTexImage*

CopyTexImage*

TexStorage™

8.19 Texture State

The state necessary for texture can be divided into two categories. First, there are
the multiple sets of texture images (one set of mipmap images each for the two-and
three-dimensional texture and two-dimensional array texture targets; and six sets
of mipmap images each for the cube map and cube map array texture targets) and
their number. Each image has associated with it a width, height (except for buffer
textures) and depth (three-dimensional, two-dimensional array and cube map ar-
ray only), an integer describing the internal format of the image, integer values
describing the resolutions of each of the red, green, blue, alpha, depth, and stencil
components of the image, integer values describing the type (unsigned normal-
ized, integer, floating-point, etc.) of each of the components, a boolean describing
whether the image is compressed or not, an integer size of a compressed image,
and an integer containing the name of a buffer object bound as the data store of the
image.

Each initial texture image is null. It has zero width, height, and depth, internal
format RGBA, component sizes set to zero and component types set to NONE, the
compressed flag set to FALSE, a zero compressed size, and the bound buffer object
name is zero.

Multisample textures also contain an integer identifying the number of sam-
ples in each texel, and a boolean indicating whether identical sample locations and
number of samples will be used for all texels in the image.

Buffer textures also contain two pointer sized integers containing the offset and
range of the buffer object’s data store.

Next, there are the five sets of texture properties, corresponding to the two-
dimensional, two-dimensional array, three-dimensional, cube map, and cube map
array texture targets. Each set consists of the selected minification and magnifi-
cation filters, the wrap modes for s, ¢, and r (three-dimensional only), the texture
border color, two floating-point numbers describing the minimum and maximum
level of detail, two integers describing the base and maximum mipmap array, a
boolean flag indicating whether the format and dimensions of the texture are im-
mutable, two integers describing the compare mode and compare function (see

OpenGL ES 3.2 (October 22, 2019)

8.20. TEXTURE COMPARISON MODES 213

section 8.20), an integer describing the depth stencil texture mode, and four inte-
gers describing the red, green, blue, and alpha swizzle modes (see section 14.2.1).

In the initial state, the value assigned to TEXTURE_MIN_FILTER is
NEAREST_MIPMAP_LINEAR and the value for TEXTURE_MAG_FILTER is
LINEAR. s, t, and » wrap modes are all set to REPEAT. The values of TEXTURE_ -
MIN_LOD and TEXTURE_MAX_LOD are -1000 and 1000 respectively. The values of
TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respectively.
The value of TEXTURE_BORDER_COLOR is (0,0, 0,0). The value of TEXTURE_-
IMMUTABLE_FORMAT is FALSE. The value of TEXTURE_IMMUTABLE_LEVELS
is 0. The values of TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_FUNC
are NONE and LEQUAL respectively. The value of DEPTH_STENCIL_TEXTURE_-
MODE is DEPTH_COMPONENT. The values of TEXTURE_SWIZZLE_R, TEXTURE_-
SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A are RED, GREEN,
BLUE, and ALPHA, respectively.

8.20 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function.

8.20.1 Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_-
FUNC control the output of the texture unit as described below. Otherwise, the
texture unit operates in the normal manner and texture comparison is bypassed.
Let D, be the depth texture value and S; be the stencil index component of a
depth/stencil texture. If there is no stencil component, the value of .S; is undefined.
Let D,y be the reference value, provided by the shader’s texture lookup function.
If the texture’s internal format indicates a fixed-point depth texture, then Dy
and D,y are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

e If the base internal format is STENCIL_INDEX, then r» = S;.

e If the base internal format is DEPTH_STENCIL and the value of DEPTH -
STENCIL_TEXTURE_MODE iS STENCIL_INDEX, then r = S}

e Otherwise, if the value of TEXTURE_COMPARE_MODE is NONE, then r = D;

OpenGL ES 3.2 (October 22, 2019)

8.21. SRGB TEXTURE COLOR CONVERSION 214

e Otherwise, if the value of TEXTURE_COMPARE_MODE iS COMPARE_REF_ -
TO_TEXTURE, then r depends on the texture comparison function as shown
in table 8.22

Texture Comparison Function ‘ Computed result

1.0, Dyes < D,
LEQUAL r=
0.0, Do > Dy
1.0, D > D
GEQUAL r= el =Mt
0.0, Dye < Dy
1.0, D
LESS r= » Dreg < Dy
0.0, Dref > Dy
1.0, Dref > Dy
GREATER r=
0.0, Dref < Dy
1.0, D =D
EQUAL r= el t
0.0, Dref 7& Dy
1.0, D D
NOTEQUAL r= . Drep 7 Dy
0.0, Dyer =Dy
ALWAYS r=1.0
NEVER r=20.0

Table 8.22: Depth texture comparison functions.

The resulting r is assigned to R;.

If the value of TEXTURE_MAG_FILTER is not NEAREST, or the value of
TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

8.21 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of the SRGB formats in ta-
ble 8.23, the red, green, and blue components are converted from an sSRGB color
space to a linear color space as part of filtering described in sections 8.14 and 8.15.

OpenGL ES 3.2 (October 22, 2019)

8.21. SRGB TEXTURE COLOR CONVERSION 215

Internal Format

SRGBS

SRGB8_ALPHAS8

COMPRESSED_SRGB8_ETC2
COMPRESSED_SRGB8_ALPHA8_ETCZ2_EAC
COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHALl_ETC2
COMPRESSED_SRGB8_ALPHA8_ASTC_4x4
COMPRESSED_SRGB8_ALPHA8_ASTC_5x4
COMPRESSED_SRGB8_ALPHA8_ASTC_5x5
COMPRESSED_SRGB8_ALPHA8_ASTC_6x5
COMPRESSED_SRGB8_ALPHA8_ASTC_6x6
COMPRESSED_SRGB8_ALPHA8_ASTC_8x5
COMPRESSED_SRGB8_ALPHA8_ASTC_8x6
COMPRESSED_SRGB8_ALPHA8_ASTC_8x8
COMPRESSED_SRGB8_ALPHA8_ASTC_10x5
COMPRESSED_SRGB8_ALPHA8_ASTC_10x6
COMPRESSED_SRGB8_ALPHA8_ASTC_10x8
COMPRESSED_SRGB8_ALPHA8_ASTC_10x10
COMPRESSED_SRGB8_ALPHA8_ASTC_12x10
COMPRESSED_SRGB8_ALPHA8_ASTC_12x12

Table 8.23: sRGB texture internal formats.

Any alpha component is left unchanged. Ideally, implementations should perform
this color conversion on each sample prior to filtering but implementations are al-
lowed to perform this conversion after filtering (though this post-filtering approach
is inferior to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component cg, to a linear component
¢; 1s as follows.

PR < 0.04045
o = 4 1292 Cs > 8.14)
DTl (e00) >t ¢, > 0.04045

Assume c; is the SRGB component in the range [0, 1].

OpenGL ES 3.2 (October 22, 2019)

8.22. SHARED EXPONENT TEXTURE COLOR CONVERSION 216

8.22 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and exp, values (see
section 8.5.2) are treated as unsigned integers and are converted to floating-point
red, green, and blue as follows:

red = redy2¢%Ps—B—N

green = greeng26*Ps~B=N

blue = bluey26%Ps—B—N

8.23 Texture Image Loads and Stores

The contents of a texture may be made available for shaders to read and write by
binding the texture to one of a collection of image units. The GL implementation
provides an array of image units numbered beginning with zero, with the total num-
ber of image units provided determined by the implementation-dependent value of
MAX_IMAGE_UNITS. Unlike texture image units, image units do not have a sepa-
rate attachment for each texture target texture; each image unit may have only one
texture bound at a time.

An immutable texture may be bound to an image unit for use by image loads
and stores by calling:

void BindImageTexture(uint unit, uint texture, int level,
boolean layered, int layer, enum access, enum format);

where unit identifies the image unit, texture is the name of the texture, and level
selects a single level of the texture. If fexture is zero, any texture currently bound
to image unit unit is unbound.

If the texture identified by texture is a two-dimensional array, three-
dimensional, cube map or cube map array texture, it is possible to bind either the
entire texture level or a single layer or face of the texture level.

If layered is TRUE, the entire level is bound.

If layered is FALSE, only the single layer identified by layer will be bound, and
the layer is treated as a different texture target for image accesses; two-dimensional

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES 217

Layer Number | Cube Map Face

TEXTURE_CUBE_MAP_POSITIVE_X
TEXTURE_CUBE_MAP_NEGATIVE_X
TEXTURE_CUBE_MAP_POSITIVE_Y
TEXTURE_CUBE_MAP_NEGATIVE_Y
TEXTURE_CUBE_MAP_POSITIVE_Z
TEXTURE_CUBE_MAP_NEGATIVE_Z

N KRN —=O

Table 8.24: Layer numbers for cube map texture faces. The layers are numbered
in the same sequence as the cube map face token values.

array, three-dimensional, cube map, and cube map array texture layers are treated
as two-dimensional textures.

For cube map textures where layered is FALSE, the face is taken by mapping
the layer number to a face according to table 8.24.

For cube map array textures where layered is FALSE, the selected layer num-
ber is mapped to a texture layer and cube face using the following equations and
mapping face to a face according to table 8.24.

agr = | 205

face = layerorig — (layer x 6)

If the texture identified by fexture does not have multiple layers or faces, the
entire texture level is bound, regardless of the values specified by layered and layer.

Sformat specifies the format that the elements of the image will be treated as
when doing formatted stores, as described later in this section. This is referred to
as the image unit format.

access specifies whether the texture bound to the image will be treated as
READ_ONLY, WRITE_ONLY, or READ_WRITE. If a shader reads from an image unit
with a texture bound as WRITE_ONLY, or writes to an image unit with a texture
bound as READ_ONLY, the results of that shader operation are undefined and may
lead to application termination.

If a texture object bound to one or more image units is deleted by DeleteTex-
tures, it is detached from each such image unit, as though BindImageTexture
were called with unit identifying the image unit and fexture set to zero.

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES 218

Texture target ‘ i ‘ ‘ k ‘ Face / layer

TEXTURE_2D

TEXTURE_3D
TEXTURE_CUBE_MAP
TEXTURE_BUFFER
TEXTURE_2D_ARRAY
TEXTURE_CUBE_MAP_ARRAY

<< < ||
N

- V4

<
1

PP DA R | e
1
1

Table 8.25: Mapping of image load, store and atomic texel coordinate components
to texel numbers.

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_TIMAGE_UNITS, if level or layer is negative, or if texture is
not the name of an existing texture object.

An INVALID_VALUE error is generated if format is not one of the formats
listed in table 8.26.

An INVALID_ENUM error is generated if the texture identified by texture is
a two-dimensional multisample or two-dimensional multisample array texture.

An INVALID_OPERATION error is generated if fexture is neither the name
of a buffer texture, nor the name of an immutable texture object.

When a shader accesses the texture bound to an image unit using a built-in
image load, store or atomic function, it identifies a single texel by providing a two-
or three-dimensional coordinate. A coordinate vector is mapped to an individual
texel 7;; or 7;;; according to the target of the texture bound to the image unit using
table 8.25. As noted above, single-layer bindings of array or cube map textures are
considered to use a texture target corresponding to the bound layer, rather than that
of the full texture.

If the texture target has layers or cube map faces, the layer or face number is
taken from the layer argument of BindImageTexture if the texture is bound with
layered set to FALSE, or from the coordinate identified by table 8.25 otherwise.
For cube map and cube map array textures with layered set to TRUE, the coordi-
nate is mapped to a layer and face in the same manner as the layer argument of
BindImageTexture.

If the individual texel identified for an image load, store or atomic operation
doesn’t exist, the access is treated as invalid. Invalid image loads will return a

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES 219

vector where the value of R, G, and B components is 0 and the value of the A
component is undefined. Invalid image stores will have no effect. Invalid image
atomics will not update any texture bound to the image unit and will return zero.
An access is considered invalid if:

e no texture is bound to the selected image unit;
e the texture bound to the selected image unit is incomplete;

o the texture level bound to the image unit is less than the base level or greater
than the maximum level of the texture;

e the internal format of the texture bound to the image unit is not found in
table 8.26;

e the internal format of the texture bound to the image unit is incompatible
with the specified format according to table 8.27;

e the texture bound to the image unit has layers, and the selected layer or cube
map face doesn’t exist;

o the selected texel 7;; or 7;;; doesn’t exist;

Additionally, there are a number of cases where image load, store, size or
atomic operations are considered to involve a format mismatch. In such cases,
undefined values will be returned by image load, size and atomic operations and
undefined values will be written by image store and atomic operations. A format
mismatch will occur if:

o the type of image variable used to access the image unit does not match the
target of a texture bound to the image unit with layered set to TRUE;

o the type of image variable used to access the image unit does not match the
target corresponding to a single layer of a multi-layer texture target bound to
the image unit with layered set to FALSE;

o the type of image variable used to access the image unit has a component data
type (floating-point, signed integer, unsigned integer) incompatible with the
format of the image unit;

o the format layout qualifier for an image variable used for an image load or
atomic operation does not match the format of the image unit, according to
table 8.26; or

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES 220

e the image variable used for an image store has a format layout qualifier,
and that qualifier does not match the format of the image unit, according to
table 8.26.

Accesses to textures bound to image units do format conversions based on the
format argument specified when the image is bound. Loads always return a value
as a vec4, ivecd, or uvec4, and stores always take the source data as a vec4,
ivecd, or uvec4. Data are converted to/from the specified format according to
the process described for a TexImage2D or ReadPixels command with format and
type as RGBA and FLOAT for vec4 data, as RGBA_INTEGER and INT for ivec4
data, or as RGBA_INTEGER and UNSIGNED_INT for uvec4 data, respectively. Un-
used components are filled in with (0,0,0, 1) (where 0 and 1 are either floating-
point or integer values, depending on the format).

Any image variable used for shader loads or atomic operations must be de-
clared with a format 1ayout qualifier matching the format of its associated image
unit, as enumerated in table 8.26. Otherwise, the access is considered to involve a
format mismatch, as described above®.

Image Unit Format ‘ Format Qualifer

RGBA32F rgba32f
RGBAL1G6F rgbalé6f
R32F r32f
RGBA32UI rgba32ui
RGBA16UI rgbaléui
RGBA8UI rgba8ui
R32UI r32ui
RGBA321I rgba32i
RGBA161I rgbal6i
RGBABI rgba8i
R32T r321i
RGBAS8 rgbas
RGBAS8_SNORM rgba8_snorm

Table 8.26: Supported image unit formats, with equivalent format
layout qualifiers.

® The OpenGL Specification does not require that format qualifiers be declared for image vari-
ables used exclusively for image stores, unlike this Specification. This is an intentional behavior
difference.

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES 221

When a texture is bound to an image unit, the format parameter for the image
unit need not exactly match the texture internal format as long as the formats are
considered compatible. A pair of formats is considered to match in size if the cor-
responding entries in the Size column of table 8.27 are identical. A pair of formats
is considered to match by class if the corresponding entries in the Class column
of table 8.27 are identical. For textures allocated by the GL, an image unit format
is compatible with a texture internal format if they match by size. For textures
allocated outside the GL, format compatibility is determined by matching by size
or by class, in an implementation dependent manner. The matching criterion used
for a given texture may be determined by calling GetTexParameter with pname
set to IMAGE_FORMAT_COMPATIBILITY_TYPE, with return values of IMAGE_-
FORMAT_COMPATIBILITY BY SIZE and IMAGE_FORMAT COMPATIBILITY -
BY_CLASS, specifying matches by size and class, respectively.

When the format associated with an image unit does not exactly match the
internal format of the texture bound to the image unit, image loads, stores and
atomic operations re-interpret the memory holding the components of an accessed
texel according to the format of the image unit. The re-interpretation for image
loads and the read portion of atomic operations is performed as though data were
copied from the texel of the bound texture to a similar texel represented in the
format of the image unit. Similarly, the re-interpretation for image stores and the
write portion of atomic operations is performed as though data were copied from a
texel represented in the format of the image unit to the texel in the bound texture.
In both cases, this copy operation would be performed by:

e reading the texel from the source format to scratch memory according to
the process described for ReadPixels (see section 16), using default pixel
storage modes and format and type parameters corresponding to the source
format in table 8.27; and

o writing the texel from scratch memory to the destination format according to
the process described for TexSubImage3D (see section 8.6), using default
pixel storage modes and format and type parameters corresponding to the
destination format in table 8.27.

Image Format ‘ Size ‘ Class ‘ Pixel format ‘ Pixel type ‘

RGBA32F | 128 | 4x32 | RGBA | FLOAT
(Continued on next page)

OpenGL ES 3.2 (October 22, 2019)

8.23. TEXTURE IMAGE LOADS AND STORES

222

Texel sizes, compatibility classes ... (continued)
Image Format | Size | Class | Pixel format | Pixel type
RGBA1l6F 64 4x16 | RGBA HALF_FLOAT
R32F 32 1x32 | RED FLOAT
RGBA32UI 128 | 4x32 | RGBA_INTEGER | UNSIGNED_INT
RGBA16UI 64 4x16 | RGBA_INTEGER | UNSIGNED_SHORT
RGBASUI 32 4x8 RGBA_INTEGER | UNSIGNED_BYTE
R32UI 32 1x32 | RED_INTEGER UNSIGNED_INT
RGBA321I 128 | 4x32 | RGBA_INTEGER | INT
RGBA161 64 4x16 | RGBA_INTEGER | SHORT
RGBASI 32 4x8 RGBA_INTEGER | BYTE
R32I 32 1x32 | RED_INTEGER INT
RGBAS 32 4x8 RGBA UNSIGNED_BYTE
RGBAS_SNORM | 32 4x8 RGBA BYTE

Table 8.27: Texel sizes, compatibility classes, and pixel for-
mat/type combinations for each image format.

Implementations may support a limited combined number of image units,
shader storage blocks, and active fragment shader outputs (see section 14). A
link error will be generated if the sum of the number of active image uniforms
used in all shaders, the number of active shader storage blocks, and the number
of active fragment shader outputs exceeds the implementation-dependent value of
MAX_COMBINED_SHADER_OUTPUT_RESOURCES.

8.23.1 Image Unit Queries

The state required for each image unit is summarized in table 21.33 and may be
queried using the indexed query commands in that table. The initial values of
image unit state are described above for BindImageTexture.

OpenGL ES 3.2 (October 22, 2019)

Chapter 9

Framebuffers and Framebuffer
Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer.

Initially, the GL uses the window-system provided default framebuffer. The
storage, dimensions, allocation, and format of the images attached to this frame-
buffer are managed entirely by the window system. Consequently, the state of the
default framebuffer, including its images, can not be changed by the GL, nor can
the default framebuffer be deleted by the GL.

This chapter begins with an overview of the structure and contents of the frame-
buffer in section 9.1, followed by describing the commands used to create, destroy,
and modify the state and attachments of application-created framebuffer objects
which may be used instead of the default framebuffer.

9.1 Framebuffer Overview

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
For purposes of this discussion, each pixel in the framebuffer is simply a set of
some number of bits. The number of bits per pixel may vary depending on the GL
implementation, the type of framebuffer selected, and parameters specified when
the framebuffer was created. Creation and management of the default framebuffer
is outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 9.2.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, and stencil

223

9.1. FRAMEBUFFER OVERVIEW 224

buffers. The color buffer actually consists of a number of buffers, and these color
buffers serve related but slightly different purposes depending on whether the GL
is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front and the back buffers.
Typically the contents of the front buffer are displayed on a color monitor while
the contents of the back buffers are invisible; the GL draws to and reads from the
back buffer. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide back buffers. Further,
an implementation or context may choose not to provide depth or stencil buffers.
If no default framebuffer is associated with the GL context, the framebuffer is
incomplete except when a framebuffer object is bound (see sections 9.2 and 9.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object are
specified by attaching individual textures or renderbuffers (see section 9) to a set
of attachment points. A framebuffer object has an array of color buffer attachment
points, numbered zero through n, a depth buffer attachment point, and a stencil
buffer attachment point. In order to be used for rendering, a framebuffer object
must be complete, as described in section 9.4. Not all attachments of a framebuffer
object need to be populated.

Each pixel in a color buffer consists of up to four color components. The four
color components are named R, G, B, and A, in that order; color buffers are not
required to have all four color components. R, G, B, and A components may be
represented as signed or unsigned normalized fixed-point, floating-point, or signed
or unsigned integer values; all components must have the same representation.
Each pixel in a depth buffer consists of a single unsigned integer value in the format
described in section 12.6.1 or a floating-point value. Each pixel in a stencil buffer
consists of a single unsigned integer value.

The number of bitplanes in the color, depth, and stencil buffers is dependent
on the currently bound framebuffer. For the default framebuffer, the number of
bitplanes is fixed. For framebuffer objects, the number of bitplanes in a given
logical buffer may change if the image attached to the corresponding attachment
point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 9.2 describes the mechanism for controlling framebuffer usage.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 225

The default framebuffer is initially used as the draw and read framebuffer ',
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers can be queried as described in
section 9.2.3.

9.2 Binding and Managing Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer in a similar manner to
the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 9.2.4

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

The default framebuffer for rendering and readback operations is provided by
the window system. In addition, named framebuffer objects can be created and
operated upon. The name space for framebuffer objects is the unsigned integers,
with zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding an unused name (which may be
created by GenFramebuffers (see below)) to DRAW_FRAMEBUFFER Or READ_—
FRAMEBUFFER. The binding is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state and with the same initial values listed in table 21.15, as well
as one set of the state values listed in table 21.16 for each attachment point of the
framebuffer, with the same initial values. There are the value of MAX_COLOR_-
ATTACHMENTS color attachment points, plus one each for the depth and stencil
attachment points.

"The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 226

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the newly bound framebuffer object, and any previous
binding to target is broken.

If a framebuffer object is bound to DRAW_FRAMEBUFFER Or READ_-
FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer object is bound to the correspond-
ing bind point. Calling BindFramebuffer with target set to FRAMEBUFFER binds
framebuffer to both the draw and read targets.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

While a framebuffer object is bound, GL operations on the target to which it is
bound affect the images attached to the bound framebuffer object, and queries of
the target to which it is bound return state from the bound object. Queries of the
values specified in tables 21.56 and 21.15 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER, with the exception of those marked as properties
of the read framebuffer, which are derived from the framebuffer object bound to
READ_FRAMEBUFFER.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and de-
tached from these attachment points, which are described further in section 9.2.2.
Also, the size and format of the images attached to framebuffer objects are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

e The pixel ownership test always succeeds. In other words, framebuffer ob-

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 227

jects own all of their pixels.

e There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

e The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENTO through COLOR_-
ATTACHMENTR. Each COLOR_ATTACHMENT: adheres to COLOR_-—
ATTACHMENT? = COLOR_ATTACHMENTO + iz.

e The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

e The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

o If the attachment sizes are not all identical, the results of rendering are de-
fined only within the largest area that can fit in all of the attachments. This
area is defined as the intersection of rectangles having a lower left of (0, 0)
and an upper right of (width, height) for each attachment. Contents of at-
tachments outside this area are undefined after execution of a rendering com-
mand (as defined in section 2.4).

If there are no attachments, rendering will be limited to a rectangle having a
lower left of (0,0) and an upper right of (width, height), where width and
height are the framebuffer object’s default width and height.

e If the number of layers of each attachment are not all identical, rendering
will be limited to the smallest number of layers of any attachment. If there
are no attachments, the number of layers will be taken from the framebuffer
object’s default layer count.

The command
void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These
names are marked as used, for the purposes of GenFramebuffers only, but they
acquire state and type only when they are first bound.

2 The header files define tokens COLOR_ATTACHMENT; for 4 in the range [0,31]. Most
implementations support fewer than 32 color attachments, and it is an INVALID_OPERATION
error to pass an unsupported attachment name to a command accepting color attachment names.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 228

Errors
An INVALID_VALUE error is generated if # is negative.
Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_—
FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers that have been marked as used for the purposes of
GenFramebuffers are marked as unused again. Unused names in framebuffers are
silently ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if # is negative.
The command
boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer
is zero, or if framebuffer is a non-zero value that is not the name of a framebuffer
object, IsFramebuffer returns FALSE.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW_FRAMEBUFFER_BINDING
and READ_FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is
equivalent to DRAW_FRAMEBUFFER_BINDING.

9.2.1 Framebuffer Object Parameters

Parameters of a framebuffer object are set using the command

void FramebufferParameteri(enum target, enum pname,
int param);

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 229

The framebuffer object is that which is bound to rarget.

target ~must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

pname specifies the parameter of the framebuffer object bound to target to set.

When a framebuffer has one or more attachments, the width, height, layer count
(see section 9.8), sample count, and sample location pattern of the framebuffer
are derived from the properties of the framebuffer attachments. When the frame-
buffer has no attachments, these properties are taken from framebuffer parameters.
When pname is FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_—
HEIGHT, FRAMEBUFFER_DEFAULT_SAMPLES, orf FRAMEBUFFER_DEFAULT_-
LAYERS, FRAMEBUFFER DEFAULT_ FIXED SAMPLE LOCATIONS, param Speci-
fies the width, height, layer count, sample count, or sample location pattern, re-
spectively, used when the framebuffer has no attachments.

When a framebuffer has no attachments, it is considered layered (see sec-
tion 9.8) if and only if the value of FRAMEBUFFER_DEFAULT_LAYERS iS non-zero.
It is considered to have sample buffers if and only if the value of FRAMEBUFFER_—
DEFAULT_SAMPLES is non-zero. The number of samples in the framebuffer is de-
rived from the value of FRAMEBUFFER_DEFAULT_SAMPLES in an implementation-
dependent manner similar to that described for the command RenderbufferStor-
ageMultisample (see section 9.2.4). If the framebuffer has sample buffers and
the value of FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS is non-zero,
it is considered to have a fixed sample location pattern as described for TexStor-
age2DMultisample (see section 8.8).

Errors

An INVALID_ENUM error is generated if farget is not DRAW -
FRAMEBUFFER, READ_FRAMEBUFFER, Oor FRAMEBUFFER.

An INVALID_ENUM error is generated if prname is not FRAMEBUFFER -
DEFAULT_WIDTH, FRAMEBUFFER DEFAULT_HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_DEFAULT_SAMPLES, Or
FRAMEBUFFER DEFAULT FIXED_SAMPLE_LOCATIONS.

An INVALID_VALUE error is generated if pname is FRAMEBUFFER_-—
DEFAULT_WIDTH, FRAMEBUFFER DEFAULT_HEIGHT, FRAMEBUFFER_ -
DEFAULT_LAYERS, or FRAMEBUFFER_DEFAULT_SAMPLES, and param is ei-
ther negative or greater than the value of the corresponding implementation-
dependent limit MAX_FRAMEBUFFER_WIDTH, MAX_ FRAMEBUFFER_HEIGHT,
MAX_FRAMEBUFFER_LAYERS, Oor MAX_ FRAMEBUFFER SAMPLES, respec-
tively.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 230

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target.

9.2.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 21.16.

There are several types of framebuffer-attachable images:

e The image of a renderbuffer object, which is always two-dimensional.
o A single level of a two-dimensional or two-dimensional multisample texture.

e A single face of a cube map texture level, which is treated as a two-
dimensional image.

e A single layer of a two-dimensional array texture, two-dimensional mul-
tisample array texture, or three-dimensional texture, which is treated as a
two-dimensional image.

e A single layer-face of a cube map array texture, which is treated as a two-
dimensional image.

9.2.2.1 Layered Images

Additionally, an entire level of a three-dimensional, cube map, cube map array,
two-dimensional array, or two-dimensional multisample array texture can be at-
tached to an attachment point. Such attachments are treated as an array of two-
dimensional images, arranged in layers, and the corresponding attachment point is
considered to be layered (also see section 9.8).

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 231

9.2.3 Framebuffer Object Queries

Parameters of a framebuffer object may be queried with the command

void GetFramebufferParameteriv(enum farget, enum pname,
int *params);

The framebuffer object is that which is bound to rarget.

target ~must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

pname specifies the parameter of the framebuffer object bound to target to get.

pname may be one of FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER -
DEFAULT_HEIGHT, FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_-
DEFAULT_SAMPLES, or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_-
LOCATIONS, indicating one of the corresponding parameters set with Frame-
bufferParameteri (see section 9.2.1). These values may only be queried from a
framebuffer object, not from a default framebuffer.

The value of parameter pname for the framebuffer object is returned in params.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_ENUM error is generated if pname is not one of the valid
values listed above.

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target.

Attachments of a framebuffer object or buffers of a default framebuffer may be
queried with the commands

void GetFramebufferAttachmentParameteriv(enum farget,
enumn attachment, enum pname, int *params);

The framebuffer object is that which is bound to target.

target ~must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, Or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If the default framebuffer is bound to farget, then attachment must be BACK,
identifying the color buffer; DEPTH, identifying the depth buffer; or STENCIL,
identifying the stencil buffer.

Otherwise, attachment must be one of the attachment points of the framebuffer
listed in table 9.1.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 232

If attachment is DEPTH_STENCIIL_ATTACHMENT, the same object must be
bound to both the depth and stencil attachment points of the framebuffer object,
and information about that object is returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, then one
of the following conditions is true:

e no framebuffer is bound to target, or
e the default framebuffer is bound, and

— attachment is DEPTH or STENCIL, and the number of depth or stencil
bits, respectively, is zero; or,

— attachment does not indicate one of the color buffers allocated to the
default framebuffer.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, query-
ing pname FRAMEBUFFER_ATTACHMENT_OBJECT_NAME will return zero, and the
only other valid query is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE iS not NONE,
these queries apply to all other framebuffer types:

e If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_—

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-—
SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_ STIZE, FRAMEBUFFER_-
ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_ -

STENCIL_SIZE, then params will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of
the specified attachment. 1If the requested component is not present in
attachment, or if no data storage or texture image has been specified for the
attachment, then params will contain zero.

o If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, params will
contain the format of components of the specified attachment, one of FLOAT,
INT, UNSIGNED_INT, SIGNED_NORMALIZED, Or UNSIGNED_NORMALIZED
for floating-point, signed integer, unsigned integer, signed normalized fixed-
point, or unsigned normalized fixed-point components respectively. If

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 233

no data storage or texture image has been specified for the attachment,
params will contain NONE. This query cannot be performed for a combined
depth+stencil attachment, since it does not have a single format.

o If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, params will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sSRGB-encoded components, respectively.
Only color buffer components may be sSRGB-encoded; such components are
treated as described in sections 15.1.5 and 15.1.6. For the default frame-
buffer, color encoding is determined by the implementation. For frame-
buffer objects, components are SRGB-encoded if the internal format of a
color attachment is one of the color-renderable SRGB formats described in
section 8.21. If attachment is not a color attachment, or no data storage or
texture image has been specified for the attachment, params will contain the
value LINEAR.

If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_ TYPE iS
RENDERBUFFER, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

o If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

e If pname is FRAMEBUFFER_ATTACHMENT TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the texture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

e If pname is FRAMEBUFFER_ATTACHMENT_LAYERED, then params will con-
tain TRUE if the attachment point is layered (see section 9.2.2.1). Otherwise,
params will contain FALSE.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 234

e If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a three-
dimensional texture or a two-dimensional array texture, and the value of
FRAMEBUFFER_ATTACHMENT_LAYERED is FALSE, then params will con-
tain the texture layer which contains the attached image. Otherwise params
will contain zero.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target and attachment is not BACK, DEPTH, or STENCIL.

An INVALID_ OPERATION error is generated if a framebuffer object is
bound to farget and attachment is COLOR_ATTACHMENTm where m is greater
than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if a framebuffer object is bound to
target, attachment is not one of the attachments in table 9.1, and attachment
is not COLOR_ATTACHMENTm where m is greater than or equal to the value of
MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated by any combinations of framebuffer
type and pname not described above.

An INVALID_OPERATION er-
ror is generated if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE
is NONE and pname is not FRAMEBUFFER_ATTACHMENT OBJECT_NAME or
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

An INVALID_OPERATION error is generated if attachment is DEPTH_ -
STENCIL_ATTACHMENT and pname is FRAMEBUFFER_ATTACHMENT_ —
COMPONENT_TYPE.

An INVALID_OPERATION error is generated if attachment is DEPTH_—
STENCIL_ATTACHMENT and different objects are bound to the depth and sten-
cil attachment points of rarget.

9.2.3.1 Multisample Queries

The values of SAMPLE_BUFFERS and SAMPLES control whether and how multi-
sampling is performed (see section 13.4). They are framebuffer-dependent con-
stants derived from the attachments of a framebuffer object or the buffers of a
default framebuffer, but may only be queried directly for the currently bound

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 235

draw framebuffer, by calling GetIntegerv with pname set to SAMPLE_BUFFERS
or SAMPLES.

While there is no API for querying the values of SAMPLE_BUFFERS and
SAMPLES for a framebuffer object or default framebuffer which is not bound as
the draw framebuffer, the effective values of these parameters exist, and are deter-
mined as defined in this section. These effective values are referred to in a number
of places in the Specification.

If a framebuffer object or default framebuffer is not framebuffer complete,
as defined in section 9.4.2, then the effective values of SAMPLE_BUFFERS and
SAMPLES are undefined.

Otherwise, the effective value of SAMPLES is equal to the value of
RENDERBUFFER_SAMPLES or TEXTURE_SAMPLES (depending on the type of the
attached images), which must all have the same value. The effective value of
SAMPLE_BUFFERS is one if SAMPLES is non-zero, and zero otherwise.

9.2.4 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable in-
ternal format. The commands described below allocate and delete a renderbuffer’s
image, and attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved by the GL.

A renderbuffer object is created by binding a name (which may be created by
GenRenderbuffers (see below)) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising all the
state and with the same initial values listed in table 21.17. Any previous binding to
target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 236

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to farget is broken
and the rarget binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 9.2.6.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER_BINDING.

Errors
An INVALID_ENUM error is generated if farget is not RENDERBUFFER.
The command
void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound.

Errors
An INVALID_VALUE error is generated if 7 is negative.
Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the farget RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 9.2.7).
Unused names in renderbuffers that have been marked as used for the purposes of
GenRenderbuffers are marked as unused again. Unused names in renderbuffers
are silently ignored, as is the value zero.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 237

Errors

An INVALID_VALUE error is generated if # is negative.
The command
boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer returns FALSE.

The command

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. farget must be RENDERBUFFER. internalformat must be
a sized internal format that is color-, depth-, or stencil-renderable, as defined in
section 9.4. width and height are the dimensions in pixels of the renderbuffer.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents of the data store after call-
ing RenderbufferStorageMultisample are undefined. RENDERBUFFER_WIDTH
is set to width, RENDERBUFFER_HEIGHT is set to height, and RENDERBUFFER_ -
INTERNAL_FORMAT is set to internalformat.

If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise
samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_ -
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorage parameter (except farget), but the allocation
and chosen internal format must not be a function of any other state and cannot be
changed once they are established.

Errors

An INVALID_ENUM error is generated if farget is not RENDERBUFFER.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS

An INVALID_VALUE error is generated if samples, width, or height is neg-
ative.

An INVALID_OPERATION error is generated if samples is greater than the
maximum number of samples supported for internalformat (see GetInternal-
formativ in section 20.3).

An INVALID_ENUM error is generated if infernalformat is not a sized
internal format that is color-, depth-, or stencil-renderable, as defined in sec-
tion 9.4.

An INVALID_VALUE error is generated if either width or height is greater
than the value of MAX_RENDERBUFFER_SIZE.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to
Zero.
9.2.5 Required Renderbuffer Formats

Implementations are required to support the following sized and compressed in-
ternal formats. Requesting one of these sized internal formats for a renderbuffer
will allocate at least the internal component sizes, and exactly the component types
shown for that format in the corresponding table:

e Color formats which are checked in the “Req. rend.” column of table 8.10.

e Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.11.

The required color formats for renderbuffers are a subset of the required for-
mats for textures (see section 8.5.1).

Implementations must support creation of renderbuffers in these required for-
mats with the following numbers of multisamples:

e For signed and unsigned integer formats, up to the value of MAX_INTEGER_-
SAMPLES, which must be at least one.

e For formats RGBA16F, R32F, RG32F and RGBA32F, one sample.

e For all other formats, up to the value of MAX_SAMPLES samples.

OpenGL ES 3.2 (October 22, 2019)

238

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 239

9.2.6 Renderbuffer Object Queries

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int *params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 21.17.

If pname is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT,
RENDERBUFFER_INTERNAL_FORMAT, oOr RENDERBUFFER_SAMPLES, then
params will contain the width in pixels, height in pixels, internal format, or
number of samples, respectively, of the image of the renderbuffer currently bound
to target.

If pname is RENDERBUFFER RED_SIZE, RENDERBUFFER_GREEN_-—
SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_STIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when the
image was defined) for the red, green, blue, alpha, depth, or stencil components,
respectively, of the image of the renderbuffer currently bound to target.

Errors

An INVALID_ENUM error is generated if farget is not RENDERBUFFER.

An INVALID_ENUM error is generated if pname is not one of the render-
buffer state names in table 21.17.

An INVALID_OPERATION error is generated if the renderbuffer currently
bound to target is zero.

9.2.7 Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of a currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enumn attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

attachment must be set to one of the attachment points of the framebuffer listed
in table 9.1.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 240

renderbuffertarget must be RENDERBUFFER and renderbuffer is zero or the
name of a renderbuffer object of type renderbuffertarget to be attached to
the framebuffer. If renderbuffer is zero, then the value of renderbuffertarget is
ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful, then
the renderbuffer named renderbuffer will be used as the logical buffer identified
by attachment of the framebuffer object currently bound to target. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 21.16. No change is
made to the state of the renderbuffer object and any previous attachment to the
attachment logical buffer of the framebuffer object bound to framebuffer rarget is
broken. If the attachment is not successful, then no change is made to the state of
either the renderbuffer object or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer object currently
bound to target. All state values of the attachment point specified by attachment in
the object bound to farget are set to their default values listed in table 21.16.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCTIL.

If a renderbuffer object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of zero, for each attachment
point to which this image was attached in that framebuffer object. In other words,
the renderbuffer image is first detached from all attachment points in that frame-
buffer object. Note that the renderbuffer image is specifically not detached from
any non-bound framebuffers. Detaching the image from any non-bound frame-
buffers is the responsibility of the application.

Name of attachment ‘

COLOR_ATTACHMENT? (see caption)
DEPTH_ATTACHMENT
STENCIL_ATTACHMENT
DEPTH_STENCIL_ATTACHMENT

Table 9.1: Framebuffer attachment points. ¢ in COLOR_ATTACHMENT{ may range
from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 241

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if attachment is COLOR_-
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_ -
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and atfachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_ COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if renderbuffertarget is not
RENDERBUFFER.

An INVALID_OPERATION error is generated if renderbuffer is not zero or
the name of an existing renderbuffer object of type renderbuffertarget.

An INVALID_OPERATION error is generated if zero is bound to farget.

9.2.8 Attaching Texture Images to a Framebuffer

The GL supports copying the rendered contents of the framebuffer into the images
of a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage®*. Additionally, the GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified level of a texture object can
be attached as one of the logical buffers of a framebuffer object with the command

void FramebufferTexture(enum target, enum attachment,
uint texture, int level);

The framebuffer object is that which is bound to rarget.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

attachment must be one of the attachment points of the framebuffer listed in
table 9.1.

If texture is non-zero, the specified mipmap level of the texture object named
texture is attached to the framebuffer attachment point named by attachment.

If texture is the name of one of the types of textures described in the definition
of layered textures in section 9.2.2.1, the texture level attached to the framebuffer
attachment point is an array of images, and the framebuffer attachment is consid-
ered layered.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 242

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_OPERATION error is generated if atfachment is COLOR_—
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_VALUE error is generated if fexture is not zero and is not the
name of a texture object, or if level is not a supported texture level for fexture.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

Additionally, a specified image from a texture object can be attached as one of
the logical buffers of a framebuffer object with the command

void FramebufferTexture2D(enum target, enum attachment,
enum fextarget, uint texture, int level);

The framebuffer object is that which is bound to rarget.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

attachment must be one of the attachment points of the framebuffer listed in
table 9.1.

If texture is not zero, then fexture must either name an existing two-dimensional
texture object and fextarget must be TEXTURE_2D, fexture must name an existing
cube map texture and fextarget must be one of the cube map face targets from
table 8.20, or fexture must name an existing multisample texture and textarget must
be TEXTURE_2D_MULTISAMPLE.

level specifies the mipmap level of the texture image to be attached to the
framebuffer, and must satisfy the following conditions:

o If texture refers to an immutable-format texture, level must be greater than or
equal to zero and smaller than the value of TEXTURE_IMMUTABLE_LEVELS
for texture.

o If textarget is TEXTURE_2D_MULTISAMPLE, then /evel must be zero.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 243

o If textarget is one of the cube map face targets from table 8.20, then level
must be greater than or equal to zero and less than or equal to logs of the
value of MAX_CUBE_MAP_TEXTURE_SIZE.

o If textarget is TEXTURE_2D, level must be greater than or equal to zero and
no larger than logs of the value of MAX_TEXTURE_SIZE.

Errors

An INVALID_ENUM error is generated if farget is not DRAW -
FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

An INVALID_OPERATION error is generated if attachment is COLOR -
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and atfachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_VALUE error is generated if fexture is not zero and level is
not a supported texture level for textarget, as described above.

An INVALID_OPERATION error is generated if fexture is not zero and fex-
target is not one of TEXTURE_ 2D, TEXTURE_2D_MULTISAMPLE, or one of the
cube map face targets from table 8.20.

An INVALID_OPERATION error is generated if texture is not zero, and
does not name an existing texture object of type matching textarget, as de-
scribed above.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

A single layer of a three-dimensional or array texture object can be attached as
one of the logical buffers of a framebuffer object with the command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

This command operates similarly to FramebufferTexture2D, except for the addi-
tional layer argument which selects a layer of the texture object to attach.

layer specifies the layer of a two-dimensional image within fexture, except for
cube map and cube map array textures. For cube map textures, layer is translated

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 244

into a cube map face as described in table 8.24. For cube map array textures, layer
is translated into an array layer and a cube map face as described for layer-face
numbers in section 8.5.3.

level specifies the mipmap level of the texture image to be attached to the
framebuffer, and must satisfy the following conditions:

o If texture refers to an immutable-format texture, /evel must be greater than or
equal to zero and smaller than the value of TEXTURE_IMMUTABLE_LEVELS
for texture.

o If texture is a three-dimensional texture, then level must be greater than
or equal to zero and less than or equal to logs of the value of MAX_3D_-
TEXTURE_SIZE.

o If texture is a two-dimensional array texture, then level must be greater
than or equal to zero and less than or equal to logy of the value of MAX_—
TEXTURE_SIZE.

o If texture is a two-dimensional multisample array texture, then level must be
Zero.

Errors

In addition to the corresponding errors for FramebufferTexture when
called with the same parameters (other than layer):

An INVALID_VALUE error is generated if zexture is a three-dimensional
texture, and layer is larger than the value of MAX_ 3D_TEXTURE_SIZE minus
one.

An INVALID_ VALUE error is generated if fexture is a two-dimensional ar-
ray, two-dimensional multisample array or cube map array texture, and layer
is larger than the value of MAX ARRAY TEXTURE_LAYERS minus one (see
section 9.8).

An INVALID_VALUE error is generated if texture is non-zero and layer is
negative.

An INVALID_OPERATION error is generated if fexture is non-zero and is
not the name of a three-dimensional, two-dimensional array, two-dimensional
multisample array or cube map array texture.

An INVALID_VALUE error is generated if fexture is not zero and level is
not a supported texture level for fexture, as described above.

Unlike FramebufferTexture2D, no fextarget parameter is accepted.

OpenGL ES 3.2 (October 22, 2019)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 245

If texture is non-zero and the command does not result in an error, the frame-
buffer attachment state corresponding to attachment is updated as in Framebuffer-
Texture2D commands, except that the value of FRAMEBUFFER_ATTACHMENT_ -
TEXTURE_LAYER is set to layer.

9.2.8.1 Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of FramebufferTex-
ture*.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 21.16.

If texture is not zero, and if FramebufferTexture* is successful, then the spec-
ified texture image will be used as the logical buffer identified by attachment of the
framebuffer object currently bound to target. State values of the specified attach-
ment point are set as follows:

e The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

e The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.
e The value of FRAMEBUFFER_ATTACHMENT_ TEXTURE_LEVEL is set to level.

o If FramebufferTexture2D is called and fexture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to the default value (NONE).

o If FramebufferTextureLayer is called, then the value of FRAMEBUFFER_—
ATTACHMENT_TEXTURE_LAYER is set to layer; otherwise it is set to zero.

o If FramebufferTexture is called and fexture is the name of one of the types
of textures described in the definition of layered textures in section 9.2.2.1,
the value of FRAMEBUFFER_ATTACHMENT_LAYERED is set to TRUE; other-
wise it is set to FALSE.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 21.16. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer farget is broken. If the attachment is not

OpenGL ES 3.2 (October 22, 2019)

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER246

successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to fexture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 9.4.1).

If a texture object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Frame-
bufferTexture* had been called, with a texture of zero, for each attachment point
to which this image was attached in that framebuffer object. In other words, the
texture image is first detached from all attachment points in that framebuffer ob-
ject. Note that the texture image is specifically not detached from any non-bound
framebuffer objects. Detaching the texture image from any non-bound framebuffer
objects is the responsibility of the application.

9.3 Feedback Loops Between Textures and the Frame-
buffer

A feedback loop may exist when the data store of a texture object is used as both
the source and destination of a GL operation. When a feedback loop exists, un-
defined behavior results. This section describes rendering feedback loops (see
section 8.14.2.1) and texture copying feedback loops (see section 8.6.1) in more
detail.

9.3.1 Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a two-
dimensional texture level, a face of a cube map texture level, or a layer of a three-
dimensional texture from being attached to the draw framebuffer while the same
texture is bound to a texture unit. While this condition holds, texturing operations
accessing that image will produce undefined results, as described at the end of
section 8.14. Conditions resulting in such undefined behavior are defined in more
detail below. Such undefined texturing operations are likely to leave the final results
of fragment processing operations undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound draw framebuffer object while the texture object is currently bound
and enabled for texturing. Doing so could lead to the creation of a rendering feed-
back loop between the writing of pixels by GL rendering operations and the simul-
taneous reading of those same pixels when used as texels in the currently bound

OpenGL ES 3.2 (October 22, 2019)

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER2477

texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 9.4), but the values of fragments rendered while in this state will be
undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 8.14.2.1

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

e animage from texture object 7'is attached to the currently bound draw frame-
buffer object at attachment point A

e the texture object 7T is currently bound to a texture unit U, and

e the current programmable vertex and/or fragment processing state makes it
possible (see below) to sample from the texture object 7 bound to texture
unit U

while either of the following conditions are true:

e the value of TEXTURE_MIN_FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL
for attachment point A is equal to the value of TEXTURE_BASE_LEVEL for
the texture object T

e the value of TEXTURE_MIN_FILTER for texture object 7 is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR —
MIPMAP_NEAREST, or LINEAR_MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the range specified by the current values of TEXTURE_BASE_LEVEL
to g, inclusive, for the texture object 7. g is defined in section 8.14.3.

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if the active fragment or vertex shader contains
any instructions that might sample from the texture object 7 bound to U, even if
those instructions might only be executed conditionally.

Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL exclude any
levels containing image(s) attached to the currently bound draw framebuffer object,
then the above conditions will not be met (i.e., the above rule will not cause the
values of rendered fragments to be undefined.)

Also note that even if writing to a given texture is disabled (e.g. via the color,
depth, or stencil writemasks) during rendering, a feedback loop will still occur.

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 248

9.3.2 Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be at-
tached to the currently bound read framebuffer object while the same texture im-
age is the destination of a CopyTexImage* operation, as described under “Texture
Copying Feedback Loops” in section 8.6.1. While this condition holds, a texture
copying feedback loop between the writing of texels by the copying operation and
the reading of those same texels when used as pixels in the read framebuffer may
exist. In this scenario, the values of texels written by the copying operation will be
undefined.

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

e an image from texture object 7 is attached to the currently bound read frame-
buffer object at attachment point A

o the selected read buffer (see section 16.1.1) is attachment point A
e Tis bound to the texture target of a CopyTexImage* operation

o the /evel argument of the copying operation selects the same image that is
attached to A

9.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

e Aninternal format is color-renderable if it is one of the sized internal formats
from table 8.10 whose “CR” (color-renderable) column is checked in that

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 249

table, or if it is unsized, non-floating-point format RGB or RGBA. No other
formats, including compressed internal formats, are color-renderable.

e An internal format is depth-renderable if it is one of the formats from ta-
ble 8.11 whose base internal format is DEPTH_COMPONENT or DEPTH_-
STENCIL. No other formats are depth-renderable.

e An internal format is stencil-renderable if it is one of the formats from
table 8.11 whose base internal format is STENCIL_INDEX or DEPTH -
STENCIL. No other formats are stencil-renderable.

9.4.1 Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point atfachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in atfachment as described in section 9.2.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

e image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

e The width and height of image are greater than zero and less than or equal
to the values of the implementation-dependent limits MAX_FRAMEBUFFER_—
WIDTH and MAX_FRAMEBUFFER_HEIGHT, respectively.

o If image is a three-dimensional, two-dimensional array or cube map array
texture and the attachment is not layered, the selected layer is less than the
depth or layer count, respectively, of the texture.

o If image is a three-dimensional, two-dimensional array or cube map array
texture and the attachment is layered, the depth or layer count of the texture is
less than or equal to the value of the implementation-dependent limit MAX_—
FRAMEBUFFER_LAYERS.

o If image has multiple samples, its sample count is less than or equal to
the value of the implementation-dependent limit MAX_FRAMEBUFFER_—
SAMPLES.

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 250

e If image is not an immutable-format texture, the selected level number is in
the range [levelpyse, q], where levelpqse and g are as defined in section 8.14.3.

e If image is not an immutable-format texture and the selected level is not
levelpyse, the texture must be mipmap complete; if image is part of a cube-
map texture, the texture must also be mipmap cube complete.

o If attachment is COLOR_ATTACHMENT:, then image must have a color-
renderable internal format.

o If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

e If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.
9.4.2 Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations” in section 9.4.4. Note that the error token
FRAMEBUFFER_INCOMPLETE_DIMENSIONS is included in the API for OpenGL
ES 2.0 compatibility, but cannot be generated by an OpenGL ES 3.0 or later im-
plementation.

The framebuffer object bound to target is said to be framebuffer complete if all
the following conditions are true:

o if target is the default framebuffer, the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

o All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

e There is at least one image attached to the framebuffer, or the value of
the framebuffer’s FRAMEBUFFER_DEFAULT_WIDTH and FRAMEBUFFER_—
DEFAULT_HEIGHT parameters are both non-zero.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 251

e The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

e Depth and stencil attachments, if present, are the same image.

{ FRAMEBUFFER_UNSUPPORTED }

e The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; the value of TEXTURE_SAMPLES is the same for all attached tex-
tures; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_ -
SAMPLES.

FRAMEBUFFER_INCOMPLETE_MULTISAMPLE

e The value of TEXTURE_FIXED_SAMPLE_LOCATIONS is the same for all
attached textures; and, if the attached images are a mix of renderbuffers
and textures, the value of TEXTURE_FIXED_SAMPLE_LOCATIONS must be
TRUE for all attached textures.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

o If any framebuffer attachment is layered, all populated attachments must
be layered. Additionally, all populated color attachments must be from
textures of the same target (three-dimensional, two-dimensional array two-
dimensional multisample array, cube map, or cube map array textures.

{ FRAMEBUFFER_INCOMPLETE_LAYER_ TARGETS }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

e Binding to a different framebuffer with BindFramebuffer.

e Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 252

e Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

e Changing the internal format of a texture image that is attached to the frame-
buffer by calling TexImage*, TexStorage*, CopyTexImage*, or Com-
pressed TexImage*.

e Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage™.

e Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a currently bound framebuffer object.

e Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.6.3.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 9.4.3.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum rarget);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, oOr
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

A value is returned that identifies whether or not the framebuffer object or
default framebuffer bound to target is complete when treated as a read or draw
framebuffer (as determined by targer). If the framebuffer object is complete, then
FRAMEBUFFER_COMPLETE i8 returned. Otherwise, the value returned is one of
the error codes defined as the start of section 9.4.2 identifying one of the rules of
framebuffer completeness that is violated.

If CheckFramebufferStatus generates an error, zero is returned.

OpenGL ES 3.2 (October 22, 2019)

9.4. FRAMEBUFFER COMPLETENESS 253

Errors

An INVALID_ENUM error is generated if target is not DRAW_-—
FRAMEBUFFER, READ_FRAMEBUFFER, Oor FRAMEBUFFER.

9.4.3 Required Framebuffer Formats

Implementations must support framebuffer objects with up to MAX_COLOR_-—
ATTACHMENTS color attachments, a depth attachment, and a stencil attachment.
Each color attachment may be in any of the color-renderable formats described in
section 9.4. The depth attachment may be in any of the required depth or combined
depth+stencil formats described in sections 8.5.1 and 9.2.5, and the stencil attach-
ment may be in any of the required stencil or combined depth+stencil formats.
However, when both depth and stencil attachments are present, implementations
must not support framebuffer objects where depth and stencil attachments refer to
separate images.

9.4.4 Effects of Framebuffer Completeness on Framebuffer Opera-
tions

Errors

An INVALID_FRAMEBUFFER_OPERATION error is generated by attempts
to render to or read from a framebuffer which is not framebuffer complete.
This error is generated regardless of whether fragments are actually read from
or written to the framebuffer. For example, it is generated when a rendering
command is called and the framebuffer is incomplete, even if RASTERIZER_—
DISCARD is enabled.

An INVALID_FRAMEBUFFER_OPERATION error is generated by render-
ing commands (see section 2.4), and commands that read from the frame-
buffer such as ReadPixels, CopyTexImage*, and CopyTexSubIlmage®*, if
called while the framebuffer is not framebuffer complete.

9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 21.56 may change when a change
is made to the current framebuffer binding, to the state of the currently bound
framebuffer object, or to an image attached to that framebuffer object. Most such
state is dependent on the draw framebuffer (DRAW_FRAMEBUFFER_BINDING),
but IMPLEMENTATION_COLOR_READ_TYPE and IMPLEMENTATION_COLOR_—

OpenGL ES 3.2 (October 22, 2019)

9.5. MAPPING BETWEEN PIXEL AND ELEMENT IN ATTACHED IMAGE254

READ_FORMAT are dependent on the read framebuffer (READ_FRAMEBUFFER_-
BINDING).

When the relevant framebuffer binding is zero, the values of the state variables
listed in table 21.56 are implementation defined.

When the relevant framebuffer binding is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 21.56 are undefined.

When the relevant framebuffer binding is non-zero and the currently bound
draw framebuffer object is framebuffer complete, then the values of the state vari-
ables listed in table 21.56 are completely determined by the relevant framebuffer
binding, the state of the currently bound framebuffer object, and the state of the
images attached to that framebuffer object. The values of RED_BITS, GREEN_—
BITS, BLUE_BITS, and ALPHA_BITS are defined only if all color attachments
of the draw framebuffer have identical formats, in which case the color component
depths of color attachment zero are returned. The values returned for DEPTH_BITS
and STENCIL_BITS are the depth or stencil component depth of the corresponding
attachment of the draw framebuffer, respectively.

The actual sizes of the color, depth, or stencil bit planes can be obtained by
querying an attachment point using GetFramebufferAttachmentParameteriv,
or querying the object attached to that point. If the value of FRAMEBUFFER_—
ATTACHMENT_OBJECT_TYPE at a particular attachment point is RENDERBUFFER,
the sizes may be determined by calling GetRenderbufferParameteriv as de-
scribed in section 9.2.6.

9.5 Mapping between Pixel and Element in Attached Im-
age

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(Zw, Yuw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (., y)
correspond to the texel (7, j, k) from figure 8.6 as follows:

OpenGL ES 3.2 (October 22, 2019)

9.6. CONVERSION TO FRAMEBUFFER-ATTACHABLE IMAGE COMPONENTS?255

k = layer

where layer is the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for
the selected logical buffer. For a two-dimensional texture, k£ and layer are irrele-
vant.

9.6 Conversion to Framebuffer-Attachable Image Com-
ponents

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 8.8, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 15.2.2 are also effective.

9.7 Conversion to RGBA Values

When a color value is read while the read framebuffer binding is non-zero, or is
used as the source of blending while the draw framebuffer binding is non-zero,
components of that color taken from the framebuffer-attachable image attached to
the selected logical buffer are first converted to R, G, B, and A values according to
table 14.1 and the internal format of the attached image.

9.8 Layered Framebuffers

A framebuffer is considered to be layered if it is complete and all of its populated
attachments are layered, as described in section 9.2.8. When rendering to a layered
framebuffer, each fragment generated by the GL is assigned a layer number. The
layer number for a fragment is zero if

e geometry shaders are disabled, or

o the current geometry shader does not statically assign a value to the built-in
output variable g1_TLayer.

Otherwise, the layer for each point, line, or triangle emitted by the geometry
shader is taken from the g1_Layer output of one of the vertices of the primitive.

OpenGL ES 3.2 (October 22, 2019)

9.8. LAYERED FRAMEBUFFERS 256

The vertex used is implementation-dependent and may be queried as described in
section 11.3.4. To get defined results, all vertices of each primitive emitted should
set the same value for gl_Layer. Since the EndPrimitive built-in function
starts a new output primitive, defined results can be achieved if EndPrimitive is
called between two vertices emitted with different layer numbers. A layer number
written by a geometry shader has no effect if the framebuffer is not layered.

When fragments are written to a layered framebuffer, the fragment’s layer num-
ber selects an image from the array of images at each attachment point to use for
the stencil test (see section 15.1.2), depth buffer test (see section 15.1.3), and for
blending and color buffer writes (see section 15.1.5). If the fragment’s layer num-
ber is negative, or greater than or equal to the minimum number of layers of any
attachment, the effects of the fragment on the framebuffer contents are undefined.

When the Clear or ClearBuffer* commands described in section 15.2.3 are
used to clear a layered framebuffer attachment, all layers of the attachment are
cleared.

When commands such as ReadPixels read from a layered framebuffer, the
image at layer zero of the selected attachment is always used to obtain pixel values.

When cube map texture levels are attached to a layered framebuffer, there are
six layers, numbered zero through five. Each layer number corresponds to a cube
map face, as shown in table 8.24.

When cube map array texture levels are attached to a layered framebuffer, the
layer number corresponds to a layer-face. The layer-face is be translated into an
array layer and a cube map face as described in section 8.23 for layer-face numbers
passed to BindImageTexture.

OpenGL ES 3.2 (October 22, 2019)

Chapter 10

Vertex Specification and Drawing
Commands

Most geometric primitives are drawn by specifying a series of generic attribute sets
corresponding to the vertices of a primitive using DrawArrays or one of the other
drawing commands defined in section 10.5. Points, lines, polygons, and a variety
of related geometric primitives (see section 10.1) can be drawn in this way.

The process of specifying attributes of a vertex and passing them to a shader is
referred to as transferring a vertex to the GL.

Vertex Shader Processing and Vertex State

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values.

Generic vertex attributes can be accessed from within vertex shaders (see sec-
tion 11.1) and used to compute values for consumption by later processing stages.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 10.1 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it is
clipped to a clip volume. This may modify the primitive by altering vertex coordi-
nates and vertex shader outputs. In the case of line and polygon primitives, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have output variables associated with them.

257

258

Coordinates
Vertex Shaded
Shader Vertices
Execution
Outputs o
Generic
Vertex
Attributes

Point,

Line Segment, or
Triangle
(Primitive)
Assembly

Point Culling,
Line Segment
or Triangle
Clipping

Rasterization

Primitive Type

(from Draw* mode)

Figure 10.1. Vertex processing and primitive assembly.

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 259

10.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 10.5. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. Primitive types and the corresponding mode parameters are summa-
rized below.

10.1.1 Points

A series of individual points are specified with mode POINTS. Each vertex defines
a separate point.

10.1.2 Line Strips

A series of one or more connected line segments are specified with mode LINE_ -
STRIP. In this case, the first vertex specifies the first segment’s start point while
the second vertex specifies the first segment’s endpoint and the second segment’s
start point. In general, the ¢th vertex (for ¢ > 1) specifies the beginning of the ith
segment and the end of the ¢ — 1st. The last vertex specifies the end of the last
segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

10.1.3 Line Loops

A line loop is specified with mode L.INE_LOOP. Loops are the same as line strips
except that a final segment is added from the final specified vertex to the first vertex.
The required state consists of the processed first vertex, in addition to the state
required for line strips.

10.1.4 Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with mode
LINES. The first two vertices passed define the first segment, with subsequent pairs
of vertices each defining one more segment. If the number of vertices passed is
odd, then the last vertex is ignored. The state required is the same as for line strips
but it is used differently: a processed vertex holding the first vertex of the current

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 260

NN

1 3

(@) (b) ()

Figure 10.2. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

segment, and a boolean flag indicating whether the current vertex is odd or even (a
segment start or end).

10.1.5 Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is spec-
ified with mode TRIANGLE_STRIP. In this case, the first three vertices define the
first triangle (and their order is significant). Each subsequent vertex defines a new
triangle using that point along with two vertices from the previous triangle. If fewer
than three vertices are specified, no primitive is produced. See figure 10.2.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
When a series of vertices are transferred to the GL, the pointer is initialized to point
to vertex A. Each successive vertex toggles the pointer. Therefore, the first vertex
is stored as vertex A, the second stored as vertex B, the third stored as vertex A,
and so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 261

10.1.6 Triangle Fans

A triangle fan is specified with mode TRIANGLE_FAN, and is the same as a triangle
strip with one exception: each vertex after the first always replaces vertex B of the
two stored vertices.

10.1.7 Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, the 3i 4 1st,
37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each ¢ =
0,1,...,n — 1, where there are 3n + k vertices drawn. k is either 0, 1, or 2; if k&
is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
37 and vertex B is vertex 37 4+ 1. Otherwise, separate triangles are the same as a
triangle strip.

10.1.8 Lines with Adjacency

Lines with adjacency are specified with mode LINES_ADJACENCY, and are inde-
pendent line segments where each endpoint has a corresponding adjacent vertex
that can be accessed by a geometry shader (see section 11.3). If a geometry shader
is not active, the adjacent vertices are ignored.

A line segment is drawn from the 47 + 2nd vertex to the 47 4 3rd vertex for each
t =0,1,...,n — 1, where there are 4n + k vertices passed. k is either 0, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment %, the 44 + 1st
and 41 + 4th vertices are considered adjacent to the 4¢ + 2nd and 4¢ + 3rd vertices,
respectively (see figure 10.3).

10.1.9 Line Strips with Adjacency

Line strips with adjacency are specified with mode LINE_STRIP_ADJACENCY and
are similar to line strips, except that each line segment has a pair of adjacent ver-
tices that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

A line segment is drawn from the ¢ 4+ 2nd vertex to the 7 + 3rd vertex for each
1 =20,1,...,n — 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment ¢, the 7 4 1st and ¢ + 4th
vertex are considered adjacent to the 7 4- 2nd and 7 4 3rd vertices, respectively (see
figure 10.3).

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 262

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

Figure 10.3. Lines with adjacency (a) and line strips with adjacency (b). The ver-
tices connected with solid lines belong to the main primitives; the vertices connected
by dashed lines are the adjacent vertices that may be used in a geometry shader.

Figure 10.4. Triangles with adjacency. The vertices connected with solid lines
belong to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 263

Figure 10.5. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

10.1.10 Triangles with Adjacency

Triangles with adjacency are specified with mode TRIANGLES_ADJACENCY, and
are similar to separate triangles except that each triangle edge has an adjacent ver-
tex that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
for each ¢ = 0,1,...,n — 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,
the 7 + 2nd, 7 + 4th, and ¢ 4 6th vertices are considered adjacent to edges from the
1 + 1st to the 7 + 3rd, from the ¢ + 3rd to the ¢ + 5th, and from the ¢ + 5th to the
© + 1st vertices, respectively (see figure 10.4).

OpenGL ES 3.2 (October 22, 2019)

10.1. PRIMITIVE TYPES 264

Primitive Vertices Adjacent Vertices
Primitive Ist | 2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 20 4+3 | 26+5 | 2¢0—1|2i+7 | 2044
last(t=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,7even) | 20+1 | 20+3 | 20+5 | 20—1 | 20 4+6 | 21 +4

Table 10.1: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

10.1.11 Triangle Strips with Adjacency

Triangle strips with adjacency are specified with mode TRIANGLE_STRIP_-
ADJACENCY and are similar to triangle strips except that each triangle edge has
an adjacent vertex that can be accessed by a geometry shader (see section 11.3). If
a geometry shader is not active, the adjacent vertices are ignored.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either O or 1; if k is 1, the final vertex is ignored. If
there are fewer than 6 vertices, the entire primitive is ignored. Table 10.1 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 10.5).

10.1.12 Separate Patches

Separate patches are specified with mode PATCHES. A patch is an ordered collec-
tion of vertices used for primitive tessellation (section 11.2). The vertices compris-
ing a patch have no implied geometric ordering. The vertices of a patch are used by
tessellation shaders and the fixed-function tessellator to generate new point, line,
or triangle primitives.

OpenGL ES 3.2 (October 22, 2019)

10.2. CURRENT VERTEX ATTRIBUTE VALUES

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);
with pname set to PATCH_VERTICES.

Errors

An INVALID_ENUM error is generated if pname is not PATCH_VERTICES.

An INVALID_VALUE error is generated if value is less than or equal to
zero, or greater than the implementation-dependent maximum patch size (the
value of MAX_PATCH_VERTICES). The patch size is initially three vertices.

If the number of vertices in a patch is given by v, the vi + 1st through vi 4 vth
vertices (in that order) determine a patch for each ¢ = 0,1,...n — 1, where there
are vn + k vertices. k is in the range [0, v — 1]; if & is not zero, the final k vertices
are ignored.

10.1.13 General Considerations For Polygon Primitives

A polygon primitive is one generated from a drawing command with mode
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or
TRIANGLE_STRIP_ADJACENCY. The order of vertices in such a primitive is sig-
nificant in polygon rasterization (see section 13.7.1) and fragment shading (see
section 14.2.2).

10.2 Current Vertex Attribute Values

The commands in this section are used to specify current attribute values. These
values are used by drawing commands to define the attributes transferred for a
vertex when a vertex array defining a required attribute is not enabled, as described
in section 10.3.

10.2.1 Current Generic Attributes

Vertex shaders (see section 11.1) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered zero, and the size of the array is
specified by the value of the implementation-dependent constant MAX_VERTEX_ -
ATTRIBS.

OpenGL ES 3.2 (October 22, 2019)

265

10.2. CURRENT VERTEX ATTRIBUTE VALUES 266

The current values of a generic shader attribute declared as a floating-point
scalar, vector, or matrix may be changed at any time by issuing one of the com-
mands

void VertexAttrib{1234}f (uint index, float values) ;
void VertexAttrib{1234}fv (uint index, const float
*yalues) ;
void VertexAttribI4{iui} (uint index, T values);
void VertexAttribl4{iui}v(uint index, const
T values);

The VertexAttribIl* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

When values for a vertex shader attribute variable are sourced from a current
generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

o VertexAttrib[1234]* for single-precision floating-point scalar, vector, and
matrix types

o VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

o VertexAttribI[1234]Jui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 267

Errors

An INVALID_ VALUE error is generated for all VertexAttrib* commands
if index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

10.2.2 Vertex Attribute Queries

Current generic vertex attribute values can be queried using the GetVertexAttrib*
commands as described in section 10.6.

10.2.3 Required State

The state required to support vertex specification consists of the value of MAX_—
VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.
The initial values for all generic vertex attributes are (0.0, 0.0,0.0, 1.0).

10.3 Vertex Arrays

Vertex data are placed into arrays that are stored in the client’s address space (de-
scribed here) or in the server’s address space (described in section 10.3.7). Blocks
of data in these arrays may then be used to specify multiple geometric primitives
through the execution of a single GL command.

10.3.1 Specifying Arrays for Generic Vertex Attributes

A generic vertex attribute array is described by an index into an array of vertex
buffer bindings which contain the vertex data and state describing how that data is
organized.

The commands

void VertexAttribFormat(uint attribindex, int size,
enum type, boolean normalized, uint relativeoffset);

void VertexAttribIFormat(uint attribindex, int size,
enum type, uint relativeoffset);

describe the organization of vertex arrays. attribindex identifies the generic vertex
attribute array. size indicates the number of values per vertex that are stored in the
array. type specifies the data type of the values stored in the array.

Table 10.2 indicates the allowable values for size and type. For type the val-
ues BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 268

Integer
Command Sizes Handling | Types
VertexAttribPointer, Vertex- | 1,2, 3,4 | flag byte, ubyte, short,
AttribFormat ushort, int, uint,
fixed, float, half,
packed
VertexAttribIPointer, Vertex- | 1,2, 3,4 | integer byte, ubyte, short,
AttribIFormat ushort, int, uint

Table 10.2: Vertex array sizes (values per vertex) and data types for generic vertex
attributes. See the body text for a full description of each column.

FLOAT, and HALF_FLOAT indicate the corresponding GL data type shown in ta-
ble 8.4. A type of FIXED indicates the data type fixed. A type of INT_2_10_-
10_10_REV or UNSIGNED_INT_2_10_10_10_REV, indicates respectively four
signed or unsigned elements packed into a single uint; both correspond to the
term packed in table 10.2. The components are packed as shown in figure 8.4.
packed is not a GL type, but indicates commands accepting multiple components
packed into a single uint.

The “Integer Handling” column in table 10.2 indicates how integer and fixed-
point data are handled. “integer” means that they remain as integer values; such
data are referred to as pure integers. “flag” means that either normalize or cast
behavior applies, as described below, depending on whether the normalized flag
to the command is TRUE or FALSE, respectively. normalize means that values are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [—1, 1]
(for signed types), as described in equations 2.1 and 2.2, respectively. cast means
that values are converted to floating-point directly.

The normalized flag is ignored for floating-point data types, including fixed,
float,and half.

relativeoffset is a byte offset of the first element relative to the start of the vertex
buffer binding this attribute fetches from.

Errors

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if size is not one of the values
shown in table 10.2 for the corresponding command.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 269

An INVALID_ENUM error is generated if fype is not one of the parameter
token names from table 8.4 corresponding to one of the allowed GL data types
for that command as shown in table 10.2.

An INVALID_OPERATION error is generated under any of the following
conditions:

o if the default vertex array object is currently bound (see section 10.4);

® fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_-
REV, and size is not 4.

An INVALID_VALUE error is generated if relativeoffset is larger than the
value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET.

A vertex buffer object is created by binding a name returned by GenBuffers
to a bind point of the currently bound vertex array object. The binding is effected
with the command

void BindVertexBuffer(uint bindingindex, uint buffer,
intptr offset, sizei stride);

The vertex buffer buffer is bound to the bind point bindingindex'.

Pointers to the ith and (i + 1)st elements of the array differ by stride basic
machine units, the pointer to the (i + 1)st element being greater. offset specifies
the offset in basic machine units of the first element in the vertex buffer.

If buffer has not been previously bound, the GL creates a new state vector,
initialized with a zero-sized memory buffer and comprising all the state and with
the same initial values listed in table 6.2, just as for BindBuffer.

Bind VertexBuffer may also be used to bind an existing buffer object. If the
bind is successful no change is made to the state of the newly bound buffer object,
and any previous binding to bindingindex is broken.

If buffer is zero, any buffer object bound to bindingindex is detached.

Errors

An INVALID_OPERATION error is generated if buffer is not zero, the
name of an existing buffer object or a name returned from a previous call to
GenBuffers, or if such a name has since been deleted with DeleteBuffers.

An INVALID_VALUE error is generated if bindingindex is greater than or

" In order for buffer to be affected by any of the buffer object manipulation functions, such as
BindBuffer or MapBufferRange, it must separately be bound to one of the general binding points.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 270

equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_VALUE error is generated if stride or offset is negative, or if
stride is greater than the value of MAX_VERTEX_ATTRIB_STRIDE.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

The association between a vertex attribute and the vertex buffer binding used
by that attribute is set by the command

void VertexAttribBinding(uint attribindex,
uint bindingindex);

Errors

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ ATTRIBS.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

The one, two, three, or four values in an array that correspond to a single ver-
tex comprise an array element. The values within each array element are stored
sequentially in memory.

When values for a vertex shader attribute variable are sourced from an enabled
generic vertex attribute array, the array must be specified by a command compat-
ible with the data type of the variable. The values loaded into a shader attribute
variable bound to generic attribute index are undefined if the array for index was
not specified by:

e VertexAttribFormat, for floating-point base type attributes;

e VertexAttribIFormat with type BYTE, SHORT, or INT for signed integer
base type attributes; or

o VertexAttribIFormat with type UNSIGNED_BYTE, UNSIGNED_SHORT, Or
UNSIGNED_INT for unsigned integer base type attributes.

The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 271

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

control vertex attribute state, a vertex buffer binding, and the mapping between
a vertex attribute and a vertex buffer binding. They are equivalent to (assuming
no errors are generated, and with the exception that no errors are generated if the
default vertex array object is bound):

if (the default vertex array object is bound and
no buffer is bound to ARRAY_BUFFER) {

vertex_buffer = temporary buffer
offset = 0;
} else {
vertex_buffer = <buffer bound to ARRAY BUFFER>
offset = (char x)pointer — (char =*)NULL;

}

VertexAttrib*Format (index, size, type, {normalized, }, 0);
VertexAttribBinding (index, index) ;
if (stride '= 0) {
effectiveStride = stride;
} else {
compute ef fectiveStride based on size and type;
}

VERTEX_ATTRIB_ARRAY STRIDE [index] = stride;
VERTEX_ATTRIB_ARRAY_POINTER [indexr] = pointer;

// This sets VERTEX_BINDING_STRIDE to effectiveStride
BindVertexBuffer (index, vertex_buffer, offset, effectiveStride);

If stride is specified as zero, then array elements are stored sequentially.

Errors

An INVALID_VALUE error is generated if stride is greater than the value
of MAX_VERTEX_ATTRIB_STRIDE.

An INVALID_OPERATION error is generated if a non-zero vertex array
object is bound, no buffer is bound to ARRAY_BUFFER, and pointer is not
NULL.

In addition, any of the errors defined by VertexAttrib*Format and Ver-
texAttribBinding may be generated if the parameters passed to those com-
mands in the equivalent code above would generate those errors.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 272

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

10.3.2 Vertex Attribute Divisors

Each generic vertex attribute has a corresponding divisor which modifies the rate
at which attributes advance, which is useful when rendering multiple instances of
primitives in a single draw call. If the divisor is zero, the corresponding attributes
advance once per vertex. Otherwise, attributes advance once per divisor instances
of the set(s) of vertices being rendered. A generic attribute is referred to as in-
stanced if its corresponding divisor value is non-zero.

The command

void VertexBindingDivisor(uint bindingindex,
uint divisor);

sets the divisor value for attributes taken from the buffer bound to bindingindex.

Errors

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

The command

void VertexAttribDivisor(uint index, uint divisor);

2 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 273

is equivalent to (assuming no errors are generated, and with the exception that no
errors are generated if the default vertex array object is bound):

VertexAttribBinding (index, index) ;
VertexBindingDivisor (index, divisor) ;

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ ATTRIBS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

10.3.3 Transferring Array Elements

When a vertex is transferred to the GL by DrawArrays, DrawElements, or the
other Draw* commands described below, each generic attribute is expanded to four
components. If size is one then the x component of the attribute is specified by the
array; the y, z, and w components are implicitly set to 0, 0, and 1, respectively. If
size is two then the z and y components of the attribute are specified by the array;
the z and w components are implicitly set to O and 1, respectively. If size is three
then z, y, and z are specified, and w is implicitly set to 1. If size is four then all
components are specified.

10.3.4 Primitive Restart

Primitive restarting is enabled or disabled by calling one of the commands
void Enable(enum rarget);

and
void Disable(enum target);

with farget PRIMITIVE_RESTART_FIXED_INDEX.

When DrawElements, DrawElementsInstanced, or DrawRangeElements
transfers a set of generic attribute array elements to the GL, if the index within
the vertex arrays corresponding to that set is equal to 2 — 1, where N is 8, 16
or 32 if the type is UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, re-
spectively, then the GL does not process those elements as a vertex. Instead, it is

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 274

as if the drawing command ended with the immediately preceding transfer, and an-
other drawing command is immediately started with the same parameters, but only
transferring the immediately following element through the end of the originally
specified elements.

When one of the *BaseVertex drawing commands specified in section 10.5 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

Implementations are not required to support primitive restart for separate
patch primitives (primitive type PATCHES). Support can be queried by calling
GetBooleanv with pname PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED.
A value of FALSE indicates that primitive restart is treated as disabled when draw-
ing patches, no matter the value of the enables. A value of TRUE indicates that
primitive restart behaves normally for patches.

10.3.5 Robust Buffer Access

Robust buffer access is enabled by creating a context with robust access enabled
through the window system binding APIs. When enabled, indices within the el-
ement array (see section 10.3.8) that reference vertex data that lies outside the
enabled attribute’s vertex buffer object result in undefined values for the corre-
sponding attributes, but cannot result in application failure.

Robust buffer access behavior may be queried by calling GetIntegerv with
pname CONTEXT_FLAGS, as described in section 20.2.

10.3.6 Packed Vertex Data Formats

Vertex data formats UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_-
10_REV describe packed, 4 component formats stored in a single 32-bit word.

For UNSIGNED_INT_2_10_10_10_REV, the first (x), second (), and third (z)
components are represented as 10-bit unsigned integer values and the fourth (w)
component is represented as a 2-bit unsigned integer value.

For INT_2_10_10_10_REV, the =, y and z components are represented as 10-
bit signed two’s complement integer values and the w component is represented as
a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Figure 10.6 describes how these components are laid out in a 32-bit word.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 275

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w z y X

Figure 10.6: Packed component layout. Bit numbers are indicated for each com-
ponent.

10.3.7 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options described in section 10.3.

A buffer object binding point is added to the client state associated with each
vertex array index. The commands that specify the locations and organizations of
vertex arrays copy the buffer object name that is bound to ARRAY_BUFFER to the
binding point corresponding to the vertex array index being specified. For example,
the VertexAttribPointer command copies the value of ARRAY BUFFER_BINDING
(the queriable name of the buffer binding corresponding to the target ARRAY_ -
BUFFER) to the client state variable VERTEX_ATTRIB_ARRAY_ BUFFER_BINDING
for the specified index.

The drawing commands using vertex arrays described in section 10.5 operate as
previously defined, except that data for enabled generic attribute arrays are sourced
from buffers if the array’s buffer binding is non-zero.

When an array is sourced from a buffer object for a vertex attribute, the
bindingindex set with VertexAttribBinding for that attribute indicates which ver-
tex buffer binding is used. The sum of the relativeoffset set for the attribute
with VertexAttrib*Format and the offset set for the vertex buffer with Bind Ver-
texBuffer is used as the offset in basic machine units of the first element in that
buffer’s data store.

When a generic attribute array is sourced from client memory, the vertex
attribute binding state is ignored. Instead, the parameters set with VertexAt-
trib*Pointer for that attribute indicate the location in client memory of attribute
values and their size, type, and stride.

10.3.8 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format
options that are supported for client-side index arrays. Initially zero is bound
to ELEMENT_ARRAY_ BUFFER, indicating that DrawElements, DrawRangeEle-
ments, and DrawElementsInstanced are to source their indices from arrays
passed as their indices parameters.

OpenGL ES 3.2 (October 22, 2019)

10.3. VERTEX ARRAYS 276

Indirect Command Name Indirect Buffer target
DrawArraysIndirect DRAW_INDIRECT_BUFFER
DrawElementsIndirect DRAW_INDIRECT_BUFFER

DispatchComputelndirect | DISPATCH_INDIRECT_BUFFER

Table 10.3: Indirect commands and corresponding indirect buffer targets.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with farget set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 6.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from that buffer object, using their indices parameters as off-
sets into the buffer object in the same fashion as described in section 10.3.7.
DrawElementsBaseVertex, DrawRangeElementsBaseVertex, and DrawEle-
mentsInstancedBaseVertex also source their indices from that buffer object,
adding the basevertex offset to the appropriate vertex index as a final step before in-
dexing into the vertex buffer; this does not affect the calculation of the base pointer
for the index array.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

10.3.9 Indirect Commands in Buffer Objects

Arguments to the indirect commands DrawArraysIndirect and DrawEle-
mentsIndirect (see section 10.5), and to DispatchComputelndirect (see sec-
tion 17) are sourced from the buffer object currently bound to the corresponding
indirect buffer rarget (see table 10.3), using the command’s indirect parameter as
an offset into the buffer object in the same fashion as described in section 10.3.7.
Buffer objects are created and/or bound to a target as described in section 6.1.
Initially zero is bound to each rarget.

Arguments are stored in buffer objects as structures (for Draw*Indirect) or
arrays (for DispatchComputelndirect) of tightly packed 32-bit integers.

OpenGL ES 3.2 (October 22, 2019)

10.4. VERTEX ARRAY OBJECTS 277

10.4 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The name space for vertex array objects is the unsigned integers, with zero
reserved by the GL to represent the default vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Errors
An INVALID_VALUE error is generated if n is negative.
Vertex array objects are deleted by calling
void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays that have
been marked as used for the purposes of GenVertexArrays are marked as unused
again. Unused names in arrays are silently ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if # is negative.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in ta-
ble 21.3.

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 278

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 20).

Errors

An INVALID_OPERATION error is generated if array is not zero or a name
returned from a previous call to GenVertexArrays, or if such a name has since
been deleted with DeleteVertexArrays.

The command
boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

10.5 Drawing Commands Using Vertex Arrays
The command

void DrawArraysOnelnstance(enum mode, int first,
sizeli count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices. Elements first through first 4+ count — 1
of each enabled non-instanced array are transferred to the GL. If count is zero, no
elements are transferred.

mode specifies what kind of primitives are constructed, and must be one of the
primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by >

3baseinstance is included for commonality with OpenGL, but its value will always be zero in
unextended OpenGL ES.

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 279

instance .
—— | 4+ baseinstance
\‘ divisor J

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawArraysOnelnstance.

The index of any element transferred to the GL by DrawArraysOnelnstance
is referred to as its vertex ID, and may be read by a vertex shader as g1_vertexID.
The vertex ID of the ith element transferred is first + i.

The value of instance may be read by a vertex shader as g1_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

Specifying first < 0 results in undefined behavior. Generating an
INVALID_VALUE error is recommended in this case.

An INVALID_VALUE error is generated if count is negative.

The command
void DrawArrays(enum mode, int first, sizei count);
is equivalent to
DrawArraysOnelnstance (mode, first, count, 0, 0);
The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei instancecount);

behaves identically to DrawArrays except that instancecount instances of the

range of elements are executed and the value of instance advances for each it-

eration. Those attributes that have non-zero values for divisor, as specified by

VertexAttribDivisor, advance once every divisor instances.
DrawArraysInstanced is equivalent to

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 280

if (mode, count, or instancecount is invalid)
generate appropriate error

else {
for (1 = 0; 1 < instancecount; i++) {
DrawArraysOnelnstance (mode, first, count, i, 0);

}

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

is equivalent to

typedef struct {

uint count;

uint instanceCount;

uint first;

uint reservedMustBeZero;
} DrawArraysIndirectCommand;

DrawArraysIndirectCommand xcmd =
(DrawArraysIndirectCommand =) indirect;
DrawArraysInstanced (node, cmd->first, cmd->count,

cmd->instanceCount) ;

Unlike DrawArraysInstanced, the first argument is unsigned and cannot

cause an error.
DrawArraysIndirect requires that all data sourced for the command, includ-

ing the DrawArraysIndirectCommand structure, be in buffer objects, and
may not be called when the default vertex array object is bound.
All elements of DrawArraysIndirectCommand are tightly-packed 32-bit val-

ues.
Errors

An INVALID_OPERATION error is generated if zero is bound to
VERTEX_ARRAY_BINDING, DRAW_INDIRECT_BUFFER or to any enabled ver-

tex array.
An INVALID_OPERATION error is generated if the command would

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 281

source data beyond the end of the buffer object.

An INVALID_VALUE error is generated if indirect is not a multiple of the
size, in basic machine units, of uint.

Results are undefined if reservedMustBeZero is non-zero, but may not re-
sult in program termination.

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum type, const void *indices, int instance,
int basevertex, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices to the GL.

The index of any element transferred to the GL by DrawElementsOneln-
stance is referred to as its vertex ID, and may be read by a vertex shader as g1_—
VertexID. If no element array buffer is bound, the vertex ID of the ¢th element
transferred is indices|i] + basevertex. Otherwise, the vertex ID of the ith ele-
ment transferred is the sum of basevertexr and the value stored in the currently
bound element array buffer at offset indices + ¢. If the vertex ID is larger than the
maximum value representable by type, it should behave as if the calculation were
upconverted to 32-bit unsigned integers (with wrapping on overflow conditions).
Behavior of DrawElementsOnelnstance is undefined if the vertex ID is negative
for any element, and should be handled as described in section 6.4.

type must be one of UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_-
INT, indicating that the index values are of GL type ubyte, ushort, or uint
respectively. mode specifies what kind of primitives are constructed, and must be
one of the primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by *

instance)
———— | + baseinstance
divisor
If type is UNSIGNED_INT, an implementation may restrict the maximum value
that can be used as an index to less than the maximum value that can be represented

*As described for DrawArraysOnelnstance above, the value of baseinstance will always be
Zero.

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 282

by the uint type. The maximum value supported by an implementation may be
queried by calling GetInteger64v with pname MAX_ELEMENT INDEX.

If an array corresponding to a generic attribute is not enabled, then the corre-
sponding element is taken from the current attribute state (see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawElementsOnelnstance.

The value of instance may be read by a vertex shader as g1_TInstancelID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

An INVALID_ENUM error is generated if fype is not UNSIGNED_BYTE,
UNSIGNED_ SHORT, Or UNSIGNED_ INT.

Using an index value greater than MAX_ELEMENT_INDEX will result in
undefined implementation-dependent behavior, unless primitive restart is en-
abled (see section 10.3.4) and the index value is 232 — 1.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOnelnstance with instance, basevertex, and
baseinstance set to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices,
0, 0, 0);

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei instancecount);

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 283

behaves identically to DrawElements except that instancecount instances of the
set of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stanced. It has the same effect as:

if (mode, count, instancecount, or type is invalid)
generate appropriate error
else {
for (int i = 0; i < instancecount; i++) {
DrawElementsOnelnstance (mode, count, type, indices,
i, 0, 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.
Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end| be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

Errors

An INVALID_VALUE error is generated if end < start.

Invalid mode, count, or type parameters generate the same errors as would
the corresponding call to DrawElements.

It is an error for index values (other than the primitive restart index,
when primitive restart is enabled) to lie outside the range [start, end], but

OpenGL ES 3.2 (October 22, 2019)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 284

implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei instancecount, int basevertex);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the basevertex value passed to DrawElementsOnelnstance is
the basevertex value of these commands, instead of zero.

For DrawRangeElementsBaseVertex, the values taken from indices for each
element transferred must be in the range [start, end] prior to adding the basev-
ertex offset. Index values lying outside this range are treated in the same way as
DrawRangeElements.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint firstIndex;
int baseVertex;
uint reservedMustBeZero;
} DrawElementsIndirectCommand;

if (no element array buffer is bound) {

generate appropriate error
} else {

DrawElementsIndirectCommand xcmd =
(DrawElementsIndirectCommand =x)indirect;

OpenGL ES 3.2 (October 22, 2019)

10.6. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 285

DrawElementsInstancedBaseVertex (mode,
cmd->count, type,
cmd->firstIndex x= size-of-type,
cmd->instanceCount, cmd->baseVertex);

}

DrawElementsIndirect requires that all data sourced for the command, in-
cluding the DrawElement sIndirectCommand structure, be in buffer objects,
and may not be called when the default vertex array object is bound.

All elements of DrawElementsIndirectCommand are tightly-packed 32-bit
values.

Errors

An INVALID_OPERATION error is generated if zero is bound to
VERTEX_ARRAY_BINDING, DRAW_INDIRECT_BUFFER, ELEMENT_ARRAY_ —
BUFFER, or to any enabled vertex array.

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_VALUE error is generated if indirect is not a multiple of the
size, in basic machine units, of uint.

Results are undefined if reservedMustBeZero is non-zero, but may not re-
sult in program termination.

10.6 Vertex Array and Vertex Array Object Queries

Queries of vertex array state variables are qualified by the value of VERTEX_-
ARRAY_BINDING to determine which vertex array object is queried. Table 21.3
defines the set of state stored in a vertex array object.

The commands

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribliv(uint index, enum pname,
int *params);

void GetVertexAttribluiv(uint index, enum pname,
uint *params);

OpenGL ES 3.2 (October 22, 2019)

10.6. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 286

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must
be one of VERTEX_ATTRIB_ARRAY_ BUFFER_BINDING, VERTEX_ ATTRIB_-
ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY SIZE, VERTEX ATTRIB_ARRAY -
STRIDE, VERTEX_ATTRIB_ARRAY_ TYPE, VERTEX_ATTRIB_ARRAY_ -
NORMALIZED, VERTEX_ATTRIB_ARRAY INTEGER, VERTEX_ATTRIB_ARRAY -
DIVISOR, VERTEX_ATTRIB_BINDING, VERTEX ATTRIB_RELATIVE_OFFSET,
or CURRENT_VERTEX_ATTRIB. Note that all the queries except CURRENT_—
VERTEX_ATTRIB return values stored in the currently bound vertex array object
(the value of VERTEX_ARRAY_BINDING). If the zero object is bound, these values
are client state.

Queries of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING and VERTEX_ -
ATTRIB_ARRAY_DIVISOR map the requested attribute index to a binding index
via the VERTEX_ATTRIB_BINDING state, and then return the value of VERTEX_ -
BINDING_BUFFER or VERTEX_BINDING_DIVISOR, respectively.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, relative offset, normalized flag, and unconverted integer flag
are set by the commands VertexAttribFormat and VertexAttribIFormat. The
normalized flag is always set to FALSE by VertexAttribIFormat. The unconverted
integer flag is always set to FALSE by VertexAttribFormat and TRUE VertexAt-
tribIFormat.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribfv reads and returns the current attribute
values as floating-point values; GetVertexAttribiv reads them as floating-point
values and converts them to integer values; GetVertexAttribliv reads and returns
them as integers; GetVertexAttribluiv reads and returns them as unsigned inte-
gers. The results of the query are undefined if the current attribute values are read
using one data type but were specified using a different one.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ ATTRIBS.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

The command

void GetVertexAttribPointerv(uint index, enum pname,

OpenGL ES 3.2 (October 22, 2019)

10.7. REQUIRED STATE 287

const void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_—
POINTER. The value returned is queried from the currently bound vertex array
object. If the zero object is bound, the value is queried from client state.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

Finally, the buffer bound to ELEMENT_ARRAY_BUFFER may be queried by
calling GetIntegerv with the symbolic constant ELEMENT_ARRAY_BUFFER_-
BINDING.

10.7 Required State

Let the number of supported generic vertex attributes (the value of MAX_VERTEX_—
ATTRIBS) be n. Let the number of supported generic vertex attribute bindings (the
value of MAX_VERTEX_ATTRIB_BINDINGS) be k.

Then the state required to implement vertex arrays consists of n boolean val-
ues, n memory pointers, n integer stride values, n symbolic constants representing
array types, n integers representing values per element, n boolean values indicat-
ing normalization, n boolean values indicating whether the attribute values are pure
integers, k integers representing vertex attribute divisors, n integer vertex attribute
binding indices, n integer relative offsets, k 64-bit integer vertex binding offsets,
and k integer vertex binding strides,

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, the divisors are each zero, the binding indices are 7 for each attribute
1, the relative offsets are each zero, the vertex binding offsets are each zero, and the
vertex binding strides are each 16.

OpenGL ES 3.2 (October 22, 2019)

Chapter 11

Programmable Vertex Processing

When the program object currently in use for the vertex stage (see section 7.3)
includes a vertex shader, its shader is considered active and is used to process
vertices transferred to the GL (see section 11.1). The resulting transformed vertices
are then processed as described in chapter 12.

If the current vertex stage program object has no vertex shader, or no program
object is current for the vertex stage, the results of programmable vertex processing
are undefined.

11.1 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their associ-
ated data. When the program object currently in use for the vertex stage includes a
vertex shader, its vertex shader is considered active and is used to process vertices.

Vertex attributes are per-vertex values available to vertex shaders, and are spec-
ified as described in section 10.2.

11.1.1 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to generic
vertex attributes transferred by drawing commands. This binding can be specified
by the application before the program is linked, or automatically assigned by the
GL when the program is linked.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 11.3 is bound to a generic attribute index ¢, its value(s) are
taken from the components of generic attribute 7. The generic attribute components

288

11.1. VERTEX SHADERS 289

Data type Component | Components
used

scalar 0 z

scalar 1 Y

scalar 2 z

scalar 3 w

two-component vector | 0 (x,y)

two-component vector | 1 (y, 2)

two-component vector | 2 (z,w)

three-component vector | 0 (x,y,2)

three-component vector | 1 (y,z,w)

four-component vector | O (z,y,2,w)

Table 11.1: Generic attribute components accessed by attribute variables.

used depend on the type of the variable specified in the variable declaration, as
identified in table 11.1.

When an attribute variable declared using a matrix type is bound to a generic
attribute index 17, its values are taken from consecutive generic attributes beginning
with generic attribute ¢. Such matrices are treated as an array of column vectors
with values taken from the generic attributes identified in table 11.2. Individual col-
umn vectors are taken from generic attribute components according to table 11.1,
using the vector type from table 11.2.

The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index, but the new
binding becomes effective only when the program is next linked. name must be
a null-terminated string. BindAttribLocation has no effect until the program is
linked. In particular, it doesn’t modify the bindings of active attribute variables in
a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will
automatically be bound to vertex attributes by the GL. Such bindings can be
queried using the command GetAttribLocation. LinkProgram will fail if the

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 290

Data type | Column vector type Generic
attributes used

mat?2 two-component vector | 2,7 + 1

mat2x3 three-component vector | 7,7 + 1

mat2x4 four-component vector | 7,7 + 1

mat3x2 two-component vector | ¢,¢+ 1,7+ 2

mat3 three-component vector | 2, ¢+ 1,7 + 2
mat3x4 four-component vector | ¢,¢+ 1,4 4 2
mat4x2 two-component vector | ¢,¢+ 1,7+ 2,7+ 3
mat4x3 three-component vector | 7,72+ 1,7+ 2,7+ 3
mat 4 four-component vector | %,¢+ 1,74+ 2,7+ 3

Table 11.2: Generic attributes and vector types used by column vectors of matrix
variables bound to generic attribute index 3.

Data type | Command

float VertexAttrib1*
vec2 VertexAttrib2*
vec3 VertexAttrib3*
vecd VertexAttrib4*

Table 11.3: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 291

assigned binding of an active attribute variable would cause the GL to reference
a non-existent generic attribute (one greater than or equal to the value of MAX_—
VERTEX_ATTRIBS). LinkProgram will fail if the attribute bindings specified ei-
ther by BindAttribLocation or explicitly set within the shader text do not leave
not enough space to assign a location for an active matrix attribute which requires
multiple contiguous generic attributes. If an active attribute has a binding explicitly
set within the shader text and a different binding assigned by BindAttribLocation,
the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "gl_") to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_ VERTEX_ ATTRIBS.

An INVALID_OPERATION error is generated if name starts with the re-
served "gl_" prefix).

To determine the set of active vertex attribute variables used by a program,
applications can query the properties and active resources of the PROGRAM_INPUT
interface of a program including a vertex shader.

Additionally, the command

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

can be used to determine properties of the active input variable assigned the index
index in program object program. If no error occurs, the command is equivalent to

const enum props[] = { ARRAY_SIZE, TYPE };

GetProgramResourceName (program, PROGRAM_INPUT,
index, bufSize, length, name);

GetProgramResourceiv (program, PROGRAM_INPUT,

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 292

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv (program, PROGRAM_INPUT,
index, 1, &props[l], 1, NULL, (int =)type);

For GetActiveAttrib, all active vertex shader input variables are enumerated,
including the special built-in inputs g1_VertexID and gl_InstanceID.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is not the index of an
active input variable in program.

An INVALID_VALUE error is generated for all values of index if program
does not include a vertex shader, as it has no active vertex attributes.

An INVALID_VALUE error is generated if bufSize is negative.

The command
int GetAttribLocation(uint program, const char *name);

can be used to determine the location assigned to the active input variable named
name in program object program.

Errors

If program has been linked successfully but contains no vertex shader, no
error is generated but -1 will be returned.

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the command is equivalent to

GetProgramResourceLocation (program, PROGRAM_INPUT, name) ;

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 293

There is an implementation-dependent limit on the number of active at-
tribute variables in a vertex shader. A program with more than the value of
MAX_VERTEX_ATTRIBS active attribute variables may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

The values of generic attributes sent to generic attribute index 7 are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index .

Binding more than one attribute name to the same location is referred to as
aliasing, and is not permitted in OpenGL ES Shading Language 3.00 or later ver-
tex shaders. LinkProgram will fail when this condition exists. However, aliasing
is possible in OpenGL ES Shading Language 1.00 vertex shaders. This will only
work if only one of the aliased attributes is active in the executable program, or if
no path through the shader consumes more than one attribute of a set of attributes
aliased to the same location. A link error can occur if the linker determines that
every path through the shader consumes multiple aliased attributes, but implemen-
tations are not required to generate an error in this case. The compiler and linker
are allowed to assume that no aliasing is done, and may employ optimizations that
work only in the absence of aliasing.

11.1.2 Vertex Shader Variables

Vertex shaders can access uniforms belonging to the current program object. Lim-
its on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Vertex shaders also have access to samplers to perform texturing operations, as
described in section 7.9.

11.1.2.1 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL ES Shading Language Specification).

The OpenGL ES Shading Language Specification also defines a set of built-in
outputs that vertex shaders can write to (see section 7.1 (“Built-In Variables™) of
the OpenGL ES Shading Language Specification). These output variables are used
as the mechanism to communicate values to the next active stage in the vertex pro-
cessing pipeline: either the tessellation control shader, the tessellation evaluation
shader, the geometry shader, or the fixed-function vertex processing stages leading
to rasterization.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 294

If the output variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all outputs are expected to be interpolated across
the primitive being rendered, unless flatshaded. Otherwise the values of all out-
puts are collected by the primitive assembly stage and passed on to the subsequent
pipeline stage once enough data for one primitive has been collected.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader, whether or not a tessellation con-
trol, tessellation evaluation, or geometry shader is active, is given by the value
of the implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS.
Outputs declared as vectors, matrices, and arrays will all consume multiple com-
ponents.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value
of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal
to the value of MAX_VARYING_COMPONENTS divided by four. Each output vari-
able component used as either a vertex shader output or fragment shader input
count against this limit, except for the components of g1_Position. A program
that accesses more than this limit’s worth of components of outputs may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 12.2). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

e geometry shader

e tessellation evaluation shader

e vertex shader

The set of variables to record is specified with the command

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 295

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode);

program specifies the program object. count specifies the number of output vari-
ables used for transform feedback. varyings is an array of count zero-terminated
strings specifying the names of the outputs to use for transform feedback. The
variables specified in varyings can be either built-in (beginning with "gl_") or
user-defined variables. Each variable can either be a basic type or an array of ba-
sic types. Structure, array of array and array of structure types cannot be captured
directly. Base-level members of aggregates can be captured by specifying the fully
qualified path identifying the member, using the same rules with which active re-
source lists are enumerated for program interfaces as described in section 7.3.1.1,
with one exception. To allow capturing whole arrays or individual elements of an
array, there are additional rules for array variables. To capture a single element, the
name of the output array is specified with a constant-integer index "name [x]"
where name is the name of the array variable and x is the constant-integer index of
the array element. To capture the whole of the output array, name is specified with-
out the array index or square brackets. Output variables are written out in the order
they appear in the array varyings. bufferMode is either INTERLEAVED_ATTRIBS
or SEPARATE_ATTRIBS, and identifies the mode used to capture the outputs when
transform feedback is active.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if count is negative.

An INVALID_ENUM error is generated if bufferMode is not SEPARATE_ -
ATTRIBS or INTERLEAVED_ATTRIBS.

An INVALID_VALUE error is generated if bufferMode is SEPARATE_ -
ATTRIBS and count is greater than the value of the implementation-dependent
limit MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram
is called, the program is linked so that the values of the specified outputs for the
vertices of each primitive generated by the GL are written to a single buffer object
(if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects (if the

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 296

buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

o the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation evaluation, or geometry shader;

e any variable name specified in the varyings array is not declared as a built-
in or user-defined output variable in the shader stage whose outputs can be
recorded;

e any two entries in the varyings array specify the same output variable or
include the same elements from an array variable (different elements from
the same array are permitted);

e the total number of components to capture in any output in varyings is greater
than the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS; or

e the total number of components to capture is greater than the value of
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

When a program is linked, a list of output variables that will be captured in
transform feedback mode is built as described in section 7.3. The variables in this
list are assigned consecutive indices, beginning with zero. The total number of
variables in the list may be queried by calling GetProgramiv (section 7.12) with a
pname of TRANSFORM_FEEDBACK_VARYINGS.

To determine the set of output variables in a linked program object that will
be captured in transform feedback mode, applications can query the properties and
active resources of the TRANSFORM_FEEDBACK_VARY ING interface.

Additionally, the dedicated command

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

can be used to enumerate properties of a single output variable captured in trans-
form feedback mode, and is equivalent to

const enum props[] = { ARRAY_SIZE, TYPE };

GetProgramResourceName (program, TRANSFORM_FEEDBACK_VARYING,
index, bufSize, length, name);

GetProgramResourceiv (program, TRANSFORM_FEEDBACK_VARYING,

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 297

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv (program, TRANSFORM_FEEDBACK_VARYING,
index, 1, &props[1l], 1, NULL, (int =)type);

11.1.3 Shader Execution

If there is an active program object present for the vertex, tessellation control,
tessellation evaluation, or geometry shader stages, the executable code for these
active programs is used to process incoming vertex values. The following sequence
of operations is performed:

e Vertices are processed by the vertex shader (see section 11.1) and assembled
into primitives as described in sections 10.1 through 10.3.

o If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 11.2.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

e [f the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 11.2.2) and tessellation evaluation shader (see section 11.2.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

o If the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 11.3). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its
input patch. However, each geometry shader invocation may emit new ver-
tices, which are arranged into primitives and passed to subsequent pipeline
stages.

Following shader execution, the fixed-function operations described in chap-
ter 12 are applied.

Special considerations for vertex shader execution are described in the follow-
ing sections.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 298

11.1.3.1 Shader Only Texturing

This section describes texture functionality that is accessible through shaders (of
all types). Also refer to chapter 8 and to section 8.7 (“Texture Functions™) of the
OpenGL ES Shading Language Specification.

11.1.3.2 Texel Fetches

The texelFetch built-ins provide the ability to extract a single texel from a spec-
ified texture image. Texel fetches cannot access cube map textures.

The integer coordinates (i,j, k) passed to texelFetch are used to point-
sample the texture image. The level of detail accessed is computed by adding the
specified level-of-detail parameter lod to the base level of the texture, levelpqse.

Texel fetch proceeds similarly to the steps described for texture access in sec-
tion 11.1.3.5, with the exception that none of the operations controlled by sampler
object state are performed, including:

level of detail clamping;

texture wrap mode application;

filtering (however, a mipmapped minification filter is required to access any
level of detail other than the base level);

depth comparison.
The steps that are performed are:

e validation of texel coordinates as described below, including the computed
level-of-detail, (i, 7, k), the specified level for array textures, and texture
completeness;

e sRGB conversion of fetched values as described in section 8.21;
e conversion to base color Cy;

e component swizzling.

The results of texelFetch built-ins are undefined if any of the following con-
ditions hold:

o the computed level of detail is less than the texture’s base level (levelpqse) or
greater than the maximum defined level, ¢ (see section 8.14.3)

OpenGL ES 3.2 (October 22, 2019)

11.1.

VERTEX SHADERS 299

the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

the layer specified for array textures is negative or greater than or equal to
the number of layers in the array texture

the texel coordinates (i, j, k) refer to a texel outside the extents of the com-
puted level of detail, where any of

1 <0 1> Ws
7 <0 J = hs
k<0 k> ds

and the size parameters ws, hs, and dg refer to the width, height, and depth
of the image

the texture being accessed is not complete, as defined in section 8.17.

In all the above cases, the result of the texture fetch is undefined in each case.

11.1.3.3 Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures are not filtered when samples are fetched, and filter state is
ignored.

The results of a multisample texel fetch are undefined if any of the following
conditions hold:

the texel coordinates (i, j, k) refer to a texel outside the extents of the multi-
sample texture image, where any of

i<0 i > ws
j<0 J = hs
k<0 k> d,

and the size parameters ws, hg, and dg refer to the width, height, and depth
of the image

o the specified sample number does not exist (is negative, or greater than or

equal to the number of samples in the texture).

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 300

Additionally, these fetches may only be performed on a multisample texture
sampler. No other sample or fetch commands may be performed on a multisample
texture sampler.

11.1.3.4 Texture Queries

The texturesSize built-ins provide the ability to query the size of a texture image.
The level-of-detail value lod passed in as an argument to the texture size functions
is added to the levelp,s. Of the texture to determine a texture image level. The
dimensions of that image level are then returned. The value returned is undefined
if:

e the texture is not complete;

e the texture is not mipmap complete, and the computed texture level is not
levelbasra; or

e the computed texture image level is outside the range [levelpyse, q], Where ¢
is defined in section 8.14.3.

When querying the size of an array texture, both the dimensions and the layer
index are returned.

11.1.3.5 Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependant constants

e MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

e MAX_TESS_CONTROI_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

e MAX_ GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders),
e MAX_TEXTURE_IMAGE_UNITS (for fragment shaders), and

e MAX_ COMPUTE_TEXTURE_IMAGE_UNITS (for compute shaders),

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 301

All active shaders combined cannot use more than the value of MAX_ -
COMBINED_TEXTURE_IMAGE_UNITS texture image units. If more than one
pipeline stage accesses the same texture image unit, each such access counts sepa-
rately against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value 7 is
computed in the manner described in sections 8.14 and 8.15, and converted to a
texture base color Cj, as shown in table 14.1, followed by application of the texture
swizzle as described in section 14.2.1 to compute the texture source color C's and
As.

The resulting four-component vector (Rs, G, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.7 (“Texture Functions”) of the OpenGL ES
Shading Language Specification) may return floating-point, signed, or unsigned
integer values depending on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with
respect to window coordinates as described in section 8.14. Hence, there is no au-
tomatic selection of an image array level. Minification or magnification of a texture
map is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value [, then the pre-bias level-of-detail value Apyse(z, y) = [(replacing
equation 8.6). If the texture lookup function does not supply an explicit level-of-
detail value, then Apgse(z,y) = 0. The scale factor p(x,y) and its approximation
function f(x,y) (see discussion in section 8.14.1) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color (', either using depth data directly or by performing a comparison
with the D,.; value used to perform the lookup, as described in section 8.20.1,
and expanding the resulting value R, to a color Cj, = (R, 0,0, 1). In either case,
swizzling of Cj, is then performed as described above, but only the first compo-
nent C,[0] is returned to the shader. The comparison operation is requested in the
shader by using any of the shadow sampler types (samplerShadow), and in the
texture using the TEXTURE_COMPARE_MODE parameter. These requests must be
consistent; the results of a texture lookup are undefined if any of the following
conditions are true:

e The sampler used in a texture lookup function is not one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 302

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, and the texture object’s base internal format is not DEPTH_-—
COMPONENT or DEPTH_STENCIL.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_STENCIL, and the
DEPTH_STENCIL_TEXTURE_MODE is not DEPTH_COMPONENT.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL and the value of DEPTH_STENCIL_TEXTURE_MODE is
not STENCIL_INDEX.

Texture lookups involving texture objects with an internal format of DEPTH_ -
STENCIL can read the stencil value as described in section 8.20 by setting
the DEPTH_STENCIL_TEXTURE_MODE to STENCIL_INDEX. Textures with a
STENCIL_INDEX base internal format may also be used to read stencil data. The
stencil value is read as an integer and assigned to R;. An unsigned integer sampler
should be used to lookup the stencil component, otherwise the results are unde-
fined.

If a sampler is used in a shader and the sampler’s associated texture is not
complete, as defined in section 8.17, (0.0, 0.0,0.0, 1.0), in floating-point, will be
returned for a non-shadow sampler and 0 for a shadow sampler. In this case, if the
sampler is declared in the shader as a signed or unsigned integer sampler type, un-
defined values are returned as specified in section 9.9 (“Texture Functions”) of the
OpenGL ES Shading Language Specification when the texture format and sampler
type are unsupported combinations.

11.1.3.6 Atomic Counter Access

Shaders have the ability to set and get atomic counters. The maximum number of
atomic counters available to shaders are the values of the implementation depen-
dent constants

e MAX_VERTEX_ATOMIC_COUNTERS (for vertex shaders)

e MAX_TESS_CONTROL_ATOMIC_COUNTERS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_ATOMIC_COUNTERS (for tessellation evaluation
shaders),

e MAX_GEOMETRY_ATOMIC_COUNTERS (for geometry shaders),

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 303

e MAX_FRAGMENT_ATOMIC_COUNTERS (for fragment shaders), and

e MAX_COMPUTE_ATOMIC_COUNTERS (for compute shaders)

All active shaders combined cannot use more than the value of MAX_ -
COMBINED_ATOMIC_COUNTERS atomic counters. If more than one pipeline stage
accesses the same atomic counter, each such access counts separately against the
MAX_COMBINED_ATOMIC_COUNTERS limit.

11.1.3.7 Image Access

Shaders have the ability to read and write to textures using image uniforms. The
maximum number of image uniforms available to individual shader stages are the
values of the implementation dependent constants

e MAX_VERTEX_IMAGE_UNIFORMS (for vertex shaders),
e MAX_TESS_CONTROL_IMAGE_UNIFORMS (for tessellation control shaders),

e MAX_TESS_EVALUATION_IMAGE_UNIFORMS (for tessellation evaluation
shaders),

e MAX_ GEOMETRY_IMAGE_UNIFORMS (for geometry shaders),
e MAX FRAGMENT_IMAGE_UNIFORMS (for fragment shaders), and

e MAX_ COMPUTE_IMAGE_UNIFORMS (for compute shaders)

All active shaders combined cannot use more than the value of MAX -
COMBINED_IMAGE_UNIFORMS image units. If more than one shader stage ac-
cesses the same image uniform, each such access counts separately against the
MAX_COMBINED_IMAGE_UNIFORMS limit.

11.1.3.8 Shader Storage Buffer Access

Shaders have the ability to read and write to buffer memory via buffer variables in
shader storage blocks. The maximum number of shader storage blocks available to
shaders are the values of the implementation dependent constants

e MAX_VERTEX_SHADER_STORAGE_BLOCKS (for vertex shaders),

e MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS (for tessellation control
shaders),

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 304

MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS (for tessellation
evaluation shaders),

MAX_GEOMETRY_SHADER_STORAGE_BLOCKS (for geometry shaders),

MAX_FRAGMENT_SHADER_STORAGE_BLOCKS (for fragment shaders), and

MAX_COMPUTE_SHADER_STORAGE_BLOCKS (for compute shaders)

All active shaders combined cannot use more than the value of MAX -
COMBINED_SHADER_STORAGE_BLOCKS shader storage blocks. If more than one
pipeline stage accesses the same shader storage block, each such access separately
against this combined limit.

11.1.3.9 Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and gl_InstancelID.

gl_vertexID holds the integer index 7 implicitly passed by DrawArrays or
one of the other drawing commands defined in section 10.5. The value of g1_-
VertexID is defined if and only if all enabled vertex arrays have non-zero buffer
object bindings.

gl_InstanceID holds the integer instance number of the current primitive in
an instanced draw call (see section 10.5).

Section 7.1 (“Built-In Variables”) of the OpenGL ES Shading Language Spec-
ification also describes these variables.

11.1.3.10 Shader Outputs

A vertex shader can write to user-defined output variables. These values are ex-
pected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to sections 4.3.6 (“Output Variables”), 7.1 (“Interpolation
Qualifiers”), and 7.6 (“Built-In Variables”) of the OpenGL ES Shading Language
Specification for more detail.

The built-in output g1_Position is intended to hold the homogeneous vertex
position. Writing g1_Position is optional.

The built-in output g1_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 305

11.1.3.11 Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder of
the pipeline. Therefore validation is done when the first rendering command which
triggers shader invocations is issued, to determine if the set of active program ob-
jects can be executed. If there is no current program object and no current program
pipeline object, the results of rendering commands are undefined. However, this is
not an error.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL or launches compute work if the current set of active
program objects cannot be executed, for reasons including:

e The current program pipeline object contains a shader interface that
doesn’t have an exact match (see section 7.4.1)

e A program object is active for at least one, but not all of the shader
stages that were present when the program was linked.

e One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the
first program was active. The active compute shader is ignored for the
purposes of this test.

e There is an active program for tessellation control, tessellation evalua-
tion, or geometry stages with corresponding executable shader, but there
is no active program with executable vertex shader.

e One but not both of the tessellation control and tessellation evaluation
stages have an active program with corresponding executable shader.

e There is no current program object specified by UseProgram, there is a
current program pipeline object, and the current program for any shader
stage has been relinked since being applied to the pipeline object via
UseProgramStages with the PROGRAM_SEPARABLE parameter set to
FALSE.

e There is no current program object specified by UseProgram, there is a

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 306

current program pipeline object, and that object is empty (no executable
code is installed for any stage).

e Any two active samplers in the set of active program objects are of dif-
ferent types, but refer to the same texture image unit,

e The sum of the number of active samplers for each active program ex-
ceeds the maximum number of texture image units allowed.

e The sum of the number of active shader storage blocks used by the
current program objects exceeds the combined limit on the number of
active shader storage blocks (the value of MAX COMBINED_SHADER_-
STORAGE_BLOCKS).

The INVALID_OPERATION error generated by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 7.12). If
validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded, no INVALID_OPERATION validation error will be
generated if program is made current via UseProgram, given the current state. If
validation failed, such errors are generated under the current state.

ValidateProgram will check for all the conditions described in this section,
and may check for other conditions as well. For example, it could give a hint on
how to optimize some piece of shader code. The information log of program is
overwritten with information on the results of the validation, which could be an
empty string. The results written to the information log are typically only use-
ful during application development; an application should not expect different GL
implementations to produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

OpenGL ES 3.2 (October 22, 2019)

11.1. VERTEX SHADERS 307

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status can be queried with GetProgramPipelineiv
(see section 7.12). If validation succeeded, no INVALID_OPERATION validation
error will be generated if pipeline is bound and no program were made current via
UseProgram, given the current state. If validation failed, such errors are generated
under the current state.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines,

11.1.3.12 Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.
Applications that require defined behavior for out-of-bounds accesses should
range check all computed indices before dereferencing the array, vector or matrix.

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 308

11.2 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed
levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders:
tessellation control shaders and tessellation evaluation shaders. Tessellation is con-
sidered active if and only if the active program object or program pipeline object
includes both a tessellation control shader and a tessellation evaluation shader.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes
of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, patch primitives may not be provided by the application.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of 1ayout declarations
specified in the tessellation evaluation shader text.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u,v) or
(u,v,w) coordinate, as well as the position and attributes of any or all of the ver-
tices in the input patch.

Tessellation operates only on patch primitives. Patch primitives are not sup-
ported by pipeline stages below the tessellation evaluation shader.

A non-separable program object or program pipeline object that includes a
tessellation shader of any kind must also include a vertex shader.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has one but not both of a

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 309

tessellation control shader and tessellation evaluation shader.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is active and the primitive mode is not
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is not active and the primitive mode is
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a tessellation shader but
no vertex shader.

11.2.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL ES Shading Language Specifica-
tion. A program will fail to link if the output patch vertex count is not specified by
the tessellation control shader object attached to the program, if it is less than or
equal to zero, or if it is greater than the implementation-dependent maximum patch
size. The output patch vertex count may be queried by calling GetProgramiv with
pname TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 7.1, using a type
of TESS_CONTROL_SHADER. When a new input patch is received, the tessellation
control shader is run once for each vertex in the output patch. The tessellation con-
trol shader invocations collectively specify the per-vertex and per-patch attributes
of the output patch. The per-vertex attributes are obtained from the per-vertex out-
put variables written by each invocation. Each tessellation control shader invoca-
tion may only write to per-vertex output variables corresponding to its own output
patch vertex. The output patch vertex number corresponding to a given tessellation
control shader invocation is given by the built-in variable g1_InvocationID. Per-
patch attributes are taken from the per-patch output variables, which may be writ-
ten by any tessellation control shader invocation. While tessellation control shader

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 310

invocations may read any per-vertex and per-patch output variable and write any
per-patch output variable, reading or writing output variables also written by other
invocations has ordering hazards discussed below.

11.2.1.1 Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current program
object. Limits on uniform storage and methods for manipulating uniforms are
described in section 7.6.

Tessellation control shaders also have access to samplers to perform texturing
operations, as described in section 7.9.

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input variables. Values for any inputs that
are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more output vari-
ables, including per-vertex attributes for the vertices of the output patch and per-
patch attributes of the patch. Tessellation control shaders can also write to a set
of built-in per-vertex and per-patch outputs defined in the OpenGL ES Shading
Language. The per-vertex and per-patch attributes of the output patch are used by
the tessellation primitive generator (section 11.2.2) and may be read by tessellation
evaluation shader (section 11.2.3).

11.2.1.2 Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

11.2.1.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation control shaders.

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 311

11.2.1.2.2 Tessellation Control Shader Inputs Section 7.1 (“Built-In Vari-
ables”) of the OpenGL ES Shading Language Specification describes the built-
in variable array gl_in available as input to a tessellation control shader. g1_-
in receives values from equivalent built-in output variables written by the vertex
shader (section 11.1.3). Each array element of g1_in is a structure holding a
value for a specific vertex of the input patch. The length of g1_in is equal to the
implementation-dependent maximum patch size (g1_MaxPatchVertices). Be-
havior is undefined if g1_in is indexed with a vertex index greater than or equal
to the current patch size. The sole member of each element of the g1_in array is
gl_Position.

Tessellation control shaders have available several other built-in input variables
not replicated per-vertex and not contained in g1_in, including:

e The variable gl_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

e The variable g1_PrimitiveID is filled with the number of primitives pro-
cessed by the drawing command which generated the input vertices. The first
primitive generated by a drawing command is numbered zero, and the prim-
itive ID counter is incremented after every individual point, line, or triangle
primitive is processed. The counter is reset to zero between each instance
drawn. Restarting a primitive topology using the primitive restart index has
no effect on the primitive ID counter.

e The variable g1_InvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in inputs, each user-defined input variable has a value
for each vertex and thus needs to be declared as arrays or inside input blocks
declared as arrays. Declaring an array size is optional. If no size is speci-
fied, it will be taken from the implementation-dependent maximum patch size
(gl_MaxPatchvVertices). If a size is specified, it must match the maxi-
mum patch size; otherwise, a compile or link error will occur. Since the ar-
ray size may be larger than the number of vertices found in the input patch,
behavior is undefined if a per-vertex input variable is accessed using an in-
dex greater than or equal to the number of vertices in the input patch.

o)

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 312

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the tessellation control shader, given by the value of the
implementation-dependent constant MAX_TESS_CONTROL_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a tessellation
control shader will count against this limit. A program whose tessellation control
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.3 Tessellation Control Shader Outputs Section 7.1 (“Built-In Vari-
ables”) of the OpenGL ES Shading Language Specification describes the built-in
variable array g1_out available as an output for a tessellation control shader. g1_ -
out passes values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages. Each
array element of gl1_out is a structure holding values for a specific vertex of the
output patch. The length of g1_out is equal to the output patch size specified in
the tessellation control shader output layout declaration. The sole member of
each element of the g1_out array is g1_Position. It behaves identically to the
equivalently named vertex shader output (see section 11.1.3).

Tessellation shaders additionally have three built-in per-patch output arrays,
gl_TessLevelOuter, gl_TessLevelInner and gl_BoundingBox. These
arrays are not replicated for each output patch vertex and are not members of
gl_out. gl_TessLevelOuter is an array of four floating-point values speci-
fying the approximate number of segments that the tessellation primitive gener-
ator should use when subdividing each outer edge of the primitive it subdivides.
gl_TessLevelInner is an array of two floating-point values specifying the ap-
proximate number of segments used to produce a regularly-subdivided primitive
interior. The values written to g1_TessLevelOuter and gl_TessLevelInner
need not be integers, and their interpretation depends on the type of primitive the
tessellation primitive generator will subdivide and other tessellation parameters, as
discussed in the following section. g1_BoundingBox is an array of two vec4 val-
ues that should be used instead of the value of PRIMITIVE_BOUNDING_BOX as the
primitive bounding box (see section 13.2) for primitives generated from the output
patch.

A tessellation control shader may also declare user-defined per-vertex output

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 313

variables. User-defined per-vertex output variables are declared with the quali-
fier out and have a value for each vertex in the output patch. Such variables
must be declared as arrays or inside output blocks declared as arrays. Declar-
ing an array size is optional. If no size is specified, it will be taken from
the output patch size declared in the shader. If a size is specified, it must

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those outputs
corresponding to its output patch vertex. Tessellation control shaders must use the
special variable g1_InvocationID as the vertex number index when writing to
per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

There are several limits on the number of components of output variables that
can be written by the tessellation control shader. The number of components
of active per-vertex output variables may not exceed the value of MAX_TESS_—
CONTROL_OUTPUT_COMPONENTS. The number of components of active per-patch
output variables may not exceed the value of MAX_TESS_PATCH_COMPONENTS.
The built-in outputs gl_TessLevelOuter and gl_TessLevellInner are not
counted against the per-patch limit. The built-in output g1_BoundingBox, if stat-
ically assigned by the shader, is counted against the per-patch limit. The total
number of components of active per-vertex and per-patch outputs is derived by
multiplying the per-vertex output component count by the output patch size and
then adding the per-patch output component count. The total component count
may not exceed MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
tessellation control shader will count against this limit. A program exceeding any
of these limits may fail to link, unless device-dependent optimizations are able to
make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 314

11.2.1.2.4 Tessellation Control Shader Execution Order For tessellation
control shaders with a declared output patch size greater than one, the shader is
invoked more than once for each input patch. The order of execution of one tessel-
lation control shader invocation relative to the other invocations for the same input
patch is largely undefined. The built-in function barrier provides some control
over relative execution order. When a tessellation control shader calls the barrier
function, its execution pauses until all other invocations have also called the same
function. Output variable assignments performed by any invocation executed prior
to calling barrier will be visible to any other invocation after the callto barrier
returns. Shader output values read in one invocation but written by another may be
undefined without proper use of barrier; full rules are found in the OpenGL ES
Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in code containing potentially di-
vergent flow of control. In particular, barrier may not be called inside a switch
statement, in either sub-statement of an if statement, inside a do, for, or while
loop, or at any point after a return statement in the function main.

11.2.2 Tessellation Primitive Generation

The tessellation primitive generator consumes the input patch and produces a new
set of basic primitives (points, lines, or triangles). These primitives are produced
by subdividing a geometric primitive (rectangle or triangle) according to the per-
patch tessellation levels written by the tessellation control shader. This subdivision
is performed in an implementation- dependent manner.

The type of subdivision performed by the tessellation primitive generator is
specified by an input 1ayout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across
the rectangle. Each vertex produced by the primitive generator has an associated
(u, v, w) or (u,v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 11.1. For t riangles, the vertex position
is a barycentric coordinate (u, v, w), where u + v + w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 315

(0,1) oL3 (1,1) (0,1,0)
ILO
oLo IL1 oL2 oLo oL2
ILO
(0,0) oL1 (1,0) (0,0,1) oL1 (1,0,0)
Quads Triangles
(0,1) (1,1)
A (no edge)
oLo!
v
(0,0) oLl (1,0)
Isolines
Figure 11.1. Domain parameterization for tessellation generator primitive modes
(triangles, quads, or isolines). The coordinates illustrate the value of gl_-
TessCoord at the corners of the domain. The labels on the edges indicate the
inner (ILO and IL1) and outer (OLO through OL3) tessellation level values used to
control the number of subdivisions along each edge of the domain.

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 316

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any relevant outer tessellation level corresponds to a floating-point NaN (not a
number) in implementations supporting NaN. When patches are discarded, no new
primitives will be generated and the tessellation evaluation program will not be run.
For quads, all four outer levels are relevant. For triangles and isolines, only
the first three or two outer levels, respectively, are relevant. Negative inner levels
will not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacingis used, the floating-point tessellation level is first clamped
to the range [1, maz|, where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacing is used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If
fractional_odd_spacing is used, the tessellation level is clamped to the range
[1, max — 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n — 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n — f,
where f is the clamped floating-point tessellation level. When n — f is zero, the
additional segments will have equal length to the other segments. As n — f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but
must be identical for any pair of subdivided edges with identical values of f.

When the tessellation primitive generator produces triangles (in the
triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identi-
fiers cw and ccw. If the order is cw, the vertices of all generated triangles will have
a clockwise ordering in (u, v) or (u, v, w) space, as illustrated in figure 11.1. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 317

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input layout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each distinct vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or
triangles according to the primitive mode. When tessellating triangles or quads in
point mode with fractional odd spacing, the tessellation primitive generator may
produce “interior” vertices that are positioned on the edge of the patch if an inner
tessellation level is less than or equal to one. Such vertices are considered distinct
from vertices produced by subdividing the outer edge of the patch, even if there are
pairs of vertices with identical coordinates.

The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

11.2.2.1 Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the © = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no
effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are ex-
actly one after clamping and rounding, only a single triangle with (u,v,w) co-
ordinates of (0,0, 1), (1,0,0), and (0, 1,0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 + € and will
be rounded up to result in a two- or three-segment subdivision according to the
tessellation spacing. When used with fractional odd spacing, the three-segment
subdivision may produce “inner” vertices positioned on the edge of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-
sellation level and the specified tessellation spacing, generating n segments. For

OpenGL ES 3.2 (October 22, 2019)

11.2. TESSELLATION 318

(0,1,0)

(0,1,0)

(0,0,1) (1,0,0)

0,0,1) (1,0,0

Figure 11.2. Inner triangle tessellation with inner tessellation levels of (a) five and
(b) four, respectively (not to scale). Solid black circles depict vertices along the
edges of the concentric triangles. The edges of inner triangles are subdivided by
intersecting the edge with segments perpendicular to the edge passing through each
inner vertex of the subdivided outer edge. Dotted lines depict edges connecting
corresponding vertices on the inner and outer triangle edges.

the outermost inner triangle, the inner triangle is degenerate — a single point at the
center of the triangle — if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner trian-
gle are not subdivided and it is the final triangle in the set of concentric triangles.
Otherwise, each edge of the inner triangle is divided into n — 2 segments, with
the n — 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n — 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer
triangle. This subdivision process is illustrated in figure 11.2.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a
set of non-overlapping triangles. In this subdivision, two